xref: /openbmc/linux/drivers/net/wireless/zydas/zd1211rw/zd_chip.c (revision 5765e78e84023ced0c719aaea2ef59b9b34f626a)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* ZD1211 USB-WLAN driver for Linux
3  *
4  * Copyright (C) 2005-2007 Ulrich Kunitz <kune@deine-taler.de>
5  * Copyright (C) 2006-2007 Daniel Drake <dsd@gentoo.org>
6  */
7 
8 /* This file implements all the hardware specific functions for the ZD1211
9  * and ZD1211B chips. Support for the ZD1211B was possible after Timothy
10  * Legge sent me a ZD1211B device. Thank you Tim. -- Uli
11  */
12 
13 #include <linux/kernel.h>
14 #include <linux/errno.h>
15 #include <linux/slab.h>
16 
17 #include "zd_def.h"
18 #include "zd_chip.h"
19 #include "zd_mac.h"
20 #include "zd_rf.h"
21 
22 void zd_chip_init(struct zd_chip *chip,
23 	         struct ieee80211_hw *hw,
24 		 struct usb_interface *intf)
25 {
26 	memset(chip, 0, sizeof(*chip));
27 	mutex_init(&chip->mutex);
28 	zd_usb_init(&chip->usb, hw, intf);
29 	zd_rf_init(&chip->rf);
30 }
31 
32 void zd_chip_clear(struct zd_chip *chip)
33 {
34 	ZD_ASSERT(!mutex_is_locked(&chip->mutex));
35 	zd_usb_clear(&chip->usb);
36 	zd_rf_clear(&chip->rf);
37 	mutex_destroy(&chip->mutex);
38 	ZD_MEMCLEAR(chip, sizeof(*chip));
39 }
40 
41 static int scnprint_mac_oui(struct zd_chip *chip, char *buffer, size_t size)
42 {
43 	u8 *addr = zd_mac_get_perm_addr(zd_chip_to_mac(chip));
44 	return scnprintf(buffer, size, "%02x-%02x-%02x",
45 		         addr[0], addr[1], addr[2]);
46 }
47 
48 /* Prints an identifier line, which will support debugging. */
49 static int scnprint_id(struct zd_chip *chip, char *buffer, size_t size)
50 {
51 	int i = 0;
52 
53 	i = scnprintf(buffer, size, "zd1211%s chip ",
54 		      zd_chip_is_zd1211b(chip) ? "b" : "");
55 	i += zd_usb_scnprint_id(&chip->usb, buffer+i, size-i);
56 	i += scnprintf(buffer+i, size-i, " ");
57 	i += scnprint_mac_oui(chip, buffer+i, size-i);
58 	i += scnprintf(buffer+i, size-i, " ");
59 	i += zd_rf_scnprint_id(&chip->rf, buffer+i, size-i);
60 	i += scnprintf(buffer+i, size-i, " pa%1x %c%c%c%c%c", chip->pa_type,
61 		chip->patch_cck_gain ? 'g' : '-',
62 		chip->patch_cr157 ? '7' : '-',
63 		chip->patch_6m_band_edge ? '6' : '-',
64 		chip->new_phy_layout ? 'N' : '-',
65 		chip->al2230s_bit ? 'S' : '-');
66 	return i;
67 }
68 
69 static void print_id(struct zd_chip *chip)
70 {
71 	char buffer[80];
72 
73 	scnprint_id(chip, buffer, sizeof(buffer));
74 	buffer[sizeof(buffer)-1] = 0;
75 	dev_info(zd_chip_dev(chip), "%s\n", buffer);
76 }
77 
78 static zd_addr_t inc_addr(zd_addr_t addr)
79 {
80 	u16 a = (u16)addr;
81 	/* Control registers use byte addressing, but everything else uses word
82 	 * addressing. */
83 	if ((a & 0xf000) == CR_START)
84 		a += 2;
85 	else
86 		a += 1;
87 	return (zd_addr_t)a;
88 }
89 
90 /* Read a variable number of 32-bit values. Parameter count is not allowed to
91  * exceed USB_MAX_IOREAD32_COUNT.
92  */
93 int zd_ioread32v_locked(struct zd_chip *chip, u32 *values, const zd_addr_t *addr,
94 		 unsigned int count)
95 {
96 	int r;
97 	int i;
98 	zd_addr_t a16[USB_MAX_IOREAD32_COUNT * 2];
99 	u16 v16[USB_MAX_IOREAD32_COUNT * 2];
100 	unsigned int count16;
101 
102 	if (count > USB_MAX_IOREAD32_COUNT)
103 		return -EINVAL;
104 
105 	/* Use stack for values and addresses. */
106 	count16 = 2 * count;
107 	BUG_ON(count16 * sizeof(zd_addr_t) > sizeof(a16));
108 	BUG_ON(count16 * sizeof(u16) > sizeof(v16));
109 
110 	for (i = 0; i < count; i++) {
111 		int j = 2*i;
112 		/* We read the high word always first. */
113 		a16[j] = inc_addr(addr[i]);
114 		a16[j+1] = addr[i];
115 	}
116 
117 	r = zd_ioread16v_locked(chip, v16, a16, count16);
118 	if (r) {
119 		dev_dbg_f(zd_chip_dev(chip),
120 			  "error: %s. Error number %d\n", __func__, r);
121 		return r;
122 	}
123 
124 	for (i = 0; i < count; i++) {
125 		int j = 2*i;
126 		values[i] = (v16[j] << 16) | v16[j+1];
127 	}
128 
129 	return 0;
130 }
131 
132 static int _zd_iowrite32v_async_locked(struct zd_chip *chip,
133 				       const struct zd_ioreq32 *ioreqs,
134 				       unsigned int count)
135 {
136 	int i, j, r;
137 	struct zd_ioreq16 ioreqs16[USB_MAX_IOWRITE32_COUNT * 2];
138 	unsigned int count16;
139 
140 	/* Use stack for values and addresses. */
141 
142 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
143 
144 	if (count == 0)
145 		return 0;
146 	if (count > USB_MAX_IOWRITE32_COUNT)
147 		return -EINVAL;
148 
149 	count16 = 2 * count;
150 	BUG_ON(count16 * sizeof(struct zd_ioreq16) > sizeof(ioreqs16));
151 
152 	for (i = 0; i < count; i++) {
153 		j = 2*i;
154 		/* We write the high word always first. */
155 		ioreqs16[j].value   = ioreqs[i].value >> 16;
156 		ioreqs16[j].addr    = inc_addr(ioreqs[i].addr);
157 		ioreqs16[j+1].value = ioreqs[i].value;
158 		ioreqs16[j+1].addr  = ioreqs[i].addr;
159 	}
160 
161 	r = zd_usb_iowrite16v_async(&chip->usb, ioreqs16, count16);
162 #ifdef DEBUG
163 	if (r) {
164 		dev_dbg_f(zd_chip_dev(chip),
165 			  "error %d in zd_usb_write16v\n", r);
166 	}
167 #endif /* DEBUG */
168 	return r;
169 }
170 
171 int _zd_iowrite32v_locked(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
172 			  unsigned int count)
173 {
174 	int r;
175 
176 	zd_usb_iowrite16v_async_start(&chip->usb);
177 	r = _zd_iowrite32v_async_locked(chip, ioreqs, count);
178 	if (r) {
179 		zd_usb_iowrite16v_async_end(&chip->usb, 0);
180 		return r;
181 	}
182 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
183 }
184 
185 int zd_iowrite16a_locked(struct zd_chip *chip,
186                   const struct zd_ioreq16 *ioreqs, unsigned int count)
187 {
188 	int r;
189 	unsigned int i, j, t, max;
190 
191 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
192 	zd_usb_iowrite16v_async_start(&chip->usb);
193 
194 	for (i = 0; i < count; i += j + t) {
195 		t = 0;
196 		max = count-i;
197 		if (max > USB_MAX_IOWRITE16_COUNT)
198 			max = USB_MAX_IOWRITE16_COUNT;
199 		for (j = 0; j < max; j++) {
200 			if (!ioreqs[i+j].addr) {
201 				t = 1;
202 				break;
203 			}
204 		}
205 
206 		r = zd_usb_iowrite16v_async(&chip->usb, &ioreqs[i], j);
207 		if (r) {
208 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
209 			dev_dbg_f(zd_chip_dev(chip),
210 				  "error zd_usb_iowrite16v. Error number %d\n",
211 				  r);
212 			return r;
213 		}
214 	}
215 
216 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
217 }
218 
219 /* Writes a variable number of 32 bit registers. The functions will split
220  * that in several USB requests. A split can be forced by inserting an IO
221  * request with an zero address field.
