1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause 2 /* 3 * Copyright (C) 2012-2014, 2018-2023 Intel Corporation 4 * Copyright (C) 2013-2015 Intel Mobile Communications GmbH 5 * Copyright (C) 2015-2017 Intel Deutschland GmbH 6 */ 7 #include <linux/etherdevice.h> 8 #include <linux/skbuff.h> 9 #include "iwl-trans.h" 10 #include "mvm.h" 11 #include "fw-api.h" 12 #include "time-sync.h" 13 14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb, 15 int queue, struct ieee80211_sta *sta) 16 { 17 struct iwl_mvm_sta *mvmsta; 18 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 19 struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb); 20 struct iwl_mvm_key_pn *ptk_pn; 21 int res; 22 u8 tid, keyidx; 23 u8 pn[IEEE80211_CCMP_PN_LEN]; 24 u8 *extiv; 25 26 /* do PN checking */ 27 28 /* multicast and non-data only arrives on default queue */ 29 if (!ieee80211_is_data(hdr->frame_control) || 30 is_multicast_ether_addr(hdr->addr1)) 31 return 0; 32 33 /* do not check PN for open AP */ 34 if (!(stats->flag & RX_FLAG_DECRYPTED)) 35 return 0; 36 37 /* 38 * avoid checking for default queue - we don't want to replicate 39 * all the logic that's necessary for checking the PN on fragmented 40 * frames, leave that to mac80211 41 */ 42 if (queue == 0) 43 return 0; 44 45 /* if we are here - this for sure is either CCMP or GCMP */ 46 if (IS_ERR_OR_NULL(sta)) { 47 IWL_DEBUG_DROP(mvm, 48 "expected hw-decrypted unicast frame for station\n"); 49 return -1; 50 } 51 52 mvmsta = iwl_mvm_sta_from_mac80211(sta); 53 54 extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control); 55 keyidx = extiv[3] >> 6; 56 57 ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]); 58 if (!ptk_pn) 59 return -1; 60 61 if (ieee80211_is_data_qos(hdr->frame_control)) 62 tid = ieee80211_get_tid(hdr); 63 else 64 tid = 0; 65 66 /* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */ 67 if (tid >= IWL_MAX_TID_COUNT) 68 return -1; 69 70 /* load pn */ 71 pn[0] = extiv[7]; 72 pn[1] = extiv[6]; 73 pn[2] = extiv[5]; 74 pn[3] = extiv[4]; 75 pn[4] = extiv[1]; 76 pn[5] = extiv[0]; 77 78 res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN); 79 if (res < 0) 80 return -1; 81 if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN)) 82 return -1; 83 84 memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN); 85 stats->flag |= RX_FLAG_PN_VALIDATED; 86 87 return 0; 88 } 89 90 /* iwl_mvm_create_skb Adds the rxb to a new skb */ 91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb, 92 struct ieee80211_hdr *hdr, u16 len, u8 crypt_len, 93 struct iwl_rx_cmd_buffer *rxb) 94 { 95 struct iwl_rx_packet *pkt = rxb_addr(rxb); 96 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 97 unsigned int headlen, fraglen, pad_len = 0; 98 unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control); 99 u8 mic_crc_len = u8_get_bits(desc->mac_flags1, 100 IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1; 101 102 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 103 len -= 2; 104 pad_len = 2; 105 } 106 107 /* 108 * For non monitor interface strip the bytes the RADA might not have 109 * removed (it might be disabled, e.g. for mgmt frames). As a monitor 110 * interface cannot exist with other interfaces, this removal is safe 111 * and sufficient, in monitor mode there's no decryption being done. 112 */ 113 if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS)) 114 len -= mic_crc_len; 115 116 /* If frame is small enough to fit in skb->head, pull it completely. 117 * If not, only pull ieee80211_hdr (including crypto if present, and 118 * an additional 8 bytes for SNAP/ethertype, see below) so that 119 * splice() or TCP coalesce are more efficient. 120 * 121 * Since, in addition, ieee80211_data_to_8023() always pull in at 122 * least 8 bytes (possibly more for mesh) we can do the same here 123 * to save the cost of doing it later. That still doesn't pull in 124 * the actual IP header since the typical case has a SNAP header. 125 * If the latter changes (there are efforts in the standards group 126 * to do so) we should revisit this and ieee80211_data_to_8023(). 127 */ 128 headlen = (len <= skb_tailroom(skb)) ? len : 129 hdrlen + crypt_len + 8; 130 131 /* The firmware may align the packet to DWORD. 