xref: /openbmc/linux/drivers/net/wireless/realtek/rtw88/main.c (revision 6ca25a31e0a804be1675c0c0115fd6dbdfd7889e)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /* Copyright(c) 2018-2019  Realtek Corporation
3  */
4 
5 #include <linux/devcoredump.h>
6 
7 #include "main.h"
8 #include "regd.h"
9 #include "fw.h"
10 #include "ps.h"
11 #include "sec.h"
12 #include "mac.h"
13 #include "coex.h"
14 #include "phy.h"
15 #include "reg.h"
16 #include "efuse.h"
17 #include "tx.h"
18 #include "debug.h"
19 #include "bf.h"
20 #include "sar.h"
21 #include "sdio.h"
22 
23 bool rtw_disable_lps_deep_mode;
24 EXPORT_SYMBOL(rtw_disable_lps_deep_mode);
25 bool rtw_bf_support = true;
26 unsigned int rtw_debug_mask;
27 EXPORT_SYMBOL(rtw_debug_mask);
28 /* EDCCA is enabled during normal behavior. For debugging purpose in
29  * a noisy environment, it can be disabled via edcca debugfs. Because
30  * all rtw88 devices will probably be affected if environment is noisy,
31  * rtw_edcca_enabled is just declared by driver instead of by device.
32  * So, turning it off will take effect for all rtw88 devices before
33  * there is a tough reason to maintain rtw_edcca_enabled by device.
34  */
35 bool rtw_edcca_enabled = true;
36 
37 module_param_named(disable_lps_deep, rtw_disable_lps_deep_mode, bool, 0644);
38 module_param_named(support_bf, rtw_bf_support, bool, 0644);
39 module_param_named(debug_mask, rtw_debug_mask, uint, 0644);
40 
41 MODULE_PARM_DESC(disable_lps_deep, "Set Y to disable Deep PS");
42 MODULE_PARM_DESC(support_bf, "Set Y to enable beamformee support");
43 MODULE_PARM_DESC(debug_mask, "Debugging mask");
44 
45 static struct ieee80211_channel rtw_channeltable_2g[] = {
46 	{.center_freq = 2412, .hw_value = 1,},
47 	{.center_freq = 2417, .hw_value = 2,},
48 	{.center_freq = 2422, .hw_value = 3,},
49 	{.center_freq = 2427, .hw_value = 4,},
50 	{.center_freq = 2432, .hw_value = 5,},
51 	{.center_freq = 2437, .hw_value = 6,},
52 	{.center_freq = 2442, .hw_value = 7,},
53 	{.center_freq = 2447, .hw_value = 8,},
54 	{.center_freq = 2452, .hw_value = 9,},
55 	{.center_freq = 2457, .hw_value = 10,},
56 	{.center_freq = 2462, .hw_value = 11,},
57 	{.center_freq = 2467, .hw_value = 12,},
58 	{.center_freq = 2472, .hw_value = 13,},
59 	{.center_freq = 2484, .hw_value = 14,},
60 };
61 
62 static struct ieee80211_channel rtw_channeltable_5g[] = {
63 	{.center_freq = 5180, .hw_value = 36,},
64 	{.center_freq = 5200, .hw_value = 40,},
65 	{.center_freq = 5220, .hw_value = 44,},
66 	{.center_freq = 5240, .hw_value = 48,},
67 	{.center_freq = 5260, .hw_value = 52,},
68 	{.center_freq = 5280, .hw_value = 56,},
69 	{.center_freq = 5300, .hw_value = 60,},
70 	{.center_freq = 5320, .hw_value = 64,},
71 	{.center_freq = 5500, .hw_value = 100,},
72 	{.center_freq = 5520, .hw_value = 104,},
73 	{.center_freq = 5540, .hw_value = 108,},
74 	{.center_freq = 5560, .hw_value = 112,},
75 	{.center_freq = 5580, .hw_value = 116,},
76 	{.center_freq = 5600, .hw_value = 120,},
77 	{.center_freq = 5620, .hw_value = 124,},
78 	{.center_freq = 5640, .hw_value = 128,},
79 	{.center_freq = 5660, .hw_value = 132,},
80 	{.center_freq = 5680, .hw_value = 136,},
81 	{.center_freq = 5700, .hw_value = 140,},
82 	{.center_freq = 5720, .hw_value = 144,},
83 	{.center_freq = 5745, .hw_value = 149,},
84 	{.center_freq = 5765, .hw_value = 153,},
85 	{.center_freq = 5785, .hw_value = 157,},
86 	{.center_freq = 5805, .hw_value = 161,},
87 	{.center_freq = 5825, .hw_value = 165,
88 	 .flags = IEEE80211_CHAN_NO_HT40MINUS},
89 };
90 
91 static struct ieee80211_rate rtw_ratetable[] = {
92 	{.bitrate = 10, .hw_value = 0x00,},
93 	{.bitrate = 20, .hw_value = 0x01,},
94 	{.bitrate = 55, .hw_value = 0x02,},
95 	{.bitrate = 110, .hw_value = 0x03,},
96 	{.bitrate = 60, .hw_value = 0x04,},
97 	{.bitrate = 90, .hw_value = 0x05,},
98 	{.bitrate = 120, .hw_value = 0x06,},
99 	{.bitrate = 180, .hw_value = 0x07,},
100 	{.bitrate = 240, .hw_value = 0x08,},
101 	{.bitrate = 360, .hw_value = 0x09,},
102 	{.bitrate = 480, .hw_value = 0x0a,},
103 	{.bitrate = 540, .hw_value = 0x0b,},
104 };
105 
106 static const struct ieee80211_iface_limit rtw_iface_limits[] = {
107 	{
108 		.max = 1,
109 		.types = BIT(NL80211_IFTYPE_STATION),
110 	},
111 	{
112 		.max = 1,
113 		.types = BIT(NL80211_IFTYPE_AP),
114 	}
115 };
116 
117 static const struct ieee80211_iface_combination rtw_iface_combs[] = {
118 	{
119 		.limits = rtw_iface_limits,
120 		.n_limits = ARRAY_SIZE(rtw_iface_limits),
121 		.max_interfaces = 2,
122 		.num_different_channels = 1,
123 	}
124 };
125 
126 u16 rtw_desc_to_bitrate(u8 desc_rate)
127 {
128 	struct ieee80211_rate rate;
129 
130 	if (WARN(desc_rate >= ARRAY_SIZE(rtw_ratetable), "invalid desc rate\n"))
131 		return 0;
132 
133 	rate = rtw_ratetable[desc_rate];
134 
135 	return rate.bitrate;
136 }
137 
138 static struct ieee80211_supported_band rtw_band_2ghz = {
139 	.band = NL80211_BAND_2GHZ,
140 
141 	.channels = rtw_channeltable_2g,
142 	.n_channels = ARRAY_SIZE(rtw_channeltable_2g),
143 
144 	.bitrates = rtw_ratetable,
145 	.n_bitrates = ARRAY_SIZE(rtw_ratetable),
146 
147 	.ht_cap = {0},
148 	.vht_cap = {0},
149 };
150 
151 static struct ieee80211_supported_band rtw_band_5ghz = {
152 	.band = NL80211_BAND_5GHZ,
153 
154 	.channels = rtw_channeltable_5g,
155 	.n_channels = ARRAY_SIZE(rtw_channeltable_5g),
156 
157 	/* 5G has no CCK rates */
158 	.bitrates = rtw_ratetable + 4,
159 	.n_bitrates = ARRAY_SIZE(rtw_ratetable) - 4,
160 
161 	.ht_cap = {0},
162 	.vht_cap = {0},
163 };
164 
165 struct rtw_watch_dog_iter_data {
166 	struct rtw_dev *rtwdev;
167 	struct rtw_vif *rtwvif;
168 };
169 
170 static void rtw_dynamic_csi_rate(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif)
171 {
172 	struct rtw_bf_info *bf_info = &rtwdev->bf_info;
173 	u8 fix_rate_enable = 0;
174 	u8 new_csi_rate_idx;
175 
176 	if (rtwvif->bfee.role != RTW_BFEE_SU &&
177 	    rtwvif->bfee.role != RTW_BFEE_MU)
178 		return;
179 
180 	rtw_chip_cfg_csi_rate(rtwdev, rtwdev->dm_info.min_rssi,
181 			      bf_info->cur_csi_rpt_rate,
182 			      fix_rate_enable, &new_csi_rate_idx);
183 
184 	if (new_csi_rate_idx != bf_info->cur_csi_rpt_rate)
185 		bf_info->cur_csi_rpt_rate = new_csi_rate_idx;
186 }
187 
188 static void rtw_vif_watch_dog_iter(void *data, u8 *mac,
189 				   struct ieee80211_vif *vif)
190 {
191 	struct rtw_watch_dog_iter_data *iter_data = data;
192 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
193 
194 	if (vif->type == NL80211_IFTYPE_STATION)
195 		if (vif->cfg.assoc)
196 			iter_data->rtwvif = rtwvif;
197 
198 	rtw_dynamic_csi_rate(iter_data->rtwdev, rtwvif);
199 
200 	rtwvif->stats.tx_unicast = 0;
201 	rtwvif->stats.rx_unicast = 0;
202 	rtwvif->stats.tx_cnt = 0;
203 	rtwvif->stats.rx_cnt = 0;
204 }
205 
206 /* process TX/RX statistics periodically for hardware,
207  * the information helps hardware to enhance performance
208  */
209 static void rtw_watch_dog_work(struct work_struct *work)
210 {
211 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
212 					      watch_dog_work.work);
213 	struct rtw_traffic_stats *stats = &rtwdev->stats;
214 	struct rtw_watch_dog_iter_data data = {};
215 	bool busy_traffic = test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
216 	bool ps_active;
217 
218 	mutex_lock(&rtwdev->mutex);
219 
220 	if (!test_bit(RTW_FLAG_RUNNING, rtwdev->flags))
221 		goto unlock;
222 
223 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
224 				     RTW_WATCH_DOG_DELAY_TIME);
225 
226 	if (rtwdev->stats.tx_cnt > 100 || rtwdev->stats.rx_cnt > 100)
227 		set_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
228 	else
229 		clear_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags);
230 
231 	rtw_coex_wl_status_check(rtwdev);
232 	rtw_coex_query_bt_hid_list(rtwdev);
233 
234 	if (busy_traffic != test_bit(RTW_FLAG_BUSY_TRAFFIC, rtwdev->flags))
235 		rtw_coex_wl_status_change_notify(rtwdev, 0);
236 
237 	if (stats->tx_cnt > RTW_LPS_THRESHOLD ||
238 	    stats->rx_cnt > RTW_LPS_THRESHOLD)
239 		ps_active = true;
240 	else
241 		ps_active = false;
242 
243 	ewma_tp_add(&stats->tx_ewma_tp,
244 		    (u32)(stats->tx_unicast >> RTW_TP_SHIFT));
245 	ewma_tp_add(&stats->rx_ewma_tp,
246 		    (u32)(stats->rx_unicast >> RTW_TP_SHIFT));
247 	stats->tx_throughput = ewma_tp_read(&stats->tx_ewma_tp);
248 	stats->rx_throughput = ewma_tp_read(&stats->rx_ewma_tp);
249 
250 	/* reset tx/rx statictics */
251 	stats->tx_unicast = 0;
252 	stats->rx_unicast = 0;
253 	stats->tx_cnt = 0;
254 	stats->rx_cnt = 0;
255 
256 	if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
257 		goto unlock;
258 
259 	/* make sure BB/RF is working for dynamic mech */
260 	rtw_leave_lps(rtwdev);
261 
262 	rtw_phy_dynamic_mechanism(rtwdev);
263 
264 	data.rtwdev = rtwdev;
265 	/* rtw_iterate_vifs internally uses an atomic iterator which is needed
266 	 * to avoid taking local->iflist_mtx mutex
267 	 */
268 	rtw_iterate_vifs(rtwdev, rtw_vif_watch_dog_iter, &data);
269 
270 	/* fw supports only one station associated to enter lps, if there are
271 	 * more than two stations associated to the AP, then we can not enter
272 	 * lps, because fw does not handle the overlapped beacon interval
273 	 *
274 	 * rtw_recalc_lps() iterate vifs and determine if driver can enter
275 	 * ps by vif->type and vif->cfg.ps, all we need to do here is to
276 	 * get that vif and check if device is having traffic more than the
277 	 * threshold.
