xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/phy.c (revision 6417f03132a6952cd17ddd8eaddbac92b61b17e0)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/bcd.h>
6 
7 #include "main.h"
8 #include "reg.h"
9 #include "fw.h"
10 #include "phy.h"
11 #include "debug.h"
12 
13 struct phy_cfg_pair {
14 	u32 addr;
15 	u32 data;
16 };
17 
18 union phy_table_tile {
19 	struct rtw_phy_cond cond;
20 	struct phy_cfg_pair cfg;
21 };
22 
23 static const u32 db_invert_table[12][8] = {
24 	{10,		13,		16,		20,
25 	 25,		32,		40,		50},
26 	{64,		80,		101,		128,
27 	 160,		201,		256,		318},
28 	{401,		505,		635,		800,
29 	 1007,		1268,		1596,		2010},
30 	{316,		398,		501,		631,
31 	 794,		1000,		1259,		1585},
32 	{1995,		2512,		3162,		3981,
33 	 5012,		6310,		7943,		10000},
34 	{12589,		15849,		19953,		25119,
35 	 31623,		39811,		50119,		63098},
36 	{79433,		100000,		125893,		158489,
37 	 199526,	251189,		316228,		398107},
38 	{501187,	630957,		794328,		1000000,
39 	 1258925,	1584893,	1995262,	2511886},
40 	{3162278,	3981072,	5011872,	6309573,
41 	 7943282,	1000000,	12589254,	15848932},
42 	{19952623,	25118864,	31622777,	39810717,
43 	 50118723,	63095734,	79432823,	100000000},
44 	{125892541,	158489319,	199526232,	251188643,
45 	 316227766,	398107171,	501187234,	630957345},
46 	{794328235,	1000000000,	1258925412,	1584893192,
47 	 1995262315,	2511886432U,	3162277660U,	3981071706U}
48 };
49 
50 u8 rtw_cck_rates[] = { DESC_RATE1M, DESC_RATE2M, DESC_RATE5_5M, DESC_RATE11M };
51 u8 rtw_ofdm_rates[] = {
52 	DESC_RATE6M,  DESC_RATE9M,  DESC_RATE12M,
53 	DESC_RATE18M, DESC_RATE24M, DESC_RATE36M,
54 	DESC_RATE48M, DESC_RATE54M
55 };
56 u8 rtw_ht_1s_rates[] = {
57 	DESC_RATEMCS0, DESC_RATEMCS1, DESC_RATEMCS2,
58 	DESC_RATEMCS3, DESC_RATEMCS4, DESC_RATEMCS5,
59 	DESC_RATEMCS6, DESC_RATEMCS7
60 };
61 u8 rtw_ht_2s_rates[] = {
62 	DESC_RATEMCS8,  DESC_RATEMCS9,  DESC_RATEMCS10,
63 	DESC_RATEMCS11, DESC_RATEMCS12, DESC_RATEMCS13,
64 	DESC_RATEMCS14, DESC_RATEMCS15
65 };
66 u8 rtw_vht_1s_rates[] = {
67 	DESC_RATEVHT1SS_MCS0, DESC_RATEVHT1SS_MCS1,
68 	DESC_RATEVHT1SS_MCS2, DESC_RATEVHT1SS_MCS3,
69 	DESC_RATEVHT1SS_MCS4, DESC_RATEVHT1SS_MCS5,
70 	DESC_RATEVHT1SS_MCS6, DESC_RATEVHT1SS_MCS7,
71 	DESC_RATEVHT1SS_MCS8, DESC_RATEVHT1SS_MCS9
72 };
73 u8 rtw_vht_2s_rates[] = {
74 	DESC_RATEVHT2SS_MCS0, DESC_RATEVHT2SS_MCS1,
75 	DESC_RATEVHT2SS_MCS2, DESC_RATEVHT2SS_MCS3,
76 	DESC_RATEVHT2SS_MCS4, DESC_RATEVHT2SS_MCS5,
77 	DESC_RATEVHT2SS_MCS6, DESC_RATEVHT2SS_MCS7,
78 	DESC_RATEVHT2SS_MCS8, DESC_RATEVHT2SS_MCS9
79 };
80 u8 *rtw_rate_section[RTW_RATE_SECTION_MAX] = {
81 	rtw_cck_rates, rtw_ofdm_rates,
82 	rtw_ht_1s_rates, rtw_ht_2s_rates,
83 	rtw_vht_1s_rates, rtw_vht_2s_rates
84 };
85 EXPORT_SYMBOL(rtw_rate_section);
86 
87 u8 rtw_rate_size[RTW_RATE_SECTION_MAX] = {
88 	ARRAY_SIZE(rtw_cck_rates),
89 	ARRAY_SIZE(rtw_ofdm_rates),
90 	ARRAY_SIZE(rtw_ht_1s_rates),
91 	ARRAY_SIZE(rtw_ht_2s_rates),
92 	ARRAY_SIZE(rtw_vht_1s_rates),
93 	ARRAY_SIZE(rtw_vht_2s_rates)
94 };
95 EXPORT_SYMBOL(rtw_rate_size);
96 
97 static const u8 rtw_cck_size = ARRAY_SIZE(rtw_cck_rates);
98 static const u8 rtw_ofdm_size = ARRAY_SIZE(rtw_ofdm_rates);
99 static const u8 rtw_ht_1s_size = ARRAY_SIZE(rtw_ht_1s_rates);
100 static const u8 rtw_ht_2s_size = ARRAY_SIZE(rtw_ht_2s_rates);
101 static const u8 rtw_vht_1s_size = ARRAY_SIZE(rtw_vht_1s_rates);
102 static const u8 rtw_vht_2s_size = ARRAY_SIZE(rtw_vht_2s_rates);
103 
104 enum rtw_phy_band_type {
105 	PHY_BAND_2G	= 0,
106 	PHY_BAND_5G	= 1,
107 };
108 
109 static void rtw_phy_cck_pd_init(struct rtw_dev *rtwdev)
110 {
111 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
112 	u8 i, j;
113 
114 	for (i = 0; i <= RTW_CHANNEL_WIDTH_40; i++) {
115 		for (j = 0; j < RTW_RF_PATH_MAX; j++)
116 			dm_info->cck_pd_lv[i][j] = CCK_PD_LV0;
117 	}
118 
119 	dm_info->cck_fa_avg = CCK_FA_AVG_RESET;
120 }
121 
122 void rtw_phy_init(struct rtw_dev *rtwdev)
123 {
124 	struct rtw_chip_info *chip = rtwdev->chip;
125 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
126 	u32 addr, mask;
127 
128 	dm_info->fa_history[3] = 0;
129 	dm_info->fa_history[2] = 0;
130 	dm_info->fa_history[1] = 0;
131 	dm_info->fa_history[0] = 0;
132 	dm_info->igi_bitmap = 0;
133 	dm_info->igi_history[3] = 0;
134 	dm_info->igi_history[2] = 0;
135 	dm_info->igi_history[1] = 0;
136 
137 	addr = chip->dig[0].addr;
138 	mask = chip->dig[0].mask;
139 	dm_info->igi_history[0] = rtw_read32_mask(rtwdev, addr, mask);
140 	rtw_phy_cck_pd_init(rtwdev);
141 
142 	dm_info->iqk.done = false;
143 }
144 EXPORT_SYMBOL(rtw_phy_init);
145 
146 void rtw_phy_dig_write(struct rtw_dev *rtwdev, u8 igi)
147 {
148 	struct rtw_chip_info *chip = rtwdev->chip;
149 	struct rtw_hal *hal = &rtwdev->hal;
150 	u32 addr, mask;
151 	u8 path;
152 
153 	if (chip->dig_cck) {
154 		const struct rtw_hw_reg *dig_cck = &chip->dig_cck[0];
155 		rtw_write32_mask(rtwdev, dig_cck->addr, dig_cck->mask, igi >> 1);
156 	}
157 
158 	for (path = 0; path < hal->rf_path_num; path++) {
159 		addr = chip->dig[path].addr;
160 		mask = chip->dig[path].mask;
161 		rtw_write32_mask(rtwdev, addr, mask, igi);
162 	}
163 }
164 
165 static void rtw_phy_stat_false_alarm(struct rtw_dev *rtwdev)
166 {
167 	struct rtw_chip_info *chip = rtwdev->chip;
168 
169 	chip->ops->false_alarm_statistics(rtwdev);
170 }
171 
172 #define RA_FLOOR_TABLE_SIZE	7
173 #define RA_FLOOR_UP_GAP		3
174 
175 static u8 rtw_phy_get_rssi_level(u8 old_level, u8 rssi)
176 {
177 	u8 table[RA_FLOOR_TABLE_SIZE] = {20, 34, 38, 42, 46, 50, 100};
178 	u8 new_level = 0;
179 	int i;
180 
181 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++)
182 		if (i >= old_level)
183 			table[i] += RA_FLOOR_UP_GAP;
184 
185 	for (i = 0; i < RA_FLOOR_TABLE_SIZE; i++) {
186 		if (rssi < table[i]) {
187 			new_level = i;
188 			break;
189 		}
190 	}
191 
192 	return new_level;
193 }
194 
195 struct rtw_phy_stat_iter_data {
196 	struct rtw_dev *rtwdev;
197 	u8 min_rssi;
198 };
199 
200 static void rtw_phy_stat_rssi_iter(void *data, struct ieee80211_sta *sta)
201 {
202 	struct rtw_phy_stat_iter_data *iter_data = data;
203 	struct rtw_dev *rtwdev = iter_data->rtwdev;
204 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
205 	u8 rssi;
206 
207 	rssi = ewma_rssi_read(&si->avg_rssi);
208 	si->rssi_level = rtw_phy_get_rssi_level(si->rssi_level, rssi);
209 
210 	rtw_fw_send_rssi_info(rtwdev, si);
211 
212 	iter_data->min_rssi = min_t(u8, rssi, iter_data->min_rssi);
213 }
214 
215 static void rtw_phy_stat_rssi(struct rtw_dev *rtwdev)
216 {
217 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
218 	struct rtw_phy_stat_iter_data data = {};
219 
220 	data.rtwdev = rtwdev;
221 	data.min_rssi = U8_MAX;
222 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_stat_rssi_iter, &data);
223 
224 	dm_info->pre_min_rssi = dm_info->min_rssi;
225 	dm_info->min_rssi = data.min_rssi;
226 }
227 
228 static void rtw_phy_stat_rate_cnt(struct rtw_dev *rtwdev)
229 {
230 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
231 
232 	dm_info->last_pkt_count = dm_info->cur_pkt_count;
233 	memset(&dm_info->cur_pkt_count, 0, sizeof(dm_info->cur_pkt_count));
234 }
235 
236 static void rtw_phy_statistics(struct rtw_dev *rtwdev)
237 {
238 	rtw_phy_stat_rssi(rtwdev);
239 	rtw_phy_stat_false_alarm(rtwdev);
240 	rtw_phy_stat_rate_cnt(rtwdev);
241 }
242 
243 #define DIG_PERF_FA_TH_LOW			250
244 #define DIG_PERF_FA_TH_HIGH			500
245 #define DIG_PERF_FA_TH_EXTRA_HIGH		750
246 #define DIG_PERF_MAX				0x5a
247 #define DIG_PERF_MID				0x40
248 #define DIG_CVRG_FA_TH_LOW			2000
249 #define DIG_CVRG_FA_TH_HIGH			4000
250 #define DIG_CVRG_FA_TH_EXTRA_HIGH		5000
251 #define DIG_CVRG_MAX				0x2a
252 #define DIG_CVRG_MID				0x26
253 #define DIG_CVRG_MIN				0x1c
254 #define DIG_RSSI_GAIN_OFFSET			15
255 
256 static bool
257 rtw_phy_dig_check_damping(struct rtw_dm_info *dm_info)
258 {
259 	u16 fa_lo = DIG_PERF_FA_TH_LOW;
260 	u16 fa_hi = DIG_PERF_FA_TH_HIGH;
261 	u16 *fa_history;
262 	u8 *igi_history;
263 	u8 damping_rssi;
264 	u8 min_rssi;
265 	u8 diff;
266 	u8 igi_bitmap;
267 	bool damping = false;
268 
269 	min_rssi = dm_info->min_rssi;
270 	if (dm_info->damping) {
271 		damping_rssi = dm_info->damping_rssi;
272 		diff = min_rssi > damping_rssi ? min_rssi - damping_rssi :
273 						 damping_rssi - min_rssi;
274 		if (diff > 3 || dm_info->damping_cnt++ > 20) {
275 			dm_info->damping = false;
276 			return false;