132 * The padding is inserted after the IV. 133 * After copying the header + IV skip the padding if 134 * present before copying packet data. 135 */ 136 hdrlen += crypt_len; 137 138 if (unlikely(headlen < hdrlen)) 139 return -EINVAL; 140 141 /* Since data doesn't move data while putting data on skb and that is 142 * the only way we use, data + len is the next place that hdr would be put 143 */ 144 skb_set_mac_header(skb, skb->len); 145 skb_put_data(skb, hdr, hdrlen); 146 skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen); 147 148 /* 149 * If we did CHECKSUM_COMPLETE, the hardware only does it right for 150 * certain cases and starts the checksum after the SNAP. Check if 151 * this is the case - it's easier to just bail out to CHECKSUM_NONE 152 * in the cases the hardware didn't handle, since it's rare to see 153 * such packets, even though the hardware did calculate the checksum 154 * in this case, just starting after the MAC header instead. 155 * 156 * Starting from Bz hardware, it calculates starting directly after 157 * the MAC header, so that matches mac80211's expectation. 158 */ 159 if (skb->ip_summed == CHECKSUM_COMPLETE) { 160 struct { 161 u8 hdr[6]; 162 __be16 type; 163 } __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len); 164 165 if (unlikely(headlen - hdrlen < sizeof(*shdr) || 166 !ether_addr_equal(shdr->hdr, rfc1042_header) || 167 (shdr->type != htons(ETH_P_IP) && 168 shdr->type != htons(ETH_P_ARP) && 169 shdr->type != htons(ETH_P_IPV6) && 170 shdr->type != htons(ETH_P_8021Q) && 171 shdr->type != htons(ETH_P_PAE) && 172 shdr->type != htons(ETH_P_TDLS)))) 173 skb->ip_summed = CHECKSUM_NONE; 174 else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ) 175 /* mac80211 assumes full CSUM including SNAP header */ 176 skb_postpush_rcsum(skb, shdr, sizeof(*shdr)); 177 } 178 179 fraglen = len - headlen; 180 181 if (fraglen) { 182 int offset = (u8 *)hdr + headlen + pad_len - 183 (u8 *)rxb_addr(rxb) + rxb_offset(rxb); 184 185 skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset, 186 fraglen, rxb->truesize); 187 } 188 189 return 0; 190 } 191 192 /* put a TLV on the skb and return data pointer 193 * 194 * Also pad to 4 the len and zero out all data part 195 */ 196 static void * 197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len) 198 { 199 struct ieee80211_radiotap_tlv *tlv; 200 201 tlv = skb_put(skb, sizeof(*tlv)); 202 tlv->type = cpu_to_le16(type); 203 tlv->len = cpu_to_le16(len); 204 return skb_put_zero(skb, ALIGN(len, 4)); 205 } 206 207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm, 208 struct sk_buff *skb) 209 { 210 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 211 struct ieee80211_radiotap_vendor_content *radiotap; 212 const u16 vendor_data_len = sizeof(mvm->cur_aid); 213 214 if (!mvm->cur_aid) 215 return; 216 217 radiotap = iwl_mvm_radiotap_put_tlv(skb, 218 IEEE80211_RADIOTAP_VENDOR_NAMESPACE, 219 sizeof(*radiotap) + vendor_data_len); 220 221 /* Intel OUI */ 222 radiotap->oui[0] = 0xf6; 223 radiotap->oui[1] = 0x54; 224 radiotap->oui[2] = 0x25; 225 /* radiotap sniffer config sub-namespace */ 226 radiotap->oui_subtype = 1; 227 radiotap->vendor_type = 0; 228 229 /* fill the data now */ 230 memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid)); 231 232 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 233 } 234 235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */ 236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm, 237 struct napi_struct *napi, 238 struct sk_buff *skb, int queue, 239 struct ieee80211_sta *sta, 240 struct ieee80211_link_sta *link_sta) 241 { 242 if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) { 243 kfree_skb(skb); 244 return; 245 } 246 247 if (sta && sta->valid_links && link_sta) { 248 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 249 250 rx_status->link_valid = 1; 251 rx_status->link_id = link_sta->link_id; 252 } 253 254 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 255 } 256 257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm, 258 struct ieee80211_rx_status *rx_status, 259 u32 rate_n_flags, int energy_a, 260 int energy_b) 261 { 262 int max_energy; 263 u32 rate_flags = rate_n_flags; 