xref: /openbmc/linux/drivers/net/wireless/mediatek/mt76/usb.c (revision fbe605ab157b174385b3f19ce33928d3548a9b09)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
4  */
5 
6 #include <linux/module.h>
7 #include "mt76.h"
8 #include "usb_trace.h"
9 #include "dma.h"
10 
11 #define MT_VEND_REQ_MAX_RETRY	10
12 #define MT_VEND_REQ_TOUT_MS	300
13 
14 static bool disable_usb_sg;
15 module_param_named(disable_usb_sg, disable_usb_sg, bool, 0644);
16 MODULE_PARM_DESC(disable_usb_sg, "Disable usb scatter-gather support");
17 
18 int __mt76u_vendor_request(struct mt76_dev *dev, u8 req, u8 req_type,
19 			   u16 val, u16 offset, void *buf, size_t len)
20 {
21 	struct usb_interface *uintf = to_usb_interface(dev->dev);
22 	struct usb_device *udev = interface_to_usbdev(uintf);
23 	unsigned int pipe;
24 	int i, ret;
25 
26 	lockdep_assert_held(&dev->usb.usb_ctrl_mtx);
27 
28 	pipe = (req_type & USB_DIR_IN) ? usb_rcvctrlpipe(udev, 0)
29 				       : usb_sndctrlpipe(udev, 0);
30 	for (i = 0; i < MT_VEND_REQ_MAX_RETRY; i++) {
31 		if (test_bit(MT76_REMOVED, &dev->phy.state))
32 			return -EIO;
33 
34 		ret = usb_control_msg(udev, pipe, req, req_type, val,
35 				      offset, buf, len, MT_VEND_REQ_TOUT_MS);
36 		if (ret == -ENODEV)
37 			set_bit(MT76_REMOVED, &dev->phy.state);
38 		if (ret >= 0 || ret == -ENODEV)
39 			return ret;
40 		usleep_range(5000, 10000);
41 	}
42 
43 	dev_err(dev->dev, "vendor request req:%02x off:%04x failed:%d\n",
44 		req, offset, ret);
45 	return ret;
46 }
47 EXPORT_SYMBOL_GPL(__mt76u_vendor_request);
48 
49 int mt76u_vendor_request(struct mt76_dev *dev, u8 req,
50 			 u8 req_type, u16 val, u16 offset,
51 			 void *buf, size_t len)
52 {
53 	int ret;
54 
55 	mutex_lock(&dev->usb.usb_ctrl_mtx);
56 	ret = __mt76u_vendor_request(dev, req, req_type,
57 				     val, offset, buf, len);
58 	trace_usb_reg_wr(dev, offset, val);
59 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
60 
61 	return ret;
62 }
63 EXPORT_SYMBOL_GPL(mt76u_vendor_request);
64 
65 u32 ___mt76u_rr(struct mt76_dev *dev, u8 req, u8 req_type, u32 addr)
66 {
67 	struct mt76_usb *usb = &dev->usb;
68 	u32 data = ~0;
69 	int ret;
70 
71 	ret = __mt76u_vendor_request(dev, req, req_type, addr >> 16,
72 				     addr, usb->data, sizeof(__le32));
73 	if (ret == sizeof(__le32))
74 		data = get_unaligned_le32(usb->data);
75 	trace_usb_reg_rr(dev, addr, data);
76 
77 	return data;
78 }
79 EXPORT_SYMBOL_GPL(___mt76u_rr);
80 
81 static u32 __mt76u_rr(struct mt76_dev *dev, u32 addr)
82 {
83 	u8 req;
84 
85 	switch (addr & MT_VEND_TYPE_MASK) {
86 	case MT_VEND_TYPE_EEPROM:
87 		req = MT_VEND_READ_EEPROM;
88 		break;
89 	case MT_VEND_TYPE_CFG:
90 		req = MT_VEND_READ_CFG;
91 		break;
92 	default:
93 		req = MT_VEND_MULTI_READ;
94 		break;
95 	}
96 
97 	return ___mt76u_rr(dev, req, USB_DIR_IN | USB_TYPE_VENDOR,
98 			   addr & ~MT_VEND_TYPE_MASK);
99 }
100 
101 static u32 mt76u_rr(struct mt76_dev *dev, u32 addr)
102 {
103 	u32 ret;
104 
105 	mutex_lock(&dev->usb.usb_ctrl_mtx);
106 	ret = __mt76u_rr(dev, addr);
107 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
108 
109 	return ret;
110 }
111 
112 void ___mt76u_wr(struct mt76_dev *dev, u8 req, u8 req_type,
113 		 u32 addr, u32 val)
114 {
115 	struct mt76_usb *usb = &dev->usb;
116 
117 	put_unaligned_le32(val, usb->data);
118 	__mt76u_vendor_request(dev, req, req_type, addr >> 16,
119 			       addr, usb->data, sizeof(__le32));
120 	trace_usb_reg_wr(dev, addr, val);
121 }
122 EXPORT_SYMBOL_GPL(___mt76u_wr);
123 
124 static void __mt76u_wr(struct mt76_dev *dev, u32 addr, u32 val)
125 {
126 	u8 req;
127 
128 	switch (addr & MT_VEND_TYPE_MASK) {
129 	case MT_VEND_TYPE_CFG:
130 		req = MT_VEND_WRITE_CFG;
131 		break;
132 	default:
133 		req = MT_VEND_MULTI_WRITE;
134 		break;
135 	}
136 	___mt76u_wr(dev, req, USB_DIR_OUT | USB_TYPE_VENDOR,
137 		    addr & ~MT_VEND_TYPE_MASK, val);
138 }
139 
140 static void mt76u_wr(struct mt76_dev *dev, u32 addr, u32 val)
141 {
142 	mutex_lock(&dev->usb.usb_ctrl_mtx);
143 	__mt76u_wr(dev, addr, val);
144 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
145 }
146 
147 static u32 mt76u_rmw(struct mt76_dev *dev, u32 addr,
148 		     u32 mask, u32 val)
149 {
150 	mutex_lock(&dev->usb.usb_ctrl_mtx);
151 	val |= __mt76u_rr(dev, addr) & ~mask;
152 	__mt76u_wr(dev, addr, val);
153 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
154 
155 	return val;
156 }
157 
158 static void mt76u_copy(struct mt76_dev *dev, u32 offset,
159 		       const void *data, int len)
160 {
161 	struct mt76_usb *usb = &dev->usb;
162 	const u8 *val = data;
163 	int ret;
164 	int current_batch_size;
165 	int i = 0;
166 
167 	/* Assure that always a multiple of 4 bytes are copied,
168 	 * otherwise beacons can be corrupted.