222  */
223 int zd_iowrite32a_locked(struct zd_chip *chip,
224 	          const struct zd_ioreq32 *ioreqs, unsigned int count)
225 {
226 	int r;
227 	unsigned int i, j, t, max;
228 
229 	zd_usb_iowrite16v_async_start(&chip->usb);
230 
231 	for (i = 0; i < count; i += j + t) {
232 		t = 0;
233 		max = count-i;
234 		if (max > USB_MAX_IOWRITE32_COUNT)
235 			max = USB_MAX_IOWRITE32_COUNT;
236 		for (j = 0; j < max; j++) {
237 			if (!ioreqs[i+j].addr) {
238 				t = 1;
239 				break;
240 			}
241 		}
242 
243 		r = _zd_iowrite32v_async_locked(chip, &ioreqs[i], j);
244 		if (r) {
245 			zd_usb_iowrite16v_async_end(&chip->usb, 0);
246 			dev_dbg_f(zd_chip_dev(chip),
247 				"error _%s. Error number %d\n", __func__,
248 				r);
249 			return r;
250 		}
251 	}
252 
253 	return zd_usb_iowrite16v_async_end(&chip->usb, 50 /* ms */);
254 }
255 
256 int zd_ioread16(struct zd_chip *chip, zd_addr_t addr, u16 *value)
257 {
258 	int r;
259 
260 	mutex_lock(&chip->mutex);
261 	r = zd_ioread16_locked(chip, value, addr);
262 	mutex_unlock(&chip->mutex);
263 	return r;
264 }
265 
266 int zd_ioread32(struct zd_chip *chip, zd_addr_t addr, u32 *value)
267 {
268 	int r;
269 
270 	mutex_lock(&chip->mutex);
271 	r = zd_ioread32_locked(chip, value, addr);
272 	mutex_unlock(&chip->mutex);
273 	return r;
274 }
275 
276 int zd_iowrite16(struct zd_chip *chip, zd_addr_t addr, u16 value)
277 {
278 	int r;
279 
280 	mutex_lock(&chip->mutex);
281 	r = zd_iowrite16_locked(chip, value, addr);
282 	mutex_unlock(&chip->mutex);
283 	return r;
284 }
285 
286 int zd_iowrite32(struct zd_chip *chip, zd_addr_t addr, u32 value)
287 {
288 	int r;
289 
290 	mutex_lock(&chip->mutex);
291 	r = zd_iowrite32_locked(chip, value, addr);
292 	mutex_unlock(&chip->mutex);
293 	return r;
294 }
295 
296 int zd_ioread32v(struct zd_chip *chip, const zd_addr_t *addresses,
297 	          u32 *values, unsigned int count)
298 {
299 	int r;
300 
301 	mutex_lock(&chip->mutex);
302 	r = zd_ioread32v_locked(chip, values, addresses, count);
303 	mutex_unlock(&chip->mutex);
304 	return r;
305 }
306 
307 int zd_iowrite32a(struct zd_chip *chip, const struct zd_ioreq32 *ioreqs,
308 	          unsigned int count)
309 {
310 	int r;
311 
312 	mutex_lock(&chip->mutex);
313 	r = zd_iowrite32a_locked(chip, ioreqs, count);
314 	mutex_unlock(&chip->mutex);
315 	return r;
316 }
317 
318 static int read_pod(struct zd_chip *chip, u8 *rf_type)
319 {
320 	int r;
321 	u32 value;
322 
323 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
324 	r = zd_ioread32_locked(chip, &value, E2P_POD);
325 	if (r)
326 		goto error;
327 	dev_dbg_f(zd_chip_dev(chip), "E2P_POD %#010x\n", value);
328 
329 	/* FIXME: AL2230 handling (Bit 7 in POD) */
330 	*rf_type = value & 0x0f;
331 	chip->pa_type = (value >> 16) & 0x0f;
332 	chip->patch_cck_gain = (value >> 8) & 0x1;
333 	chip->patch_cr157 = (value >> 13) & 0x1;
334 	chip->patch_6m_band_edge = (value >> 21) & 0x1;
335 	chip->new_phy_layout = (value >> 31) & 0x1;
336 	chip->al2230s_bit = (value >> 7) & 0x1;
337 	chip->link_led = ((value >> 4) & 1) ? LED1 : LED2;
338 	chip->supports_tx_led = 1;
339 	if (value & (1 << 24)) { /* LED scenario */
340 		if (value & (1 << 29))
341 			chip->supports_tx_led = 0;
342 	}
343 
344 	dev_dbg_f(zd_chip_dev(chip),
345 		"RF %s %#01x PA type %#01x patch CCK %d patch CR157 %d "
346 		"patch 6M %d new PHY %d link LED%d tx led %d\n",
347 		zd_rf_name(*rf_type), *rf_type,
348 		chip->pa_type, chip->patch_cck_gain,
349 		chip->patch_cr157, chip->patch_6m_band_edge,
350 		chip->new_phy_layout,
351 		chip->link_led == LED1 ? 1 : 2,
352 		chip->supports_tx_led);
353 	return 0;
354 error:
355 	*rf_type = 0;
356 	chip->pa_type = 0;
357 	chip->patch_cck_gain = 0;
358 	chip->patch_cr157 = 0;
359 	chip->patch_6m_band_edge = 0;
360 	chip->new_phy_layout = 0;
361 	return r;
362 }
363 
364 static int zd_write_mac_addr_common(struct zd_chip *chip, const u8 *mac_addr,
365 				    const struct zd_ioreq32 *in_reqs,
366 				    const char *type)
367 {
368 	int r;
369 	struct zd_ioreq32 reqs[2] = {in_reqs[0], in_reqs[1]};
370 
371 	if (mac_addr) {
372 		reqs[0].value = (mac_addr[3] << 24)
373 			      | (mac_addr[2] << 16)
374 			      | (mac_addr[1] <<  8)
375 			      |  mac_addr[0];
376 		reqs[1].value = (mac_addr[5] <<  8)
377 			      |  mac_addr[4];
378 		dev_dbg_f(zd_chip_dev(chip), "%s addr %pM\n", type, mac_addr);
379 	} else {
380 		dev_dbg_f(zd_chip_dev(chip), "set NULL %s\n", type);
381 	}
382 
383 	mutex_lock(&chip->mutex);
384 	r = zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
385 	mutex_unlock(&chip->mutex);
386 	return r;
387 }
388 
389 /* MAC address: if custom mac addresses are to be used CR_MAC_ADDR_P1 and
390  *              CR_MAC_ADDR_P2 must be overwritten
391  */
392 int zd_write_mac_addr(struct zd_chip *chip, const u8 *mac_addr)
393 {
394 	static const struct zd_ioreq32 reqs[2] = {
395 		[0] = { .addr = CR_MAC_ADDR_P1 },
396 		[1] = { .addr = CR_MAC_ADDR_P2 },
397 	};
398 
399 	return zd_write_mac_addr_common(chip, mac_addr, reqs, "mac");
400 }
401 
402 int zd_write_bssid(struct zd_chip *chip, const u8 *bssid)
403 {
404 	static const struct zd_ioreq32 reqs[2] = {
405 		[0] = { .addr = CR_BSSID_P1 },
406 		[1] = { .addr = CR_BSSID_P2 },
407 	};
408 
409 	return zd_write_mac_addr_common(chip, bssid, reqs, "bssid");
410 }
411 
412 int zd_read_regdomain(struct zd_chip *chip, u8 *regdomain)
413 {
414 	int r;
415 	u32 value;
416 
417 	mutex_lock(&chip->mutex);
418 	r = zd_ioread32_locked(chip, &value, E2P_SUBID);
419 	mutex_unlock(&chip->mutex);
420 	if (r)
421 		return r;
422 
423 	*regdomain = value >> 16;
424 	dev_dbg_f(zd_chip_dev(chip), "regdomain: %#04x\n", *regdomain);
425 
426 	return 0;
427 }
428 
429 static int read_values(struct zd_chip *chip, u8 *values, size_t count,