277 		}
278 
279 		return true;
280 	}
281 
282 	igi_history = dm_info->igi_history;
283 	fa_history = dm_info->fa_history;
284 	igi_bitmap = dm_info->igi_bitmap & 0xf;
285 	switch (igi_bitmap) {
286 	case 5:
287 		/* down -> up -> down -> up */
288 		if (igi_history[0] > igi_history[1] &&
289 		    igi_history[2] > igi_history[3] &&
290 		    igi_history[0] - igi_history[1] >= 2 &&
291 		    igi_history[2] - igi_history[3] >= 2 &&
292 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
293 		    fa_history[2] > fa_hi && fa_history[3] < fa_lo)
294 			damping = true;
295 		break;
296 	case 9:
297 		/* up -> down -> down -> up */
298 		if (igi_history[0] > igi_history[1] &&
299 		    igi_history[3] > igi_history[2] &&
300 		    igi_history[0] - igi_history[1] >= 4 &&
301 		    igi_history[3] - igi_history[2] >= 2 &&
302 		    fa_history[0] > fa_hi && fa_history[1] < fa_lo &&
303 		    fa_history[2] < fa_lo && fa_history[3] > fa_hi)
304 			damping = true;
305 		break;
306 	default:
307 		return false;
308 	}
309 
310 	if (damping) {
311 		dm_info->damping = true;
312 		dm_info->damping_cnt = 0;
313 		dm_info->damping_rssi = min_rssi;
314 	}
315 
316 	return damping;
317 }
318 
319 static void rtw_phy_dig_get_boundary(struct rtw_dm_info *dm_info,
320 				     u8 *upper, u8 *lower, bool linked)
321 {
322 	u8 dig_max, dig_min, dig_mid;
323 	u8 min_rssi;
324 
325 	if (linked) {
326 		dig_max = DIG_PERF_MAX;
327 		dig_mid = DIG_PERF_MID;
328 		/* 22B=0x1c, 22C=0x20 */
329 		dig_min = 0x1c;
330 		min_rssi = max_t(u8, dm_info->min_rssi, dig_min);
331 	} else {
332 		dig_max = DIG_CVRG_MAX;
333 		dig_mid = DIG_CVRG_MID;
334 		dig_min = DIG_CVRG_MIN;
335 		min_rssi = dig_min;
336 	}
337 
338 	/* DIG MAX should be bounded by minimum RSSI with offset +15 */
339 	dig_max = min_t(u8, dig_max, min_rssi + DIG_RSSI_GAIN_OFFSET);
340 
341 	*lower = clamp_t(u8, min_rssi, dig_min, dig_mid);
342 	*upper = clamp_t(u8, *lower + DIG_RSSI_GAIN_OFFSET, dig_min, dig_max);
343 }
344 
345 static void rtw_phy_dig_get_threshold(struct rtw_dm_info *dm_info,
346 				      u16 *fa_th, u8 *step, bool linked)
347 {
348 	u8 min_rssi, pre_min_rssi;
349 
350 	min_rssi = dm_info->min_rssi;
351 	pre_min_rssi = dm_info->pre_min_rssi;
352 	step[0] = 4;
353 	step[1] = 3;
354 	step[2] = 2;
355 
356 	if (linked) {
357 		fa_th[0] = DIG_PERF_FA_TH_EXTRA_HIGH;
358 		fa_th[1] = DIG_PERF_FA_TH_HIGH;
359 		fa_th[2] = DIG_PERF_FA_TH_LOW;
360 		if (pre_min_rssi > min_rssi) {
361 			step[0] = 6;
362 			step[1] = 4;
363 			step[2] = 2;
364 		}
365 	} else {
366 		fa_th[0] = DIG_CVRG_FA_TH_EXTRA_HIGH;
367 		fa_th[1] = DIG_CVRG_FA_TH_HIGH;
368 		fa_th[2] = DIG_CVRG_FA_TH_LOW;
369 	}
370 }
371 
372 static void rtw_phy_dig_recorder(struct rtw_dm_info *dm_info, u8 igi, u16 fa)
373 {
374 	u8 *igi_history;
375 	u16 *fa_history;
376 	u8 igi_bitmap;
377 	bool up;
378 
379 	igi_bitmap = dm_info->igi_bitmap << 1 & 0xfe;
380 	igi_history = dm_info->igi_history;
381 	fa_history = dm_info->fa_history;
382 
383 	up = igi > igi_history[0];
384 	igi_bitmap |= up;
385 
386 	igi_history[3] = igi_history[2];
387 	igi_history[2] = igi_history[1];
388 	igi_history[1] = igi_history[0];
389 	igi_history[0] = igi;
390 
391 	fa_history[3] = fa_history[2];
392 	fa_history[2] = fa_history[1];
393 	fa_history[1] = fa_history[0];
394 	fa_history[0] = fa;
395 
396 	dm_info->igi_bitmap = igi_bitmap;
397 }
398 
399 static void rtw_phy_dig(struct rtw_dev *rtwdev)
400 {
401 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
402 	u8 upper_bound, lower_bound;
403 	u8 pre_igi, cur_igi;
404 	u16 fa_th[3], fa_cnt;
405 	u8 level;
406 	u8 step[3];
407 	bool linked;
408 
409 	if (test_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags))
410 		return;
411 
412 	if (rtw_phy_dig_check_damping(dm_info))
413 		return;
414 
415 	linked = !!rtwdev->sta_cnt;
416 
417 	fa_cnt = dm_info->total_fa_cnt;
418 	pre_igi = dm_info->igi_history[0];
419 
420 	rtw_phy_dig_get_threshold(dm_info, fa_th, step, linked);
421 
422 	/* test the false alarm count from the highest threshold level first,
423 	 * and increase it by corresponding step size
424 	 *
425 	 * note that the step size is offset by -2, compensate it afterall
426 	 */
427 	cur_igi = pre_igi;
428 	for (level = 0; level < 3; level++) {
429 		if (fa_cnt > fa_th[level]) {
430 			cur_igi += step[level];
431 			break;
432 		}
433 	}
434 	cur_igi -= 2;
435 
436 	/* calculate the upper/lower bound by the minimum rssi we have among
437 	 * the peers connected with us, meanwhile make sure the igi value does
438 	 * not beyond the hardware limitation
439 	 */
440 	rtw_phy_dig_get_boundary(dm_info, &upper_bound, &lower_bound, linked);
441 	cur_igi = clamp_t(u8, cur_igi, lower_bound, upper_bound);
442 
443 	/* record current igi value and false alarm statistics for further
444 	 * damping checks, and record the trend of igi values
445 	 */
446 	rtw_phy_dig_recorder(dm_info, cur_igi, fa_cnt);
447 
448 	if (cur_igi != pre_igi)
449 		rtw_phy_dig_write(rtwdev, cur_igi);
450 }
451 
452 static void rtw_phy_ra_info_update_iter(void *data, struct ieee80211_sta *sta)
453 {
454 	struct rtw_dev *rtwdev = data;
455 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
456 
457 	rtw_update_sta_info(rtwdev, si);
458 }
459 
460 static void rtw_phy_ra_info_update(struct rtw_dev *rtwdev)
461 {
462 	if (rtwdev->watch_dog_cnt & 0x3)
463 		return;
464 
465 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_ra_info_update_iter, rtwdev);
466 }
467 
468 static u32 rtw_phy_get_rrsr_mask(struct rtw_dev *rtwdev, u8 rate_idx)
469 {
470 	u8 rate_order;
471 
472 	rate_order = rate_idx;
473 
474 	if (rate_idx >= DESC_RATEVHT4SS_MCS0)
475 		rate_order -= DESC_RATEVHT4SS_MCS0;
476 	else if (rate_idx >= DESC_RATEVHT3SS_MCS0)
477 		rate_order -= DESC_RATEVHT3SS_MCS0;
478 	else if (rate_idx >= DESC_RATEVHT2SS_MCS0)
479 		rate_order -= DESC_RATEVHT2SS_MCS0;
480 	else if (rate_idx >= DESC_RATEVHT1SS_MCS0)
481 		rate_order -= DESC_RATEVHT1SS_MCS0;
482 	else if (rate_idx >= DESC_RATEMCS24)
483 		rate_order -= DESC_RATEMCS24;
484 	else if (rate_idx >= DESC_RATEMCS16)
485 		rate_order -= DESC_RATEMCS16;
486 	else if (rate_idx >= DESC_RATEMCS8)
487 		rate_order -= DESC_RATEMCS8;
488 	else if (rate_idx >= DESC_RATEMCS0)
489 		rate_order -= DESC_RATEMCS0;
490 	else if (rate_idx >= DESC_RATE6M)
491 		rate_order -= DESC_RATE6M;
492 	else
493 		rate_order -= DESC_RATE1M;
494 
495 	if (rate_idx >= DESC_RATEMCS0 || rate_order == 0)
496 		rate_order++;
497 
498 	return GENMASK(rate_order + RRSR_RATE_ORDER_CCK_LEN - 1, 0);
499 }
500 
501 static void rtw_phy_rrsr_mask_min_iter(void *data, struct ieee80211_sta *sta)
502 {
503 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
504 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
505 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
506 	u32 mask = 0;
507 
508 	mask = rtw_phy_get_rrsr_mask(rtwdev, si->ra_report.desc_rate);
509 	if (mask < dm_info->rrsr_mask_min)
510 		dm_info->rrsr_mask_min = mask;
511 }
512 
513 static void rtw_phy_rrsr_update(struct rtw_dev *rtwdev)
514 {
515 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
516 
517 	dm_info->rrsr_mask_min = RRSR_RATE_ORDER_MAX;
518 	rtw_iterate_stas_atomic(rtwdev, rtw_phy_rrsr_mask_min_iter, rtwdev);
519 	rtw_write32(rtwdev, REG_RRSR, dm_info->rrsr_val_init & dm_info->rrsr_mask_min);
520 }
521 
522 static void rtw_phy_dpk_track(struct rtw_dev *rtwdev)
523 {
524 	struct rtw_chip_info *chip = rtwdev->chip;
525 
526 	if (chip->ops->dpk_track)
527 		chip->ops->dpk_track(rtwdev);
528 }
529 
530 #define CCK_PD_FA_LV1_MIN	1000
531 #define CCK_PD_FA_LV0_MAX	500
532 
533 static u8 rtw_phy_cck_pd_lv_unlink(struct rtw_dev *rtwdev)
534 {
535 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
536 	u32 cck_fa_avg = dm_info->cck_fa_avg;
537 
538 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
539 		return CCK_PD_LV1;
540 
541 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
542 		return CCK_PD_LV0;
543 
544 	return CCK_PD_LV_MAX;
545 }
546 
547 #define CCK_PD_IGI_LV4_VAL 0x38
548 #define CCK_PD_IGI_LV3_VAL 0x2a
549 #define CCK_PD_IGI_LV2_VAL 0x24
550 #define CCK_PD_RSSI_LV4_VAL 32
551 #define CCK_PD_RSSI_LV3_VAL 32
552 #define CCK_PD_RSSI_LV2_VAL 24
553 
554 static u8 rtw_phy_cck_pd_lv_link(struct rtw_dev *rtwdev)
555 {
556 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