169 	 * See: "mt76: round up length on mt76_wr_copy"
170 	 * Commit 850e8f6fbd5d0003b0
171 	 */
172 	len = round_up(len, 4);
173 
174 	mutex_lock(&usb->usb_ctrl_mtx);
175 	while (i < len) {
176 		current_batch_size = min_t(int, usb->data_len, len - i);
177 		memcpy(usb->data, val + i, current_batch_size);
178 		ret = __mt76u_vendor_request(dev, MT_VEND_MULTI_WRITE,
179 					     USB_DIR_OUT | USB_TYPE_VENDOR,
180 					     0, offset + i, usb->data,
181 					     current_batch_size);
182 		if (ret < 0)
183 			break;
184 
185 		i += current_batch_size;
186 	}
187 	mutex_unlock(&usb->usb_ctrl_mtx);
188 }
189 
190 void mt76u_read_copy(struct mt76_dev *dev, u32 offset,
191 		     void *data, int len)
192 {
193 	struct mt76_usb *usb = &dev->usb;
194 	int i = 0, batch_len, ret;
195 	u8 *val = data;
196 
197 	len = round_up(len, 4);
198 	mutex_lock(&usb->usb_ctrl_mtx);
199 	while (i < len) {
200 		batch_len = min_t(int, usb->data_len, len - i);
201 		ret = __mt76u_vendor_request(dev, MT_VEND_READ_EXT,
202 					     USB_DIR_IN | USB_TYPE_VENDOR,
203 					     (offset + i) >> 16, offset + i,
204 					     usb->data, batch_len);
205 		if (ret < 0)
206 			break;
207 
208 		memcpy(val + i, usb->data, batch_len);
209 		i += batch_len;
210 	}
211 	mutex_unlock(&usb->usb_ctrl_mtx);
212 }
213 EXPORT_SYMBOL_GPL(mt76u_read_copy);
214 
215 void mt76u_single_wr(struct mt76_dev *dev, const u8 req,
216 		     const u16 offset, const u32 val)
217 {
218 	mutex_lock(&dev->usb.usb_ctrl_mtx);
219 	__mt76u_vendor_request(dev, req,
220 			       USB_DIR_OUT | USB_TYPE_VENDOR,
221 			       val & 0xffff, offset, NULL, 0);
222 	__mt76u_vendor_request(dev, req,
223 			       USB_DIR_OUT | USB_TYPE_VENDOR,
224 			       val >> 16, offset + 2, NULL, 0);
225 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
226 }
227 EXPORT_SYMBOL_GPL(mt76u_single_wr);
228 
229 static int
230 mt76u_req_wr_rp(struct mt76_dev *dev, u32 base,
231 		const struct mt76_reg_pair *data, int len)
232 {
233 	struct mt76_usb *usb = &dev->usb;
234 
235 	mutex_lock(&usb->usb_ctrl_mtx);
236 	while (len > 0) {
237 		__mt76u_wr(dev, base + data->reg, data->value);
238 		len--;
239 		data++;
240 	}
241 	mutex_unlock(&usb->usb_ctrl_mtx);
242 
243 	return 0;
244 }
245 
246 static int
247 mt76u_wr_rp(struct mt76_dev *dev, u32 base,
248 	    const struct mt76_reg_pair *data, int n)
249 {
250 	if (test_bit(MT76_STATE_MCU_RUNNING, &dev->phy.state))
251 		return dev->mcu_ops->mcu_wr_rp(dev, base, data, n);
252 	else
253 		return mt76u_req_wr_rp(dev, base, data, n);
254 }
255 
256 static int
257 mt76u_req_rd_rp(struct mt76_dev *dev, u32 base, struct mt76_reg_pair *data,
258 		int len)
259 {
260 	struct mt76_usb *usb = &dev->usb;
261 
262 	mutex_lock(&usb->usb_ctrl_mtx);
263 	while (len > 0) {
264 		data->value = __mt76u_rr(dev, base + data->reg);
265 		len--;
266 		data++;
267 	}
268 	mutex_unlock(&usb->usb_ctrl_mtx);
269 
270 	return 0;
271 }
272 
273 static int
274 mt76u_rd_rp(struct mt76_dev *dev, u32 base,
275 	    struct mt76_reg_pair *data, int n)
276 {
277 	if (test_bit(MT76_STATE_MCU_RUNNING, &dev->phy.state))
278 		return dev->mcu_ops->mcu_rd_rp(dev, base, data, n);
279 	else
280 		return mt76u_req_rd_rp(dev, base, data, n);
281 }
282 
283 static bool mt76u_check_sg(struct mt76_dev *dev)
284 {
285 	struct usb_interface *uintf = to_usb_interface(dev->dev);
286 	struct usb_device *udev = interface_to_usbdev(uintf);
287 
288 	return (!disable_usb_sg && udev->bus->sg_tablesize > 0 &&
289 		(udev->bus->no_sg_constraint ||
290 		 udev->speed == USB_SPEED_WIRELESS));
291 }
292 
293 static int
294 mt76u_set_endpoints(struct usb_interface *intf,
295 		    struct mt76_usb *usb)
296 {