430 	               zd_addr_t e2p_addr, u32 guard)
431 {
432 	int r;
433 	int i;
434 	u32 v;
435 
436 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
437 	for (i = 0;;) {
438 		r = zd_ioread32_locked(chip, &v,
439 			               (zd_addr_t)((u16)e2p_addr+i/2));
440 		if (r)
441 			return r;
442 		v -= guard;
443 		if (i+4 < count) {
444 			values[i++] = v;
445 			values[i++] = v >>  8;
446 			values[i++] = v >> 16;
447 			values[i++] = v >> 24;
448 			continue;
449 		}
450 		for (;i < count; i++)
451 			values[i] = v >> (8*(i%3));
452 		return 0;
453 	}
454 }
455 
456 static int read_pwr_cal_values(struct zd_chip *chip)
457 {
458 	return read_values(chip, chip->pwr_cal_values,
459 		        E2P_CHANNEL_COUNT, E2P_PWR_CAL_VALUE1,
460 			0);
461 }
462 
463 static int read_pwr_int_values(struct zd_chip *chip)
464 {
465 	return read_values(chip, chip->pwr_int_values,
466 		        E2P_CHANNEL_COUNT, E2P_PWR_INT_VALUE1,
467 			E2P_PWR_INT_GUARD);
468 }
469 
470 static int read_ofdm_cal_values(struct zd_chip *chip)
471 {
472 	int r;
473 	int i;
474 	static const zd_addr_t addresses[] = {
475 		E2P_36M_CAL_VALUE1,
476 		E2P_48M_CAL_VALUE1,
477 		E2P_54M_CAL_VALUE1,
478 	};
479 
480 	for (i = 0; i < 3; i++) {
481 		r = read_values(chip, chip->ofdm_cal_values[i],
482 				E2P_CHANNEL_COUNT, addresses[i], 0);
483 		if (r)
484 			return r;
485 	}
486 	return 0;
487 }
488 
489 static int read_cal_int_tables(struct zd_chip *chip)
490 {
491 	int r;
492 
493 	r = read_pwr_cal_values(chip);
494 	if (r)
495 		return r;
496 	r = read_pwr_int_values(chip);
497 	if (r)
498 		return r;
499 	r = read_ofdm_cal_values(chip);
500 	if (r)
501 		return r;
502 	return 0;
503 }
504 
505 /* phy means physical registers */
506 int zd_chip_lock_phy_regs(struct zd_chip *chip)
507 {
508 	int r;
509 	u32 tmp;
510 
511 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
512 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
513 	if (r) {
514 		dev_err(zd_chip_dev(chip), "error ioread32(CR_REG1): %d\n", r);
515 		return r;
516 	}
517 
518 	tmp &= ~UNLOCK_PHY_REGS;
519 
520 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
521 	if (r)
522 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
523 	return r;
524 }
525 
526 int zd_chip_unlock_phy_regs(struct zd_chip *chip)
527 {
528 	int r;
529 	u32 tmp;
530 
531 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
532 	r = zd_ioread32_locked(chip, &tmp, CR_REG1);
533 	if (r) {
534 		dev_err(zd_chip_dev(chip),
535 			"error ioread32(CR_REG1): %d\n", r);
536 		return r;
537 	}
538 
539 	tmp |= UNLOCK_PHY_REGS;
540 
541 	r = zd_iowrite32_locked(chip, tmp, CR_REG1);
542 	if (r)
543 		dev_err(zd_chip_dev(chip), "error iowrite32(CR_REG1): %d\n", r);
544 	return r;
545 }
546 
547 /* ZD_CR157 can be optionally patched by the EEPROM for original ZD1211 */
548 static int patch_cr157(struct zd_chip *chip)
549 {
550 	int r;
551 	u16 value;
552 
553 	if (!chip->patch_cr157)
554 		return 0;
555 
556 	r = zd_ioread16_locked(chip, &value, E2P_PHY_REG);
557 	if (r)
558 		return r;
559 
560 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value >> 8);
561 	return zd_iowrite32_locked(chip, value >> 8, ZD_CR157);
562 }
563 
564 /*
565  * 6M band edge can be optionally overwritten for certain RF's
566  * Vendor driver says: for FCC regulation, enabled per HWFeature 6M band edge
567  * bit (for AL2230, AL2230S)
568  */
569 static int patch_6m_band_edge(struct zd_chip *chip, u8 channel)
570 {
571 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
572 	if (!chip->patch_6m_band_edge)
573 		return 0;
574 
575 	return zd_rf_patch_6m_band_edge(&chip->rf, channel);
576 }
577 
578 /* Generic implementation of 6M band edge patching, used by most RFs via
579  * zd_rf_generic_patch_6m() */
580 int zd_chip_generic_patch_6m_band(struct zd_chip *chip, int channel)
581 {
582 	struct zd_ioreq16 ioreqs[] = {
583 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
584 		{ ZD_CR47,  0x1e },
585 	};
586 
587 	/* FIXME: Channel 11 is not the edge for all regulatory domains. */
588 	if (channel == 1 || channel == 11)
589 		ioreqs[0].value = 0x12;
590 
591 	dev_dbg_f(zd_chip_dev(chip), "patching for channel %d\n", channel);
592 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
593 }
594 
595 static int zd1211_hw_reset_phy(struct zd_chip *chip)
596 {
597 	static const struct zd_ioreq16 ioreqs[] = {
598 		{ ZD_CR0,   0x0a }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
599 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xa0 },
600 		{ ZD_CR10,  0x81 }, { ZD_CR11,  0x00 }, { ZD_CR12,  0x7f },
601 		{ ZD_CR13,  0x8c }, { ZD_CR14,  0x80 }, { ZD_CR15,  0x3d },
602 		{ ZD_CR16,  0x20 }, { ZD_CR17,  0x1e }, { ZD_CR18,  0x0a },
603 		{ ZD_CR19,  0x48 }, { ZD_CR20,  0x0c }, { ZD_CR21,  0x0c },
604 		{ ZD_CR22,  0x23 }, { ZD_CR23,  0x90 }, { ZD_CR24,  0x14 },
605 		{ ZD_CR25,  0x40 }, { ZD_CR26,  0x10 }, { ZD_CR27,  0x19 },
606 		{ ZD_CR28,  0x7f }, { ZD_CR29,  0x80 }, { ZD_CR30,  0x4b },
607 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
608 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
609 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
610 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
611 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x12 }, { ZD_CR46,  0xff },
612 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
613 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
614 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
615 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
616 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
617 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
618 		{ ZD_CR79,  0x68 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
619 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x00 }, { ZD_CR84,  0x00 },