278 	 */
279 	if (rtwdev->ps_enabled && data.rtwvif && !ps_active &&
280 	    !rtwdev->beacon_loss && !rtwdev->ap_active)
281 		rtw_enter_lps(rtwdev, data.rtwvif->port);
282 
283 	rtwdev->watch_dog_cnt++;
284 
285 unlock:
286 	mutex_unlock(&rtwdev->mutex);
287 }
288 
289 static void rtw_c2h_work(struct work_struct *work)
290 {
291 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, c2h_work);
292 	struct sk_buff *skb, *tmp;
293 
294 	skb_queue_walk_safe(&rtwdev->c2h_queue, skb, tmp) {
295 		skb_unlink(skb, &rtwdev->c2h_queue);
296 		rtw_fw_c2h_cmd_handle(rtwdev, skb);
297 		dev_kfree_skb_any(skb);
298 	}
299 }
300 
301 static void rtw_ips_work(struct work_struct *work)
302 {
303 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ips_work);
304 
305 	mutex_lock(&rtwdev->mutex);
306 	if (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)
307 		rtw_enter_ips(rtwdev);
308 	mutex_unlock(&rtwdev->mutex);
309 }
310 
311 static u8 rtw_acquire_macid(struct rtw_dev *rtwdev)
312 {
313 	unsigned long mac_id;
314 
315 	mac_id = find_first_zero_bit(rtwdev->mac_id_map, RTW_MAX_MAC_ID_NUM);
316 	if (mac_id < RTW_MAX_MAC_ID_NUM)
317 		set_bit(mac_id, rtwdev->mac_id_map);
318 
319 	return mac_id;
320 }
321 
322 static void rtw_sta_rc_work(struct work_struct *work)
323 {
324 	struct rtw_sta_info *si = container_of(work, struct rtw_sta_info,
325 					       rc_work);
326 	struct rtw_dev *rtwdev = si->rtwdev;
327 
328 	mutex_lock(&rtwdev->mutex);
329 	rtw_update_sta_info(rtwdev, si, true);
330 	mutex_unlock(&rtwdev->mutex);
331 }
332 
333 int rtw_sta_add(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
334 		struct ieee80211_vif *vif)
335 {
336 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
337 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
338 	int i;
339 
340 	si->mac_id = rtw_acquire_macid(rtwdev);
341 	if (si->mac_id >= RTW_MAX_MAC_ID_NUM)
342 		return -ENOSPC;
343 
344 	if (vif->type == NL80211_IFTYPE_STATION && vif->cfg.assoc == 0)
345 		rtwvif->mac_id = si->mac_id;
346 	si->rtwdev = rtwdev;
347 	si->sta = sta;
348 	si->vif = vif;
349 	si->init_ra_lv = 1;
350 	ewma_rssi_init(&si->avg_rssi);
351 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
352 		rtw_txq_init(rtwdev, sta->txq[i]);
353 	INIT_WORK(&si->rc_work, rtw_sta_rc_work);
354 
355 	rtw_update_sta_info(rtwdev, si, true);
356 	rtw_fw_media_status_report(rtwdev, si->mac_id, true);
357 
358 	rtwdev->sta_cnt++;
359 	rtwdev->beacon_loss = false;
360 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM joined with macid %d\n",
361 		sta->addr, si->mac_id);
362 
363 	return 0;
364 }
365 
366 void rtw_sta_remove(struct rtw_dev *rtwdev, struct ieee80211_sta *sta,
367 		    bool fw_exist)
368 {
369 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
370 	int i;
371 
372 	cancel_work_sync(&si->rc_work);
373 
374 	rtw_release_macid(rtwdev, si->mac_id);
375 	if (fw_exist)
376 		rtw_fw_media_status_report(rtwdev, si->mac_id, false);
377 
378 	for (i = 0; i < ARRAY_SIZE(sta->txq); i++)
379 		rtw_txq_cleanup(rtwdev, sta->txq[i]);
380 
381 	kfree(si->mask);
382 
383 	rtwdev->sta_cnt--;
384 	rtw_dbg(rtwdev, RTW_DBG_STATE, "sta %pM with macid %d left\n",
385 		sta->addr, si->mac_id);
386 }
387 
388 struct rtw_fwcd_hdr {
389 	u32 item;
390 	u32 size;
391 	u32 padding1;
392 	u32 padding2;
393 } __packed;
394 
395 static int rtw_fwcd_prep(struct rtw_dev *rtwdev)
396 {
397 	const struct rtw_chip_info *chip = rtwdev->chip;
398 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
399 	const struct rtw_fwcd_segs *segs = chip->fwcd_segs;
400 	u32 prep_size = chip->fw_rxff_size + sizeof(struct rtw_fwcd_hdr);
401 	u8 i;
402 
403 	if (segs) {
404 		prep_size += segs->num * sizeof(struct rtw_fwcd_hdr);
405 
406 		for (i = 0; i < segs->num; i++)
407 			prep_size += segs->segs[i];
408 	}
409 
410 	desc->data = vmalloc(prep_size);
411 	if (!desc->data)
412 		return -ENOMEM;
413 
414 	desc->size = prep_size;
415 	desc->next = desc->data;
416 
417 	return 0;
418 }
419 
420 static u8 *rtw_fwcd_next(struct rtw_dev *rtwdev, u32 item, u32 size)
421 {
422 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
423 	struct rtw_fwcd_hdr *hdr;
424 	u8 *next;
425 
426 	if (!desc->data) {
427 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared successfully\n");
428 		return NULL;
429 	}
430 
431 	next = desc->next + sizeof(struct rtw_fwcd_hdr);
432 	if (next - desc->data + size > desc->size) {
433 		rtw_dbg(rtwdev, RTW_DBG_FW, "fwcd isn't prepared enough\n");
434 		return NULL;
435 	}
436 
437 	hdr = (struct rtw_fwcd_hdr *)(desc->next);
438 	hdr->item = item;
439 	hdr->size = size;
440 	hdr->padding1 = 0x01234567;
441 	hdr->padding2 = 0x89abcdef;
442 	desc->next = next + size;
443 
444 	return next;
445 }
446 
447 static void rtw_fwcd_dump(struct rtw_dev *rtwdev)
448 {
449 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
450 
451 	rtw_dbg(rtwdev, RTW_DBG_FW, "dump fwcd\n");
452 
453 	/* Data will be freed after lifetime of device coredump. After calling
454 	 * dev_coredump, data is supposed to be handled by the device coredump
455 	 * framework. Note that a new dump will be discarded if a previous one
456 	 * hasn't been released yet.
457 	 */
458 	dev_coredumpv(rtwdev->dev, desc->data, desc->size, GFP_KERNEL);
459 }
460 
461 static void rtw_fwcd_free(struct rtw_dev *rtwdev, bool free_self)
462 {
463 	struct rtw_fwcd_desc *desc = &rtwdev->fw.fwcd_desc;
464 
465 	if (free_self) {
466 		rtw_dbg(rtwdev, RTW_DBG_FW, "free fwcd by self\n");
467 		vfree(desc->data);
468 	}
469 
470 	desc->data = NULL;
471 	desc->next = NULL;
472 }
473 
474 static int rtw_fw_dump_crash_log(struct rtw_dev *rtwdev)
475 {
476 	u32 size = rtwdev->chip->fw_rxff_size;
477 	u32 *buf;
478 	u8 seq;
479 
480 	buf = (u32 *)rtw_fwcd_next(rtwdev, RTW_FWCD_TLV, size);
481 	if (!buf)
482 		return -ENOMEM;
483 
484 	if (rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0, size, buf)) {
485 		rtw_dbg(rtwdev, RTW_DBG_FW, "dump fw fifo fail\n");
486 		return -EINVAL;
487 	}
488 
489 	if (GET_FW_DUMP_LEN(buf) == 0) {
490 		rtw_dbg(rtwdev, RTW_DBG_FW, "fw crash dump's length is 0\n");
491 		return -EINVAL;
492 	}
493 
494 	seq = GET_FW_DUMP_SEQ(buf);
495 	if (seq > 0) {
496 		rtw_dbg(rtwdev, RTW_DBG_FW,
497 			"fw crash dump's seq is wrong: %d\n", seq);
498 		return -EINVAL;
499 	}
500 
501 	return 0;
502 }
503 
504 int rtw_dump_fw(struct rtw_dev *rtwdev, const u32 ocp_src, u32 size,
505 		u32 fwcd_item)
506 {
507 	u32 rxff = rtwdev->chip->fw_rxff_size;
508 	u32 dump_size, done_size = 0;
509 	u8 *buf;
510 	int ret;
511 
512 	buf = rtw_fwcd_next(rtwdev, fwcd_item, size);
513 	if (!buf)
514 		return -ENOMEM;
515 
516 	while (size) {
517 		dump_size = size > rxff ? rxff : size;
518 
519 		ret = rtw_ddma_to_fw_fifo(rtwdev, ocp_src + done_size,
520 					  dump_size);
521 		if (ret) {
522 			rtw_err(rtwdev,
523 				"ddma fw 0x%x [+0x%x] to fw fifo fail\n",
524 				ocp_src, done_size);
525 			return ret;
526 		}
527 
528 		ret = rtw_fw_dump_fifo(rtwdev, RTW_FW_FIFO_SEL_RXBUF_FW, 0,
529 				       dump_size, (u32 *)(buf + done_size));
530 		if (ret) {
531 			rtw_err(rtwdev,
532 				"dump fw 0x%x [+0x%x] from fw fifo fail\n",
533 				ocp_src, done_size);
534 			return ret;
535 		}
536 
537 		size -= dump_size;
538 		done_size += dump_size;
539 	}
540 
541 	return 0;
542 }
543 EXPORT_SYMBOL(rtw_dump_fw);
544 
545 int rtw_dump_reg(struct rtw_dev *rtwdev, const u32 addr, const u32 size)
546 {
547 	u8 *buf;
548 	u32 i;
549 
550 	if (addr & 0x3) {
551 		WARN(1, "should be 4-byte aligned, addr = 0x%08x\n", addr);
552 		return -EINVAL;
553 	}
554 
555 	buf = rtw_fwcd_next(rtwdev, RTW_FWCD_REG, size);
556 	if (!buf)
557 		return -ENOMEM;
558 
559 	for (i = 0; i < size; i += 4)
560 		*(u32 *)(buf + i) = rtw_read32(rtwdev, addr + i);
561 
562 	return 0;
563 }
564 EXPORT_SYMBOL(rtw_dump_reg);
565 
566 void rtw_vif_assoc_changed(struct rtw_vif *rtwvif,
567 			   struct ieee80211_bss_conf *conf)
568 {
569 	struct ieee80211_vif *vif = NULL;
570 
571 	if (conf)
572 		vif = container_of(conf, struct ieee80211_vif, bss_conf);
573 
574 	if (conf && vif->cfg.assoc) {
575 		rtwvif->aid = vif->cfg.aid;
576 		rtwvif->net_type = RTW_NET_MGD_LINKED;
577 	} else {
578 		rtwvif->aid = 0;
579 		rtwvif->net_type = RTW_NET_NO_LINK;
580 	}
581 }
582 
583 static void rtw_reset_key_iter(struct ieee80211_hw *hw,
584 			       struct ieee80211_vif *vif,
585 			       struct ieee80211_sta *sta,
586 			       struct ieee80211_key_conf *key,
587 			       void *data)
588 {
589 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
590 	struct rtw_sec_desc *sec = &rtwdev->sec;
591 
592 	rtw_sec_clear_cam(rtwdev, sec, key->hw_key_idx);
593 }
594 
595 static void rtw_reset_sta_iter(void *data, struct ieee80211_sta *sta)
596 {
597 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
598 
599 	if (rtwdev->sta_cnt == 0) {
600 		rtw_warn(rtwdev, "sta count before reset should not be 0\n");
601 		return;
602 	}
603 	rtw_sta_remove(rtwdev, sta, false);
604 }
605 
606 static void rtw_reset_vif_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
607 {
608 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
609 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
610 
611 	rtw_bf_disassoc(rtwdev, vif, NULL);
612 	rtw_vif_assoc_changed(rtwvif, NULL);
613 	rtw_txq_cleanup(rtwdev, vif->txq);
614 }
615 
616 void rtw_fw_recovery(struct rtw_dev *rtwdev)
617 {
618 	if (!test_bit(RTW_FLAG_RESTARTING, rtwdev->flags))
619 		ieee80211_queue_work(rtwdev->hw, &rtwdev->fw_recovery_work);
620 }
621 
622 static void __fw_recovery_work(struct rtw_dev *rtwdev)
623 {