297 	struct usb_host_interface *intf_desc = intf->cur_altsetting;
298 	struct usb_endpoint_descriptor *ep_desc;
299 	int i, in_ep = 0, out_ep = 0;
300 
301 	for (i = 0; i < intf_desc->desc.bNumEndpoints; i++) {
302 		ep_desc = &intf_desc->endpoint[i].desc;
303 
304 		if (usb_endpoint_is_bulk_in(ep_desc) &&
305 		    in_ep < __MT_EP_IN_MAX) {
306 			usb->in_ep[in_ep] = usb_endpoint_num(ep_desc);
307 			in_ep++;
308 		} else if (usb_endpoint_is_bulk_out(ep_desc) &&
309 			   out_ep < __MT_EP_OUT_MAX) {
310 			usb->out_ep[out_ep] = usb_endpoint_num(ep_desc);
311 			out_ep++;
312 		}
313 	}
314 
315 	if (in_ep != __MT_EP_IN_MAX || out_ep != __MT_EP_OUT_MAX)
316 		return -EINVAL;
317 	return 0;
318 }
319 
320 static int
321 mt76u_fill_rx_sg(struct mt76_dev *dev, struct mt76_queue *q, struct urb *urb,
322 		 int nsgs, gfp_t gfp)
323 {
324 	int i;
325 
326 	for (i = 0; i < nsgs; i++) {
327 		struct page *page;
328 		void *data;
329 		int offset;
330 
331 		data = page_frag_alloc(&q->rx_page, q->buf_size, gfp);
332 		if (!data)
333 			break;
334 
335 		page = virt_to_head_page(data);
336 		offset = data - page_address(page);
337 		sg_set_page(&urb->sg[i], page, q->buf_size, offset);
338 	}
339 
340 	if (i < nsgs) {
341 		int j;
342 
343 		for (j = nsgs; j < urb->num_sgs; j++)
344 			skb_free_frag(sg_virt(&urb->sg[j]));
345 		urb->num_sgs = i;
346 	}
347 
348 	urb->num_sgs = max_t(int, i, urb->num_sgs);
349 	urb->transfer_buffer_length = urb->num_sgs * q->buf_size;
350 	sg_init_marker(urb->sg, urb->num_sgs);
351 
352 	return i ? : -ENOMEM;
353 }
354 
355 static int
356 mt76u_refill_rx(struct mt76_dev *dev, struct mt76_queue *q,
357 		struct urb *urb, int nsgs, gfp_t gfp)
358 {
359 	enum mt76_rxq_id qid = q - &dev->q_rx[MT_RXQ_MAIN];
360 
361 	if (qid == MT_RXQ_MAIN && dev->usb.sg_en)
362 		return mt76u_fill_rx_sg(dev, q, urb, nsgs, gfp);
363 
364 	urb->transfer_buffer_length = q->buf_size;
365 	urb->transfer_buffer = page_frag_alloc(&q->rx_page, q->buf_size, gfp);
366 
367 	return urb->transfer_buffer ? 0 : -ENOMEM;
368 }
369 
370 static int
371 mt76u_urb_alloc(struct mt76_dev *dev, struct mt76_queue_entry *e,
372 		int sg_max_size)
373 {
374 	unsigned int size = sizeof(struct urb);
375 
376 	if (dev->usb.sg_en)
377 		size += sg_max_size * sizeof(struct scatterlist);
378 
379 	e->urb = kzalloc(size, GFP_KERNEL);
380 	if (!e->urb)
381 		return -ENOMEM;
382 
383 	usb_init_urb(e->urb);
384 
385 	if (dev->usb.sg_en && sg_max_size > 0)
386 		e->urb->sg = (struct scatterlist *)(e->urb + 1);
387 
388 	return 0;
389 }
390 
391 static int
392 mt76u_rx_urb_alloc(struct mt76_dev *dev, struct mt76_queue *q,
393 		   struct mt76_queue_entry *e)
394 {
395 	enum mt76_rxq_id qid = q - &dev->q_rx[MT_RXQ_MAIN];
396 	int err, sg_size;
397 
398 	sg_size = qid == MT_RXQ_MAIN ? MT_RX_SG_MAX_SIZE : 0;
399 	err = mt76u_urb_alloc(dev, e, sg_size);
400 	if (err)
401 		return err;
402 
403 	return mt76u_refill_rx(dev, q, e->urb, sg_size, GFP_KERNEL);
404 }
405 
406 static void mt76u_urb_free(struct urb *urb)
407 {
408 	int i;
409 
410 	for (i = 0; i < urb->num_sgs; i++)
411 		skb_free_frag(sg_virt(&urb->sg[i]));
412 
413 	if (urb->transfer_buffer)
414 		skb_free_frag(urb->transfer_buffer);
415 
416 	usb_free_urb(urb);
417 }
418 
419 static void
420 mt76u_fill_bulk_urb(struct mt76_dev *dev, int dir, int index,
421 		    struct urb *urb, usb_complete_t complete_fn,
422 		    void *context)
423 {
424 	struct usb_interface *uintf = to_usb_interface(dev->dev);
425 	struct usb_device *udev = interface_to_usbdev(uintf);
426 	unsigned int pipe;
427 
428 	if (dir == USB_DIR_IN)
429 		pipe = usb_rcvbulkpipe(udev, dev->usb.in_ep[index]);
430 	else
431 		pipe = usb_sndbulkpipe(udev, dev->usb.out_ep[index]);
432 