620 		{ ZD_CR85,  0x02 }, { ZD_CR86,  0x00 }, { ZD_CR87,  0x00 },
621 		{ ZD_CR88,  0xff }, { ZD_CR89,  0xfc }, { ZD_CR90,  0x00 },
622 		{ ZD_CR91,  0x00 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x08 },
623 		{ ZD_CR94,  0x00 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0xff },
624 		{ ZD_CR97,  0xe7 }, { ZD_CR98,  0x00 }, { ZD_CR99,  0x00 },
625 		{ ZD_CR100, 0x00 }, { ZD_CR101, 0xae }, { ZD_CR102, 0x02 },
626 		{ ZD_CR103, 0x00 }, { ZD_CR104, 0x03 }, { ZD_CR105, 0x65 },
627 		{ ZD_CR106, 0x04 }, { ZD_CR107, 0x00 }, { ZD_CR108, 0x0a },
628 		{ ZD_CR109, 0xaa }, { ZD_CR110, 0xaa }, { ZD_CR111, 0x25 },
629 		{ ZD_CR112, 0x25 }, { ZD_CR113, 0x00 }, { ZD_CR119, 0x1e },
630 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
631 		{ },
632 		{ ZD_CR5,   0x00 }, { ZD_CR6,   0x00 }, { ZD_CR7,   0x00 },
633 		{ ZD_CR8,   0x00 }, { ZD_CR9,   0x20 }, { ZD_CR12,  0xf0 },
634 		{ ZD_CR20,  0x0e }, { ZD_CR21,  0x0e }, { ZD_CR27,  0x10 },
635 		{ ZD_CR44,  0x33 }, { ZD_CR47,  0x1E }, { ZD_CR83,  0x24 },
636 		{ ZD_CR84,  0x04 }, { ZD_CR85,  0x00 }, { ZD_CR86,  0x0C },
637 		{ ZD_CR87,  0x12 }, { ZD_CR88,  0x0C }, { ZD_CR89,  0x00 },
638 		{ ZD_CR90,  0x10 }, { ZD_CR91,  0x08 }, { ZD_CR93,  0x00 },
639 		{ ZD_CR94,  0x01 }, { ZD_CR95,  0x00 }, { ZD_CR96,  0x50 },
640 		{ ZD_CR97,  0x37 }, { ZD_CR98,  0x35 }, { ZD_CR101, 0x13 },
641 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
642 		{ ZD_CR105, 0x12 }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
643 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
644 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
645 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR120, 0x4f },
646 		{ ZD_CR125, 0xaa }, { ZD_CR127, 0x03 }, { ZD_CR128, 0x14 },
647 		{ ZD_CR129, 0x12 }, { ZD_CR130, 0x10 }, { ZD_CR131, 0x0C },
648 		{ ZD_CR136, 0xdf }, { ZD_CR137, 0x40 }, { ZD_CR138, 0xa0 },
649 		{ ZD_CR139, 0xb0 }, { ZD_CR140, 0x99 }, { ZD_CR141, 0x82 },
650 		{ ZD_CR142, 0x54 }, { ZD_CR143, 0x1c }, { ZD_CR144, 0x6c },
651 		{ ZD_CR147, 0x07 }, { ZD_CR148, 0x4c }, { ZD_CR149, 0x50 },
652 		{ ZD_CR150, 0x0e }, { ZD_CR151, 0x18 }, { ZD_CR160, 0xfe },
653 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
654 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
655 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
656 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
657 		/* Note: ZD_CR204 must lead the ZD_CR203 */
658 		{ ZD_CR204, 0x7d },
659 		{ },
660 		{ ZD_CR203, 0x30 },
661 	};
662 
663 	int r, t;
664 
665 	dev_dbg_f(zd_chip_dev(chip), "\n");
666 
667 	r = zd_chip_lock_phy_regs(chip);
668 	if (r)
669 		goto out;
670 
671 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
672 	if (r)
673 		goto unlock;
674 
675 	r = patch_cr157(chip);
676 unlock:
677 	t = zd_chip_unlock_phy_regs(chip);
678 	if (t && !r)
679 		r = t;
680 out:
681 	return r;
682 }
683 
684 static int zd1211b_hw_reset_phy(struct zd_chip *chip)
685 {
686 	static const struct zd_ioreq16 ioreqs[] = {
687 		{ ZD_CR0,   0x14 }, { ZD_CR1,   0x06 }, { ZD_CR2,   0x26 },
688 		{ ZD_CR3,   0x38 }, { ZD_CR4,   0x80 }, { ZD_CR9,   0xe0 },
689 		{ ZD_CR10,  0x81 },
690 		/* power control { { ZD_CR11,  1 << 6 }, */
691 		{ ZD_CR11,  0x00 },
692 		{ ZD_CR12,  0xf0 }, { ZD_CR13,  0x8c }, { ZD_CR14,  0x80 },
693 		{ ZD_CR15,  0x3d }, { ZD_CR16,  0x20 }, { ZD_CR17,  0x1e },
694 		{ ZD_CR18,  0x0a }, { ZD_CR19,  0x48 },
695 		{ ZD_CR20,  0x10 }, /* Org:0x0E, ComTrend:RalLink AP */
696 		{ ZD_CR21,  0x0e }, { ZD_CR22,  0x23 }, { ZD_CR23,  0x90 },
697 		{ ZD_CR24,  0x14 }, { ZD_CR25,  0x40 }, { ZD_CR26,  0x10 },
698 		{ ZD_CR27,  0x10 }, { ZD_CR28,  0x7f }, { ZD_CR29,  0x80 },
699 		{ ZD_CR30,  0x4b }, /* ASIC/FWT, no jointly decoder */
700 		{ ZD_CR31,  0x60 }, { ZD_CR32,  0x43 }, { ZD_CR33,  0x08 },
701 		{ ZD_CR34,  0x06 }, { ZD_CR35,  0x0a }, { ZD_CR36,  0x00 },
702 		{ ZD_CR37,  0x00 }, { ZD_CR38,  0x38 }, { ZD_CR39,  0x0c },
703 		{ ZD_CR40,  0x84 }, { ZD_CR41,  0x2a }, { ZD_CR42,  0x80 },
704 		{ ZD_CR43,  0x10 }, { ZD_CR44,  0x33 }, { ZD_CR46,  0xff },
705 		{ ZD_CR47,  0x1E }, { ZD_CR48,  0x26 }, { ZD_CR49,  0x5b },
706 		{ ZD_CR64,  0xd0 }, { ZD_CR65,  0x04 }, { ZD_CR66,  0x58 },
707 		{ ZD_CR67,  0xc9 }, { ZD_CR68,  0x88 }, { ZD_CR69,  0x41 },
708 		{ ZD_CR70,  0x23 }, { ZD_CR71,  0x10 }, { ZD_CR72,  0xff },
709 		{ ZD_CR73,  0x32 }, { ZD_CR74,  0x30 }, { ZD_CR75,  0x65 },
710 		{ ZD_CR76,  0x41 }, { ZD_CR77,  0x1b }, { ZD_CR78,  0x30 },
711 		{ ZD_CR79,  0xf0 }, { ZD_CR80,  0x64 }, { ZD_CR81,  0x64 },
712 		{ ZD_CR82,  0x00 }, { ZD_CR83,  0x24 }, { ZD_CR84,  0x04 },
713 		{ ZD_CR85,  0x00 }, { ZD_CR86,  0x0c }, { ZD_CR87,  0x12 },
714 		{ ZD_CR88,  0x0c }, { ZD_CR89,  0x00 }, { ZD_CR90,  0x58 },
715 		{ ZD_CR91,  0x04 }, { ZD_CR92,  0x00 }, { ZD_CR93,  0x00 },
716 		{ ZD_CR94,  0x01 },
717 		{ ZD_CR95,  0x20 }, /* ZD1211B */
718 		{ ZD_CR96,  0x50 }, { ZD_CR97,  0x37 }, { ZD_CR98,  0x35 },
719 		{ ZD_CR99,  0x00 }, { ZD_CR100, 0x01 }, { ZD_CR101, 0x13 },
720 		{ ZD_CR102, 0x27 }, { ZD_CR103, 0x27 }, { ZD_CR104, 0x18 },
721 		{ ZD_CR105, 0x12 }, { ZD_CR106, 0x04 }, { ZD_CR107, 0x00 },
722 		{ ZD_CR108, 0x0a }, { ZD_CR109, 0x27 }, { ZD_CR110, 0x27 },
723 		{ ZD_CR111, 0x27 }, { ZD_CR112, 0x27 }, { ZD_CR113, 0x27 },
724 		{ ZD_CR114, 0x27 }, { ZD_CR115, 0x26 }, { ZD_CR116, 0x24 },
725 		{ ZD_CR117, 0xfc }, { ZD_CR118, 0xfa }, { ZD_CR119, 0x1e },
726 		{ ZD_CR125, 0x90 }, { ZD_CR126, 0x00 }, { ZD_CR127, 0x00 },
727 		{ ZD_CR128, 0x14 }, { ZD_CR129, 0x12 }, { ZD_CR130, 0x10 },
728 		{ ZD_CR131, 0x0c }, { ZD_CR136, 0xdf }, { ZD_CR137, 0xa0 },
729 		{ ZD_CR138, 0xa8 }, { ZD_CR139, 0xb4 }, { ZD_CR140, 0x98 },
730 		{ ZD_CR141, 0x82 }, { ZD_CR142, 0x53 }, { ZD_CR143, 0x1c },
731 		{ ZD_CR144, 0x6c }, { ZD_CR147, 0x07 }, { ZD_CR148, 0x40 },