264 265 energy_a = energy_a ? -energy_a : S8_MIN; 266 energy_b = energy_b ? -energy_b : S8_MIN; 267 max_energy = max(energy_a, energy_b); 268 269 IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n", 270 energy_a, energy_b, max_energy); 271 272 rx_status->signal = max_energy; 273 rx_status->chains = 274 (rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS; 275 rx_status->chain_signal[0] = energy_a; 276 rx_status->chain_signal[1] = energy_b; 277 } 278 279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta, 280 struct ieee80211_hdr *hdr, 281 struct iwl_rx_mpdu_desc *desc, 282 u32 status, 283 struct ieee80211_rx_status *stats) 284 { 285 struct wireless_dev *wdev; 286 struct iwl_mvm_sta *mvmsta; 287 struct iwl_mvm_vif *mvmvif; 288 u8 keyid; 289 struct ieee80211_key_conf *key; 290 u32 len = le16_to_cpu(desc->mpdu_len); 291 const u8 *frame = (void *)hdr; 292 293 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE) 294 return 0; 295 296 /* 297 * For non-beacon, we don't really care. But beacons may 298 * be filtered out, and we thus need the firmware's replay 299 * detection, otherwise beacons the firmware previously 300 * filtered could be replayed, or something like that, and 301 * it can filter a lot - though usually only if nothing has 302 * changed. 303 */ 304 if (!ieee80211_is_beacon(hdr->frame_control)) 305 return 0; 306 307 if (!sta) 308 return -1; 309 310 mvmsta = iwl_mvm_sta_from_mac80211(sta); 311 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 312 313 /* key mismatch - will also report !MIC_OK but we shouldn't count it */ 314 if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID)) 315 goto report; 316 317 /* good cases */ 318 if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK && 319 !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) { 320 stats->flag |= RX_FLAG_DECRYPTED; 321 return 0; 322 } 323 324 /* 325 * both keys will have the same cipher and MIC length, use 326 * whichever one is available 327 */ 328 key = rcu_dereference(mvmvif->bcn_prot.keys[0]); 329 if (!key) { 330 key = rcu_dereference(mvmvif->bcn_prot.keys[1]); 331 if (!key) 332 goto report; 333 } 334 335 if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2) 336 goto report; 337 338 /* get the real key ID */ 339 keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2]; 340 /* and if that's the other key, look it up */ 341 if (keyid != key->keyidx) { 342 /* 343 * shouldn't happen since firmware checked, but be safe 344 * in case the MIC length is wrong too, for example 345 */ 346 if (keyid != 6 && keyid != 7) 347 return -1; 348 key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]); 349 if (!key) 350 goto report; 351 } 352 353 /* Report status to mac80211 */ 354 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 355 ieee80211_key_mic_failure(key); 356 else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR) 357 ieee80211_key_replay(key); 358 report: 359 wdev = ieee80211_vif_to_wdev(mvmsta->vif); 360 if (wdev->netdev) 361 cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len); 362 363 return -1; 364 } 365 366 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta, 367 struct ieee80211_hdr *hdr, 368 struct ieee80211_rx_status *stats, u16 phy_info, 369 struct iwl_rx_mpdu_desc *desc, 370 u32 pkt_flags, int queue, u8 *crypt_len) 371 { 372 u32 status = le32_to_cpu(desc->status); 373 374 /* 375 * Drop UNKNOWN frames in aggregation, unless in monitor mode 376 * (where we don't have the keys). 377 * We limit this to aggregation because in TKIP this is a valid 378 * scenario, since we may not have the (correct) TTAK (phase 1 379 * key) in the firmware. 