624 	int ret = 0;
625 
626 	set_bit(RTW_FLAG_RESTARTING, rtwdev->flags);
627 	clear_bit(RTW_FLAG_RESTART_TRIGGERING, rtwdev->flags);
628 
629 	ret = rtw_fwcd_prep(rtwdev);
630 	if (ret)
631 		goto free;
632 	ret = rtw_fw_dump_crash_log(rtwdev);
633 	if (ret)
634 		goto free;
635 	ret = rtw_chip_dump_fw_crash(rtwdev);
636 	if (ret)
637 		goto free;
638 
639 	rtw_fwcd_dump(rtwdev);
640 free:
641 	rtw_fwcd_free(rtwdev, !!ret);
642 	rtw_write8(rtwdev, REG_MCU_TST_CFG, 0);
643 
644 	WARN(1, "firmware crash, start reset and recover\n");
645 
646 	rcu_read_lock();
647 	rtw_iterate_keys_rcu(rtwdev, NULL, rtw_reset_key_iter, rtwdev);
648 	rcu_read_unlock();
649 	rtw_iterate_stas_atomic(rtwdev, rtw_reset_sta_iter, rtwdev);
650 	rtw_iterate_vifs_atomic(rtwdev, rtw_reset_vif_iter, rtwdev);
651 	bitmap_zero(rtwdev->hw_port, RTW_PORT_NUM);
652 	rtw_enter_ips(rtwdev);
653 }
654 
655 static void rtw_fw_recovery_work(struct work_struct *work)
656 {
657 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev,
658 					      fw_recovery_work);
659 
660 	mutex_lock(&rtwdev->mutex);
661 	__fw_recovery_work(rtwdev);
662 	mutex_unlock(&rtwdev->mutex);
663 
664 	ieee80211_restart_hw(rtwdev->hw);
665 }
666 
667 struct rtw_txq_ba_iter_data {
668 };
669 
670 static void rtw_txq_ba_iter(void *data, struct ieee80211_sta *sta)
671 {
672 	struct rtw_sta_info *si = (struct rtw_sta_info *)sta->drv_priv;
673 	int ret;
674 	u8 tid;
675 
676 	tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
677 	while (tid != IEEE80211_NUM_TIDS) {
678 		clear_bit(tid, si->tid_ba);
679 		ret = ieee80211_start_tx_ba_session(sta, tid, 0);
680 		if (ret == -EINVAL) {
681 			struct ieee80211_txq *txq;
682 			struct rtw_txq *rtwtxq;
683 
684 			txq = sta->txq[tid];
685 			rtwtxq = (struct rtw_txq *)txq->drv_priv;
686 			set_bit(RTW_TXQ_BLOCK_BA, &rtwtxq->flags);
687 		}
688 
689 		tid = find_first_bit(si->tid_ba, IEEE80211_NUM_TIDS);
690 	}
691 }
692 
693 static void rtw_txq_ba_work(struct work_struct *work)
694 {
695 	struct rtw_dev *rtwdev = container_of(work, struct rtw_dev, ba_work);
696 	struct rtw_txq_ba_iter_data data;
697 
698 	rtw_iterate_stas_atomic(rtwdev, rtw_txq_ba_iter, &data);
699 }
700 
701 void rtw_set_rx_freq_band(struct rtw_rx_pkt_stat *pkt_stat, u8 channel)
702 {
703 	if (IS_CH_2G_BAND(channel))
704 		pkt_stat->band = NL80211_BAND_2GHZ;
705 	else if (IS_CH_5G_BAND(channel))
706 		pkt_stat->band = NL80211_BAND_5GHZ;
707 	else
708 		return;
709 
710 	pkt_stat->freq = ieee80211_channel_to_frequency(channel, pkt_stat->band);
711 }
712 EXPORT_SYMBOL(rtw_set_rx_freq_band);
713 
714 void rtw_set_dtim_period(struct rtw_dev *rtwdev, int dtim_period)
715 {
716 	rtw_write32_set(rtwdev, REG_TCR, BIT_TCR_UPDATE_TIMIE);
717 	rtw_write8(rtwdev, REG_DTIM_COUNTER_ROOT, dtim_period - 1);
718 }
719 
720 void rtw_update_channel(struct rtw_dev *rtwdev, u8 center_channel,
721 			u8 primary_channel, enum rtw_supported_band band,
722 			enum rtw_bandwidth bandwidth)
723 {
724 	enum nl80211_band nl_band = rtw_hw_to_nl80211_band(band);
725 	struct rtw_hal *hal = &rtwdev->hal;
726 	u8 *cch_by_bw = hal->cch_by_bw;
727 	u32 center_freq, primary_freq;
728 	enum rtw_sar_bands sar_band;
729 	u8 primary_channel_idx;
730 
731 	center_freq = ieee80211_channel_to_frequency(center_channel, nl_band);
732 	primary_freq = ieee80211_channel_to_frequency(primary_channel, nl_band);
733 
734 	/* assign the center channel used while 20M bw is selected */
735 	cch_by_bw[RTW_CHANNEL_WIDTH_20] = primary_channel;
736 
737 	/* assign the center channel used while current bw is selected */
738 	cch_by_bw[bandwidth] = center_channel;
739 
740 	switch (bandwidth) {
741 	case RTW_CHANNEL_WIDTH_20:
742 	default:
743 		primary_channel_idx = RTW_SC_DONT_CARE;
744 		break;
745 	case RTW_CHANNEL_WIDTH_40:
746 		if (primary_freq > center_freq)
747 			primary_channel_idx = RTW_SC_20_UPPER;
748 		else
749 			primary_channel_idx = RTW_SC_20_LOWER;
750 		break;
751 	case RTW_CHANNEL_WIDTH_80:
752 		if (primary_freq > center_freq) {
753 			if (primary_freq - center_freq == 10)
754 				primary_channel_idx = RTW_SC_20_UPPER;
755 			else
756 				primary_channel_idx = RTW_SC_20_UPMOST;
757 
758 			/* assign the center channel used
759 			 * while 40M bw is selected
760 			 */
761 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel + 4;
762 		} else {
763 			if (center_freq - primary_freq == 10)
764 				primary_channel_idx = RTW_SC_20_LOWER;
765 			else
766 				primary_channel_idx = RTW_SC_20_LOWEST;
767 
768 			/* assign the center channel used
769 			 * while 40M bw is selected
770 			 */
771 			cch_by_bw[RTW_CHANNEL_WIDTH_40] = center_channel - 4;
772 		}
773 		break;
774 	}
775 
776 	switch (center_channel) {
777 	case 1 ... 14:
778 		sar_band = RTW_SAR_BAND_0;
779 		break;
780 	case 36 ... 64:
781 		sar_band = RTW_SAR_BAND_1;
782 		break;
783 	case 100 ... 144:
784 		sar_band = RTW_SAR_BAND_3;
785 		break;
786 	case 149 ... 177:
787 		sar_band = RTW_SAR_BAND_4;
788 		break;
789 	default:
790 		WARN(1, "unknown ch(%u) to SAR band\n", center_channel);
791 		sar_band = RTW_SAR_BAND_0;
792 		break;
793 	}
794 
795 	hal->current_primary_channel_index = primary_channel_idx;
796 	hal->current_band_width = bandwidth;
797 	hal->primary_channel = primary_channel;
798 	hal->current_channel = center_channel;
799 	hal->current_band_type = band;
800 	hal->sar_band = sar_band;
801 }
802 
803 void rtw_get_channel_params(struct cfg80211_chan_def *chandef,
804 			    struct rtw_channel_params *chan_params)
805 {
806 	struct ieee80211_channel *channel = chandef->chan;
807 	enum nl80211_chan_width width = chandef->width;
808 	u32 primary_freq, center_freq;
809 	u8 center_chan;
810 	u8 bandwidth = RTW_CHANNEL_WIDTH_20;
811 
812 	center_chan = channel->hw_value;
813 	primary_freq = channel->center_freq;
814 	center_freq = chandef->center_freq1;
815 
816 	switch (width) {
817 	case NL80211_CHAN_WIDTH_20_NOHT:
818 	case NL80211_CHAN_WIDTH_20:
819 		bandwidth = RTW_CHANNEL_WIDTH_20;
820 		break;
821 	case NL80211_CHAN_WIDTH_40:
822 		bandwidth = RTW_CHANNEL_WIDTH_40;
823 		if (primary_freq > center_freq)
824 			center_chan -= 2;
825 		else
826 			center_chan += 2;
827 		break;
828 	case NL80211_CHAN_WIDTH_80:
829 		bandwidth = RTW_CHANNEL_WIDTH_80;
830 		if (primary_freq > center_freq) {
831 			if (primary_freq - center_freq == 10)
832 				center_chan -= 2;
833 			else
834 				center_chan -= 6;
835 		} else {
836 			if (center_freq - primary_freq == 10)
837 				center_chan += 2;
838 			else
839 				center_chan += 6;
840 		}
841 		break;
842 	default:
843 		center_chan = 0;
844 		break;
845 	}
846 
847 	chan_params->center_chan = center_chan;
848 	chan_params->bandwidth = bandwidth;
849 	chan_params->primary_chan = channel->hw_value;
850 }
851 
852 void rtw_set_channel(struct rtw_dev *rtwdev)
853 {
854 	const struct rtw_chip_info *chip = rtwdev->chip;
855 	struct ieee80211_hw *hw = rtwdev->hw;
856 	struct rtw_hal *hal = &rtwdev->hal;
857 	struct rtw_channel_params ch_param;
858 	u8 center_chan, primary_chan, bandwidth, band;
859 
860 	rtw_get_channel_params(&hw->conf.chandef, &ch_param);
861 	if (WARN(ch_param.center_chan == 0, "Invalid channel\n"))
862 		return;
863 
864 	center_chan = ch_param.center_chan;
865 	primary_chan = ch_param.primary_chan;
866 	bandwidth = ch_param.bandwidth;
867 	band = ch_param.center_chan > 14 ? RTW_BAND_5G : RTW_BAND_2G;
868 
869 	rtw_update_channel(rtwdev, center_chan, primary_chan, band, bandwidth);
870 
871 	if (rtwdev->scan_info.op_chan)
872 		rtw_store_op_chan(rtwdev, true);
873 
874 	chip->ops->set_channel(rtwdev, center_chan, bandwidth,
875 			       hal->current_primary_channel_index);
876 
877 	if (hal->current_band_type == RTW_BAND_5G) {
878 		rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_5G);
879 	} else {
880 		if (test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
881 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G);
882 		else
883 			rtw_coex_switchband_notify(rtwdev, COEX_SWITCH_TO_24G_NOFORSCAN);
884 	}
885 
886 	rtw_phy_set_tx_power_level(rtwdev, center_chan);
887 
888 	/* if the channel isn't set for scanning, we will do RF calibration
889 	 * in ieee80211_ops::mgd_prepare_tx(). Performing the calibration
890 	 * during scanning on each channel takes too long.
891 	 */
892 	if (!test_bit(RTW_FLAG_SCANNING, rtwdev->flags))
893 		rtwdev->need_rfk = true;
894 }
895 
896 void rtw_chip_prepare_tx(struct rtw_dev *rtwdev)
897 {
898 	const struct rtw_chip_info *chip = rtwdev->chip;
899 
900 	if (rtwdev->need_rfk) {
901 		rtwdev->need_rfk = false;
902 		chip->ops->phy_calibration(rtwdev);
903 	}
904 }
905 
906 static void rtw_vif_write_addr(struct rtw_dev *rtwdev, u32 start, u8 *addr)
907 {
908 	int i;
909 
910 	for (i = 0; i < ETH_ALEN; i++)
911 		rtw_write8(rtwdev, start + i, addr[i]);
912 }
913 
914 void rtw_vif_port_config(struct rtw_dev *rtwdev,
915 			 struct rtw_vif *rtwvif,
916 			 u32 config)
917 {
918 	u32 addr, mask;
919 
920 	if (config & PORT_SET_MAC_ADDR) {
921 		addr = rtwvif->conf->mac_addr.addr;
922 		rtw_vif_write_addr(rtwdev, addr, rtwvif->mac_addr);
923 	}
924 	if (config & PORT_SET_BSSID) {
925 		addr = rtwvif->conf->bssid.addr;
926 		rtw_vif_write_addr(rtwdev, addr, rtwvif->bssid);
927 	}
928 	if (config & PORT_SET_NET_TYPE) {
929 		addr = rtwvif->conf->net_type.addr;
930 		mask = rtwvif->conf->net_type.mask;
931 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->net_type);
932 	}
933 	if (config & PORT_SET_AID) {
934 		addr = rtwvif->conf->aid.addr;
935 		mask = rtwvif->conf->aid.mask;
936 		rtw_write32_mask(rtwdev, addr, mask, rtwvif->aid);