732 		{ ZD_CR149, 0x40 }, /* Org:0x50 ComTrend:RalLink AP */
733 		{ ZD_CR150, 0x14 }, /* Org:0x0E ComTrend:RalLink AP */
734 		{ ZD_CR151, 0x18 }, { ZD_CR159, 0x70 }, { ZD_CR160, 0xfe },
735 		{ ZD_CR161, 0xee }, { ZD_CR162, 0xaa }, { ZD_CR163, 0xfa },
736 		{ ZD_CR164, 0xfa }, { ZD_CR165, 0xea }, { ZD_CR166, 0xbe },
737 		{ ZD_CR167, 0xbe }, { ZD_CR168, 0x6a }, { ZD_CR169, 0xba },
738 		{ ZD_CR170, 0xba }, { ZD_CR171, 0xba },
739 		/* Note: ZD_CR204 must lead the ZD_CR203 */
740 		{ ZD_CR204, 0x7d },
741 		{},
742 		{ ZD_CR203, 0x30 },
743 	};
744 
745 	int r, t;
746 
747 	dev_dbg_f(zd_chip_dev(chip), "\n");
748 
749 	r = zd_chip_lock_phy_regs(chip);
750 	if (r)
751 		goto out;
752 
753 	r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
754 	t = zd_chip_unlock_phy_regs(chip);
755 	if (t && !r)
756 		r = t;
757 out:
758 	return r;
759 }
760 
761 static int hw_reset_phy(struct zd_chip *chip)
762 {
763 	return zd_chip_is_zd1211b(chip) ? zd1211b_hw_reset_phy(chip) :
764 		                  zd1211_hw_reset_phy(chip);
765 }
766 
767 static int zd1211_hw_init_hmac(struct zd_chip *chip)
768 {
769 	static const struct zd_ioreq32 ioreqs[] = {
770 		{ CR_ZD1211_RETRY_MAX,		ZD1211_RETRY_COUNT },
771 		{ CR_RX_THRESHOLD,		0x000c0640 },
772 	};
773 
774 	dev_dbg_f(zd_chip_dev(chip), "\n");
775 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
776 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
777 }
778 
779 static int zd1211b_hw_init_hmac(struct zd_chip *chip)
780 {
781 	static const struct zd_ioreq32 ioreqs[] = {
782 		{ CR_ZD1211B_RETRY_MAX,		ZD1211B_RETRY_COUNT },
783 		{ CR_ZD1211B_CWIN_MAX_MIN_AC0,	0x007f003f },
784 		{ CR_ZD1211B_CWIN_MAX_MIN_AC1,	0x007f003f },
785 		{ CR_ZD1211B_CWIN_MAX_MIN_AC2,  0x003f001f },
786 		{ CR_ZD1211B_CWIN_MAX_MIN_AC3,  0x001f000f },
787 		{ CR_ZD1211B_AIFS_CTL1,		0x00280028 },
788 		{ CR_ZD1211B_AIFS_CTL2,		0x008C003C },
789 		{ CR_ZD1211B_TXOP,		0x01800824 },
790 		{ CR_RX_THRESHOLD,		0x000c0eff, },
791 	};
792 
793 	dev_dbg_f(zd_chip_dev(chip), "\n");
794 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
795 	return zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
796 }
797 
798 static int hw_init_hmac(struct zd_chip *chip)
799 {
800 	int r;
801 	static const struct zd_ioreq32 ioreqs[] = {
802 		{ CR_ACK_TIMEOUT_EXT,		0x20 },
803 		{ CR_ADDA_MBIAS_WARMTIME,	0x30000808 },
804 		{ CR_SNIFFER_ON,		0 },
805 		{ CR_RX_FILTER,			STA_RX_FILTER },
806 		{ CR_GROUP_HASH_P1,		0x00 },
807 		{ CR_GROUP_HASH_P2,		0x80000000 },
808 		{ CR_REG1,			0xa4 },
809 		{ CR_ADDA_PWR_DWN,		0x7f },
810 		{ CR_BCN_PLCP_CFG,		0x00f00401 },
811 		{ CR_PHY_DELAY,			0x00 },
812 		{ CR_ACK_TIMEOUT_EXT,		0x80 },
813 		{ CR_ADDA_PWR_DWN,		0x00 },
814 		{ CR_ACK_TIME_80211,		0x100 },
815 		{ CR_RX_PE_DELAY,		0x70 },
816 		{ CR_PS_CTRL,			0x10000000 },
817 		{ CR_RTS_CTS_RATE,		0x02030203 },
818 		{ CR_AFTER_PNP,			0x1 },
819 		{ CR_WEP_PROTECT,		0x114 },
820 		{ CR_IFS_VALUE,			IFS_VALUE_DEFAULT },
821 		{ CR_CAM_MODE,			MODE_AP_WDS},
822 	};
823 
824 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
825 	r = zd_iowrite32a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
826 	if (r)
827 		return r;
828 
829 	return zd_chip_is_zd1211b(chip) ?
830 		zd1211b_hw_init_hmac(chip) : zd1211_hw_init_hmac(chip);
831 }
832 
833 struct aw_pt_bi {
834 	u32 atim_wnd_period;
835 	u32 pre_tbtt;
836 	u32 beacon_interval;
837 };
838 
839 static int get_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
840 {
841 	int r;
842 	static const zd_addr_t aw_pt_bi_addr[] =
843 		{ CR_ATIM_WND_PERIOD, CR_PRE_TBTT, CR_BCN_INTERVAL };
844 	u32 values[3];
845 
846 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
847 		         ARRAY_SIZE(aw_pt_bi_addr));
848 	if (r) {
849 		memset(s, 0, sizeof(*s));
850 		return r;
851 	}
852 
853 	s->atim_wnd_period = values[0];
854 	s->pre_tbtt = values[1];
855 	s->beacon_interval = values[2];
856 	return 0;
857 }
858 
859 static int set_aw_pt_bi(struct zd_chip *chip, struct aw_pt_bi *s)
860 {
861 	struct zd_ioreq32 reqs[3];
862 	u16 b_interval = s->beacon_interval & 0xffff;
863 
864 	if (b_interval <= 5)
865 		b_interval = 5;
866 	if (s->pre_tbtt < 4 || s->pre_tbtt >= b_interval)
867 		s->pre_tbtt = b_interval - 1;
868 	if (s->atim_wnd_period >= s->pre_tbtt)
869 		s->atim_wnd_period = s->pre_tbtt - 1;
870 
871 	reqs[0].addr = CR_ATIM_WND_PERIOD;
872 	reqs[0].value = s->atim_wnd_period;
873 	reqs[1].addr = CR_PRE_TBTT;
874 	reqs[1].value = s->pre_tbtt;
875 	reqs[2].addr = CR_BCN_INTERVAL;
876 	reqs[2].value = (s->beacon_interval & ~0xffff) | b_interval;
877 
878 	return zd_iowrite32a_locked(chip, reqs, ARRAY_SIZE(reqs));
879 }
880 
881 
882 static int set_beacon_interval(struct zd_chip *chip, u16 interval,
883 			       u8 dtim_period, int type)
884 {
885 	int r;
886 	struct aw_pt_bi s;
887 	u32 b_interval, mode_flag;
888 
889 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
890 
891 	if (interval > 0) {
892 		switch (type) {
893 		case NL80211_IFTYPE_ADHOC:
894 		case NL80211_IFTYPE_MESH_POINT:
895 			mode_flag = BCN_MODE_IBSS;
896 			break;
897 		case NL80211_IFTYPE_AP:
898 			mode_flag = BCN_MODE_AP;
899 			break;
900 		default:
901 			mode_flag = 0;
902 			break;
903 		}
904 	} else {
905 		dtim_period = 0;
906 		mode_flag = 0;
907 	}
908 
909 	b_interval = mode_flag | (dtim_period << 16) | interval;
910 
911 	r = zd_iowrite32_locked(chip, b_interval, CR_BCN_INTERVAL);
912 	if (r)
913 		return r;
914 	r = get_aw_pt_bi(chip, &s);
915 	if (r)
916 		return r;
917 	return set_aw_pt_bi(chip, &s);
918 }
919 
920 int zd_set_beacon_interval(struct zd_chip *chip, u16 interval, u8 dtim_period,
921 			   int type)
922 {
923 	int r;
924 
925 	mutex_lock(&chip->mutex);
926 	r = set_beacon_interval(chip, interval, dtim_period, type);
927 	mutex_unlock(&chip->mutex);
928 	return r;