380 */ 381 if (phy_info & IWL_RX_MPDU_PHY_AMPDU && 382 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 383 IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on) 384 return -1; 385 386 if (unlikely(ieee80211_is_mgmt(hdr->frame_control) && 387 !ieee80211_has_protected(hdr->frame_control))) 388 return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats); 389 390 if (!ieee80211_has_protected(hdr->frame_control) || 391 (status & IWL_RX_MPDU_STATUS_SEC_MASK) == 392 IWL_RX_MPDU_STATUS_SEC_NONE) 393 return 0; 394 395 /* TODO: handle packets encrypted with unknown alg */ 396 397 switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) { 398 case IWL_RX_MPDU_STATUS_SEC_CCM: 399 case IWL_RX_MPDU_STATUS_SEC_GCM: 400 BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN); 401 /* alg is CCM: check MIC only */ 402 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 403 return -1; 404 405 stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED; 406 *crypt_len = IEEE80211_CCMP_HDR_LEN; 407 return 0; 408 case IWL_RX_MPDU_STATUS_SEC_TKIP: 409 /* Don't drop the frame and decrypt it in SW */ 410 if (!fw_has_api(&mvm->fw->ucode_capa, 411 IWL_UCODE_TLV_API_DEPRECATE_TTAK) && 412 !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK)) 413 return 0; 414 415 if (mvm->trans->trans_cfg->gen2 && 416 !(status & RX_MPDU_RES_STATUS_MIC_OK)) 417 stats->flag |= RX_FLAG_MMIC_ERROR; 418 419 *crypt_len = IEEE80211_TKIP_IV_LEN; 420 fallthrough; 421 case IWL_RX_MPDU_STATUS_SEC_WEP: 422 if (!(status & IWL_RX_MPDU_STATUS_ICV_OK)) 423 return -1; 424 425 stats->flag |= RX_FLAG_DECRYPTED; 426 if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == 427 IWL_RX_MPDU_STATUS_SEC_WEP) 428 *crypt_len = IEEE80211_WEP_IV_LEN; 429 430 if (pkt_flags & FH_RSCSR_RADA_EN) { 431 stats->flag |= RX_FLAG_ICV_STRIPPED; 432 if (mvm->trans->trans_cfg->gen2) 433 stats->flag |= RX_FLAG_MMIC_STRIPPED; 434 } 435 436 return 0; 437 case IWL_RX_MPDU_STATUS_SEC_EXT_ENC: 438 if (!(status & IWL_RX_MPDU_STATUS_MIC_OK)) 439 return -1; 440 stats->flag |= RX_FLAG_DECRYPTED; 441 return 0; 442 case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC: 443 break; 444 default: 445 /* 446 * Sometimes we can get frames that were not decrypted 447 * because the firmware didn't have the keys yet. This can 448 * happen after connection where we can get multicast frames 449 * before the GTK is installed. 450 * Silently drop those frames. 451 * Also drop un-decrypted frames in monitor mode. 452 */ 453 if (!is_multicast_ether_addr(hdr->addr1) && 454 !mvm->monitor_on && net_ratelimit()) 455 IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status); 456 } 457 458 return 0; 459 } 460 461 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm, 462 struct ieee80211_sta *sta, 463 struct sk_buff *skb, 464 struct iwl_rx_packet *pkt) 465 { 466 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 467 468 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 469 if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) { 470 u16 hwsum = be16_to_cpu(desc->v3.raw_xsum); 471 472 skb->ip_summed = CHECKSUM_COMPLETE; 473 skb->csum = csum_unfold(~(__force __sum16)hwsum); 474 } 475 } else { 476 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 477 struct iwl_mvm_vif *mvmvif; 478 u16 flags = le16_to_cpu(desc->l3l4_flags); 479 u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >> 480 IWL_RX_L3_PROTO_POS); 481 482 mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif); 483 484 if (mvmvif->features & NETIF_F_RXCSUM && 485 flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK && 486 (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK || 487 l3_prot == IWL_RX_L3_TYPE_IPV6 || 488 l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG)) 489 skb->ip_summed = CHECKSUM_UNNECESSARY; 490 } 491 } 492 493 /* 494 * returns true if a packet is a duplicate or invalid tid and should be dropped. 495 * Updates AMSDU PN tracking info 496 */ 497 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue, 498 struct ieee80211_rx_status *rx_status, 499 struct ieee80211_hdr *hdr, 500 struct iwl_rx_mpdu_desc *desc) 501 { 502 struct iwl_mvm_sta *mvm_sta; 503 struct iwl_mvm_rxq_dup_data *dup_data; 504 u8 tid, sub_frame_idx; 505 506 if (WARN_ON(IS_ERR_OR_NULL(sta))) 507 return false; 508 509 mvm_sta = iwl_mvm_sta_from_mac80211(sta); 510 511 if (WARN_ON_ONCE(!mvm_sta->dup_data)) 512 return false; 513 514 dup_data = &mvm_sta->dup_data[queue]; 515 516 /* 517 * Drop duplicate 802.11 retransmissions 518 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery") 519 */ 520 if (ieee80211_is_ctl(hdr->frame_control) || 521 ieee80211_is_qos_nullfunc(hdr->frame_control) || 522 is_multicast_ether_addr(hdr->addr1)) { 523 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 524 return