557 	u8 igi = dm_info->igi_history[0];
558 	u8 rssi = dm_info->min_rssi;
559 	u32 cck_fa_avg = dm_info->cck_fa_avg;
560 
561 	if (igi > CCK_PD_IGI_LV4_VAL && rssi > CCK_PD_RSSI_LV4_VAL)
562 		return CCK_PD_LV4;
563 	if (igi > CCK_PD_IGI_LV3_VAL && rssi > CCK_PD_RSSI_LV3_VAL)
564 		return CCK_PD_LV3;
565 	if (igi > CCK_PD_IGI_LV2_VAL || rssi > CCK_PD_RSSI_LV2_VAL)
566 		return CCK_PD_LV2;
567 	if (cck_fa_avg > CCK_PD_FA_LV1_MIN)
568 		return CCK_PD_LV1;
569 	if (cck_fa_avg < CCK_PD_FA_LV0_MAX)
570 		return CCK_PD_LV0;
571 
572 	return CCK_PD_LV_MAX;
573 }
574 
575 static u8 rtw_phy_cck_pd_lv(struct rtw_dev *rtwdev)
576 {
577 	if (!rtw_is_assoc(rtwdev))
578 		return rtw_phy_cck_pd_lv_unlink(rtwdev);
579 	else
580 		return rtw_phy_cck_pd_lv_link(rtwdev);
581 }
582 
583 static void rtw_phy_cck_pd(struct rtw_dev *rtwdev)
584 {
585 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
586 	struct rtw_chip_info *chip = rtwdev->chip;
587 	u32 cck_fa = dm_info->cck_fa_cnt;
588 	u8 level;
589 
590 	if (rtwdev->hal.current_band_type != RTW_BAND_2G)
591 		return;
592 
593 	if (dm_info->cck_fa_avg == CCK_FA_AVG_RESET)
594 		dm_info->cck_fa_avg = cck_fa;
595 	else
596 		dm_info->cck_fa_avg = (dm_info->cck_fa_avg * 3 + cck_fa) >> 2;
597 
598 	rtw_dbg(rtwdev, RTW_DBG_PHY, "IGI=0x%x, rssi_min=%d, cck_fa=%d\n",
599 		dm_info->igi_history[0], dm_info->min_rssi,
600 		dm_info->fa_history[0]);
601 	rtw_dbg(rtwdev, RTW_DBG_PHY, "cck_fa_avg=%d, cck_pd_default=%d\n",
602 		dm_info->cck_fa_avg, dm_info->cck_pd_default);
603 
604 	level = rtw_phy_cck_pd_lv(rtwdev);
605 
606 	if (level >= CCK_PD_LV_MAX)
607 		return;
608 
609 	if (chip->ops->cck_pd_set)
610 		chip->ops->cck_pd_set(rtwdev, level);
611 }
612 
613 static void rtw_phy_pwr_track(struct rtw_dev *rtwdev)
614 {
615 	rtwdev->chip->ops->pwr_track(rtwdev);
616 }
617 
618 static void rtw_phy_ra_track(struct rtw_dev *rtwdev)
619 {
620 	rtw_phy_ra_info_update(rtwdev);
621 	rtw_phy_rrsr_update(rtwdev);
622 }
623 
624 void rtw_phy_dynamic_mechanism(struct rtw_dev *rtwdev)
625 {
626 	/* for further calculation */
627 	rtw_phy_statistics(rtwdev);
628 	rtw_phy_dig(rtwdev);
629 	rtw_phy_cck_pd(rtwdev);
630 	rtw_phy_ra_track(rtwdev);
631 	rtw_phy_dpk_track(rtwdev);
632 	rtw_phy_pwr_track(rtwdev);
633 }
634 
635 #define FRAC_BITS 3
636 
637 static u8 rtw_phy_power_2_db(s8 power)
638 {
639 	if (power <= -100 || power >= 20)
640 		return 0;
641 	else if (power >= 0)
642 		return 100;
643 	else
644 		return 100 + power;
645 }
646 
647 static u64 rtw_phy_db_2_linear(u8 power_db)
648 {
649 	u8 i, j;
650 	u64 linear;
651 
652 	if (power_db > 96)
653 		power_db = 96;
654 	else if (power_db < 1)
655 		return 1;
656 
657 	/* 1dB ~ 96dB */
658 	i = (power_db - 1) >> 3;
659 	j = (power_db - 1) - (i << 3);
660 
661 	linear = db_invert_table[i][j];
662 	linear = i > 2 ? linear << FRAC_BITS : linear;
663 
664 	return linear;
665 }
666 
667 static u8 rtw_phy_linear_2_db(u64 linear)
668 {
669 	u8 i;
670 	u8 j;
671 	u32 dB;
672 
673 	if (linear >= db_invert_table[11][7])
674 		return 96; /* maximum 96 dB */
675 
676 	for (i = 0; i < 12; i++) {
677 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][7])
678 			break;
679 		else if (i > 2 && linear <= db_invert_table[i][7])
680 			break;
681 	}
682 
683 	for (j = 0; j < 8; j++) {
684 		if (i <= 2 && (linear << FRAC_BITS) <= db_invert_table[i][j])
685 			break;
686 		else if (i > 2 && linear <= db_invert_table[i][j])
687 			break;
688 	}
689 
690 	if (j == 0 && i == 0)
691 		goto end;
692 
693 	if (j == 0) {
694 		if (i != 3) {
695 			if (db_invert_table[i][0] - linear >
696 			    linear - db_invert_table[i - 1][7]) {
697 				i = i - 1;
698 				j = 7;
699 			}
700 		} else {
701 			if (db_invert_table[3][0] - linear >
702 			    linear - db_invert_table[2][7]) {
703 				i = 2;
704 				j = 7;
705 			}
706 		}
707 	} else {
708 		if (db_invert_table[i][j] - linear >
709 		    linear - db_invert_table[i][j - 1]) {
710 			j = j - 1;
711 		}
712 	}
713 end:
714 	dB = (i << 3) + j + 1;
715 
716 	return dB;
717 }
718 
719 u8 rtw_phy_rf_power_2_rssi(s8 *rf_power, u8 path_num)
720 {
721 	s8 power;
722 	u8 power_db;
723 	u64 linear;
724 	u64 sum = 0;
725 	u8 path;
726 
727 	for (path = 0; path < path_num; path++) {
728 		power = rf_power[path];
729 		power_db = rtw_phy_power_2_db(power);
730 		linear = rtw_phy_db_2_linear(power_db);
731 		sum += linear;
732 	}
733 
734 	sum = (sum + (1 << (FRAC_BITS - 1))) >> FRAC_BITS;
735 	switch (path_num) {
736 	case 2:
737 		sum >>= 1;
738 		break;
739 	case 3:
740 		sum = ((sum) + ((sum) << 1) + ((sum) << 3)) >> 5;
741 		break;
742 	case 4:
743 		sum >>= 2;
744 		break;
745 	default:
746 		break;
747 	}
748 
749 	return rtw_phy_linear_2_db(sum);
750 }
751 EXPORT_SYMBOL(rtw_phy_rf_power_2_rssi);
752 
753 u32 rtw_phy_read_rf(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
754 		    u32 addr, u32 mask)
755 {
756 	struct rtw_hal *hal = &rtwdev->hal;
757 	struct rtw_chip_info *chip = rtwdev->chip;
758 	const u32 *base_addr = chip->rf_base_addr;
759 	u32 val, direct_addr;
760 
761 	if (rf_path >= hal->rf_phy_num) {
762 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
763 		return INV_RF_DATA;
764 	}
765 
766 	addr &= 0xff;
767 	direct_addr = base_addr[rf_path] + (addr << 2);
768 	mask &= RFREG_MASK;
769 
770 	val = rtw_read32_mask(rtwdev, direct_addr, mask);
771 
772 	return val;
773 }
774 EXPORT_SYMBOL(rtw_phy_read_rf);
775 
776 u32 rtw_phy_read_rf_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
777 			 u32 addr, u32 mask)
778 {
779 	struct rtw_hal *hal = &rtwdev->hal;
780 	struct rtw_chip_info *chip = rtwdev->chip;
781 	const struct rtw_rf_sipi_addr *rf_sipi_addr;
782 	const struct rtw_rf_sipi_addr *rf_sipi_addr_a;
783 	u32 val32;
784 	u32 en_pi;
785 	u32 r_addr;
786 	u32 shift;
787 
788 	if (rf_path >= hal->rf_phy_num) {
789 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
790 		return INV_RF_DATA;
791 	}
792 
793 	if (!chip->rf_sipi_read_addr) {
794 		rtw_err(rtwdev, "rf_sipi_read_addr isn't defined\n");
795 		return INV_RF_DATA;
796 	}
797 
798 	rf_sipi_addr = &chip->rf_sipi_read_addr[rf_path];
799 	rf_sipi_addr_a = &chip->rf_sipi_read_addr[RF_PATH_A];
800 
801 	addr &= 0xff;
802 
803 	val32 = rtw_read32(rtwdev, rf_sipi_addr->hssi_2);
804 	val32 = (val32 & ~LSSI_READ_ADDR_MASK) | (addr << 23);
805 	rtw_write32(rtwdev, rf_sipi_addr->hssi_2, val32);
806 
807 	/* toggle read edge of path A */
808 	val32 = rtw_read32(rtwdev, rf_sipi_addr_a->hssi_2);
809 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 & ~LSSI_READ_EDGE_MASK);
810 	rtw_write32(rtwdev, rf_sipi_addr_a->hssi_2, val32 | LSSI_READ_EDGE_MASK);
811 
812 	udelay(120);
813 
814 	en_pi = rtw_read32_mask(rtwdev, rf_sipi_addr->hssi_1, BIT(8));
815 	r_addr = en_pi ? rf_sipi_addr->lssi_read_pi : rf_sipi_addr->lssi_read;
816 
817 	val32 = rtw_read32_mask(rtwdev, r_addr, LSSI_READ_DATA_MASK);
818 
819 	shift = __ffs(mask);
820 
821 	return (val32 & mask) >> shift;
822 }
823 EXPORT_SYMBOL(rtw_phy_read_rf_sipi);
824 
825 bool rtw_phy_write_rf_reg_sipi(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
826 			       u32 addr, u32 mask, u32 data)
827 {
828 	struct rtw_hal *hal = &rtwdev->hal;
829 	struct rtw_chip_info *chip = rtwdev->chip;
830 	u32 *sipi_addr = chip->rf_sipi_addr;
831 	u32 data_and_addr;
832 	u32 old_data = 0;
833 	u32 shift;
834 
835 	if (rf_path >= hal->rf_phy_num) {
836 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
837 		return false;
838 	}
839 
840 	addr &= 0xff;
841 	mask &= RFREG_MASK;
842 
843 	if (mask != RFREG_MASK) {
844 		old_data = chip->ops->read_rf(rtwdev, rf_path, addr, RFREG_MASK);
845 
846 		if (old_data == INV_RF_DATA) {
847 			rtw_err(rtwdev, "Write fail, rf is disabled\n");
848 			return false;
849 		}
850 
851 		shift = __ffs(mask);
852 		data = ((old_data) & (~mask)) | (data << shift);
853 	}
854 
855 	data_and_addr = ((addr << 20) | (data & 0x000fffff)) & 0x0fffffff;
856 
857 	rtw_write32(rtwdev, sipi_addr[rf_path], data_and_addr);
858 
859 	udelay(13);
860 
861 	return true;
862 }
863 EXPORT_SYMBOL(rtw_phy_write_rf_reg_sipi);
864 
865 bool rtw_phy_write_rf_reg(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
866 			  u32 addr, u32 mask, u32 data)
867 {
868 	struct rtw_hal *hal = &rtwdev->hal;
869 	struct rtw_chip_info *chip = rtwdev->chip;
870 	const u32 *base_addr = chip->rf_base_addr;
871 	u32 direct_addr;
872 