929 }
930 
931 static int hw_init(struct zd_chip *chip)
932 {
933 	int r;
934 
935 	dev_dbg_f(zd_chip_dev(chip), "\n");
936 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
937 	r = hw_reset_phy(chip);
938 	if (r)
939 		return r;
940 
941 	r = hw_init_hmac(chip);
942 	if (r)
943 		return r;
944 
945 	return set_beacon_interval(chip, 100, 0, NL80211_IFTYPE_UNSPECIFIED);
946 }
947 
948 static zd_addr_t fw_reg_addr(struct zd_chip *chip, u16 offset)
949 {
950 	return (zd_addr_t)((u16)chip->fw_regs_base + offset);
951 }
952 
953 #ifdef DEBUG
954 static int dump_cr(struct zd_chip *chip, const zd_addr_t addr,
955 	           const char *addr_string)
956 {
957 	int r;
958 	u32 value;
959 
960 	r = zd_ioread32_locked(chip, &value, addr);
961 	if (r) {
962 		dev_dbg_f(zd_chip_dev(chip),
963 			"error reading %s. Error number %d\n", addr_string, r);
964 		return r;
965 	}
966 
967 	dev_dbg_f(zd_chip_dev(chip), "%s %#010x\n",
968 		addr_string, (unsigned int)value);
969 	return 0;
970 }
971 
972 static int test_init(struct zd_chip *chip)
973 {
974 	int r;
975 
976 	r = dump_cr(chip, CR_AFTER_PNP, "CR_AFTER_PNP");
977 	if (r)
978 		return r;
979 	r = dump_cr(chip, CR_GPI_EN, "CR_GPI_EN");
980 	if (r)
981 		return r;
982 	return dump_cr(chip, CR_INTERRUPT, "CR_INTERRUPT");
983 }
984 
985 static void dump_fw_registers(struct zd_chip *chip)
986 {
987 	const zd_addr_t addr[4] = {
988 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER),
989 		fw_reg_addr(chip, FW_REG_USB_SPEED),
990 		fw_reg_addr(chip, FW_REG_FIX_TX_RATE),
991 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
992 	};
993 
994 	int r;
995 	u16 values[4];
996 
997 	r = zd_ioread16v_locked(chip, values, (const zd_addr_t*)addr,
998 		         ARRAY_SIZE(addr));
999 	if (r) {
1000 		dev_dbg_f(zd_chip_dev(chip), "error %d zd_ioread16v_locked\n",
1001 			 r);
1002 		return;
1003 	}
1004 
1005 	dev_dbg_f(zd_chip_dev(chip), "FW_FIRMWARE_VER %#06hx\n", values[0]);
1006 	dev_dbg_f(zd_chip_dev(chip), "FW_USB_SPEED %#06hx\n", values[1]);
1007 	dev_dbg_f(zd_chip_dev(chip), "FW_FIX_TX_RATE %#06hx\n", values[2]);
1008 	dev_dbg_f(zd_chip_dev(chip), "FW_LINK_STATUS %#06hx\n", values[3]);
1009 }
1010 #endif /* DEBUG */
1011 
1012 static int print_fw_version(struct zd_chip *chip)
1013 {
1014 	struct wiphy *wiphy = zd_chip_to_mac(chip)->hw->wiphy;
1015 	int r;
1016 	u16 version;
1017 
1018 	r = zd_ioread16_locked(chip, &version,
1019 		fw_reg_addr(chip, FW_REG_FIRMWARE_VER));
1020 	if (r)
1021 		return r;
1022 
1023 	dev_info(zd_chip_dev(chip),"firmware version %04hx\n", version);
1024 
1025 	snprintf(wiphy->fw_version, sizeof(wiphy->fw_version),
1026 			"%04hx", version);
1027 
1028 	return 0;
1029 }
1030 
1031 static int set_mandatory_rates(struct zd_chip *chip, int gmode)
1032 {
1033 	u32 rates;
1034 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1035 	/* This sets the mandatory rates, which only depend from the standard
1036 	 * that the device is supporting. Until further notice we should try
1037 	 * to support 802.11g also for full speed USB.
1038 	 */
1039 	if (!gmode)
1040 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M;
1041 	else
1042 		rates = CR_RATE_1M|CR_RATE_2M|CR_RATE_5_5M|CR_RATE_11M|
1043 			CR_RATE_6M|CR_RATE_12M|CR_RATE_24M;
1044 
1045 	return zd_iowrite32_locked(chip, rates, CR_MANDATORY_RATE_TBL);
1046 }
1047 
1048 int zd_chip_set_rts_cts_rate_locked(struct zd_chip *chip,
1049 				    int preamble)
1050 {
1051 	u32 value = 0;
1052 
1053 	dev_dbg_f(zd_chip_dev(chip), "preamble=%x\n", preamble);
1054 	value |= preamble << RTSCTS_SH_RTS_PMB_TYPE;
1055 	value |= preamble << RTSCTS_SH_CTS_PMB_TYPE;
1056 
1057 	/* We always send 11M RTS/self-CTS messages, like the vendor driver. */
1058 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_RTS_RATE;
1059 	value |= ZD_RX_CCK << RTSCTS_SH_RTS_MOD_TYPE;
1060 	value |= ZD_PURE_RATE(ZD_CCK_RATE_11M) << RTSCTS_SH_CTS_RATE;
1061 	value |= ZD_RX_CCK << RTSCTS_SH_CTS_MOD_TYPE;
1062 
1063 	return zd_iowrite32_locked(chip, value, CR_RTS_CTS_RATE);
1064 }
1065 
1066 int zd_chip_enable_hwint(struct zd_chip *chip)
1067 {
1068 	int r;
1069 
1070 	mutex_lock(&chip->mutex);
1071 	r = zd_iowrite32_locked(chip, HWINT_ENABLED, CR_INTERRUPT);
1072 	mutex_unlock(&chip->mutex);
1073 	return r;
1074 }
1075 
1076 static int disable_hwint(struct zd_chip *chip)
1077 {
1078 	return zd_iowrite32_locked(chip, HWINT_DISABLED, CR_INTERRUPT);
1079 }
1080 
1081 int zd_chip_disable_hwint(struct zd_chip *chip)
1082 {
1083 	int r;
1084 
1085 	mutex_lock(&chip->mutex);
1086 	r = disable_hwint(chip);
1087 	mutex_unlock(&chip->mutex);
1088 	return r;
1089 }
1090 
1091 static int read_fw_regs_offset(struct zd_chip *chip)
1092 {
1093 	int r;
1094 
1095 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1096 	r = zd_ioread16_locked(chip, (u16*)&chip->fw_regs_base,
1097 		               FWRAW_REGS_ADDR);
1098 	if (r)
1099 		return r;
1100 	dev_dbg_f(zd_chip_dev(chip), "fw_regs_base: %#06hx\n",
1101 		  (u16)chip->fw_regs_base);
1102 
1103 	return 0;
1104 }
1105 
1106 /* Read mac address using pre-firmware interface */
1107 int zd_chip_read_mac_addr_fw(struct zd_chip *chip, u8 *addr)
1108 {
1109 	dev_dbg_f(zd_chip_dev(chip), "\n");
1110 	return zd_usb_read_fw(&chip->usb, E2P_MAC_ADDR_P1, addr,
1111 		ETH_ALEN);
1112 }
1113 
1114 int zd_chip_init_hw(struct zd_chip *chip)
1115 {
1116 	int r;
1117 	u8 rf_type;
1118 
1119 	dev_dbg_f(zd_chip_dev(chip), "\n");
1120 
1121 	mutex_lock(&chip->mutex);
1122 
1123 #ifdef DEBUG
1124 	r = test_init(chip);
1125 	if (r)
1126 		goto out;
1127 #endif
1128 	r = zd_iowrite32_locked(chip, 1, CR_AFTER_PNP);
1129 	if (r)
1130 		goto out;
1131 
1132 	r = read_fw_regs_offset(chip);
1133 	if (r)
1134 		goto out;
1135 
1136 	/* GPI is always disabled, also in the other driver.