937 	}
938 	if (config & PORT_SET_BCN_CTRL) {
939 		addr = rtwvif->conf->bcn_ctrl.addr;
940 		mask = rtwvif->conf->bcn_ctrl.mask;
941 		rtw_write8_mask(rtwdev, addr, mask, rtwvif->bcn_ctrl);
942 	}
943 }
944 
945 static u8 hw_bw_cap_to_bitamp(u8 bw_cap)
946 {
947 	u8 bw = 0;
948 
949 	switch (bw_cap) {
950 	case EFUSE_HW_CAP_IGNORE:
951 	case EFUSE_HW_CAP_SUPP_BW80:
952 		bw |= BIT(RTW_CHANNEL_WIDTH_80);
953 		fallthrough;
954 	case EFUSE_HW_CAP_SUPP_BW40:
955 		bw |= BIT(RTW_CHANNEL_WIDTH_40);
956 		fallthrough;
957 	default:
958 		bw |= BIT(RTW_CHANNEL_WIDTH_20);
959 		break;
960 	}
961 
962 	return bw;
963 }
964 
965 static void rtw_hw_config_rf_ant_num(struct rtw_dev *rtwdev, u8 hw_ant_num)
966 {
967 	const struct rtw_chip_info *chip = rtwdev->chip;
968 	struct rtw_hal *hal = &rtwdev->hal;
969 
970 	if (hw_ant_num == EFUSE_HW_CAP_IGNORE ||
971 	    hw_ant_num >= hal->rf_path_num)
972 		return;
973 
974 	switch (hw_ant_num) {
975 	case 1:
976 		hal->rf_type = RF_1T1R;
977 		hal->rf_path_num = 1;
978 		if (!chip->fix_rf_phy_num)
979 			hal->rf_phy_num = hal->rf_path_num;
980 		hal->antenna_tx = BB_PATH_A;
981 		hal->antenna_rx = BB_PATH_A;
982 		break;
983 	default:
984 		WARN(1, "invalid hw configuration from efuse\n");
985 		break;
986 	}
987 }
988 
989 static u64 get_vht_ra_mask(struct ieee80211_sta *sta)
990 {
991 	u64 ra_mask = 0;
992 	u16 mcs_map = le16_to_cpu(sta->deflink.vht_cap.vht_mcs.rx_mcs_map);
993 	u8 vht_mcs_cap;
994 	int i, nss;
995 
996 	/* 4SS, every two bits for MCS7/8/9 */
997 	for (i = 0, nss = 12; i < 4; i++, mcs_map >>= 2, nss += 10) {
998 		vht_mcs_cap = mcs_map & 0x3;
999 		switch (vht_mcs_cap) {
1000 		case 2: /* MCS9 */
1001 			ra_mask |= 0x3ffULL << nss;
1002 			break;
1003 		case 1: /* MCS8 */
1004 			ra_mask |= 0x1ffULL << nss;
1005 			break;
1006 		case 0: /* MCS7 */
1007 			ra_mask |= 0x0ffULL << nss;
1008 			break;
1009 		default:
1010 			break;
1011 		}
1012 	}
1013 
1014 	return ra_mask;
1015 }
1016 
1017 static u8 get_rate_id(u8 wireless_set, enum rtw_bandwidth bw_mode, u8 tx_num)
1018 {
1019 	u8 rate_id = 0;
1020 
1021 	switch (wireless_set) {
1022 	case WIRELESS_CCK:
1023 		rate_id = RTW_RATEID_B_20M;
1024 		break;
1025 	case WIRELESS_OFDM:
1026 		rate_id = RTW_RATEID_G;
1027 		break;
1028 	case WIRELESS_CCK | WIRELESS_OFDM:
1029 		rate_id = RTW_RATEID_BG;
1030 		break;
1031 	case WIRELESS_OFDM | WIRELESS_HT:
1032 		if (tx_num == 1)
1033 			rate_id = RTW_RATEID_GN_N1SS;
1034 		else if (tx_num == 2)
1035 			rate_id = RTW_RATEID_GN_N2SS;
1036 		else if (tx_num == 3)
1037 			rate_id = RTW_RATEID_ARFR5_N_3SS;
1038 		break;
1039 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_HT:
1040 		if (bw_mode == RTW_CHANNEL_WIDTH_40) {
1041 			if (tx_num == 1)
1042 				rate_id = RTW_RATEID_BGN_40M_1SS;
1043 			else if (tx_num == 2)
1044 				rate_id = RTW_RATEID_BGN_40M_2SS;
1045 			else if (tx_num == 3)
1046 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1047 			else if (tx_num == 4)
1048 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1049 		} else {
1050 			if (tx_num == 1)
1051 				rate_id = RTW_RATEID_BGN_20M_1SS;
1052 			else if (tx_num == 2)
1053 				rate_id = RTW_RATEID_BGN_20M_2SS;
1054 			else if (tx_num == 3)
1055 				rate_id = RTW_RATEID_ARFR5_N_3SS;
1056 			else if (tx_num == 4)
1057 				rate_id = RTW_RATEID_ARFR7_N_4SS;
1058 		}
1059 		break;
1060 	case WIRELESS_OFDM | WIRELESS_VHT:
1061 		if (tx_num == 1)
1062 			rate_id = RTW_RATEID_ARFR1_AC_1SS;
1063 		else if (tx_num == 2)
1064 			rate_id = RTW_RATEID_ARFR0_AC_2SS;
1065 		else if (tx_num == 3)
1066 			rate_id = RTW_RATEID_ARFR4_AC_3SS;
1067 		else if (tx_num == 4)
1068 			rate_id = RTW_RATEID_ARFR6_AC_4SS;
1069 		break;
1070 	case WIRELESS_CCK | WIRELESS_OFDM | WIRELESS_VHT:
1071 		if (bw_mode >= RTW_CHANNEL_WIDTH_80) {
1072 			if (tx_num == 1)
1073 				rate_id = RTW_RATEID_ARFR1_AC_1SS;
1074 			else if (tx_num == 2)
1075 				rate_id = RTW_RATEID_ARFR0_AC_2SS;
1076 			else if (tx_num == 3)
1077 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1078 			else if (tx_num == 4)
1079 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1080 		} else {
1081 			if (tx_num == 1)
1082 				rate_id = RTW_RATEID_ARFR2_AC_2G_1SS;
1083 			else if (tx_num == 2)
1084 				rate_id = RTW_RATEID_ARFR3_AC_2G_2SS;
1085 			else if (tx_num == 3)
1086 				rate_id = RTW_RATEID_ARFR4_AC_3SS;
1087 			else if (tx_num == 4)
1088 				rate_id = RTW_RATEID_ARFR6_AC_4SS;
1089 		}
1090 		break;
1091 	default:
1092 		break;
1093 	}
1094 
1095 	return rate_id;
1096 }
1097 
1098 #define RA_MASK_CCK_RATES	0x0000f
1099 #define RA_MASK_OFDM_RATES	0x00ff0
1100 #define RA_MASK_HT_RATES_1SS	(0xff000ULL << 0)
1101 #define RA_MASK_HT_RATES_2SS	(0xff000ULL << 8)
1102 #define RA_MASK_HT_RATES_3SS	(0xff000ULL << 16)
1103 #define RA_MASK_HT_RATES	(RA_MASK_HT_RATES_1SS | \
1104 				 RA_MASK_HT_RATES_2SS | \
1105 				 RA_MASK_HT_RATES_3SS)
1106 #define RA_MASK_VHT_RATES_1SS	(0x3ff000ULL << 0)
1107 #define RA_MASK_VHT_RATES_2SS	(0x3ff000ULL << 10)
1108 #define RA_MASK_VHT_RATES_3SS	(0x3ff000ULL << 20)
1109 #define RA_MASK_VHT_RATES	(RA_MASK_VHT_RATES_1SS | \
1110 				 RA_MASK_VHT_RATES_2SS | \
1111 				 RA_MASK_VHT_RATES_3SS)
1112 #define RA_MASK_CCK_IN_BG	0x00005
1113 #define RA_MASK_CCK_IN_HT	0x00005
1114 #define RA_MASK_CCK_IN_VHT	0x00005
1115 #define RA_MASK_OFDM_IN_VHT	0x00010
1116 #define RA_MASK_OFDM_IN_HT_2G	0x00010
1117 #define RA_MASK_OFDM_IN_HT_5G	0x00030
1118 
1119 static u64 rtw_rate_mask_rssi(struct rtw_sta_info *si, u8 wireless_set)
1120 {
1121 	u8 rssi_level = si->rssi_level;
1122 
1123 	if (wireless_set == WIRELESS_CCK)
1124 		return 0xffffffffffffffffULL;
1125 
1126 	if (rssi_level == 0)
1127 		return 0xffffffffffffffffULL;
1128 	else if (rssi_level == 1)
1129 		return 0xfffffffffffffff0ULL;
1130 	else if (rssi_level == 2)
1131 		return 0xffffffffffffefe0ULL;
1132 	else if (rssi_level == 3)
1133 		return 0xffffffffffffcfc0ULL;
1134 	else if (rssi_level == 4)
1135 		return 0xffffffffffff8f80ULL;
1136 	else
1137 		return 0xffffffffffff0f00ULL;
1138 }
1139 
1140 static u64 rtw_rate_mask_recover(u64 ra_mask, u64 ra_mask_bak)
1141 {
1142 	if ((ra_mask & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES)) == 0)
1143 		ra_mask |= (ra_mask_bak & ~(RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1144 
1145 	if (ra_mask == 0)
1146 		ra_mask |= (ra_mask_bak & (RA_MASK_CCK_RATES | RA_MASK_OFDM_RATES));
1147 
1148 	return ra_mask;
1149 }
1150 
1151 static u64 rtw_rate_mask_cfg(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1152 			     u64 ra_mask, bool is_vht_enable)
1153 {
1154 	struct rtw_hal *hal = &rtwdev->hal;
1155 	const struct cfg80211_bitrate_mask *mask = si->mask;
1156 	u64 cfg_mask = GENMASK_ULL(63, 0);
1157 	u8 band;
1158 
1159 	if (!si->use_cfg_mask)
1160 		return ra_mask;
1161 
1162 	band = hal->current_band_type;
1163 	if (band == RTW_BAND_2G) {
1164 		band = NL80211_BAND_2GHZ;
1165 		cfg_mask = mask->control[band].legacy;
1166 	} else if (band == RTW_BAND_5G) {
1167 		band = NL80211_BAND_5GHZ;
1168 		cfg_mask = u64_encode_bits(mask->control[band].legacy,
1169 					   RA_MASK_OFDM_RATES);
1170 	}
1171 
1172 	if (!is_vht_enable) {
1173 		if (ra_mask & RA_MASK_HT_RATES_1SS)
1174 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[0],
1175 						    RA_MASK_HT_RATES_1SS);
1176 		if (ra_mask & RA_MASK_HT_RATES_2SS)
1177 			cfg_mask |= u64_encode_bits(mask->control[band].ht_mcs[1],
1178 						    RA_MASK_HT_RATES_2SS);
1179 	} else {
1180 		if (ra_mask & RA_MASK_VHT_RATES_1SS)
1181 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[0],
1182 						    RA_MASK_VHT_RATES_1SS);
1183 		if (ra_mask & RA_MASK_VHT_RATES_2SS)
1184 			cfg_mask |= u64_encode_bits(mask->control[band].vht_mcs[1],
1185 						    RA_MASK_VHT_RATES_2SS);
1186 	}
1187 
1188 	ra_mask &= cfg_mask;
1189 
1190 	return ra_mask;
1191 }
1192 
1193 void rtw_update_sta_info(struct rtw_dev *rtwdev, struct rtw_sta_info *si,
1194 			 bool reset_ra_mask)
1195 {
1196 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
1197 	struct ieee80211_sta *sta = si->sta;
1198 	struct rtw_efuse *efuse = &rtwdev->efuse;
1199 	struct rtw_hal *hal = &rtwdev->hal;
1200 	u8 wireless_set;
1201 	u8 bw_mode;
1202 	u8 rate_id;
1203 	u8 rf_type = RF_1T1R;
1204 	u8 stbc_en = 0;
1205 	u8 ldpc_en = 0;
1206 	u8 tx_num = 1;
1207 	u64 ra_mask = 0;
1208 	u64 ra_mask_bak = 0;
1209 	bool is_vht_enable = false;
1210 	bool is_support_sgi = false;
1211 
1212 	if (sta->deflink.vht_cap.vht_supported) {
1213 		is_vht_enable = true;
1214 		ra_mask |= get_vht_ra_mask(sta);
1215 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXSTBC_MASK)
1216 			stbc_en = VHT_STBC_EN;
1217 		if (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_RXLDPC)
1218 			ldpc_en = VHT_LDPC_EN;
1219 	} else if (sta->deflink.ht_cap.ht_supported) {
1220 		ra_mask |= (sta->deflink.ht_cap.mcs.rx_mask[1] << 20) |
1221 			   (sta->deflink.ht_cap.mcs.rx_mask[0] << 12);
1222 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_RX_STBC)
1223 			stbc_en = HT_STBC_EN;
1224 		if (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_LDPC_CODING)
1225 			ldpc_en = HT_LDPC_EN;
1226 	}
1227 
1228 	if (efuse->hw_cap.nss == 1 || rtwdev->hal.txrx_1ss)
1229 		ra_mask &= RA_MASK_VHT_RATES_1SS | RA_MASK_HT_RATES_1SS;
1230 
1231 	if (hal->current_band_type == RTW_BAND_5G) {
1232 		ra_mask |= (u64)sta->deflink.supp_rates[NL80211_BAND_5GHZ] << 4;
1233 		ra_mask_bak = ra_mask;
1234 		if (sta->deflink.vht_cap.vht_supported) {
1235 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_OFDM_IN_VHT;
1236 			wireless_set = WIRELESS_OFDM | WIRELESS_VHT;