873 	if (rf_path >= hal->rf_phy_num) {
874 		rtw_err(rtwdev, "unsupported rf path (%d)\n", rf_path);
875 		return false;
876 	}
877 
878 	addr &= 0xff;
879 	direct_addr = base_addr[rf_path] + (addr << 2);
880 	mask &= RFREG_MASK;
881 
882 	rtw_write32_mask(rtwdev, direct_addr, mask, data);
883 
884 	udelay(1);
885 
886 	return true;
887 }
888 
889 bool rtw_phy_write_rf_reg_mix(struct rtw_dev *rtwdev, enum rtw_rf_path rf_path,
890 			      u32 addr, u32 mask, u32 data)
891 {
892 	if (addr != 0x00)
893 		return rtw_phy_write_rf_reg(rtwdev, rf_path, addr, mask, data);
894 
895 	return rtw_phy_write_rf_reg_sipi(rtwdev, rf_path, addr, mask, data);
896 }
897 EXPORT_SYMBOL(rtw_phy_write_rf_reg_mix);
898 
899 void rtw_phy_setup_phy_cond(struct rtw_dev *rtwdev, u32 pkg)
900 {
901 	struct rtw_hal *hal = &rtwdev->hal;
902 	struct rtw_efuse *efuse = &rtwdev->efuse;
903 	struct rtw_phy_cond cond = {0};
904 
905 	cond.cut = hal->cut_version ? hal->cut_version : 15;
906 	cond.pkg = pkg ? pkg : 15;
907 	cond.plat = 0x04;
908 	cond.rfe = efuse->rfe_option;
909 
910 	switch (rtw_hci_type(rtwdev)) {
911 	case RTW_HCI_TYPE_USB:
912 		cond.intf = INTF_USB;
913 		break;
914 	case RTW_HCI_TYPE_SDIO:
915 		cond.intf = INTF_SDIO;
916 		break;
917 	case RTW_HCI_TYPE_PCIE:
918 	default:
919 		cond.intf = INTF_PCIE;
920 		break;
921 	}
922 
923 	hal->phy_cond = cond;
924 
925 	rtw_dbg(rtwdev, RTW_DBG_PHY, "phy cond=0x%08x\n", *((u32 *)&hal->phy_cond));
926 }
927 
928 static bool check_positive(struct rtw_dev *rtwdev, struct rtw_phy_cond cond)
929 {
930 	struct rtw_hal *hal = &rtwdev->hal;
931 	struct rtw_phy_cond drv_cond = hal->phy_cond;
932 
933 	if (cond.cut && cond.cut != drv_cond.cut)
934 		return false;
935 
936 	if (cond.pkg && cond.pkg != drv_cond.pkg)
937 		return false;
938 
939 	if (cond.intf && cond.intf != drv_cond.intf)
940 		return false;
941 
942 	if (cond.rfe != drv_cond.rfe)
943 		return false;
944 
945 	return true;
946 }
947 
948 void rtw_parse_tbl_phy_cond(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
949 {
950 	const union phy_table_tile *p = tbl->data;
951 	const union phy_table_tile *end = p + tbl->size / 2;
952 	struct rtw_phy_cond pos_cond = {0};
953 	bool is_matched = true, is_skipped = false;
954 
955 	BUILD_BUG_ON(sizeof(union phy_table_tile) != sizeof(struct phy_cfg_pair));
956 
957 	for (; p < end; p++) {
958 		if (p->cond.pos) {
959 			switch (p->cond.branch) {
960 			case BRANCH_ENDIF:
961 				is_matched = true;
962 				is_skipped = false;
963 				break;
964 			case BRANCH_ELSE:
965 				is_matched = is_skipped ? false : true;
966 				break;
967 			case BRANCH_IF:
968 			case BRANCH_ELIF:
969 			default:
970 				pos_cond = p->cond;
971 				break;
972 			}
973 		} else if (p->cond.neg) {
974 			if (!is_skipped) {
975 				if (check_positive(rtwdev, pos_cond)) {
976 					is_matched = true;
977 					is_skipped = true;
978 				} else {
979 					is_matched = false;
980 					is_skipped = false;
981 				}
982 			} else {
983 				is_matched = false;
984 			}
985 		} else if (is_matched) {
986 			(*tbl->do_cfg)(rtwdev, tbl, p->cfg.addr, p->cfg.data);
987 		}
988 	}
989 }
990 EXPORT_SYMBOL(rtw_parse_tbl_phy_cond);
991 
992 #define bcd_to_dec_pwr_by_rate(val, i) bcd2bin(val >> (i * 8))
993 
994 static u8 tbl_to_dec_pwr_by_rate(struct rtw_dev *rtwdev, u32 hex, u8 i)
995 {
996 	if (rtwdev->chip->is_pwr_by_rate_dec)
997 		return bcd_to_dec_pwr_by_rate(hex, i);
998 
999 	return (hex >> (i * 8)) & 0xFF;
1000 }
1001 
1002 static void
1003 rtw_phy_get_rate_values_of_txpwr_by_rate(struct rtw_dev *rtwdev,
1004 					 u32 addr, u32 mask, u32 val, u8 *rate,
1005 					 u8 *pwr_by_rate, u8 *rate_num)
1006 {
1007 	int i;
1008 
1009 	switch (addr) {
1010 	case 0xE00:
1011 	case 0x830:
1012 		rate[0] = DESC_RATE6M;
1013 		rate[1] = DESC_RATE9M;
1014 		rate[2] = DESC_RATE12M;
1015 		rate[3] = DESC_RATE18M;
1016 		for (i = 0; i < 4; ++i)
1017 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1018 		*rate_num = 4;
1019 		break;
1020 	case 0xE04:
1021 	case 0x834:
1022 		rate[0] = DESC_RATE24M;
1023 		rate[1] = DESC_RATE36M;
1024 		rate[2] = DESC_RATE48M;
1025 		rate[3] = DESC_RATE54M;
1026 		for (i = 0; i < 4; ++i)
1027 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1028 		*rate_num = 4;
1029 		break;
1030 	case 0xE08:
1031 		rate[0] = DESC_RATE1M;
1032 		pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 1);
1033 		*rate_num = 1;
1034 		break;
1035 	case 0x86C:
1036 		if (mask == 0xffffff00) {
1037 			rate[0] = DESC_RATE2M;
1038 			rate[1] = DESC_RATE5_5M;
1039 			rate[2] = DESC_RATE11M;
1040 			for (i = 1; i < 4; ++i)
1041 				pwr_by_rate[i - 1] =
1042 					tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1043 			*rate_num = 3;
1044 		} else if (mask == 0x000000ff) {
1045 			rate[0] = DESC_RATE11M;
1046 			pwr_by_rate[0] = bcd_to_dec_pwr_by_rate(val, 0);
1047 			*rate_num = 1;
1048 		}
1049 		break;
1050 	case 0xE10:
1051 	case 0x83C:
1052 		rate[0] = DESC_RATEMCS0;
1053 		rate[1] = DESC_RATEMCS1;
1054 		rate[2] = DESC_RATEMCS2;
1055 		rate[3] = DESC_RATEMCS3;
1056 		for (i = 0; i < 4; ++i)
1057 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1058 		*rate_num = 4;
1059 		break;
1060 	case 0xE14:
1061 	case 0x848:
1062 		rate[0] = DESC_RATEMCS4;
1063 		rate[1] = DESC_RATEMCS5;
1064 		rate[2] = DESC_RATEMCS6;
1065 		rate[3] = DESC_RATEMCS7;
1066 		for (i = 0; i < 4; ++i)
1067 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1068 		*rate_num = 4;
1069 		break;
1070 	case 0xE18:
1071 	case 0x84C:
1072 		rate[0] = DESC_RATEMCS8;
1073 		rate[1] = DESC_RATEMCS9;
1074 		rate[2] = DESC_RATEMCS10;
1075 		rate[3] = DESC_RATEMCS11;
1076 		for (i = 0; i < 4; ++i)
1077 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1078 		*rate_num = 4;
1079 		break;
1080 	case 0xE1C:
1081 	case 0x868:
1082 		rate[0] = DESC_RATEMCS12;
1083 		rate[1] = DESC_RATEMCS13;
1084 		rate[2] = DESC_RATEMCS14;
1085 		rate[3] = DESC_RATEMCS15;
1086 		for (i = 0; i < 4; ++i)
1087 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1088 		*rate_num = 4;
1089 		break;
1090 	case 0x838:
1091 		rate[0] = DESC_RATE1M;
1092 		rate[1] = DESC_RATE2M;
1093 		rate[2] = DESC_RATE5_5M;
1094 		for (i = 1; i < 4; ++i)
1095 			pwr_by_rate[i - 1] = tbl_to_dec_pwr_by_rate(rtwdev,
1096 								    val, i);
1097 		*rate_num = 3;
1098 		break;
1099 	case 0xC20:
1100 	case 0xE20:
1101 	case 0x1820:
1102 	case 0x1A20:
1103 		rate[0] = DESC_RATE1M;
1104 		rate[1] = DESC_RATE2M;
1105 		rate[2] = DESC_RATE5_5M;
1106 		rate[3] = DESC_RATE11M;
1107 		for (i = 0; i < 4; ++i)
1108 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1109 		*rate_num = 4;
1110 		break;
1111 	case 0xC24:
1112 	case 0xE24:
1113 	case 0x1824:
1114 	case 0x1A24:
1115 		rate[0] = DESC_RATE6M;
1116 		rate[1] = DESC_RATE9M;
1117 		rate[2] = DESC_RATE12M;
1118 		rate[3] = DESC_RATE18M;
1119 		for (i = 0; i < 4; ++i)
1120 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1121 		*rate_num = 4;
1122 		break;
1123 	case 0xC28:
1124 	case 0xE28:
1125 	case 0x1828:
1126 	case 0x1A28:
1127 		rate[0] = DESC_RATE24M;
1128 		rate[1] = DESC_RATE36M;
1129 		rate[2] = DESC_RATE48M;
1130 		rate[3] = DESC_RATE54M;
1131 		for (i = 0; i < 4; ++i)
1132 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1133 		*rate_num = 4;
1134 		break;
1135 	case 0xC2C:
1136 	case 0xE2C:
1137 	case 0x182C:
1138 	case 0x1A2C:
1139 		rate[0] = DESC_RATEMCS0;
1140 		rate[1] = DESC_RATEMCS1;
1141 		rate[2] = DESC_RATEMCS2;
1142 		rate[3] = DESC_RATEMCS3;
1143 		for (i = 0; i < 4; ++i)
1144 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1145 		*rate_num = 4;
1146 		break;
1147 	case 0xC30:
1148 	case 0xE30:
1149 	case 0x1830:
1150 	case 0x1A30:
1151 		rate[0] = DESC_RATEMCS4;
1152 		rate[1] = DESC_RATEMCS5;
1153 		rate[2] = DESC_RATEMCS6;
1154 		rate[3] = DESC_RATEMCS7;
1155 		for (i = 0; i < 4; ++i)
1156 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1157 		*rate_num = 4;
1158 		break;
1159 	case 0xC34:
1160 	case 0xE34:
1161 	case 0x1834:
1162 	case 0x1A34:
1163 		rate[0] = DESC_RATEMCS8;
1164 		rate[1] = DESC_RATEMCS9;
1165 		rate[2] = DESC_RATEMCS10;
1166 		rate[3] = DESC_RATEMCS11;
1167 		for (i = 0; i < 4; ++i)
1168 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1169 		*rate_num = 4;
1170 		break;
1171 	case 0xC38:
1172 	case 0xE38:
1173 	case 0x1838:
1174 	case 0x1A38:
1175 		rate[0] = DESC_RATEMCS12;