1137 	 */
1138 	r = zd_iowrite32_locked(chip, 0, CR_GPI_EN);
1139 	if (r)
1140 		goto out;
1141 	r = zd_iowrite32_locked(chip, CWIN_SIZE, CR_CWMIN_CWMAX);
1142 	if (r)
1143 		goto out;
1144 	/* Currently we support IEEE 802.11g for full and high speed USB.
1145 	 * It might be discussed, whether we should support pure b mode for
1146 	 * full speed USB.
1147 	 */
1148 	r = set_mandatory_rates(chip, 1);
1149 	if (r)
1150 		goto out;
1151 	/* Disabling interrupts is certainly a smart thing here.
1152 	 */
1153 	r = disable_hwint(chip);
1154 	if (r)
1155 		goto out;
1156 	r = read_pod(chip, &rf_type);
1157 	if (r)
1158 		goto out;
1159 	r = hw_init(chip);
1160 	if (r)
1161 		goto out;
1162 	r = zd_rf_init_hw(&chip->rf, rf_type);
1163 	if (r)
1164 		goto out;
1165 
1166 	r = print_fw_version(chip);
1167 	if (r)
1168 		goto out;
1169 
1170 #ifdef DEBUG
1171 	dump_fw_registers(chip);
1172 	r = test_init(chip);
1173 	if (r)
1174 		goto out;
1175 #endif /* DEBUG */
1176 
1177 	r = read_cal_int_tables(chip);
1178 	if (r)
1179 		goto out;
1180 
1181 	print_id(chip);
1182 out:
1183 	mutex_unlock(&chip->mutex);
1184 	return r;
1185 }
1186 
1187 static int update_pwr_int(struct zd_chip *chip, u8 channel)
1188 {
1189 	u8 value = chip->pwr_int_values[channel - 1];
1190 	return zd_iowrite16_locked(chip, value, ZD_CR31);
1191 }
1192 
1193 static int update_pwr_cal(struct zd_chip *chip, u8 channel)
1194 {
1195 	u8 value = chip->pwr_cal_values[channel-1];
1196 	return zd_iowrite16_locked(chip, value, ZD_CR68);
1197 }
1198 
1199 static int update_ofdm_cal(struct zd_chip *chip, u8 channel)
1200 {
1201 	struct zd_ioreq16 ioreqs[3];
1202 
1203 	ioreqs[0].addr = ZD_CR67;
1204 	ioreqs[0].value = chip->ofdm_cal_values[OFDM_36M_INDEX][channel-1];
1205 	ioreqs[1].addr = ZD_CR66;
1206 	ioreqs[1].value = chip->ofdm_cal_values[OFDM_48M_INDEX][channel-1];
1207 	ioreqs[2].addr = ZD_CR65;
1208 	ioreqs[2].value = chip->ofdm_cal_values[OFDM_54M_INDEX][channel-1];
1209 
1210 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1211 }
1212 
1213 static int update_channel_integration_and_calibration(struct zd_chip *chip,
1214 	                                              u8 channel)
1215 {
1216 	int r;
1217 
1218 	if (!zd_rf_should_update_pwr_int(&chip->rf))
1219 		return 0;
1220 
1221 	r = update_pwr_int(chip, channel);
1222 	if (r)
1223 		return r;
1224 	if (zd_chip_is_zd1211b(chip)) {
1225 		static const struct zd_ioreq16 ioreqs[] = {
1226 			{ ZD_CR69, 0x28 },
1227 			{},
1228 			{ ZD_CR69, 0x2a },
1229 		};
1230 
1231 		r = update_ofdm_cal(chip, channel);
1232 		if (r)
1233 			return r;
1234 		r = update_pwr_cal(chip, channel);
1235 		if (r)
1236 			return r;
1237 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1238 		if (r)
1239 			return r;
1240 	}
1241 
1242 	return 0;
1243 }
1244 
1245 /* The CCK baseband gain can be optionally patched by the EEPROM */
1246 static int patch_cck_gain(struct zd_chip *chip)
1247 {
1248 	int r;
1249 	u32 value;
1250 
1251 	if (!chip->patch_cck_gain || !zd_rf_should_patch_cck_gain(&chip->rf))
1252 		return 0;
1253 
1254 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1255 	r = zd_ioread32_locked(chip, &value, E2P_PHY_REG);
1256 	if (r)
1257 		return r;
1258 	dev_dbg_f(zd_chip_dev(chip), "patching value %x\n", value & 0xff);
1259 	return zd_iowrite16_locked(chip, value & 0xff, ZD_CR47);
1260 }
1261 
1262 int zd_chip_set_channel(struct zd_chip *chip, u8 channel)
1263 {
1264 	int r, t;
1265 
1266 	mutex_lock(&chip->mutex);
1267 	r = zd_chip_lock_phy_regs(chip);
1268 	if (r)
1269 		goto out;
1270 	r = zd_rf_set_channel(&chip->rf, channel);
1271 	if (r)
1272 		goto unlock;
1273 	r = update_channel_integration_and_calibration(chip, channel);
1274 	if (r)
1275 		goto unlock;
1276 	r = patch_cck_gain(chip);
1277 	if (r)
1278 		goto unlock;
1279 	r = patch_6m_band_edge(chip, channel);
1280 	if (r)
1281 		goto unlock;
1282 	r = zd_iowrite32_locked(chip, 0, CR_CONFIG_PHILIPS);
1283 unlock:
1284 	t = zd_chip_unlock_phy_regs(chip);
1285 	if (t && !r)
1286 		r = t;
1287 out:
1288 	mutex_unlock(&chip->mutex);
1289 	return r;
1290 }
1291 
1292 u8 zd_chip_get_channel(struct zd_chip *chip)
1293 {
1294 	u8 channel;
1295 
1296 	mutex_lock(&chip->mutex);
1297 	channel = chip->rf.channel;
1298 	mutex_unlock(&chip->mutex);
1299 	return channel;
1300 }
1301 
1302 int zd_chip_control_leds(struct zd_chip *chip, enum led_status status)
1303 {
1304 	const zd_addr_t a[] = {
1305 		fw_reg_addr(chip, FW_REG_LED_LINK_STATUS),
1306 		CR_LED,
1307 	};
1308 
1309 	int r;
1310 	u16 v[ARRAY_SIZE(a)];
1311 	struct zd_ioreq16 ioreqs[ARRAY_SIZE(a)] = {
1312 		[0] = { fw_reg_addr(chip, FW_REG_LED_LINK_STATUS) },
1313 		[1] = { CR_LED },
1314 	};
1315 	u16 other_led;
1316 
1317 	mutex_lock(&chip->mutex);
1318 	r = zd_ioread16v_locked(chip, v, (const zd_addr_t *)a, ARRAY_SIZE(a));
1319 	if (r)
1320 		goto out;
1321 
1322 	other_led = chip->link_led == LED1 ? LED2 : LED1;
1323 
1324 	switch (status) {
1325 	case ZD_LED_OFF:
1326 		ioreqs[0].value = FW_LINK_OFF;
1327 		ioreqs[1].value = v[1] & ~(LED1|LED2);
1328 		break;
1329 	case ZD_LED_SCANNING:
1330 		ioreqs[0].value = FW_LINK_OFF;
1331 		ioreqs[1].value = v[1] & ~other_led;
1332 		if ((u32)ktime_get_seconds() % 3 == 0) {
1333 			ioreqs[1].value &= ~chip->link_led;
1334 		} else {
1335 			ioreqs[1].value |= chip->link_led;
1336 		}
1337 		break;
1338 	case ZD_LED_ASSOCIATED:
1339 		ioreqs[0].value = FW_LINK_TX;
1340 		ioreqs[1].value = v[1] & ~other_led;
1341 		ioreqs[1].value |= chip->link_led;
1342 		break;
1343 	default:
1344 		r = -EINVAL;
1345 		goto out;
1346 	}
1347 
1348 	if (v[0] != ioreqs[0].value || v[1] != ioreqs[1].value) {
1349 		r = zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1350 		if (r)
1351 			goto out;
1352 	}
1353 	r = 0;
1354 out:
1355 	mutex_unlock(&chip->mutex);
1356 	return r;
1357 }
1358 
1359 int zd_chip_set_basic_rates(struct zd_chip *chip, u16 cr_rates)
1360 {
1361 	int r;
1362 
1363 	if (cr_rates & ~(CR_RATES_80211B|CR_RATES_80211G))
1364 		return -EINVAL;
1365 
1366 	mutex_lock(&chip->mutex);
1367 	r = zd_iowrite32_locked(chip, cr_rates, CR_BASIC_RATE_TBL);
1368 	mutex_unlock(&chip->mutex);
1369 	return r;
1370 }
1371 
1372 static inline u8 zd_rate_from_ofdm_plcp_header(const void *rx_frame)
1373 {
1374 	return ZD_OFDM | zd_ofdm_plcp_header_rate(rx_frame);
1375 }
1376 
1377 /**
1378  * zd_rx_rate - report zd-rate
1379  * @rx_frame - received frame
1380  * @rx_status - rx_status as given by the device
1381  *
1382  * This function converts the rate as encoded in the received packet to the
1383  * zd-rate, we are using on other places in the driver.