433 	urb->dev = udev;
434 	urb->pipe = pipe;
435 	urb->complete = complete_fn;
436 	urb->context = context;
437 }
438 
439 static struct urb *
440 mt76u_get_next_rx_entry(struct mt76_queue *q)
441 {
442 	struct urb *urb = NULL;
443 	unsigned long flags;
444 
445 	spin_lock_irqsave(&q->lock, flags);
446 	if (q->queued > 0) {
447 		urb = q->entry[q->tail].urb;
448 		q->tail = (q->tail + 1) % q->ndesc;
449 		q->queued--;
450 	}
451 	spin_unlock_irqrestore(&q->lock, flags);
452 
453 	return urb;
454 }
455 
456 static int
457 mt76u_get_rx_entry_len(struct mt76_dev *dev, u8 *data,
458 		       u32 data_len)
459 {
460 	u16 dma_len, min_len;
461 
462 	dma_len = get_unaligned_le16(data);
463 	if (dev->drv->drv_flags & MT_DRV_RX_DMA_HDR)
464 		return dma_len;
465 
466 	min_len = MT_DMA_HDR_LEN + MT_RX_RXWI_LEN + MT_FCE_INFO_LEN;
467 	if (data_len < min_len || !dma_len ||
468 	    dma_len + MT_DMA_HDR_LEN > data_len ||
469 	    (dma_len & 0x3))
470 		return -EINVAL;
471 	return dma_len;
472 }
473 
474 static struct sk_buff *
475 mt76u_build_rx_skb(struct mt76_dev *dev, void *data,
476 		   int len, int buf_size)
477 {
478 	int head_room, drv_flags = dev->drv->drv_flags;
479 	struct sk_buff *skb;
480 
481 	head_room = drv_flags & MT_DRV_RX_DMA_HDR ? 0 : MT_DMA_HDR_LEN;
482 	if (SKB_WITH_OVERHEAD(buf_size) < head_room + len) {
483 		struct page *page;
484 
485 		/* slow path, not enough space for data and
486 		 * skb_shared_info
487 		 */
488 		skb = alloc_skb(MT_SKB_HEAD_LEN, GFP_ATOMIC);
489 		if (!skb)
490 			return NULL;
491 
492 		skb_put_data(skb, data + head_room, MT_SKB_HEAD_LEN);
493 		data += head_room + MT_SKB_HEAD_LEN;
494 		page = virt_to_head_page(data);
495 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
496 				page, data - page_address(page),
497 				len - MT_SKB_HEAD_LEN, buf_size);
498 
499 		return skb;
500 	}
501 
502 	/* fast path */
503 	skb = build_skb(data, buf_size);
504 	if (!skb)
505 		return NULL;
506 
507 	skb_reserve(skb, head_room);
508 	__skb_put(skb, len);
509 
510 	return skb;
511 }
512 
513 static int
514 mt76u_process_rx_entry(struct mt76_dev *dev, struct urb *urb,
515 		       int buf_size)
516 {
517 	u8 *data = urb->num_sgs ? sg_virt(&urb->sg[0]) : urb->transfer_buffer;
518 	int data_len = urb->num_sgs ? urb->sg[0].length : urb->actual_length;
519 	int len, nsgs = 1, head_room, drv_flags = dev->drv->drv_flags;
520 	struct sk_buff *skb;
521 
522 	if (!test_bit(MT76_STATE_INITIALIZED, &dev->phy.state))
523 		return 0;
524 
525 	len = mt76u_get_rx_entry_len(dev, data, urb->actual_length);
526 	if (len < 0)
527 		return 0;
528 
529 	head_room = drv_flags & MT_DRV_RX_DMA_HDR ? 0 : MT_DMA_HDR_LEN;
530 	data_len = min_t(int, len, data_len - head_room);
531 
532 	if (len == data_len &&
533 	    dev->drv->rx_check && !dev->drv->rx_check(dev, data, data_len))
534 		return 0;
535 
536 	skb = mt76u_build_rx_skb(dev, data, data_len, buf_size);
537 	if (!skb)
538 		return 0;
539 
540 	len -= data_len;
541 	while (len > 0 && nsgs < urb->num_sgs) {
542 		data_len = min_t(int, len, urb->sg[nsgs].length);
543 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
544 				sg_page(&urb->sg[nsgs]),
545 				urb->sg[nsgs].offset, data_len,
546 				buf_size);
547 		len -= data_len;
548 		nsgs++;
549 	}
550 	dev->drv->rx_skb(dev, MT_RXQ_MAIN, skb);
551 
552 	return nsgs;
553 }
554 
555 static void mt76u_complete_rx(struct urb *urb)
556 {
557 	struct mt76_dev *dev = dev_get_drvdata(&urb->dev->dev);
558 	struct mt76_queue *q = urb->context;
559 	unsigned long flags;
560 
561 	trace_rx_urb(dev, urb);
562 
563 	switch (urb->status) {
564 	case -ECONNRESET:
565 	case -ESHUTDOWN:
566 	case -ENOENT:
567 	case -EPROTO:
568 		return;
569 	default:
570 		dev_err_ratelimited(dev->dev, "rx urb failed: %d\n",
571 				    urb->status);
572 		fallthrough;
573 	case 0:
574 		break;
575 	}
576 
577 	spin_lock_irqsave(&q->lock, flags);
578 	if (WARN_ONCE(q->entry[q->head].urb != urb, "rx urb mismatch"))
579 		goto out;
580 
581 	q->head = (q->head + 1) % q->ndesc;
582 	q->queued++;
583 	mt76_worker_schedule(&dev->usb.rx_worker);
584 out:
585 	spin_unlock_irqrestore(&q->lock, flags);
586 }
587 
588 static int
589 mt76u_submit_rx_buf(struct mt76_dev *dev, enum mt76_rxq_id qid,
590 		    struct urb *urb)
591 {
592 	int ep = qid == MT_RXQ_MAIN ? MT_EP_IN_PKT_RX : MT_EP_IN_CMD_RESP;
593 
594 	mt76u_fill_bulk_urb(dev, USB_DIR_IN, ep, urb,
595 			    mt76u_complete_rx, &dev->q_rx[qid]);
596 	trace_submit_urb(dev, urb);
597 
598 	return usb_submit_urb(urb, GFP_ATOMIC);
599 }
600 
601 static void
602 mt76u_process_rx_queue(struct mt76_dev *dev, struct mt76_queue *q)
603 {
604 	int qid = q - &dev->q_rx[MT_RXQ_MAIN];
605 	struct urb *urb;
606 	int err, count;
607 
608 	while (true) {
609 		urb = mt76u_get_next_rx_entry(q);
610 		if (!urb)
611 			break;
612 
613 		count = mt76u_process_rx_entry(dev, urb, q->buf_size);
614 		if (count > 0) {
615 			err = mt76u_refill_rx(dev, q, urb, count, GFP_ATOMIC);
616 			if (err < 0)
617 				break;
618 		}
619 		mt76u_submit_rx_buf(dev, qid, urb);
620 	}
621 	if (qid == MT_RXQ_MAIN) {
622 		local_bh_disable();
623 		mt76_rx_poll_complete(dev, MT_RXQ_MAIN, NULL);
624 		local_bh_enable();
625 	}
626 }
627 
628 static void mt76u_rx_worker(struct mt76_worker *w)
629 {
630 	struct mt76_usb *usb = container_of(w, struct mt76_usb, rx_worker);
631 	struct mt76_dev *dev = container_of(usb, struct mt76_dev, usb);
632 	int i;
633 
634 	rcu_read_lock();
635 	mt76_for_each_q_rx(dev, i)
636 		mt76u_process_rx_queue(dev, &dev->q_rx[i]);
637 	rcu_read_unlock();
638 }
639 
640 static int
641 mt76u_submit_rx_buffers(struct mt76_dev *dev, enum mt76_rxq_id qid)
642 {
643 	struct mt76_queue *q = &dev->q_rx[qid];
644 	unsigned long flags;
645 	int i, err = 0;
646 
647 	spin_lock_irqsave(&q->lock, flags);
648 	for (i = 0; i < q->ndesc; i++) {
649 		err = mt76u_submit_rx_buf(dev, qid, q->entry[i].urb);
650 		if (err < 0)
651 			break;
652 	}
653 	q->head = q->tail = 0;
654 	q->queued = 0;
655 	spin_unlock_irqrestore(&q->lock, flags);
656 
657 	return err;
658 }
659 
660 static int
661 mt76u_alloc_rx_queue(struct mt76_dev *dev, enum mt76_rxq_id qid)
662 {
663 	struct mt76_queue *q = &dev->q_rx[qid];
664 	int i, err;
665 
666 	spin_lock_init(&q->lock);
667 	q->entry = devm_kcalloc(dev->dev,
668 				MT_NUM_RX_ENTRIES, sizeof(*q->entry),
669 				GFP_KERNEL);
670 	if (!q->entry)
671 		return -ENOMEM;
672 
673 	q->ndesc = MT_NUM_RX_ENTRIES;
674 	q->buf_size = PAGE_SIZE;
675 
676 	for (i = 0; i < q->ndesc; i++) {
677 		err = mt76u_rx_urb_alloc(dev, q, &q->entry[i]);
678 		if (err < 0)
679 			return err;
680 	}
681 
682 	return mt76u_submit_rx_buffers(dev, qid);
683 }
684 
685 int mt76u_alloc_mcu_queue(struct mt76_dev *dev)
686 {
687 	return mt76u_alloc_rx_queue(dev, MT_RXQ_MCU);
688 }
689 EXPORT_SYMBOL_GPL(mt76u_alloc_mcu_queue);
690 
691 static void
692 mt76u_free_rx_queue(struct mt76_dev *dev, struct mt76_queue *q)
693 {
694 	struct page *page;
695 	int i;
696 
697 	for (i = 0; i < q->ndesc; i++) {
698 		if (!q->entry[i].urb)
699 			continue;
700 
701 		mt76u_urb_free(q->entry[i].urb);
702 		q->entry[i].urb = NULL;
703 	}
704 
705 	if (!q->rx_page.va)
706 		return;
707 
708 	page = virt_to_page(q->rx_page.va);
709 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
710 	memset(&q->rx_page, 0, sizeof(q->rx_page));
711 }
712 
713 static void mt76u_free_rx(struct mt76_dev *dev)
714 {
715 	int i;