1176 		rate[1] = DESC_RATEMCS13;
1177 		rate[2] = DESC_RATEMCS14;
1178 		rate[3] = DESC_RATEMCS15;
1179 		for (i = 0; i < 4; ++i)
1180 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1181 		*rate_num = 4;
1182 		break;
1183 	case 0xC3C:
1184 	case 0xE3C:
1185 	case 0x183C:
1186 	case 0x1A3C:
1187 		rate[0] = DESC_RATEVHT1SS_MCS0;
1188 		rate[1] = DESC_RATEVHT1SS_MCS1;
1189 		rate[2] = DESC_RATEVHT1SS_MCS2;
1190 		rate[3] = DESC_RATEVHT1SS_MCS3;
1191 		for (i = 0; i < 4; ++i)
1192 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1193 		*rate_num = 4;
1194 		break;
1195 	case 0xC40:
1196 	case 0xE40:
1197 	case 0x1840:
1198 	case 0x1A40:
1199 		rate[0] = DESC_RATEVHT1SS_MCS4;
1200 		rate[1] = DESC_RATEVHT1SS_MCS5;
1201 		rate[2] = DESC_RATEVHT1SS_MCS6;
1202 		rate[3] = DESC_RATEVHT1SS_MCS7;
1203 		for (i = 0; i < 4; ++i)
1204 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1205 		*rate_num = 4;
1206 		break;
1207 	case 0xC44:
1208 	case 0xE44:
1209 	case 0x1844:
1210 	case 0x1A44:
1211 		rate[0] = DESC_RATEVHT1SS_MCS8;
1212 		rate[1] = DESC_RATEVHT1SS_MCS9;
1213 		rate[2] = DESC_RATEVHT2SS_MCS0;
1214 		rate[3] = DESC_RATEVHT2SS_MCS1;
1215 		for (i = 0; i < 4; ++i)
1216 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1217 		*rate_num = 4;
1218 		break;
1219 	case 0xC48:
1220 	case 0xE48:
1221 	case 0x1848:
1222 	case 0x1A48:
1223 		rate[0] = DESC_RATEVHT2SS_MCS2;
1224 		rate[1] = DESC_RATEVHT2SS_MCS3;
1225 		rate[2] = DESC_RATEVHT2SS_MCS4;
1226 		rate[3] = DESC_RATEVHT2SS_MCS5;
1227 		for (i = 0; i < 4; ++i)
1228 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1229 		*rate_num = 4;
1230 		break;
1231 	case 0xC4C:
1232 	case 0xE4C:
1233 	case 0x184C:
1234 	case 0x1A4C:
1235 		rate[0] = DESC_RATEVHT2SS_MCS6;
1236 		rate[1] = DESC_RATEVHT2SS_MCS7;
1237 		rate[2] = DESC_RATEVHT2SS_MCS8;
1238 		rate[3] = DESC_RATEVHT2SS_MCS9;
1239 		for (i = 0; i < 4; ++i)
1240 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1241 		*rate_num = 4;
1242 		break;
1243 	case 0xCD8:
1244 	case 0xED8:
1245 	case 0x18D8:
1246 	case 0x1AD8:
1247 		rate[0] = DESC_RATEMCS16;
1248 		rate[1] = DESC_RATEMCS17;
1249 		rate[2] = DESC_RATEMCS18;
1250 		rate[3] = DESC_RATEMCS19;
1251 		for (i = 0; i < 4; ++i)
1252 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1253 		*rate_num = 4;
1254 		break;
1255 	case 0xCDC:
1256 	case 0xEDC:
1257 	case 0x18DC:
1258 	case 0x1ADC:
1259 		rate[0] = DESC_RATEMCS20;
1260 		rate[1] = DESC_RATEMCS21;
1261 		rate[2] = DESC_RATEMCS22;
1262 		rate[3] = DESC_RATEMCS23;
1263 		for (i = 0; i < 4; ++i)
1264 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1265 		*rate_num = 4;
1266 		break;
1267 	case 0xCE0:
1268 	case 0xEE0:
1269 	case 0x18E0:
1270 	case 0x1AE0:
1271 		rate[0] = DESC_RATEVHT3SS_MCS0;
1272 		rate[1] = DESC_RATEVHT3SS_MCS1;
1273 		rate[2] = DESC_RATEVHT3SS_MCS2;
1274 		rate[3] = DESC_RATEVHT3SS_MCS3;
1275 		for (i = 0; i < 4; ++i)
1276 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1277 		*rate_num = 4;
1278 		break;
1279 	case 0xCE4:
1280 	case 0xEE4:
1281 	case 0x18E4:
1282 	case 0x1AE4:
1283 		rate[0] = DESC_RATEVHT3SS_MCS4;
1284 		rate[1] = DESC_RATEVHT3SS_MCS5;
1285 		rate[2] = DESC_RATEVHT3SS_MCS6;
1286 		rate[3] = DESC_RATEVHT3SS_MCS7;
1287 		for (i = 0; i < 4; ++i)
1288 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1289 		*rate_num = 4;
1290 		break;
1291 	case 0xCE8:
1292 	case 0xEE8:
1293 	case 0x18E8:
1294 	case 0x1AE8:
1295 		rate[0] = DESC_RATEVHT3SS_MCS8;
1296 		rate[1] = DESC_RATEVHT3SS_MCS9;
1297 		for (i = 0; i < 2; ++i)
1298 			pwr_by_rate[i] = tbl_to_dec_pwr_by_rate(rtwdev, val, i);
1299 		*rate_num = 2;
1300 		break;
1301 	default:
1302 		rtw_warn(rtwdev, "invalid tx power index addr 0x%08x\n", addr);
1303 		break;
1304 	}
1305 }
1306 
1307 static void rtw_phy_store_tx_power_by_rate(struct rtw_dev *rtwdev,
1308 					   u32 band, u32 rfpath, u32 txnum,
1309 					   u32 regaddr, u32 bitmask, u32 data)
1310 {
1311 	struct rtw_hal *hal = &rtwdev->hal;
1312 	u8 rate_num = 0;
1313 	u8 rate;
1314 	u8 rates[RTW_RF_PATH_MAX] = {0};
1315 	s8 offset;
1316 	s8 pwr_by_rate[RTW_RF_PATH_MAX] = {0};
1317 	int i;
1318 
1319 	rtw_phy_get_rate_values_of_txpwr_by_rate(rtwdev, regaddr, bitmask, data,
1320 						 rates, pwr_by_rate, &rate_num);
1321 
1322 	if (WARN_ON(rfpath >= RTW_RF_PATH_MAX ||
1323 		    (band != PHY_BAND_2G && band != PHY_BAND_5G) ||
1324 		    rate_num > RTW_RF_PATH_MAX))
1325 		return;
1326 
1327 	for (i = 0; i < rate_num; i++) {
1328 		offset = pwr_by_rate[i];
1329 		rate = rates[i];
1330 		if (band == PHY_BAND_2G)
1331 			hal->tx_pwr_by_rate_offset_2g[rfpath][rate] = offset;
1332 		else if (band == PHY_BAND_5G)
1333 			hal->tx_pwr_by_rate_offset_5g[rfpath][rate] = offset;
1334 		else
1335 			continue;
1336 	}
1337 }
1338 
1339 void rtw_parse_tbl_bb_pg(struct rtw_dev *rtwdev, const struct rtw_table *tbl)
1340 {
1341 	const struct rtw_phy_pg_cfg_pair *p = tbl->data;
1342 	const struct rtw_phy_pg_cfg_pair *end = p + tbl->size;
1343 
1344 	for (; p < end; p++) {
1345 		if (p->addr == 0xfe || p->addr == 0xffe) {
1346 			msleep(50);
1347 			continue;
1348 		}
1349 		rtw_phy_store_tx_power_by_rate(rtwdev, p->band, p->rf_path,
1350 					       p->tx_num, p->addr, p->bitmask,
1351 					       p->data);
1352 	}
1353 }
1354 EXPORT_SYMBOL(rtw_parse_tbl_bb_pg);
1355 
1356 static const u8 rtw_channel_idx_5g[RTW_MAX_CHANNEL_NUM_5G] = {
1357 	36,  38,  40,  42,  44,  46,  48, /* Band 1 */
1358 	52,  54,  56,  58,  60,  62,  64, /* Band 2 */
1359 	100, 102, 104, 106, 108, 110, 112, /* Band 3 */
1360 	116, 118, 120, 122, 124, 126, 128, /* Band 3 */
1361 	132, 134, 136, 138, 140, 142, 144, /* Band 3 */
1362 	149, 151, 153, 155, 157, 159, 161, /* Band 4 */
1363 	165, 167, 169, 171, 173, 175, 177}; /* Band 4 */
1364 
1365 static int rtw_channel_to_idx(u8 band, u8 channel)
1366 {
1367 	int ch_idx;
1368 	u8 n_channel;
1369 
1370 	if (band == PHY_BAND_2G) {
1371 		ch_idx = channel - 1;
1372 		n_channel = RTW_MAX_CHANNEL_NUM_2G;
1373 	} else if (band == PHY_BAND_5G) {
1374 		n_channel = RTW_MAX_CHANNEL_NUM_5G;
1375 		for (ch_idx = 0; ch_idx < n_channel; ch_idx++)
1376 			if (rtw_channel_idx_5g[ch_idx] == channel)
1377 				break;
1378 	} else {
1379 		return -1;
1380 	}
1381 
1382 	if (ch_idx >= n_channel)
1383 		return -1;
1384 
1385 	return ch_idx;
1386 }
1387 
1388 static void rtw_phy_set_tx_power_limit(struct rtw_dev *rtwdev, u8 regd, u8 band,
1389 				       u8 bw, u8 rs, u8 ch, s8 pwr_limit)
1390 {
1391 	struct rtw_hal *hal = &rtwdev->hal;
1392 	u8 max_power_index = rtwdev->chip->max_power_index;
1393 	s8 ww;
1394 	int ch_idx;
1395 
1396 	pwr_limit = clamp_t(s8, pwr_limit,
1397 			    -max_power_index, max_power_index);
1398 	ch_idx = rtw_channel_to_idx(band, ch);
1399 
1400 	if (regd >= RTW_REGD_MAX || bw >= RTW_CHANNEL_WIDTH_MAX ||
1401 	    rs >= RTW_RATE_SECTION_MAX || ch_idx < 0) {
1402 		WARN(1,
1403 		     "wrong txpwr_lmt regd=%u, band=%u bw=%u, rs=%u, ch_idx=%u, pwr_limit=%d\n",
1404 		     regd, band, bw, rs, ch_idx, pwr_limit);
1405 		return;
1406 	}
1407 
1408 	if (band == PHY_BAND_2G) {
1409 		hal->tx_pwr_limit_2g[regd][bw][rs][ch_idx] = pwr_limit;
1410 		ww = hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx];
1411 		ww = min_t(s8, ww, pwr_limit);
1412 		hal->tx_pwr_limit_2g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1413 	} else if (band == PHY_BAND_5G) {
1414 		hal->tx_pwr_limit_5g[regd][bw][rs][ch_idx] = pwr_limit;
1415 		ww = hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx];
1416 		ww = min_t(s8, ww, pwr_limit);
1417 		hal->tx_pwr_limit_5g[RTW_REGD_WW][bw][rs][ch_idx] = ww;
1418 	}
1419 }
1420 
1421 /* cross-reference 5G power limits if values are not assigned */
1422 static void
1423 rtw_xref_5g_txpwr_lmt(struct rtw_dev *rtwdev, u8 regd,
1424 		      u8 bw, u8 ch_idx, u8 rs_ht, u8 rs_vht)
1425 {
1426 	struct rtw_hal *hal = &rtwdev->hal;
1427 	u8 max_power_index = rtwdev->chip->max_power_index;
1428 	s8 lmt_ht = hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx];
1429 	s8 lmt_vht = hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx];
1430 
1431 	if (lmt_ht == lmt_vht)
1432 		return;
1433 
1434 	if (lmt_ht == max_power_index)
1435 		hal->tx_pwr_limit_5g[regd][bw][rs_ht][ch_idx] = lmt_vht;
1436 
1437 	else if (lmt_vht == max_power_index)
1438 		hal->tx_pwr_limit_5g[regd][bw][rs_vht][ch_idx] = lmt_ht;