1384  */
1385 u8 zd_rx_rate(const void *rx_frame, const struct rx_status *status)
1386 {
1387 	u8 zd_rate;
1388 	if (status->frame_status & ZD_RX_OFDM) {
1389 		zd_rate = zd_rate_from_ofdm_plcp_header(rx_frame);
1390 	} else {
1391 		switch (zd_cck_plcp_header_signal(rx_frame)) {
1392 		case ZD_CCK_PLCP_SIGNAL_1M:
1393 			zd_rate = ZD_CCK_RATE_1M;
1394 			break;
1395 		case ZD_CCK_PLCP_SIGNAL_2M:
1396 			zd_rate = ZD_CCK_RATE_2M;
1397 			break;
1398 		case ZD_CCK_PLCP_SIGNAL_5M5:
1399 			zd_rate = ZD_CCK_RATE_5_5M;
1400 			break;
1401 		case ZD_CCK_PLCP_SIGNAL_11M:
1402 			zd_rate = ZD_CCK_RATE_11M;
1403 			break;
1404 		default:
1405 			zd_rate = 0;
1406 		}
1407 	}
1408 
1409 	return zd_rate;
1410 }
1411 
1412 int zd_chip_switch_radio_on(struct zd_chip *chip)
1413 {
1414 	int r;
1415 
1416 	mutex_lock(&chip->mutex);
1417 	r = zd_switch_radio_on(&chip->rf);
1418 	mutex_unlock(&chip->mutex);
1419 	return r;
1420 }
1421 
1422 int zd_chip_switch_radio_off(struct zd_chip *chip)
1423 {
1424 	int r;
1425 
1426 	mutex_lock(&chip->mutex);
1427 	r = zd_switch_radio_off(&chip->rf);
1428 	mutex_unlock(&chip->mutex);
1429 	return r;
1430 }
1431 
1432 int zd_chip_enable_int(struct zd_chip *chip)
1433 {
1434 	int r;
1435 
1436 	mutex_lock(&chip->mutex);
1437 	r = zd_usb_enable_int(&chip->usb);
1438 	mutex_unlock(&chip->mutex);
1439 	return r;
1440 }
1441 
1442 void zd_chip_disable_int(struct zd_chip *chip)
1443 {
1444 	mutex_lock(&chip->mutex);
1445 	zd_usb_disable_int(&chip->usb);
1446 	mutex_unlock(&chip->mutex);
1447 
1448 	/* cancel pending interrupt work */
1449 	cancel_work_sync(&zd_chip_to_mac(chip)->process_intr);
1450 }
1451 
1452 int zd_chip_enable_rxtx(struct zd_chip *chip)
1453 {
1454 	int r;
1455 
1456 	mutex_lock(&chip->mutex);
1457 	zd_usb_enable_tx(&chip->usb);
1458 	r = zd_usb_enable_rx(&chip->usb);
1459 	zd_tx_watchdog_enable(&chip->usb);
1460 	mutex_unlock(&chip->mutex);
1461 	return r;
1462 }
1463 
1464 void zd_chip_disable_rxtx(struct zd_chip *chip)
1465 {
1466 	mutex_lock(&chip->mutex);
1467 	zd_tx_watchdog_disable(&chip->usb);
1468 	zd_usb_disable_rx(&chip->usb);
1469 	zd_usb_disable_tx(&chip->usb);
1470 	mutex_unlock(&chip->mutex);
1471 }
1472 
1473 int zd_rfwritev_locked(struct zd_chip *chip,
1474 	               const u32* values, unsigned int count, u8 bits)
1475 {
1476 	int r;
1477 	unsigned int i;
1478 
1479 	for (i = 0; i < count; i++) {
1480 		r = zd_rfwrite_locked(chip, values[i], bits);
1481 		if (r)
1482 			return r;
1483 	}
1484 
1485 	return 0;
1486 }
1487 
1488 /*
1489  * We can optionally program the RF directly through CR regs, if supported by
1490  * the hardware. This is much faster than the older method.
1491  */
1492 int zd_rfwrite_cr_locked(struct zd_chip *chip, u32 value)
1493 {
1494 	const struct zd_ioreq16 ioreqs[] = {
1495 		{ ZD_CR244, (value >> 16) & 0xff },
1496 		{ ZD_CR243, (value >>  8) & 0xff },
1497 		{ ZD_CR242,  value        & 0xff },
1498 	};
1499 	ZD_ASSERT(mutex_is_locked(&chip->mutex));
1500 	return zd_iowrite16a_locked(chip, ioreqs, ARRAY_SIZE(ioreqs));
1501 }
1502 
1503 int zd_rfwritev_cr_locked(struct zd_chip *chip,
1504 	                  const u32 *values, unsigned int count)
1505 {
1506 	int r;
1507 	unsigned int i;
1508 
1509 	for (i = 0; i < count; i++) {
1510 		r = zd_rfwrite_cr_locked(chip, values[i]);
1511 		if (r)
1512 			return r;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 int zd_chip_set_multicast_hash(struct zd_chip *chip,
1519 	                       struct zd_mc_hash *hash)
1520 {
1521 	const struct zd_ioreq32 ioreqs[] = {
1522 		{ CR_GROUP_HASH_P1, hash->low },
1523 		{ CR_GROUP_HASH_P2, hash->high },
1524 	};
1525 
1526 	return zd_iowrite32a(chip, ioreqs, ARRAY_SIZE(ioreqs));
1527 }
1528 
1529 u64 zd_chip_get_tsf(struct zd_chip *chip)
1530 {
1531 	int r;
1532 	static const zd_addr_t aw_pt_bi_addr[] =
1533 		{ CR_TSF_LOW_PART, CR_TSF_HIGH_PART };
1534 	u32 values[2];
1535 	u64 tsf;
1536 
1537 	mutex_lock(&chip->mutex);
1538 	r = zd_ioread32v_locked(chip, values, (const zd_addr_t *)aw_pt_bi_addr,
1539 	                        ARRAY_SIZE(aw_pt_bi_addr));
1540 	mutex_unlock(&chip->mutex);
1541 	if (r)
1542 		return 0;
1543 
1544 	tsf = values[1];
1545 	tsf = (tsf << 32) | values[0];
1546 
1547 	return tsf;
1548 }
1549