716 
717 	mt76_worker_teardown(&dev->usb.rx_worker);
718 
719 	mt76_for_each_q_rx(dev, i)
720 		mt76u_free_rx_queue(dev, &dev->q_rx[i]);
721 }
722 
723 void mt76u_stop_rx(struct mt76_dev *dev)
724 {
725 	int i;
726 
727 	mt76_worker_disable(&dev->usb.rx_worker);
728 
729 	mt76_for_each_q_rx(dev, i) {
730 		struct mt76_queue *q = &dev->q_rx[i];
731 		int j;
732 
733 		for (j = 0; j < q->ndesc; j++)
734 			usb_poison_urb(q->entry[j].urb);
735 	}
736 }
737 EXPORT_SYMBOL_GPL(mt76u_stop_rx);
738 
739 int mt76u_resume_rx(struct mt76_dev *dev)
740 {
741 	int i;
742 
743 	mt76_for_each_q_rx(dev, i) {
744 		struct mt76_queue *q = &dev->q_rx[i];
745 		int err, j;
746 
747 		for (j = 0; j < q->ndesc; j++)
748 			usb_unpoison_urb(q->entry[j].urb);
749 
750 		err = mt76u_submit_rx_buffers(dev, i);
751 		if (err < 0)
752 			return err;
753 	}
754 
755 	mt76_worker_enable(&dev->usb.rx_worker);
756 
757 	return 0;
758 }
759 EXPORT_SYMBOL_GPL(mt76u_resume_rx);
760 
761 static void mt76u_status_worker(struct mt76_worker *w)
762 {
763 	struct mt76_usb *usb = container_of(w, struct mt76_usb, status_worker);
764 	struct mt76_dev *dev = container_of(usb, struct mt76_dev, usb);
765 	struct mt76_queue_entry entry;
766 	struct mt76_queue *q;
767 	int i;
768 
769 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
770 		q = dev->phy.q_tx[i];
771 		if (!q)
772 			continue;
773 
774 		while (q->queued > 0) {
775 			if (!q->entry[q->tail].done)
776 				break;
777 
778 			entry = q->entry[q->tail];
779 			q->entry[q->tail].done = false;
780 
781 			mt76_queue_tx_complete(dev, q, &entry);
782 		}
783 
784 		if (!q->queued)
785 			wake_up(&dev->tx_wait);
786 
787 		mt76_worker_schedule(&dev->tx_worker);
788 
789 		if (dev->drv->tx_status_data &&
790 		    !test_and_set_bit(MT76_READING_STATS, &dev->phy.state))
791 			queue_work(dev->wq, &dev->usb.stat_work);
792 	}
793 }
794 
795 static void mt76u_tx_status_data(struct work_struct *work)
796 {
797 	struct mt76_usb *usb;
798 	struct mt76_dev *dev;
799 	u8 update = 1;
800 	u16 count = 0;
801 
802 	usb = container_of(work, struct mt76_usb, stat_work);
803 	dev = container_of(usb, struct mt76_dev, usb);
804 
805 	while (true) {
806 		if (test_bit(MT76_REMOVED, &dev->phy.state))
807 			break;
808 
809 		if (!dev->drv->tx_status_data(dev, &update))
810 			break;
811 		count++;
812 	}
813 
814 	if (count && test_bit(MT76_STATE_RUNNING, &dev->phy.state))
815 		queue_work(dev->wq, &usb->stat_work);
816 	else
817 		clear_bit(MT76_READING_STATS, &dev->phy.state);
818 }
819 
820 static void mt76u_complete_tx(struct urb *urb)
821 {
822 	struct mt76_dev *dev = dev_get_drvdata(&urb->dev->dev);
823 	struct mt76_queue_entry *e = urb->context;
824 
825 	if (mt76u_urb_error(urb))
826 		dev_err(dev->dev, "tx urb failed: %d\n", urb->status);
827 	e->done = true;
828 
829 	mt76_worker_schedule(&dev->usb.status_worker);
830 }
831 
832 static int
833 mt76u_tx_setup_buffers(struct mt76_dev *dev, struct sk_buff *skb,
834 		       struct urb *urb)
835 {
836 	urb->transfer_buffer_length = skb->len;
837 
838 	if (!dev->usb.sg_en) {
839 		urb->transfer_buffer = skb->data;
840 		return 0;
841 	}
842 
843 	sg_init_table(urb->sg, MT_TX_SG_MAX_SIZE);
844 	urb->num_sgs = skb_to_sgvec(skb, urb->sg, 0, skb->len);
845 	if (!urb->num_sgs)
846 		return -ENOMEM;
847 
848 	return urb->num_sgs;
849 }
850 
851 static int
852 mt76u_tx_queue_skb(struct mt76_dev *dev, struct mt76_queue *q,
853 		   enum mt76_txq_id qid, struct sk_buff *skb,
854 		   struct mt76_wcid *wcid, struct ieee80211_sta *sta)
855 {
856 	struct mt76_tx_info tx_info = {
857 		.skb = skb,
858 	};
859 	u16 idx = q->head;
860 	int err;
861 
862 	if (q->queued == q->ndesc)
863 		return -ENOSPC;