1439 }
1440 
1441 /* cross-reference power limits for ht and vht */
1442 static void
1443 rtw_xref_txpwr_lmt_by_rs(struct rtw_dev *rtwdev, u8 regd, u8 bw, u8 ch_idx)
1444 {
1445 	u8 rs_idx, rs_ht, rs_vht;
1446 	u8 rs_cmp[2][2] = {{RTW_RATE_SECTION_HT_1S, RTW_RATE_SECTION_VHT_1S},
1447 			   {RTW_RATE_SECTION_HT_2S, RTW_RATE_SECTION_VHT_2S} };
1448 
1449 	for (rs_idx = 0; rs_idx < 2; rs_idx++) {
1450 		rs_ht = rs_cmp[rs_idx][0];
1451 		rs_vht = rs_cmp[rs_idx][1];
1452 
1453 		rtw_xref_5g_txpwr_lmt(rtwdev, regd, bw, ch_idx, rs_ht, rs_vht);
1454 	}
1455 }
1456 
1457 /* cross-reference power limits for 5G channels */
1458 static void
1459 rtw_xref_5g_txpwr_lmt_by_ch(struct rtw_dev *rtwdev, u8 regd, u8 bw)
1460 {
1461 	u8 ch_idx;
1462 
1463 	for (ch_idx = 0; ch_idx < RTW_MAX_CHANNEL_NUM_5G; ch_idx++)
1464 		rtw_xref_txpwr_lmt_by_rs(rtwdev, regd, bw, ch_idx);
1465 }
1466 
1467 /* cross-reference power limits for 20/40M bandwidth */
1468 static void
1469 rtw_xref_txpwr_lmt_by_bw(struct rtw_dev *rtwdev, u8 regd)
1470 {
1471 	u8 bw;
1472 
1473 	for (bw = RTW_CHANNEL_WIDTH_20; bw <= RTW_CHANNEL_WIDTH_40; bw++)
1474 		rtw_xref_5g_txpwr_lmt_by_ch(rtwdev, regd, bw);
1475 }
1476 
1477 /* cross-reference power limits */
1478 static void rtw_xref_txpwr_lmt(struct rtw_dev *rtwdev)
1479 {
1480 	u8 regd;
1481 
1482 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
1483 		rtw_xref_txpwr_lmt_by_bw(rtwdev, regd);
1484 }
1485 
1486 void rtw_parse_tbl_txpwr_lmt(struct rtw_dev *rtwdev,
1487 			     const struct rtw_table *tbl)
1488 {
1489 	const struct rtw_txpwr_lmt_cfg_pair *p = tbl->data;
1490 	const struct rtw_txpwr_lmt_cfg_pair *end = p + tbl->size;
1491 
1492 	for (; p < end; p++) {
1493 		rtw_phy_set_tx_power_limit(rtwdev, p->regd, p->band,
1494 					   p->bw, p->rs, p->ch, p->txpwr_lmt);
1495 	}
1496 
1497 	rtw_xref_txpwr_lmt(rtwdev);
1498 }
1499 EXPORT_SYMBOL(rtw_parse_tbl_txpwr_lmt);
1500 
1501 void rtw_phy_cfg_mac(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1502 		     u32 addr, u32 data)
1503 {
1504 	rtw_write8(rtwdev, addr, data);
1505 }
1506 EXPORT_SYMBOL(rtw_phy_cfg_mac);
1507 
1508 void rtw_phy_cfg_agc(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1509 		     u32 addr, u32 data)
1510 {
1511 	rtw_write32(rtwdev, addr, data);
1512 }
1513 EXPORT_SYMBOL(rtw_phy_cfg_agc);
1514 
1515 void rtw_phy_cfg_bb(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1516 		    u32 addr, u32 data)
1517 {
1518 	if (addr == 0xfe)
1519 		msleep(50);
1520 	else if (addr == 0xfd)
1521 		mdelay(5);
1522 	else if (addr == 0xfc)
1523 		mdelay(1);
1524 	else if (addr == 0xfb)
1525 		usleep_range(50, 60);
1526 	else if (addr == 0xfa)
1527 		udelay(5);
1528 	else if (addr == 0xf9)
1529 		udelay(1);
1530 	else
1531 		rtw_write32(rtwdev, addr, data);
1532 }
1533 EXPORT_SYMBOL(rtw_phy_cfg_bb);
1534 
1535 void rtw_phy_cfg_rf(struct rtw_dev *rtwdev, const struct rtw_table *tbl,
1536 		    u32 addr, u32 data)
1537 {
1538 	if (addr == 0xffe) {
1539 		msleep(50);
1540 	} else if (addr == 0xfe) {
1541 		usleep_range(100, 110);
1542 	} else {
1543 		rtw_write_rf(rtwdev, tbl->rf_path, addr, RFREG_MASK, data);
1544 		udelay(1);
1545 	}
1546 }
1547 EXPORT_SYMBOL(rtw_phy_cfg_rf);
1548 
1549 static void rtw_load_rfk_table(struct rtw_dev *rtwdev)
1550 {
1551 	struct rtw_chip_info *chip = rtwdev->chip;
1552 	struct rtw_dpk_info *dpk_info = &rtwdev->dm_info.dpk_info;
1553 
1554 	if (!chip->rfk_init_tbl)
1555 		return;
1556 
1557 	rtw_write32_mask(rtwdev, 0x1e24, BIT(17), 0x1);
1558 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(28), 0x1);
1559 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(29), 0x1);
1560 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(30), 0x1);
1561 	rtw_write32_mask(rtwdev, 0x1cd0, BIT(31), 0x0);
1562 
1563 	rtw_load_table(rtwdev, chip->rfk_init_tbl);
1564 
1565 	dpk_info->is_dpk_pwr_on = true;
1566 }
1567 
1568 void rtw_phy_load_tables(struct rtw_dev *rtwdev)
1569 {
1570 	struct rtw_chip_info *chip = rtwdev->chip;
1571 	u8 rf_path;
1572 
1573 	rtw_load_table(rtwdev, chip->mac_tbl);
1574 	rtw_load_table(rtwdev, chip->bb_tbl);
1575 	rtw_load_table(rtwdev, chip->agc_tbl);
1576 	rtw_load_rfk_table(rtwdev);
1577 
1578 	for (rf_path = 0; rf_path < rtwdev->hal.rf_path_num; rf_path++) {
1579 		const struct rtw_table *tbl;
1580 
1581 		tbl = chip->rf_tbl[rf_path];
1582 		rtw_load_table(rtwdev, tbl);
1583 	}
1584 }
1585 EXPORT_SYMBOL(rtw_phy_load_tables);
1586 
1587 static u8 rtw_get_channel_group(u8 channel)
1588 {
1589 	switch (channel) {
1590 	default:
1591 		WARN_ON(1);
1592 		fallthrough;
1593 	case 1:
1594 	case 2:
1595 	case 36:
1596 	case 38:
1597 	case 40:
1598 	case 42:
1599 		return 0;
1600 	case 3:
1601 	case 4:
1602 	case 5:
1603 	case 44:
1604 	case 46:
1605 	case 48:
1606 	case 50:
1607 		return 1;
1608 	case 6:
1609 	case 7:
1610 	case 8:
1611 	case 52:
1612 	case 54:
1613 	case 56:
1614 	case 58:
1615 		return 2;
1616 	case 9:
1617 	case 10:
1618 	case 11:
1619 	case 60:
1620 	case 62:
1621 	case 64:
1622 		return 3;
1623 	case 12:
1624 	case 13:
1625 	case 100:
1626 	case 102:
1627 	case 104:
1628 	case 106:
1629 		return 4;
1630 	case 14:
1631 	case 108:
1632 	case 110:
1633 	case 112:
1634 	case 114:
1635 		return 5;
1636 	case 116:
1637 	case 118:
1638 	case 120:
1639 	case 122:
1640 		return 6;
1641 	case 124:
1642 	case 126:
1643 	case 128:
1644 	case 130:
1645 		return 7;
1646 	case 132:
1647 	case 134:
1648 	case 136:
1649 	case 138:
1650 		return 8;
1651 	case 140:
1652 	case 142:
1653 	case 144:
1654 		return 9;
1655 	case 149:
1656 	case 151:
1657 	case 153:
1658 	case 155:
1659 		return 10;
1660 	case 157:
1661 	case 159:
1662 	case 161:
1663 		return 11;
1664 	case 165:
1665 	case 167:
1666 	case 169:
1667 	case 171:
1668 		return 12;
1669 	case 173:
1670 	case 175:
1671 	case 177:
1672 		return 13;
1673 	}
1674 }
1675 
1676 static s8 rtw_phy_get_dis_dpd_by_rate_diff(struct rtw_dev *rtwdev, u16 rate)
1677 {
1678 	struct rtw_chip_info *chip = rtwdev->chip;
1679 	s8 dpd_diff = 0;
1680 
1681 	if (!chip->en_dis_dpd)
1682 		return 0;
1683 
1684 #define RTW_DPD_RATE_CHECK(_rate)					\
1685 	case DESC_RATE ## _rate:					\
1686 	if (DIS_DPD_RATE ## _rate & chip->dpd_ratemask)			\
1687 		dpd_diff = -6 * chip->txgi_factor;			\
1688 	break
1689 
1690 	switch (rate) {
1691 	RTW_DPD_RATE_CHECK(6M);
1692 	RTW_DPD_RATE_CHECK(9M);
1693 	RTW_DPD_RATE_CHECK(MCS0);
1694 	RTW_DPD_RATE_CHECK(MCS1);
1695 	RTW_DPD_RATE_CHECK(MCS8);
1696 	RTW_DPD_RATE_CHECK(MCS9);
1697 	RTW_DPD_RATE_CHECK(VHT1SS_MCS0);
1698 	RTW_DPD_RATE_CHECK(VHT1SS_MCS1);
1699 	RTW_DPD_RATE_CHECK(VHT2SS_MCS0);
1700 	RTW_DPD_RATE_CHECK(VHT2SS_MCS1);
1701 	}
1702 #undef RTW_DPD_RATE_CHECK
1703 
1704 	return dpd_diff;
1705 }
1706 
1707 static u8 rtw_phy_get_2g_tx_power_index(struct rtw_dev *rtwdev,
1708 					struct rtw_2g_txpwr_idx *pwr_idx_2g,
1709 					enum rtw_bandwidth bandwidth,
1710 					u8 rate, u8 group)
1711 {
1712 	struct rtw_chip_info *chip = rtwdev->chip;
1713 	u8 tx_power;
1714 	bool mcs_rate;
1715 	bool above_2ss;
1716 	u8 factor = chip->txgi_factor;
1717 
1718 	if (rate <= DESC_RATE11M)
1719 		tx_power = pwr_idx_2g->cck_base[group];
1720 	else
1721 		tx_power = pwr_idx_2g->bw40_base[group];
1722 
1723 	if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1724 		tx_power += pwr_idx_2g->ht_1s_diff.ofdm * factor;
1725 
1726 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1727 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1728 		    rate <= DESC_RATEVHT2SS_MCS9);
1729 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1730 		    (rate >= DESC_RATEVHT2SS_MCS0);
1731 
1732 	if (!mcs_rate)
1733 		return tx_power;
1734 
1735 	switch (bandwidth) {
1736 	default:
1737 		WARN_ON(1);
1738 		fallthrough;
1739 	case RTW_CHANNEL_WIDTH_20:
1740 		tx_power += pwr_idx_2g->ht_1s_diff.bw20 * factor;
1741 		if (above_2ss)
1742 			tx_power += pwr_idx_2g->ht_2s_diff.bw20 * factor;
1743 		break;
1744 	case RTW_CHANNEL_WIDTH_40:
1745 		/* bw40 is the base power */
1746 		if (above_2ss)
1747 			tx_power += pwr_idx_2g->ht_2s_diff.bw40 * factor;
1748 		break;
1749 	}
1750 
1751 	return tx_power;
1752 }
1753 
1754 static u8 rtw_phy_get_5g_tx_power_index(struct rtw_dev *rtwdev,
1755 					struct rtw_5g_txpwr_idx *pwr_idx_5g,
1756 					enum rtw_bandwidth bandwidth,
1757 					u8 rate, u8 group)
1758 {
1759 	struct rtw_chip_info *chip = rtwdev->chip;