1237 		} else if (sta->deflink.ht_cap.ht_supported) {
1238 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_OFDM_IN_HT_5G;
1239 			wireless_set = WIRELESS_OFDM | WIRELESS_HT;
1240 		} else {
1241 			wireless_set = WIRELESS_OFDM;
1242 		}
1243 		dm_info->rrsr_val_init = RRSR_INIT_5G;
1244 	} else if (hal->current_band_type == RTW_BAND_2G) {
1245 		ra_mask |= sta->deflink.supp_rates[NL80211_BAND_2GHZ];
1246 		ra_mask_bak = ra_mask;
1247 		if (sta->deflink.vht_cap.vht_supported) {
1248 			ra_mask &= RA_MASK_VHT_RATES | RA_MASK_CCK_IN_VHT |
1249 				   RA_MASK_OFDM_IN_VHT;
1250 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1251 				       WIRELESS_HT | WIRELESS_VHT;
1252 		} else if (sta->deflink.ht_cap.ht_supported) {
1253 			ra_mask &= RA_MASK_HT_RATES | RA_MASK_CCK_IN_HT |
1254 				   RA_MASK_OFDM_IN_HT_2G;
1255 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM |
1256 				       WIRELESS_HT;
1257 		} else if (sta->deflink.supp_rates[0] <= 0xf) {
1258 			wireless_set = WIRELESS_CCK;
1259 		} else {
1260 			ra_mask &= RA_MASK_OFDM_RATES | RA_MASK_CCK_IN_BG;
1261 			wireless_set = WIRELESS_CCK | WIRELESS_OFDM;
1262 		}
1263 		dm_info->rrsr_val_init = RRSR_INIT_2G;
1264 	} else {
1265 		rtw_err(rtwdev, "Unknown band type\n");
1266 		ra_mask_bak = ra_mask;
1267 		wireless_set = 0;
1268 	}
1269 
1270 	switch (sta->deflink.bandwidth) {
1271 	case IEEE80211_STA_RX_BW_80:
1272 		bw_mode = RTW_CHANNEL_WIDTH_80;
1273 		is_support_sgi = sta->deflink.vht_cap.vht_supported &&
1274 				 (sta->deflink.vht_cap.cap & IEEE80211_VHT_CAP_SHORT_GI_80);
1275 		break;
1276 	case IEEE80211_STA_RX_BW_40:
1277 		bw_mode = RTW_CHANNEL_WIDTH_40;
1278 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1279 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_40);
1280 		break;
1281 	default:
1282 		bw_mode = RTW_CHANNEL_WIDTH_20;
1283 		is_support_sgi = sta->deflink.ht_cap.ht_supported &&
1284 				 (sta->deflink.ht_cap.cap & IEEE80211_HT_CAP_SGI_20);
1285 		break;
1286 	}
1287 
1288 	if (sta->deflink.vht_cap.vht_supported && ra_mask & 0xffc00000) {
1289 		tx_num = 2;
1290 		rf_type = RF_2T2R;
1291 	} else if (sta->deflink.ht_cap.ht_supported && ra_mask & 0xfff00000) {
1292 		tx_num = 2;
1293 		rf_type = RF_2T2R;
1294 	}
1295 
1296 	rate_id = get_rate_id(wireless_set, bw_mode, tx_num);
1297 
1298 	ra_mask &= rtw_rate_mask_rssi(si, wireless_set);
1299 	ra_mask = rtw_rate_mask_recover(ra_mask, ra_mask_bak);
1300 	ra_mask = rtw_rate_mask_cfg(rtwdev, si, ra_mask, is_vht_enable);
1301 
1302 	si->bw_mode = bw_mode;
1303 	si->stbc_en = stbc_en;
1304 	si->ldpc_en = ldpc_en;
1305 	si->rf_type = rf_type;
1306 	si->sgi_enable = is_support_sgi;
1307 	si->vht_enable = is_vht_enable;
1308 	si->ra_mask = ra_mask;
1309 	si->rate_id = rate_id;
1310 
1311 	rtw_fw_send_ra_info(rtwdev, si, reset_ra_mask);
1312 }
1313 
1314 static int rtw_wait_firmware_completion(struct rtw_dev *rtwdev)
1315 {
1316 	const struct rtw_chip_info *chip = rtwdev->chip;
1317 	struct rtw_fw_state *fw;
1318 
1319 	fw = &rtwdev->fw;
1320 	wait_for_completion(&fw->completion);
1321 	if (!fw->firmware)
1322 		return -EINVAL;
1323 
1324 	if (chip->wow_fw_name) {
1325 		fw = &rtwdev->wow_fw;
1326 		wait_for_completion(&fw->completion);
1327 		if (!fw->firmware)
1328 			return -EINVAL;
1329 	}
1330 
1331 	return 0;
1332 }
1333 
1334 static enum rtw_lps_deep_mode rtw_update_lps_deep_mode(struct rtw_dev *rtwdev,
1335 						       struct rtw_fw_state *fw)
1336 {
1337 	const struct rtw_chip_info *chip = rtwdev->chip;
1338 
1339 	if (rtw_disable_lps_deep_mode || !chip->lps_deep_mode_supported ||
1340 	    !fw->feature)
1341 		return LPS_DEEP_MODE_NONE;
1342 
1343 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_PG)) &&
1344 	    rtw_fw_feature_check(fw, FW_FEATURE_PG))
1345 		return LPS_DEEP_MODE_PG;
1346 
1347 	if ((chip->lps_deep_mode_supported & BIT(LPS_DEEP_MODE_LCLK)) &&
1348 	    rtw_fw_feature_check(fw, FW_FEATURE_LCLK))
1349 		return LPS_DEEP_MODE_LCLK;
1350 
1351 	return LPS_DEEP_MODE_NONE;
1352 }
1353 
1354 static int rtw_power_on(struct rtw_dev *rtwdev)
1355 {
1356 	const struct rtw_chip_info *chip = rtwdev->chip;
1357 	struct rtw_fw_state *fw = &rtwdev->fw;
1358 	bool wifi_only;
1359 	int ret;
1360 
1361 	ret = rtw_hci_setup(rtwdev);
1362 	if (ret) {
1363 		rtw_err(rtwdev, "failed to setup hci\n");
1364 		goto err;
1365 	}
1366 
1367 	/* power on MAC before firmware downloaded */
1368 	ret = rtw_mac_power_on(rtwdev);
1369 	if (ret) {
1370 		rtw_err(rtwdev, "failed to power on mac\n");
1371 		goto err;
1372 	}
1373 
1374 	ret = rtw_wait_firmware_completion(rtwdev);
1375 	if (ret) {
1376 		rtw_err(rtwdev, "failed to wait firmware completion\n");
1377 		goto err_off;
1378 	}
1379 
1380 	ret = rtw_download_firmware(rtwdev, fw);
1381 	if (ret) {
1382 		rtw_err(rtwdev, "failed to download firmware\n");
1383 		goto err_off;
1384 	}
1385 
1386 	/* config mac after firmware downloaded */
1387 	ret = rtw_mac_init(rtwdev);
1388 	if (ret) {
1389 		rtw_err(rtwdev, "failed to configure mac\n");
1390 		goto err_off;
1391 	}
1392 
1393 	chip->ops->phy_set_param(rtwdev);
1394 
1395 	ret = rtw_hci_start(rtwdev);
1396 	if (ret) {
1397 		rtw_err(rtwdev, "failed to start hci\n");
1398 		goto err_off;
1399 	}
1400 
1401 	/* send H2C after HCI has started */
1402 	rtw_fw_send_general_info(rtwdev);
1403 	rtw_fw_send_phydm_info(rtwdev);
1404 
1405 	wifi_only = !rtwdev->efuse.btcoex;
1406 	rtw_coex_power_on_setting(rtwdev);
1407 	rtw_coex_init_hw_config(rtwdev, wifi_only);
1408 
1409 	return 0;
1410 
1411 err_off:
1412 	rtw_mac_power_off(rtwdev);
1413 
1414 err:
1415 	return ret;
1416 }
1417 
1418 void rtw_core_fw_scan_notify(struct rtw_dev *rtwdev, bool start)
1419 {
1420 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_NOTIFY_SCAN))
1421 		return;
1422 
1423 	if (start) {
1424 		rtw_fw_scan_notify(rtwdev, true);
1425 	} else {
1426 		reinit_completion(&rtwdev->fw_scan_density);
1427 		rtw_fw_scan_notify(rtwdev, false);
1428 		if (!wait_for_completion_timeout(&rtwdev->fw_scan_density,
1429 						 SCAN_NOTIFY_TIMEOUT))
1430 			rtw_warn(rtwdev, "firmware failed to report density after scan\n");
1431 	}
1432 }
1433 
1434 void rtw_core_scan_start(struct rtw_dev *rtwdev, struct rtw_vif *rtwvif,
1435 			 const u8 *mac_addr, bool hw_scan)
1436 {
1437 	u32 config = 0;
1438 	int ret = 0;
1439 
1440 	rtw_leave_lps(rtwdev);
1441 
1442 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE)) {
1443 		ret = rtw_leave_ips(rtwdev);
1444 		if (ret) {
1445 			rtw_err(rtwdev, "failed to leave idle state\n");
1446 			return;
1447 		}
1448 	}
1449 
1450 	ether_addr_copy(rtwvif->mac_addr, mac_addr);
1451 	config |= PORT_SET_MAC_ADDR;
1452 	rtw_vif_port_config(rtwdev, rtwvif, config);
1453 
1454 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_START);
1455 	rtw_core_fw_scan_notify(rtwdev, true);
1456 
1457 	set_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1458 	set_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1459 }
1460 
1461 void rtw_core_scan_complete(struct rtw_dev *rtwdev, struct ieee80211_vif *vif,
1462 			    bool hw_scan)
1463 {
1464 	struct rtw_vif *rtwvif = vif ? (struct rtw_vif *)vif->drv_priv : NULL;
1465 	u32 config = 0;
1466 
1467 	if (!rtwvif)
1468 		return;
1469 
1470 	clear_bit(RTW_FLAG_SCANNING, rtwdev->flags);
1471 	clear_bit(RTW_FLAG_DIG_DISABLE, rtwdev->flags);
1472 
1473 	rtw_core_fw_scan_notify(rtwdev, false);
1474 
1475 	ether_addr_copy(rtwvif->mac_addr, vif->addr);
1476 	config |= PORT_SET_MAC_ADDR;
1477 	rtw_vif_port_config(rtwdev, rtwvif, config);
1478 
1479 	rtw_coex_scan_notify(rtwdev, COEX_SCAN_FINISH);
1480 
1481 	if (hw_scan && (rtwdev->hw->conf.flags & IEEE80211_CONF_IDLE))
1482 		ieee80211_queue_work(rtwdev->hw, &rtwdev->ips_work);
1483 }
1484 
1485 int rtw_core_start(struct rtw_dev *rtwdev)
1486 {
1487 	int ret;
1488 
1489 	ret = rtw_power_on(rtwdev);
1490 	if (ret)
1491 		return ret;
1492 
1493 	rtw_sec_enable_sec_engine(rtwdev);
1494 
1495 	rtwdev->lps_conf.deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->fw);
1496 	rtwdev->lps_conf.wow_deep_mode = rtw_update_lps_deep_mode(rtwdev, &rtwdev->wow_fw);
1497 
1498 	/* rcr reset after powered on */
1499 	rtw_write32(rtwdev, REG_RCR, rtwdev->hal.rcr);
1500 
1501 	ieee80211_queue_delayed_work(rtwdev->hw, &rtwdev->watch_dog_work,
1502 				     RTW_WATCH_DOG_DELAY_TIME);
1503 
1504 	set_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1505 
1506 	return 0;
1507 }
1508 
1509 static void rtw_power_off(struct rtw_dev *rtwdev)
1510 {
1511 	rtw_hci_stop(rtwdev);
1512 	rtw_coex_power_off_setting(rtwdev);
1513 	rtw_mac_power_off(rtwdev);
1514 }
1515 
1516 void rtw_core_stop(struct rtw_dev *rtwdev)
1517 {
1518 	struct rtw_coex *coex = &rtwdev->coex;
1519 
1520 	clear_bit(RTW_FLAG_RUNNING, rtwdev->flags);
1521 	clear_bit(RTW_FLAG_FW_RUNNING, rtwdev->flags);
1522 
1523 	mutex_unlock(&rtwdev->mutex);
1524 
1525 	cancel_work_sync(&rtwdev->c2h_work);
1526 	cancel_work_sync(&rtwdev->update_beacon_work);
1527 	cancel_delayed_work_sync(&rtwdev->watch_dog_work);
1528 	cancel_delayed_work_sync(&coex->bt_relink_work);
1529 	cancel_delayed_work_sync(&coex->bt_reenable_work);
1530 	cancel_delayed_work_sync(&coex->defreeze_work);
1531 	cancel_delayed_work_sync(&coex->wl_remain_work);
1532 	cancel_delayed_work_sync(&coex->bt_remain_work);
1533 	cancel_delayed_work_sync(&coex->wl_connecting_work);
1534 	cancel_delayed_work_sync(&coex->bt_multi_link_remain_work);
1535 	cancel_delayed_work_sync(&coex->wl_ccklock_work);
1536 
1537 	mutex_lock(&rtwdev->mutex);
1538 
1539 	rtw_power_off(rtwdev);
1540 }
1541 