864 
865 	skb->prev = skb->next = NULL;
866 	err = dev->drv->tx_prepare_skb(dev, NULL, qid, wcid, sta, &tx_info);
867 	if (err < 0)
868 		return err;
869 
870 	err = mt76u_tx_setup_buffers(dev, tx_info.skb, q->entry[idx].urb);
871 	if (err < 0)
872 		return err;
873 
874 	mt76u_fill_bulk_urb(dev, USB_DIR_OUT, q2ep(q->hw_idx),
875 			    q->entry[idx].urb, mt76u_complete_tx,
876 			    &q->entry[idx]);
877 
878 	q->head = (q->head + 1) % q->ndesc;
879 	q->entry[idx].skb = tx_info.skb;
880 	q->entry[idx].wcid = 0xffff;
881 	q->queued++;
882 
883 	return idx;
884 }
885 
886 static void mt76u_tx_kick(struct mt76_dev *dev, struct mt76_queue *q)
887 {
888 	struct urb *urb;
889 	int err;
890 
891 	while (q->first != q->head) {
892 		urb = q->entry[q->first].urb;
893 
894 		trace_submit_urb(dev, urb);
895 		err = usb_submit_urb(urb, GFP_ATOMIC);
896 		if (err < 0) {
897 			if (err == -ENODEV)
898 				set_bit(MT76_REMOVED, &dev->phy.state);
899 			else
900 				dev_err(dev->dev, "tx urb submit failed:%d\n",
901 					err);
902 			break;
903 		}
904 		q->first = (q->first + 1) % q->ndesc;
905 	}
906 }
907 
908 static u8 mt76u_ac_to_hwq(struct mt76_dev *dev, u8 ac)
909 {
910 	if (mt76_chip(dev) == 0x7663) {
911 		static const u8 lmac_queue_map[] = {
912 			/* ac to lmac mapping */
913 			[IEEE80211_AC_BK] = 0,
914 			[IEEE80211_AC_BE] = 1,
915 			[IEEE80211_AC_VI] = 2,
916 			[IEEE80211_AC_VO] = 4,
917 		};
918 
919 		if (WARN_ON(ac >= ARRAY_SIZE(lmac_queue_map)))
920 			return 1; /* BE */
921 
922 		return lmac_queue_map[ac];
923 	}
924 
925 	return mt76_ac_to_hwq(ac);
926 }
927 
928 static int mt76u_alloc_tx(struct mt76_dev *dev)
929 {
930 	struct mt76_queue *q;
931 	int i, j, err;
932 
933 	for (i = 0; i <= MT_TXQ_PSD; i++) {
934 		if (i >= IEEE80211_NUM_ACS) {
935 			dev->phy.q_tx[i] = dev->phy.q_tx[0];
936 			continue;
937 		}
938 
939 		q = devm_kzalloc(dev->dev, sizeof(*q), GFP_KERNEL);
940 		if (!q)
941 			return -ENOMEM;
942 
943 		spin_lock_init(&q->lock);
944 		q->hw_idx = mt76u_ac_to_hwq(dev, i);
945 
946 		dev->phy.q_tx[i] = q;
947 
948 		q->entry = devm_kcalloc(dev->dev,
949 					MT_NUM_TX_ENTRIES, sizeof(*q->entry),
950 					GFP_KERNEL);
951 		if (!q->entry)
952 			return -ENOMEM;
953 
954 		q->ndesc = MT_NUM_TX_ENTRIES;
955 		for (j = 0; j < q->ndesc; j++) {
956 			err = mt76u_urb_alloc(dev, &q->entry[j],
957 					      MT_TX_SG_MAX_SIZE);
958 			if (err < 0)
959 				return err;
960 		}
961 	}
962 	return 0;
963 }
964 
965 static void mt76u_free_tx(struct mt76_dev *dev)
966 {
967 	int i;
968 
969 	mt76_worker_teardown(&dev->usb.status_worker);
970 
971 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
972 		struct mt76_queue *q;
973 		int j;
974 
975 		q = dev->phy.q_tx[i];
976 		if (!q)
977 			continue;
978 
979 		for (j = 0; j < q->ndesc; j++) {
980 			usb_free_urb(q->entry[j].urb);
981 			q->entry[j].urb = NULL;
982 		}
983 	}
984 }
985 
986 void mt76u_stop_tx(struct mt76_dev *dev)
987 {
988 	int ret;
989 
990 	mt76_worker_disable(&dev->usb.status_worker);
991 
992 	ret = wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(&dev->phy),
993 				 HZ / 5);
994 	if (!ret) {
995 		struct mt76_queue_entry entry;
996 		struct mt76_queue *q;
997 		int i, j;
998 
999 		dev_err(dev->dev, "timed out waiting for pending tx\n");
1000 
1001 		for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1002 			q = dev->phy.q_tx[i];
1003 			if (!q)
1004 				continue;
1005 
1006 			for (j = 0; j < q->ndesc; j++)
1007 				usb_kill_urb(q->entry[j].urb);
1008 		}
1009 
1010 		mt76_worker_disable(&dev->tx_worker);
1011 
1012 		/* On device removal we maight queue skb's, but mt76u_tx_kick()
1013 		 * will fail to submit urb, cleanup those skb's manually.