1760 	u8 tx_power;
1761 	u8 upper, lower;
1762 	bool mcs_rate;
1763 	bool above_2ss;
1764 	u8 factor = chip->txgi_factor;
1765 
1766 	tx_power = pwr_idx_5g->bw40_base[group];
1767 
1768 	mcs_rate = (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS15) ||
1769 		   (rate >= DESC_RATEVHT1SS_MCS0 &&
1770 		    rate <= DESC_RATEVHT2SS_MCS9);
1771 	above_2ss = (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15) ||
1772 		    (rate >= DESC_RATEVHT2SS_MCS0);
1773 
1774 	if (!mcs_rate) {
1775 		tx_power += pwr_idx_5g->ht_1s_diff.ofdm * factor;
1776 		return tx_power;
1777 	}
1778 
1779 	switch (bandwidth) {
1780 	default:
1781 		WARN_ON(1);
1782 		fallthrough;
1783 	case RTW_CHANNEL_WIDTH_20:
1784 		tx_power += pwr_idx_5g->ht_1s_diff.bw20 * factor;
1785 		if (above_2ss)
1786 			tx_power += pwr_idx_5g->ht_2s_diff.bw20 * factor;
1787 		break;
1788 	case RTW_CHANNEL_WIDTH_40:
1789 		/* bw40 is the base power */
1790 		if (above_2ss)
1791 			tx_power += pwr_idx_5g->ht_2s_diff.bw40 * factor;
1792 		break;
1793 	case RTW_CHANNEL_WIDTH_80:
1794 		/* the base idx of bw80 is the average of bw40+/bw40- */
1795 		lower = pwr_idx_5g->bw40_base[group];
1796 		upper = pwr_idx_5g->bw40_base[group + 1];
1797 
1798 		tx_power = (lower + upper) / 2;
1799 		tx_power += pwr_idx_5g->vht_1s_diff.bw80 * factor;
1800 		if (above_2ss)
1801 			tx_power += pwr_idx_5g->vht_2s_diff.bw80 * factor;
1802 		break;
1803 	}
1804 
1805 	return tx_power;
1806 }
1807 
1808 static s8 rtw_phy_get_tx_power_limit(struct rtw_dev *rtwdev, u8 band,
1809 				     enum rtw_bandwidth bw, u8 rf_path,
1810 				     u8 rate, u8 channel, u8 regd)
1811 {
1812 	struct rtw_hal *hal = &rtwdev->hal;
1813 	u8 *cch_by_bw = hal->cch_by_bw;
1814 	s8 power_limit = (s8)rtwdev->chip->max_power_index;
1815 	u8 rs;
1816 	int ch_idx;
1817 	u8 cur_bw, cur_ch;
1818 	s8 cur_lmt;
1819 
1820 	if (regd > RTW_REGD_WW)
1821 		return power_limit;
1822 
1823 	if (rate >= DESC_RATE1M && rate <= DESC_RATE11M)
1824 		rs = RTW_RATE_SECTION_CCK;
1825 	else if (rate >= DESC_RATE6M && rate <= DESC_RATE54M)
1826 		rs = RTW_RATE_SECTION_OFDM;
1827 	else if (rate >= DESC_RATEMCS0 && rate <= DESC_RATEMCS7)
1828 		rs = RTW_RATE_SECTION_HT_1S;
1829 	else if (rate >= DESC_RATEMCS8 && rate <= DESC_RATEMCS15)
1830 		rs = RTW_RATE_SECTION_HT_2S;
1831 	else if (rate >= DESC_RATEVHT1SS_MCS0 && rate <= DESC_RATEVHT1SS_MCS9)
1832 		rs = RTW_RATE_SECTION_VHT_1S;
1833 	else if (rate >= DESC_RATEVHT2SS_MCS0 && rate <= DESC_RATEVHT2SS_MCS9)
1834 		rs = RTW_RATE_SECTION_VHT_2S;
1835 	else
1836 		goto err;
1837 
1838 	/* only 20M BW with cck and ofdm */
1839 	if (rs == RTW_RATE_SECTION_CCK || rs == RTW_RATE_SECTION_OFDM)
1840 		bw = RTW_CHANNEL_WIDTH_20;
1841 
1842 	/* only 20/40M BW with ht */
1843 	if (rs == RTW_RATE_SECTION_HT_1S || rs == RTW_RATE_SECTION_HT_2S)
1844 		bw = min_t(u8, bw, RTW_CHANNEL_WIDTH_40);
1845 
1846 	/* select min power limit among [20M BW ~ current BW] */
1847 	for (cur_bw = RTW_CHANNEL_WIDTH_20; cur_bw <= bw; cur_bw++) {
1848 		cur_ch = cch_by_bw[cur_bw];
1849 
1850 		ch_idx = rtw_channel_to_idx(band, cur_ch);
1851 		if (ch_idx < 0)
1852 			goto err;
1853 
1854 		cur_lmt = cur_ch <= RTW_MAX_CHANNEL_NUM_2G ?
1855 			hal->tx_pwr_limit_2g[regd][cur_bw][rs][ch_idx] :
1856 			hal->tx_pwr_limit_5g[regd][cur_bw][rs][ch_idx];
1857 
1858 		power_limit = min_t(s8, cur_lmt, power_limit);
1859 	}
1860 
1861 	return power_limit;
1862 
1863 err:
1864 	WARN(1, "invalid arguments, band=%d, bw=%d, path=%d, rate=%d, ch=%d\n",
1865 	     band, bw, rf_path, rate, channel);
1866 	return (s8)rtwdev->chip->max_power_index;
1867 }
1868 
1869 void rtw_get_tx_power_params(struct rtw_dev *rtwdev, u8 path, u8 rate, u8 bw,
1870 			     u8 ch, u8 regd, struct rtw_power_params *pwr_param)
1871 {
1872 	struct rtw_hal *hal = &rtwdev->hal;
1873 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1874 	struct rtw_txpwr_idx *pwr_idx;
1875 	u8 group, band;
1876 	u8 *base = &pwr_param->pwr_base;
1877 	s8 *offset = &pwr_param->pwr_offset;
1878 	s8 *limit = &pwr_param->pwr_limit;
1879 	s8 *remnant = &pwr_param->pwr_remnant;
1880 
1881 	pwr_idx = &rtwdev->efuse.txpwr_idx_table[path];
1882 	group = rtw_get_channel_group(ch);
1883 
1884 	/* base power index for 2.4G/5G */
1885 	if (IS_CH_2G_BAND(ch)) {
1886 		band = PHY_BAND_2G;
1887 		*base = rtw_phy_get_2g_tx_power_index(rtwdev,
1888 						      &pwr_idx->pwr_idx_2g,
1889 						      bw, rate, group);
1890 		*offset = hal->tx_pwr_by_rate_offset_2g[path][rate];
1891 	} else {
1892 		band = PHY_BAND_5G;
1893 		*base = rtw_phy_get_5g_tx_power_index(rtwdev,
1894 						      &pwr_idx->pwr_idx_5g,
1895 						      bw, rate, group);
1896 		*offset = hal->tx_pwr_by_rate_offset_5g[path][rate];
1897 	}
1898 
1899 	*limit = rtw_phy_get_tx_power_limit(rtwdev, band, bw, path,
1900 					    rate, ch, regd);
1901 	*remnant = (rate <= DESC_RATE11M ? dm_info->txagc_remnant_cck :
1902 		    dm_info->txagc_remnant_ofdm);
1903 }
1904 
1905 u8
1906 rtw_phy_get_tx_power_index(struct rtw_dev *rtwdev, u8 rf_path, u8 rate,
1907 			   enum rtw_bandwidth bandwidth, u8 channel, u8 regd)
1908 {
1909 	struct rtw_power_params pwr_param = {0};
1910 	u8 tx_power;
1911 	s8 offset;
1912 
1913 	rtw_get_tx_power_params(rtwdev, rf_path, rate, bandwidth,
1914 				channel, regd, &pwr_param);
1915 
1916 	tx_power = pwr_param.pwr_base;
1917 	offset = min_t(s8, pwr_param.pwr_offset, pwr_param.pwr_limit);
1918 
1919 	if (rtwdev->chip->en_dis_dpd)
1920 		offset += rtw_phy_get_dis_dpd_by_rate_diff(rtwdev, rate);
1921 
1922 	tx_power += offset + pwr_param.pwr_remnant;
1923 
1924 	if (tx_power > rtwdev->chip->max_power_index)
1925 		tx_power = rtwdev->chip->max_power_index;
1926 
1927 	return tx_power;
1928 }
1929 EXPORT_SYMBOL(rtw_phy_get_tx_power_index);
1930 
1931 static void rtw_phy_set_tx_power_index_by_rs(struct rtw_dev *rtwdev,
1932 					     u8 ch, u8 path, u8 rs)
1933 {
1934 	struct rtw_hal *hal = &rtwdev->hal;
1935 	u8 regd = rtwdev->regd.txpwr_regd;
1936 	u8 *rates;
1937 	u8 size;
1938 	u8 rate;
1939 	u8 pwr_idx;
1940 	u8 bw;
1941 	int i;
1942 
1943 	if (rs >= RTW_RATE_SECTION_MAX)
1944 		return;
1945 
1946 	rates = rtw_rate_section[rs];
1947 	size = rtw_rate_size[rs];
1948 	bw = hal->current_band_width;
1949 	for (i = 0; i < size; i++) {
1950 		rate = rates[i];
1951 		pwr_idx = rtw_phy_get_tx_power_index(rtwdev, path, rate,
1952 						     bw, ch, regd);
1953 		hal->tx_pwr_tbl[path][rate] = pwr_idx;
1954 	}
1955 }
1956 
1957 /* set tx power level by path for each rates, note that the order of the rates
1958  * are *very* important, bacause 8822B/8821C combines every four bytes of tx
1959  * power index into a four-byte power index register, and calls set_tx_agc to
1960  * write these values into hardware
1961  */
1962 static void rtw_phy_set_tx_power_level_by_path(struct rtw_dev *rtwdev,
1963 					       u8 ch, u8 path)
1964 {
1965 	struct rtw_hal *hal = &rtwdev->hal;
1966 	u8 rs;
1967 
1968 	/* do not need cck rates if we are not in 2.4G */
1969 	if (hal->current_band_type == RTW_BAND_2G)
1970 		rs = RTW_RATE_SECTION_CCK;
1971 	else
1972 		rs = RTW_RATE_SECTION_OFDM;
1973 
1974 	for (; rs < RTW_RATE_SECTION_MAX; rs++)
1975 		rtw_phy_set_tx_power_index_by_rs(rtwdev, ch, path, rs);
1976 }
1977 
1978 void rtw_phy_set_tx_power_level(struct rtw_dev *rtwdev, u8 channel)
1979 {
1980 	struct rtw_chip_info *chip = rtwdev->chip;
1981 	struct rtw_hal *hal = &rtwdev->hal;
1982 	u8 path;
1983 
1984 	mutex_lock(&hal->tx_power_mutex);
1985 
1986 	for (path = 0; path < hal->rf_path_num; path++)
1987 		rtw_phy_set_tx_power_level_by_path(rtwdev, channel, path);
1988 
1989 	chip->ops->set_tx_power_index(rtwdev);
1990 	mutex_unlock(&hal->tx_power_mutex);
1991 }
1992 EXPORT_SYMBOL(rtw_phy_set_tx_power_level);
1993 
1994 static void
1995 rtw_phy_tx_power_by_rate_config_by_path(struct rtw_hal *hal, u8 path,
1996 					u8 rs, u8 size, u8 *rates)
1997 {
1998 	u8 rate;
1999 	u8 base_idx, rate_idx;
2000 	s8 base_2g, base_5g;
2001 
2002 	if (rs >= RTW_RATE_SECTION_VHT_1S)
2003 		base_idx = rates[size - 3];
2004 	else
2005 		base_idx = rates[size - 1];
2006 	base_2g = hal->tx_pwr_by_rate_offset_2g[path][base_idx];
2007 	base_5g = hal->tx_pwr_by_rate_offset_5g[path][base_idx];
2008 	hal->tx_pwr_by_rate_base_2g[path][rs] = base_2g;
2009 	hal->tx_pwr_by_rate_base_5g[path][rs] = base_5g;
2010 	for (rate = 0; rate < size; rate++) {