1542 static void rtw_init_ht_cap(struct rtw_dev *rtwdev,
1543 			    struct ieee80211_sta_ht_cap *ht_cap)
1544 {
1545 	const struct rtw_chip_info *chip = rtwdev->chip;
1546 	struct rtw_efuse *efuse = &rtwdev->efuse;
1547 
1548 	ht_cap->ht_supported = true;
1549 	ht_cap->cap = 0;
1550 	ht_cap->cap |= IEEE80211_HT_CAP_SGI_20 |
1551 			IEEE80211_HT_CAP_MAX_AMSDU |
1552 			(1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
1553 
1554 	if (rtw_chip_has_rx_ldpc(rtwdev))
1555 		ht_cap->cap |= IEEE80211_HT_CAP_LDPC_CODING;
1556 	if (rtw_chip_has_tx_stbc(rtwdev))
1557 		ht_cap->cap |= IEEE80211_HT_CAP_TX_STBC;
1558 
1559 	if (efuse->hw_cap.bw & BIT(RTW_CHANNEL_WIDTH_40))
1560 		ht_cap->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
1561 				IEEE80211_HT_CAP_DSSSCCK40 |
1562 				IEEE80211_HT_CAP_SGI_40;
1563 	ht_cap->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
1564 	ht_cap->ampdu_density = chip->ampdu_density;
1565 	ht_cap->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
1566 	if (efuse->hw_cap.nss > 1) {
1567 		ht_cap->mcs.rx_mask[0] = 0xFF;
1568 		ht_cap->mcs.rx_mask[1] = 0xFF;
1569 		ht_cap->mcs.rx_mask[4] = 0x01;
1570 		ht_cap->mcs.rx_highest = cpu_to_le16(300);
1571 	} else {
1572 		ht_cap->mcs.rx_mask[0] = 0xFF;
1573 		ht_cap->mcs.rx_mask[1] = 0x00;
1574 		ht_cap->mcs.rx_mask[4] = 0x01;
1575 		ht_cap->mcs.rx_highest = cpu_to_le16(150);
1576 	}
1577 }
1578 
1579 static void rtw_init_vht_cap(struct rtw_dev *rtwdev,
1580 			     struct ieee80211_sta_vht_cap *vht_cap)
1581 {
1582 	struct rtw_efuse *efuse = &rtwdev->efuse;
1583 	u16 mcs_map;
1584 	__le16 highest;
1585 
1586 	if (efuse->hw_cap.ptcl != EFUSE_HW_CAP_IGNORE &&
1587 	    efuse->hw_cap.ptcl != EFUSE_HW_CAP_PTCL_VHT)
1588 		return;
1589 
1590 	vht_cap->vht_supported = true;
1591 	vht_cap->cap = IEEE80211_VHT_CAP_MAX_MPDU_LENGTH_11454 |
1592 		       IEEE80211_VHT_CAP_SHORT_GI_80 |
1593 		       IEEE80211_VHT_CAP_RXSTBC_1 |
1594 		       IEEE80211_VHT_CAP_HTC_VHT |
1595 		       IEEE80211_VHT_CAP_MAX_A_MPDU_LENGTH_EXPONENT_MASK |
1596 		       0;
1597 	if (rtwdev->hal.rf_path_num > 1)
1598 		vht_cap->cap |= IEEE80211_VHT_CAP_TXSTBC;
1599 	vht_cap->cap |= IEEE80211_VHT_CAP_MU_BEAMFORMEE_CAPABLE |
1600 			IEEE80211_VHT_CAP_SU_BEAMFORMEE_CAPABLE;
1601 	vht_cap->cap |= (rtwdev->hal.bfee_sts_cap <<
1602 			IEEE80211_VHT_CAP_BEAMFORMEE_STS_SHIFT);
1603 
1604 	if (rtw_chip_has_rx_ldpc(rtwdev))
1605 		vht_cap->cap |= IEEE80211_VHT_CAP_RXLDPC;
1606 
1607 	mcs_map = IEEE80211_VHT_MCS_SUPPORT_0_9 << 0 |
1608 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 4 |
1609 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 6 |
1610 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 8 |
1611 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 10 |
1612 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 12 |
1613 		  IEEE80211_VHT_MCS_NOT_SUPPORTED << 14;
1614 	if (efuse->hw_cap.nss > 1) {
1615 		highest = cpu_to_le16(780);
1616 		mcs_map |= IEEE80211_VHT_MCS_SUPPORT_0_9 << 2;
1617 	} else {
1618 		highest = cpu_to_le16(390);
1619 		mcs_map |= IEEE80211_VHT_MCS_NOT_SUPPORTED << 2;
1620 	}
1621 
1622 	vht_cap->vht_mcs.rx_mcs_map = cpu_to_le16(mcs_map);
1623 	vht_cap->vht_mcs.tx_mcs_map = cpu_to_le16(mcs_map);
1624 	vht_cap->vht_mcs.rx_highest = highest;
1625 	vht_cap->vht_mcs.tx_highest = highest;
1626 }
1627 
1628 static u16 rtw_get_max_scan_ie_len(struct rtw_dev *rtwdev)
1629 {
1630 	u16 len;
1631 
1632 	len = rtwdev->chip->max_scan_ie_len;
1633 
1634 	if (!rtw_fw_feature_check(&rtwdev->fw, FW_FEATURE_SCAN_OFFLOAD) &&
1635 	    rtwdev->chip->id == RTW_CHIP_TYPE_8822C)
1636 		len = IEEE80211_MAX_DATA_LEN;
1637 	else if (rtw_fw_feature_ext_check(&rtwdev->fw, FW_FEATURE_EXT_OLD_PAGE_NUM))
1638 		len -= RTW_OLD_PROBE_PG_CNT * TX_PAGE_SIZE;
1639 
1640 	return len;
1641 }
1642 
1643 static void rtw_set_supported_band(struct ieee80211_hw *hw,
1644 				   const struct rtw_chip_info *chip)
1645 {
1646 	struct rtw_dev *rtwdev = hw->priv;
1647 	struct ieee80211_supported_band *sband;
1648 
1649 	if (chip->band & RTW_BAND_2G) {
1650 		sband = kmemdup(&rtw_band_2ghz, sizeof(*sband), GFP_KERNEL);
1651 		if (!sband)
1652 			goto err_out;
1653 		if (chip->ht_supported)
1654 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1655 		hw->wiphy->bands[NL80211_BAND_2GHZ] = sband;
1656 	}
1657 
1658 	if (chip->band & RTW_BAND_5G) {
1659 		sband = kmemdup(&rtw_band_5ghz, sizeof(*sband), GFP_KERNEL);
1660 		if (!sband)
1661 			goto err_out;
1662 		if (chip->ht_supported)
1663 			rtw_init_ht_cap(rtwdev, &sband->ht_cap);
1664 		if (chip->vht_supported)
1665 			rtw_init_vht_cap(rtwdev, &sband->vht_cap);
1666 		hw->wiphy->bands[NL80211_BAND_5GHZ] = sband;
1667 	}
1668 
1669 	return;
1670 
1671 err_out:
1672 	rtw_err(rtwdev, "failed to set supported band\n");
1673 }
1674 
1675 static void rtw_unset_supported_band(struct ieee80211_hw *hw,
1676 				     const struct rtw_chip_info *chip)
1677 {
1678 	kfree(hw->wiphy->bands[NL80211_BAND_2GHZ]);
1679 	kfree(hw->wiphy->bands[NL80211_BAND_5GHZ]);
1680 }
1681 
1682 static void rtw_vif_smps_iter(void *data, u8 *mac,
1683 			      struct ieee80211_vif *vif)
1684 {
1685 	struct rtw_dev *rtwdev = (struct rtw_dev *)data;
1686 
1687 	if (vif->type != NL80211_IFTYPE_STATION || !vif->cfg.assoc)
1688 		return;
1689 
1690 	if (rtwdev->hal.txrx_1ss)
1691 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_STATIC);
1692 	else
1693 		ieee80211_request_smps(vif, 0, IEEE80211_SMPS_OFF);
1694 }
1695 
1696 void rtw_set_txrx_1ss(struct rtw_dev *rtwdev, bool txrx_1ss)
1697 {
1698 	const struct rtw_chip_info *chip = rtwdev->chip;
1699 	struct rtw_hal *hal = &rtwdev->hal;
1700 
1701 	if (!chip->ops->config_txrx_mode || rtwdev->hal.txrx_1ss == txrx_1ss)
1702 		return;
1703 
1704 	rtwdev->hal.txrx_1ss = txrx_1ss;
1705 	if (txrx_1ss)
1706 		chip->ops->config_txrx_mode(rtwdev, BB_PATH_A, BB_PATH_A, false);
1707 	else
1708 		chip->ops->config_txrx_mode(rtwdev, hal->antenna_tx,
1709 					    hal->antenna_rx, false);
1710 	rtw_iterate_vifs_atomic(rtwdev, rtw_vif_smps_iter, rtwdev);
1711 }
1712 
1713 static void __update_firmware_feature(struct rtw_dev *rtwdev,
1714 				      struct rtw_fw_state *fw)
1715 {
1716 	u32 feature;
1717 	const struct rtw_fw_hdr *fw_hdr =
1718 				(const struct rtw_fw_hdr *)fw->firmware->data;
1719 
1720 	feature = le32_to_cpu(fw_hdr->feature);
1721 	fw->feature = feature & FW_FEATURE_SIG ? feature : 0;
1722 
1723 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C &&
1724 	    RTW_FW_SUIT_VER_CODE(rtwdev->fw) < RTW_FW_VER_CODE(9, 9, 13))
1725 		fw->feature_ext |= FW_FEATURE_EXT_OLD_PAGE_NUM;
1726 }
1727 
1728 static void __update_firmware_info(struct rtw_dev *rtwdev,
1729 				   struct rtw_fw_state *fw)
1730 {
1731 	const struct rtw_fw_hdr *fw_hdr =
1732 				(const struct rtw_fw_hdr *)fw->firmware->data;
1733 
1734 	fw->h2c_version = le16_to_cpu(fw_hdr->h2c_fmt_ver);
1735 	fw->version = le16_to_cpu(fw_hdr->version);
1736 	fw->sub_version = fw_hdr->subversion;
1737 	fw->sub_index = fw_hdr->subindex;
1738 
1739 	__update_firmware_feature(rtwdev, fw);
1740 }
1741 
1742 static void __update_firmware_info_legacy(struct rtw_dev *rtwdev,
1743 					  struct rtw_fw_state *fw)
1744 {
1745 	struct rtw_fw_hdr_legacy *legacy =
1746 				(struct rtw_fw_hdr_legacy *)fw->firmware->data;
1747 
1748 	fw->h2c_version = 0;
1749 	fw->version = le16_to_cpu(legacy->version);
1750 	fw->sub_version = legacy->subversion1;
1751 	fw->sub_index = legacy->subversion2;
1752 }
1753 
1754 static void update_firmware_info(struct rtw_dev *rtwdev,
1755 				 struct rtw_fw_state *fw)
1756 {
1757 	if (rtw_chip_wcpu_11n(rtwdev))
1758 		__update_firmware_info_legacy(rtwdev, fw);
1759 	else
1760 		__update_firmware_info(rtwdev, fw);
1761 }
1762 
1763 static void rtw_load_firmware_cb(const struct firmware *firmware, void *context)
1764 {
1765 	struct rtw_fw_state *fw = context;
1766 	struct rtw_dev *rtwdev = fw->rtwdev;
1767 
1768 	if (!firmware || !firmware->data) {
1769 		rtw_err(rtwdev, "failed to request firmware\n");
1770 		complete_all(&fw->completion);
1771 		return;
1772 	}
1773 
1774 	fw->firmware = firmware;
1775 	update_firmware_info(rtwdev, fw);
1776 	complete_all(&fw->completion);
1777 
1778 	rtw_info(rtwdev, "%sFirmware version %u.%u.%u, H2C version %u\n",
1779 		 fw->type == RTW_WOWLAN_FW ? "WOW " : "",
1780 		 fw->version, fw->sub_version, fw->sub_index, fw->h2c_version);
1781 }
1782 
1783 static int rtw_load_firmware(struct rtw_dev *rtwdev, enum rtw_fw_type type)
1784 {
1785 	const char *fw_name;
1786 	struct rtw_fw_state *fw;
1787 	int ret;
1788 
1789 	switch (type) {
1790 	case RTW_WOWLAN_FW:
1791 		fw = &rtwdev->wow_fw;
1792 		fw_name = rtwdev->chip->wow_fw_name;
1793 		break;
1794 
1795 	case RTW_NORMAL_FW:
1796 		fw = &rtwdev->fw;
1797 		fw_name = rtwdev->chip->fw_name;
1798 		break;
1799 
1800 	default:
1801 		rtw_warn(rtwdev, "unsupported firmware type\n");
1802 		return -ENOENT;
1803 	}
1804 
1805 	fw->type = type;
1806 	fw->rtwdev = rtwdev;
1807 	init_completion(&fw->completion);
1808 
1809 	ret = request_firmware_nowait(THIS_MODULE, true, fw_name, rtwdev->dev,
1810 				      GFP_KERNEL, fw, rtw_load_firmware_cb);
1811 	if (ret) {
1812 		rtw_err(rtwdev, "failed to async firmware request\n");
1813 		return ret;
1814 	}
1815 
1816 	return 0;
1817 }
1818 
1819 static int rtw_chip_parameter_setup(struct rtw_dev *rtwdev)
1820 {
1821 	const struct rtw_chip_info *chip = rtwdev->chip;
1822 	struct rtw_hal *hal = &rtwdev->hal;
1823 	struct rtw_efuse *efuse = &rtwdev->efuse;
1824 
1825 	switch (rtw_hci_type(rtwdev)) {
1826 	case RTW_HCI_TYPE_PCIE:
1827 		rtwdev->hci.rpwm_addr = 0x03d9;
1828 		rtwdev->hci.cpwm_addr = 0x03da;
1829 		break;
1830 	case RTW_HCI_TYPE_SDIO:
1831 		rtwdev->hci.rpwm_addr = REG_SDIO_HRPWM1;
1832 		rtwdev->hci.cpwm_addr = REG_SDIO_HCPWM1_V2;
1833 		break;
1834 	case RTW_HCI_TYPE_USB:
1835 		rtwdev->hci.rpwm_addr = 0xfe58;
1836 		rtwdev->hci.cpwm_addr = 0xfe57;
1837 		break;
1838 	default:
1839 		rtw_err(rtwdev, "unsupported hci type\n");
1840 		return -EINVAL;
1841 	}
1842 
1843 	hal->chip_version = rtw_read32(rtwdev, REG_SYS_CFG1);
1844 	hal->cut_version = BIT_GET_CHIP_VER(hal->chip_version);
1845 	hal->mp_chip = (hal->chip_version & BIT_RTL_ID) ? 0 : 1;
1846 	if (hal->chip_version & BIT_RF_TYPE_ID) {
1847 		hal->rf_type = RF_2T2R;
1848 		hal->rf_path_num = 2;
1849 		hal->antenna_tx = BB_PATH_AB;
1850 		hal->antenna_rx = BB_PATH_AB;
1851 	} else {
1852 		hal->rf_type = RF_1T1R;
1853 		hal->rf_path_num = 1;
1854 		hal->antenna_tx = BB_PATH_A;
1855 		hal->antenna_rx = BB_PATH_A;
1856 	}
1857 	hal->rf_phy_num = chip->fix_rf_phy_num ? chip->fix_rf_phy_num :
1858 			  hal->rf_path_num;
1859 
1860 	efuse->physical_size = chip->phy_efuse_size;
1861 	efuse->logical_size = chip->log_efuse_size;
1862 	efuse->protect_size = chip->ptct_efuse_size;
1863 
1864 	/* default use ack */
1865 	rtwdev->hal.rcr |= BIT_VHT_DACK;
1866 
1867 	hal->bfee_sts_cap = 3;
1868 
1869 	return 0;
1870 }
1871 
1872 static int rtw_chip_efuse_enable(struct rtw_dev *rtwdev)
1873 {
1874 	struct rtw_fw_state *fw = &rtwdev->fw;
1875 	int ret;
1876 
1877 	ret = rtw_hci_setup(rtwdev);
1878 	if (ret) {
1879 		rtw_err(rtwdev, "failed to setup hci\n");
1880 		goto err;
1881 	}
1882 
1883 	ret = rtw_mac_power_on(rtwdev);
1884 	if (ret) {
1885 		rtw_err(rtwdev, "failed to power on mac\n");
1886 		goto err;
1887 	}
1888 
1889 	rtw_write8(rtwdev, REG_C2HEVT, C2H_HW_FEATURE_DUMP);
1890 
1891 	wait_for_completion(&fw->completion);
1892 	if (!fw->firmware) {
1893 		ret = -EINVAL;
1894 		rtw_err(rtwdev, "failed to load firmware\n");
1895 		goto err;
1896 	}
1897 
1898 	ret = rtw_download_firmware(rtwdev, fw);
1899 	if (ret) {
1900 		rtw_err(rtwdev, "failed to download firmware\n");
1901 		goto err_off;
1902 	}
1903 
1904 	return 0;
1905 
1906 err_off:
1907 	rtw_mac_power_off(rtwdev);
1908 
1909 err:
1910 	return ret;
1911 }
1912 
1913 static int rtw_dump_hw_feature(struct rtw_dev *rtwdev)
1914 {
1915 	struct rtw_efuse *efuse = &rtwdev->efuse;
1916 	u8 hw_feature[HW_FEATURE_LEN];
1917 	u8 id;
1918 	u8 bw;
1919 	int i;
1920 
1921 	id = rtw_read8(rtwdev, REG_C2HEVT);
1922 	if (id != C2H_HW_FEATURE_REPORT) {
1923 		rtw_err(rtwdev, "failed to read hw feature report\n");
1924 		return -EBUSY;
1925 	}
1926 
1927 	for (i = 0; i < HW_FEATURE_LEN; i++)
1928 		hw_feature[i] = rtw_read8(rtwdev, REG_C2HEVT + 2 + i);
1929 
1930 	rtw_write8(rtwdev, REG_C2HEVT, 0);
1931 
1932 	bw = GET_EFUSE_HW_CAP_BW(hw_feature);
1933 	efuse->hw_cap.bw = hw_bw_cap_to_bitamp(bw);
1934 	efuse->hw_cap.hci = GET_EFUSE_HW_CAP_HCI(hw_feature);
1935 	efuse->hw_cap.nss = GET_EFUSE_HW_CAP_NSS(hw_feature);
1936 	efuse->hw_cap.ptcl = GET_EFUSE_HW_CAP_PTCL(hw_feature);
1937 	efuse->hw_cap.ant_num = GET_EFUSE_HW_CAP_ANT_NUM(hw_feature);
1938 
1939 	rtw_hw_config_rf_ant_num(rtwdev, efuse->hw_cap.ant_num);
1940 
1941 	if (efuse->hw_cap.nss == EFUSE_HW_CAP_IGNORE ||
1942 	    efuse->hw_cap.nss > rtwdev->hal.rf_path_num)
1943 		efuse->hw_cap.nss = rtwdev->hal.rf_path_num;
1944 
1945 	rtw_dbg(rtwdev, RTW_DBG_EFUSE,
1946 		"hw cap: hci=0x%02x, bw=0x%02x, ptcl=0x%02x, ant_num=%d, nss=%d\n",
1947 		efuse->hw_cap.hci, efuse->hw_cap.bw, efuse->hw_cap.ptcl,
1948 		efuse->hw_cap.ant_num, efuse->hw_cap.nss);
1949 
1950 	return 0;
1951 }
1952 
1953 static void rtw_chip_efuse_disable(struct rtw_dev *rtwdev)
1954 {
1955 	rtw_hci_stop(rtwdev);
1956 	rtw_mac_power_off(rtwdev);
1957 }
1958 
1959 static int rtw_chip_efuse_info_setup(struct rtw_dev *rtwdev)
1960 {
1961 	struct rtw_efuse *efuse = &rtwdev->efuse;
1962 	int ret;
1963 
1964 	mutex_lock(&rtwdev->mutex);
1965 
1966 	/* power on mac to read efuse */
1967 	ret = rtw_chip_efuse_enable(rtwdev);
1968 	if (ret)
1969 		goto out_unlock;
1970 
1971 	ret = rtw_parse_efuse_map(rtwdev);
1972 	if (ret)
1973 		goto out_disable;
1974 
1975 	ret = rtw_dump_hw_feature(rtwdev);
1976 	if (ret)
1977 		goto out_disable;
1978 
1979 	ret = rtw_check_supported_rfe(rtwdev);
1980 	if (ret)
1981 		goto out_disable;
1982 
1983 	if (efuse->crystal_cap == 0xff)
1984 		efuse->crystal_cap = 0;
1985 	if (efuse->pa_type_2g == 0xff)
1986 		efuse->pa_type_2g = 0;
1987 	if (efuse->pa_type_5g == 0xff)
1988 		efuse->pa_type_5g = 0;
1989 	if (efuse->lna_type_2g == 0xff)
1990 		efuse->lna_type_2g = 0;
1991 	if (efuse->lna_type_5g == 0xff)
1992 		efuse->lna_type_5g = 0;
1993 	if (efuse->channel_plan == 0xff)
1994 		efuse->channel_plan = 0x7f;
1995 	if (efuse->rf_board_option == 0xff)
1996 		efuse->rf_board_option = 0;
1997 	if (efuse->bt_setting & BIT(0))
1998 		efuse->share_ant = true;
1999 	if (efuse->regd == 0xff)
2000 		efuse->regd = 0;
2001 	if (efuse->tx_bb_swing_setting_2g == 0xff)
2002 		efuse->tx_bb_swing_setting_2g = 0;
2003 	if (efuse->tx_bb_swing_setting_5g == 0xff)
2004 		efuse->tx_bb_swing_setting_5g = 0;
2005 
2006 	efuse->btcoex = (efuse->rf_board_option & 0xe0) == 0x20;
2007 	efuse->ext_pa_2g = efuse->pa_type_2g & BIT(4) ? 1 : 0;
2008 	efuse->ext_lna_2g = efuse->lna_type_2g & BIT(3) ? 1 : 0;
2009 	efuse->ext_pa_5g = efuse->pa_type_5g & BIT(0) ? 1 : 0;
2010 	efuse->ext_lna_2g = efuse->lna_type_5g & BIT(3) ? 1 : 0;
2011 
2012 out_disable:
2013 	rtw_chip_efuse_disable(rtwdev);
2014 
2015 out_unlock:
2016 	mutex_unlock(&rtwdev->mutex);
2017 	return ret;
2018 }
2019 
2020 static int rtw_chip_board_info_setup(struct rtw_dev *rtwdev)
2021 {
2022 	struct rtw_hal *hal = &rtwdev->hal;
2023 	const struct rtw_rfe_def *rfe_def = rtw_get_rfe_def(rtwdev);
2024 
2025 	if (!rfe_def)
2026 		return -ENODEV;
2027 
2028 	rtw_phy_setup_phy_cond(rtwdev, hal->pkg_type);
2029 
2030 	rtw_phy_init_tx_power(rtwdev);
2031 	if (rfe_def->agc_btg_tbl)
2032 		rtw_load_table(rtwdev, rfe_def->agc_btg_tbl);
2033 	rtw_load_table(rtwdev, rfe_def->phy_pg_tbl);
2034 	rtw_load_table(rtwdev, rfe_def->txpwr_lmt_tbl);
2035 	rtw_phy_tx_power_by_rate_config(hal);
2036 	rtw_phy_tx_power_limit_config(hal);
2037 
2038 	return 0;
2039 }
2040 
2041 int rtw_chip_info_setup(struct rtw_dev *rtwdev)
2042 {
2043 	int ret;
2044 
2045 	ret = rtw_chip_parameter_setup(rtwdev);
2046 	if (ret) {
2047 		rtw_err(rtwdev, "failed to setup chip parameters\n");
2048 		goto err_out;
2049 	}
2050 
2051 	ret = rtw_chip_efuse_info_setup(rtwdev);
2052 	if (ret) {
2053 		rtw_err(rtwdev, "failed to setup chip efuse info\n");
2054 		goto err_out;
2055 	}
2056 
2057 	ret = rtw_chip_board_info_setup(rtwdev);
2058 	if (ret) {
2059 		rtw_err(rtwdev, "failed to setup chip board info\n");
2060 		goto err_out;
2061 	}
2062 
2063 	return 0;
2064 
2065 err_out:
2066 	return ret;
2067 }
2068 EXPORT_SYMBOL(rtw_chip_info_setup);
2069 
2070 static void rtw_stats_init(struct rtw_dev *rtwdev)
2071 {
2072 	struct rtw_traffic_stats *stats = &rtwdev->stats;
2073 	struct rtw_dm_info *dm_info = &rtwdev->dm_info;
2074 	int i;
2075 
2076 	ewma_tp_init(&stats->tx_ewma_tp);
2077 	ewma_tp_init(&stats->rx_ewma_tp);
2078 
2079 	for (i = 0; i < RTW_EVM_NUM; i++)
2080 		ewma_evm_init(&dm_info->ewma_evm[i]);
2081 	for (i = 0; i < RTW_SNR_NUM; i++)
2082 		ewma_snr_init(&dm_info->ewma_snr[i]);
2083 }
2084 
2085 int rtw_core_init(struct rtw_dev *rtwdev)
2086 {
2087 	const struct rtw_chip_info *chip = rtwdev->chip;
2088 	struct rtw_coex *coex = &rtwdev->coex;
2089 	int ret;
2090 
2091 	INIT_LIST_HEAD(&rtwdev->rsvd_page_list);
2092 	INIT_LIST_HEAD(&rtwdev->txqs);
2093 
2094 	timer_setup(&rtwdev->tx_report.purge_timer,
2095 		    rtw_tx_report_purge_timer, 0);
2096 	rtwdev->tx_wq = alloc_workqueue("rtw_tx_wq", WQ_UNBOUND | WQ_HIGHPRI, 0);
2097 	if (!rtwdev->tx_wq) {
2098 		rtw_warn(rtwdev, "alloc_workqueue rtw_tx_wq failed\n");
2099 		return -ENOMEM;
2100 	}
2101 
2102 	INIT_DELAYED_WORK(&rtwdev->watch_dog_work, rtw_watch_dog_work);
2103 	INIT_DELAYED_WORK(&coex->bt_relink_work, rtw_coex_bt_relink_work);
2104 	INIT_DELAYED_WORK(&coex->bt_reenable_work, rtw_coex_bt_reenable_work);
2105 	INIT_DELAYED_WORK(&coex->defreeze_work, rtw_coex_defreeze_work);
2106 	INIT_DELAYED_WORK(&coex->wl_remain_work, rtw_coex_wl_remain_work);
2107 	INIT_DELAYED_WORK(&coex->bt_remain_work, rtw_coex_bt_remain_work);
2108 	INIT_DELAYED_WORK(&coex->wl_connecting_work, rtw_coex_wl_connecting_work);
2109 	INIT_DELAYED_WORK(&coex->bt_multi_link_remain_work,
2110 			  rtw_coex_bt_multi_link_remain_work);
2111 	INIT_DELAYED_WORK(&coex->wl_ccklock_work, rtw_coex_wl_ccklock_work);
2112 	INIT_WORK(&rtwdev->tx_work, rtw_tx_work);
2113 	INIT_WORK(&rtwdev->c2h_work, rtw_c2h_work);
2114 	INIT_WORK(&rtwdev->ips_work, rtw_ips_work);
2115 	INIT_WORK(&rtwdev->fw_recovery_work, rtw_fw_recovery_work);
2116 	INIT_WORK(&rtwdev->update_beacon_work, rtw_fw_update_beacon_work);
2117 	INIT_WORK(&rtwdev->ba_work, rtw_txq_ba_work);
2118 	skb_queue_head_init(&rtwdev->c2h_queue);
2119 	skb_queue_head_init(&rtwdev->coex.queue);
2120 	skb_queue_head_init(&rtwdev->tx_report.queue);
2121 
2122 	spin_lock_init(&rtwdev->txq_lock);
2123 	spin_lock_init(&rtwdev->tx_report.q_lock);
2124 
2125 	mutex_init(&rtwdev->mutex);
2126 	mutex_init(&rtwdev->hal.tx_power_mutex);
2127 
2128 	init_waitqueue_head(&rtwdev->coex.wait);
2129 	init_completion(&rtwdev->lps_leave_check);
2130 	init_completion(&rtwdev->fw_scan_density);
2131 
2132 	rtwdev->sec.total_cam_num = 32;
2133 	rtwdev->hal.current_channel = 1;