1014 		 */
1015 		for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1016 			q = dev->phy.q_tx[i];
1017 			if (!q)
1018 				continue;
1019 
1020 			while (q->queued > 0) {
1021 				entry = q->entry[q->tail];
1022 				q->entry[q->tail].done = false;
1023 				mt76_queue_tx_complete(dev, q, &entry);
1024 			}
1025 		}
1026 
1027 		mt76_worker_enable(&dev->tx_worker);
1028 	}
1029 
1030 	cancel_work_sync(&dev->usb.stat_work);
1031 	clear_bit(MT76_READING_STATS, &dev->phy.state);
1032 
1033 	mt76_worker_enable(&dev->usb.status_worker);
1034 
1035 	mt76_tx_status_check(dev, true);
1036 }
1037 EXPORT_SYMBOL_GPL(mt76u_stop_tx);
1038 
1039 void mt76u_queues_deinit(struct mt76_dev *dev)
1040 {
1041 	mt76u_stop_rx(dev);
1042 	mt76u_stop_tx(dev);
1043 
1044 	mt76u_free_rx(dev);
1045 	mt76u_free_tx(dev);
1046 }
1047 EXPORT_SYMBOL_GPL(mt76u_queues_deinit);
1048 
1049 int mt76u_alloc_queues(struct mt76_dev *dev)
1050 {
1051 	int err;
1052 
1053 	err = mt76u_alloc_rx_queue(dev, MT_RXQ_MAIN);
1054 	if (err < 0)
1055 		return err;
1056 
1057 	return mt76u_alloc_tx(dev);
1058 }
1059 EXPORT_SYMBOL_GPL(mt76u_alloc_queues);
1060 
1061 static const struct mt76_queue_ops usb_queue_ops = {
1062 	.tx_queue_skb = mt76u_tx_queue_skb,
1063 	.kick = mt76u_tx_kick,
1064 };
1065 
1066 int __mt76u_init(struct mt76_dev *dev, struct usb_interface *intf,
1067 		 struct mt76_bus_ops *ops)
1068 {
1069 	struct usb_device *udev = interface_to_usbdev(intf);
1070 	struct mt76_usb *usb = &dev->usb;
1071 	int err;
1072 
1073 	INIT_WORK(&usb->stat_work, mt76u_tx_status_data);
1074 
1075 	usb->data_len = usb_maxpacket(udev, usb_sndctrlpipe(udev, 0));
1076 	if (usb->data_len < 32)
1077 		usb->data_len = 32;
1078 
1079 	usb->data = devm_kmalloc(dev->dev, usb->data_len, GFP_KERNEL);
1080 	if (!usb->data)
1081 		return -ENOMEM;
1082 
1083 	mutex_init(&usb->usb_ctrl_mtx);
1084 	dev->bus = ops;
1085 	dev->queue_ops = &usb_queue_ops;
1086 
1087 	dev_set_drvdata(&udev->dev, dev);
1088 
1089 	usb->sg_en = mt76u_check_sg(dev);
1090 
1091 	err = mt76u_set_endpoints(intf, usb);
1092 	if (err < 0)
1093 		return err;
1094 
1095 	err = mt76_worker_setup(dev->hw, &usb->rx_worker, mt76u_rx_worker,
1096 				"usb-rx");
1097 	if (err)
1098 		return err;
1099 
1100 	err = mt76_worker_setup(dev->hw, &usb->status_worker,
1101 				mt76u_status_worker, "usb-status");
1102 	if (err)
1103 		return err;
1104 
1105 	sched_set_fifo_low(usb->rx_worker.task);
1106 	sched_set_fifo_low(usb->status_worker.task);
1107 
1108 	return 0;
1109 }
1110 EXPORT_SYMBOL_GPL(__mt76u_init);
1111 
1112 int mt76u_init(struct mt76_dev *dev, struct usb_interface *intf)
1113 {
1114 	static struct mt76_bus_ops bus_ops = {
1115 		.rr = mt76u_rr,
1116 		.wr = mt76u_wr,
1117 		.rmw = mt76u_rmw,
1118 		.read_copy = mt76u_read_copy,
1119 		.write_copy = mt76u_copy,
1120 		.wr_rp = mt76u_wr_rp,
1121 		.rd_rp = mt76u_rd_rp,
1122 		.type = MT76_BUS_USB,
1123 	};
1124 
1125 	return __mt76u_init(dev, intf, &bus_ops);
1126 }
1127 EXPORT_SYMBOL_GPL(mt76u_init);
1128 
1129 MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>");
1130 MODULE_LICENSE("Dual BSD/GPL");
1131