2011 		rate_idx = rates[rate];
2012 		hal->tx_pwr_by_rate_offset_2g[path][rate_idx] -= base_2g;
2013 		hal->tx_pwr_by_rate_offset_5g[path][rate_idx] -= base_5g;
2014 	}
2015 }
2016 
2017 void rtw_phy_tx_power_by_rate_config(struct rtw_hal *hal)
2018 {
2019 	u8 path;
2020 
2021 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2022 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2023 				RTW_RATE_SECTION_CCK,
2024 				rtw_cck_size, rtw_cck_rates);
2025 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2026 				RTW_RATE_SECTION_OFDM,
2027 				rtw_ofdm_size, rtw_ofdm_rates);
2028 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2029 				RTW_RATE_SECTION_HT_1S,
2030 				rtw_ht_1s_size, rtw_ht_1s_rates);
2031 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2032 				RTW_RATE_SECTION_HT_2S,
2033 				rtw_ht_2s_size, rtw_ht_2s_rates);
2034 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2035 				RTW_RATE_SECTION_VHT_1S,
2036 				rtw_vht_1s_size, rtw_vht_1s_rates);
2037 		rtw_phy_tx_power_by_rate_config_by_path(hal, path,
2038 				RTW_RATE_SECTION_VHT_2S,
2039 				rtw_vht_2s_size, rtw_vht_2s_rates);
2040 	}
2041 }
2042 
2043 static void
2044 __rtw_phy_tx_power_limit_config(struct rtw_hal *hal, u8 regd, u8 bw, u8 rs)
2045 {
2046 	s8 base;
2047 	u8 ch;
2048 
2049 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++) {
2050 		base = hal->tx_pwr_by_rate_base_2g[0][rs];
2051 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] -= base;
2052 	}
2053 
2054 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++) {
2055 		base = hal->tx_pwr_by_rate_base_5g[0][rs];
2056 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] -= base;
2057 	}
2058 }
2059 
2060 void rtw_phy_tx_power_limit_config(struct rtw_hal *hal)
2061 {
2062 	u8 regd, bw, rs;
2063 
2064 	/* default at channel 1 */
2065 	hal->cch_by_bw[RTW_CHANNEL_WIDTH_20] = 1;
2066 
2067 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2068 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2069 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2070 				__rtw_phy_tx_power_limit_config(hal, regd, bw, rs);
2071 }
2072 
2073 static void rtw_phy_init_tx_power_limit(struct rtw_dev *rtwdev,
2074 					u8 regd, u8 bw, u8 rs)
2075 {
2076 	struct rtw_hal *hal = &rtwdev->hal;
2077 	s8 max_power_index = (s8)rtwdev->chip->max_power_index;
2078 	u8 ch;
2079 
2080 	/* 2.4G channels */
2081 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_2G; ch++)
2082 		hal->tx_pwr_limit_2g[regd][bw][rs][ch] = max_power_index;
2083 
2084 	/* 5G channels */
2085 	for (ch = 0; ch < RTW_MAX_CHANNEL_NUM_5G; ch++)
2086 		hal->tx_pwr_limit_5g[regd][bw][rs][ch] = max_power_index;
2087 }
2088 
2089 void rtw_phy_init_tx_power(struct rtw_dev *rtwdev)
2090 {
2091 	struct rtw_hal *hal = &rtwdev->hal;
2092 	u8 regd, path, rate, rs, bw;
2093 
2094 	/* init tx power by rate offset */
2095 	for (path = 0; path < RTW_RF_PATH_MAX; path++) {
2096 		for (rate = 0; rate < DESC_RATE_MAX; rate++) {
2097 			hal->tx_pwr_by_rate_offset_2g[path][rate] = 0;
2098 			hal->tx_pwr_by_rate_offset_5g[path][rate] = 0;
2099 		}
2100 	}
2101 
2102 	/* init tx power limit */
2103 	for (regd = 0; regd < RTW_REGD_MAX; regd++)
2104 		for (bw = 0; bw < RTW_CHANNEL_WIDTH_MAX; bw++)
2105 			for (rs = 0; rs < RTW_RATE_SECTION_MAX; rs++)
2106 				rtw_phy_init_tx_power_limit(rtwdev, regd, bw,
2107 							    rs);
2108 }
2109 
2110 void rtw_phy_config_swing_table(struct rtw_dev *rtwdev,
2111 				struct rtw_swing_table *swing_table)
2112 {
2113 	const struct rtw_pwr_track_tbl *tbl = rtwdev->chip->pwr_track_tbl;
2114 	u8 channel = rtwdev->hal.current_channel;
2115 
2116 	if (IS_CH_2G_BAND(channel)) {
2117 		if (rtwdev->dm_info.tx_rate <= DESC_RATE11M) {
2118 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2g_ccka_p;
2119 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2g_ccka_n;
2120 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2g_cckb_p;
2121 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2g_cckb_n;
2122 		} else {
2123 			swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2124 			swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2125 			swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2126 			swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2127 		}
2128 	} else if (IS_CH_5G_BAND_1(channel) || IS_CH_5G_BAND_2(channel)) {
2129 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_1];
2130 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_1];
2131 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_1];
2132 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_1];
2133 	} else if (IS_CH_5G_BAND_3(channel)) {
2134 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_2];
2135 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_2];
2136 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_2];
2137 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_2];
2138 	} else if (IS_CH_5G_BAND_4(channel)) {
2139 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_5ga_p[RTW_PWR_TRK_5G_3];
2140 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_5ga_n[RTW_PWR_TRK_5G_3];
2141 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_5gb_p[RTW_PWR_TRK_5G_3];
2142 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_5gb_n[RTW_PWR_TRK_5G_3];
2143 	} else {
2144 		swing_table->p[RF_PATH_A] = tbl->pwrtrk_2ga_p;
2145 		swing_table->n[RF_PATH_A] = tbl->pwrtrk_2ga_n;
2146 		swing_table->p[RF_PATH_B] = tbl->pwrtrk_2gb_p;
2147 		swing_table->n[RF_PATH_B] = tbl->pwrtrk_2gb_n;
2148 	}
2149 }
2150 EXPORT_SYMBOL(rtw_phy_config_swing_table);
2151 
2152 void rtw_phy_pwrtrack_avg(struct rtw_dev *rtwdev, u8 thermal, u8 path)
2153 {
2154 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2155 
2156 	ewma_thermal_add(&dm_info->avg_thermal[path], thermal);
2157 	dm_info->thermal_avg[path] =
2158 		ewma_thermal_read(&dm_info->avg_thermal[path]);
2159 }
2160 EXPORT_SYMBOL(rtw_phy_pwrtrack_avg);
2161 
2162 bool rtw_phy_pwrtrack_thermal_changed(struct rtw_dev *rtwdev, u8 thermal,
2163 				      u8 path)
2164 {
2165 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2166 	u8 avg = ewma_thermal_read(&dm_info->avg_thermal[path]);
2167 
2168 	if (avg == thermal)
2169 		return false;
2170 
2171 	return true;
2172 }
2173 EXPORT_SYMBOL(rtw_phy_pwrtrack_thermal_changed);
2174 
2175 u8 rtw_phy_pwrtrack_get_delta(struct rtw_dev *rtwdev, u8 path)
2176 {
2177 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2178 	u8 therm_avg, therm_efuse, therm_delta;
2179 
2180 	therm_avg = dm_info->thermal_avg[path];
2181 	therm_efuse = rtwdev->efuse.thermal_meter[path];
2182 	therm_delta = abs(therm_avg - therm_efuse);
2183 
2184 	return min_t(u8, therm_delta, RTW_PWR_TRK_TBL_SZ - 1);
2185 }
2186 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_delta);
2187 
2188 s8 rtw_phy_pwrtrack_get_pwridx(struct rtw_dev *rtwdev,
2189 			       struct rtw_swing_table *swing_table,
2190 			       u8 tbl_path, u8 therm_path, u8 delta)
2191 {
2192 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2193 	const u8 *delta_swing_table_idx_pos;
2194 	const u8 *delta_swing_table_idx_neg;
2195 
2196 	if (delta >= RTW_PWR_TRK_TBL_SZ) {
2197 		rtw_warn(rtwdev, "power track table overflow\n");
2198 		return 0;
2199 	}
2200 
2201 	if (!swing_table) {
2202 		rtw_warn(rtwdev, "swing table not configured\n");
2203 		return 0;
2204 	}
2205 
2206 	delta_swing_table_idx_pos = swing_table->p[tbl_path];
2207 	delta_swing_table_idx_neg = swing_table->n[tbl_path];
2208 
2209 	if (!delta_swing_table_idx_pos || !delta_swing_table_idx_neg) {
2210 		rtw_warn(rtwdev, "invalid swing table index\n");
2211 		return 0;
2212 	}
2213 
2214 	if (dm_info->thermal_avg[therm_path] >
2215 	    rtwdev->efuse.thermal_meter[therm_path])
2216 		return delta_swing_table_idx_pos[delta];
2217 	else
2218 		return -delta_swing_table_idx_neg[delta];
2219 }
2220 EXPORT_SYMBOL(rtw_phy_pwrtrack_get_pwridx);
2221 
2222 bool rtw_phy_pwrtrack_need_iqk(struct rtw_dev *rtwdev)
2223 {
2224 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2225 	u8 delta_iqk;
2226 
2227 	delta_iqk = abs(dm_info->thermal_avg[0] - dm_info->thermal_meter_k);
2228 	if (delta_iqk >= rtwdev->chip->iqk_threshold) {
2229 		dm_info->thermal_meter_k = dm_info->thermal_avg[0];
2230 		return true;
2231 	}
2232 	return false;
2233 }
2234 EXPORT_SYMBOL(rtw_phy_pwrtrack_need_iqk);
2235