2134 	rtwdev->dm_info.fix_rate = U8_MAX;
2135 	set_bit(RTW_BC_MC_MACID, rtwdev->mac_id_map);
2136 
2137 	rtw_stats_init(rtwdev);
2138 
2139 	/* default rx filter setting */
2140 	rtwdev->hal.rcr = BIT_APP_FCS | BIT_APP_MIC | BIT_APP_ICV |
2141 			  BIT_PKTCTL_DLEN | BIT_HTC_LOC_CTRL | BIT_APP_PHYSTS |
2142 			  BIT_AB | BIT_AM | BIT_APM;
2143 
2144 	ret = rtw_load_firmware(rtwdev, RTW_NORMAL_FW);
2145 	if (ret) {
2146 		rtw_warn(rtwdev, "no firmware loaded\n");
2147 		goto out;
2148 	}
2149 
2150 	if (chip->wow_fw_name) {
2151 		ret = rtw_load_firmware(rtwdev, RTW_WOWLAN_FW);
2152 		if (ret) {
2153 			rtw_warn(rtwdev, "no wow firmware loaded\n");
2154 			wait_for_completion(&rtwdev->fw.completion);
2155 			if (rtwdev->fw.firmware)
2156 				release_firmware(rtwdev->fw.firmware);
2157 			goto out;
2158 		}
2159 	}
2160 
2161 	return 0;
2162 
2163 out:
2164 	destroy_workqueue(rtwdev->tx_wq);
2165 	return ret;
2166 }
2167 EXPORT_SYMBOL(rtw_core_init);
2168 
2169 void rtw_core_deinit(struct rtw_dev *rtwdev)
2170 {
2171 	struct rtw_fw_state *fw = &rtwdev->fw;
2172 	struct rtw_fw_state *wow_fw = &rtwdev->wow_fw;
2173 	struct rtw_rsvd_page *rsvd_pkt, *tmp;
2174 	unsigned long flags;
2175 
2176 	rtw_wait_firmware_completion(rtwdev);
2177 
2178 	if (fw->firmware)
2179 		release_firmware(fw->firmware);
2180 
2181 	if (wow_fw->firmware)
2182 		release_firmware(wow_fw->firmware);
2183 
2184 	destroy_workqueue(rtwdev->tx_wq);
2185 	timer_delete_sync(&rtwdev->tx_report.purge_timer);
2186 	spin_lock_irqsave(&rtwdev->tx_report.q_lock, flags);
2187 	skb_queue_purge(&rtwdev->tx_report.queue);
2188 	spin_unlock_irqrestore(&rtwdev->tx_report.q_lock, flags);
2189 	skb_queue_purge(&rtwdev->coex.queue);
2190 	skb_queue_purge(&rtwdev->c2h_queue);
2191 
2192 	list_for_each_entry_safe(rsvd_pkt, tmp, &rtwdev->rsvd_page_list,
2193 				 build_list) {
2194 		list_del(&rsvd_pkt->build_list);
2195 		kfree(rsvd_pkt);
2196 	}
2197 
2198 	mutex_destroy(&rtwdev->mutex);
2199 	mutex_destroy(&rtwdev->hal.tx_power_mutex);
2200 }
2201 EXPORT_SYMBOL(rtw_core_deinit);
2202 
2203 int rtw_register_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2204 {
2205 	struct rtw_hal *hal = &rtwdev->hal;
2206 	int max_tx_headroom = 0;
2207 	int ret;
2208 
2209 	max_tx_headroom = rtwdev->chip->tx_pkt_desc_sz;
2210 
2211 	if (rtw_hci_type(rtwdev) == RTW_HCI_TYPE_SDIO)
2212 		max_tx_headroom += RTW_SDIO_DATA_PTR_ALIGN;
2213 
2214 	hw->extra_tx_headroom = max_tx_headroom;
2215 	hw->queues = IEEE80211_NUM_ACS;
2216 	hw->txq_data_size = sizeof(struct rtw_txq);
2217 	hw->sta_data_size = sizeof(struct rtw_sta_info);
2218 	hw->vif_data_size = sizeof(struct rtw_vif);
2219 
2220 	ieee80211_hw_set(hw, SIGNAL_DBM);
2221 	ieee80211_hw_set(hw, RX_INCLUDES_FCS);
2222 	ieee80211_hw_set(hw, AMPDU_AGGREGATION);
2223 	ieee80211_hw_set(hw, MFP_CAPABLE);
2224 	ieee80211_hw_set(hw, REPORTS_TX_ACK_STATUS);
2225 	ieee80211_hw_set(hw, SUPPORTS_PS);
2226 	ieee80211_hw_set(hw, SUPPORTS_DYNAMIC_PS);
2227 	ieee80211_hw_set(hw, SUPPORT_FAST_XMIT);
2228 	ieee80211_hw_set(hw, SUPPORTS_AMSDU_IN_AMPDU);
2229 	ieee80211_hw_set(hw, HAS_RATE_CONTROL);
2230 	ieee80211_hw_set(hw, TX_AMSDU);
2231 	ieee80211_hw_set(hw, SINGLE_SCAN_ON_ALL_BANDS);
2232 
2233 	hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION) |
2234 				     BIT(NL80211_IFTYPE_AP) |
2235 				     BIT(NL80211_IFTYPE_ADHOC) |
2236 				     BIT(NL80211_IFTYPE_MESH_POINT);
2237 	hw->wiphy->available_antennas_tx = hal->antenna_tx;
2238 	hw->wiphy->available_antennas_rx = hal->antenna_rx;
2239 
2240 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS |
2241 			    WIPHY_FLAG_TDLS_EXTERNAL_SETUP;
2242 
2243 	hw->wiphy->features |= NL80211_FEATURE_SCAN_RANDOM_MAC_ADDR;
2244 	hw->wiphy->max_scan_ssids = RTW_SCAN_MAX_SSIDS;
2245 	hw->wiphy->max_scan_ie_len = rtw_get_max_scan_ie_len(rtwdev);
2246 
2247 	if (rtwdev->chip->id == RTW_CHIP_TYPE_8822C) {
2248 		hw->wiphy->iface_combinations = rtw_iface_combs;
2249 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(rtw_iface_combs);
2250 	}
2251 
2252 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_CAN_REPLACE_PTK0);
2253 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SCAN_RANDOM_SN);
2254 	wiphy_ext_feature_set(hw->wiphy, NL80211_EXT_FEATURE_SET_SCAN_DWELL);
2255 
2256 #ifdef CONFIG_PM
2257 	hw->wiphy->wowlan = rtwdev->chip->wowlan_stub;
2258 	hw->wiphy->max_sched_scan_ssids = rtwdev->chip->max_sched_scan_ssids;
2259 #endif
2260 	rtw_set_supported_band(hw, rtwdev->chip);
2261 	SET_IEEE80211_PERM_ADDR(hw, rtwdev->efuse.addr);
2262 
2263 	hw->wiphy->sar_capa = &rtw_sar_capa;
2264 
2265 	ret = rtw_regd_init(rtwdev);
2266 	if (ret) {
2267 		rtw_err(rtwdev, "failed to init regd\n");
2268 		return ret;
2269 	}
2270 
2271 	ret = ieee80211_register_hw(hw);
2272 	if (ret) {
2273 		rtw_err(rtwdev, "failed to register hw\n");
2274 		return ret;
2275 	}
2276 
2277 	ret = rtw_regd_hint(rtwdev);
2278 	if (ret) {
2279 		rtw_err(rtwdev, "failed to hint regd\n");
2280 		return ret;
2281 	}
2282 
2283 	rtw_debugfs_init(rtwdev);
2284 
2285 	rtwdev->bf_info.bfer_mu_cnt = 0;
2286 	rtwdev->bf_info.bfer_su_cnt = 0;
2287 
2288 	return 0;
2289 }
2290 EXPORT_SYMBOL(rtw_register_hw);
2291 
2292 void rtw_unregister_hw(struct rtw_dev *rtwdev, struct ieee80211_hw *hw)
2293 {
2294 	const struct rtw_chip_info *chip = rtwdev->chip;
2295 
2296 	ieee80211_unregister_hw(hw);
2297 	rtw_unset_supported_band(hw, chip);
2298 }
2299 EXPORT_SYMBOL(rtw_unregister_hw);
2300 
2301 static
2302 void rtw_swap_reg_nbytes(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2303 			 const struct rtw_hw_reg *reg2, u8 nbytes)
2304 {
2305 	u8 i;
2306 
2307 	for (i = 0; i < nbytes; i++) {
2308 		u8 v1 = rtw_read8(rtwdev, reg1->addr + i);
2309 		u8 v2 = rtw_read8(rtwdev, reg2->addr + i);
2310 
2311 		rtw_write8(rtwdev, reg1->addr + i, v2);
2312 		rtw_write8(rtwdev, reg2->addr + i, v1);
2313 	}
2314 }
2315 
2316 static
2317 void rtw_swap_reg_mask(struct rtw_dev *rtwdev, const struct rtw_hw_reg *reg1,
2318 		       const struct rtw_hw_reg *reg2)
2319 {
2320 	u32 v1, v2;
2321 
2322 	v1 = rtw_read32_mask(rtwdev, reg1->addr, reg1->mask);
2323 	v2 = rtw_read32_mask(rtwdev, reg2->addr, reg2->mask);
2324 	rtw_write32_mask(rtwdev, reg2->addr, reg2->mask, v1);
2325 	rtw_write32_mask(rtwdev, reg1->addr, reg1->mask, v2);
2326 }
2327 
2328 struct rtw_iter_port_switch_data {
2329 	struct rtw_dev *rtwdev;
2330 	struct rtw_vif *rtwvif_ap;
2331 };
2332 
2333 static void rtw_port_switch_iter(void *data, u8 *mac, struct ieee80211_vif *vif)
2334 {
2335 	struct rtw_iter_port_switch_data *iter_data = data;
2336 	struct rtw_dev *rtwdev = iter_data->rtwdev;
2337 	struct rtw_vif *rtwvif_target = (struct rtw_vif *)vif->drv_priv;
2338 	struct rtw_vif *rtwvif_ap = iter_data->rtwvif_ap;
2339 	const struct rtw_hw_reg *reg1, *reg2;
2340 
2341 	if (rtwvif_target->port != RTW_PORT_0)
2342 		return;
2343 
2344 	rtw_dbg(rtwdev, RTW_DBG_STATE, "AP port switch from %d -> %d\n",
2345 		rtwvif_ap->port, rtwvif_target->port);
2346 
2347 	/* Leave LPS so the value swapped are not in PS mode */
2348 	rtw_leave_lps(rtwdev);
2349 
2350 	reg1 = &rtwvif_ap->conf->net_type;
2351 	reg2 = &rtwvif_target->conf->net_type;
2352 	rtw_swap_reg_mask(rtwdev, reg1, reg2);
2353 
2354 	reg1 = &rtwvif_ap->conf->mac_addr;
2355 	reg2 = &rtwvif_target->conf->mac_addr;
2356 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2357 
2358 	reg1 = &rtwvif_ap->conf->bssid;
2359 	reg2 = &rtwvif_target->conf->bssid;
2360 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, ETH_ALEN);
2361 
2362 	reg1 = &rtwvif_ap->conf->bcn_ctrl;
2363 	reg2 = &rtwvif_target->conf->bcn_ctrl;
2364 	rtw_swap_reg_nbytes(rtwdev, reg1, reg2, 1);
2365 
2366 	swap(rtwvif_target->port, rtwvif_ap->port);
2367 	swap(rtwvif_target->conf, rtwvif_ap->conf);
2368 
2369 	rtw_fw_default_port(rtwdev, rtwvif_target);
2370 }
2371 
2372 void rtw_core_port_switch(struct rtw_dev *rtwdev, struct ieee80211_vif *vif)
2373 {
2374 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2375 	struct rtw_iter_port_switch_data iter_data;
2376 
2377 	if (vif->type != NL80211_IFTYPE_AP || rtwvif->port == RTW_PORT_0)
2378 		return;
2379 
2380 	iter_data.rtwdev = rtwdev;
2381 	iter_data.rtwvif_ap = rtwvif;
2382 	rtw_iterate_vifs(rtwdev, rtw_port_switch_iter, &iter_data);
2383 }
2384 
2385 static void rtw_check_sta_active_iter(void *data, u8 *mac,
2386 				      struct ieee80211_vif *vif)
2387 {
2388 	struct rtw_vif *rtwvif = (struct rtw_vif *)vif->drv_priv;
2389 	bool *active = data;
2390 
2391 	if (*active)
2392 		return;
2393 
2394 	if (vif->type != NL80211_IFTYPE_STATION)
2395 		return;
2396 
2397 	if (vif->cfg.assoc || !is_zero_ether_addr(rtwvif->bssid))
2398 		*active = true;
2399 }
2400 
2401 bool rtw_core_check_sta_active(struct rtw_dev *rtwdev)
2402 {
2403 	bool sta_active = false;
2404 
2405 	rtw_iterate_vifs(rtwdev, rtw_check_sta_active_iter, &sta_active);
2406 
2407 	return rtwdev->ap_active || sta_active;
2408 }
2409 
2410 void rtw_core_enable_beacon(struct rtw_dev *rtwdev, bool enable)
2411 {
2412 	if (!rtwdev->ap_active)
2413 		return;
2414 
2415 	if (enable) {
2416 		rtw_write32_set(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2417 		rtw_write32_clr(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2418 	} else {
2419 		rtw_write32_clr(rtwdev, REG_BCN_CTRL, BIT_EN_BCN_FUNCTION);
2420 		rtw_write32_set(rtwdev, REG_TXPAUSE, BIT_HIGH_QUEUE);
2421 	}
2422 }
2423 
2424 MODULE_AUTHOR("Realtek Corporation");
2425 MODULE_DESCRIPTION("Realtek 802.11ac wireless core module");
2426 MODULE_LICENSE("Dual BSD/GPL");
2427