false; 525 } 526 527 if (ieee80211_is_data_qos(hdr->frame_control)) { 528 /* frame has qos control */ 529 tid = ieee80211_get_tid(hdr); 530 if (tid >= IWL_MAX_TID_COUNT) 531 return true; 532 } else { 533 tid = IWL_MAX_TID_COUNT; 534 } 535 536 /* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */ 537 sub_frame_idx = desc->amsdu_info & 538 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 539 540 if (unlikely(ieee80211_has_retry(hdr->frame_control) && 541 dup_data->last_seq[tid] == hdr->seq_ctrl && 542 dup_data->last_sub_frame[tid] >= sub_frame_idx)) 543 return true; 544 545 /* Allow same PN as the first subframe for following sub frames */ 546 if (dup_data->last_seq[tid] == hdr->seq_ctrl && 547 sub_frame_idx > dup_data->last_sub_frame[tid] && 548 desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) 549 rx_status->flag |= RX_FLAG_ALLOW_SAME_PN; 550 551 dup_data->last_seq[tid] = hdr->seq_ctrl; 552 dup_data->last_sub_frame[tid] = sub_frame_idx; 553 554 rx_status->flag |= RX_FLAG_DUP_VALIDATED; 555 556 return false; 557 } 558 559 /* 560 * Returns true if sn2 - buffer_size < sn1 < sn2. 561 * To be used only in order to compare reorder buffer head with NSSN. 562 * We fully trust NSSN unless it is behind us due to reorder timeout. 563 * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN. 564 */ 565 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size) 566 { 567 return ieee80211_sn_less(sn1, sn2) && 568 !ieee80211_sn_less(sn1, sn2 - buffer_size); 569 } 570 571 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn) 572 { 573 if (IWL_MVM_USE_NSSN_SYNC) { 574 struct iwl_mvm_nssn_sync_data notif = { 575 .baid = baid, 576 .nssn = nssn, 577 }; 578 579 iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false, 580 ¬if, sizeof(notif)); 581 } 582 } 583 584 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10) 585 586 enum iwl_mvm_release_flags { 587 IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0), 588 IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1), 589 }; 590 591 static void iwl_mvm_release_frames(struct iwl_mvm *mvm, 592 struct ieee80211_sta *sta, 593 struct napi_struct *napi, 594 struct iwl_mvm_baid_data *baid_data, 595 struct iwl_mvm_reorder_buffer *reorder_buf, 596 u16 nssn, u32 flags) 597 { 598 struct iwl_mvm_reorder_buf_entry *entries = 599 &baid_data->entries[reorder_buf->queue * 600 baid_data->entries_per_queue]; 601 u16 ssn = reorder_buf->head_sn; 602 603 lockdep_assert_held(&reorder_buf->lock); 604 605 /* 606 * We keep the NSSN not too far behind, if we are sync'ing it and it 607 * is more than 2048 ahead of us, it must be behind us. Discard it. 608 * This can happen if the queue that hit the 0 / 2048 seqno was lagging 609 * behind and this queue already processed packets. The next if 610 * would have caught cases where this queue would have processed less 611 * than 64 packets, but it may have processed more than 64 packets. 612 */ 613 if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) && 614 ieee80211_sn_less(nssn, ssn)) 615 goto set_timer; 616 617 /* ignore nssn smaller than head sn - this can happen due to timeout */ 618 if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size)) 619 goto set_timer; 620 621 while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) { 622 int index = ssn % reorder_buf->buf_size; 623 struct sk_buff_head *skb_list = &entries[index].e.frames; 624 struct sk_buff *skb; 625 626 ssn = ieee80211_sn_inc(ssn); 627 if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) && 628 (ssn == 2048 || ssn == 0)) 629 iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn); 630 631 /* 632 * Empty the list. Will have more than one frame for A-MSDU. 633 * Empty list is valid as well since nssn indicates frames were 634 * received. 635 */ 636 while ((skb = __skb_dequeue(skb_list))) { 637 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, 638 reorder_buf->queue, 639 sta, NULL /* FIXME */); 640 reorder_buf->num_stored--; 641 } 642 } 643 reorder_buf->head_sn = nssn; 644 645 set_timer: 646 if (reorder_buf->num_stored && !reorder_buf->removed) { 647 u16 index = reorder_buf->head_sn % reorder_buf->buf_size; 648 649 while (skb_queue_empty(&entries[index].e.frames)) 650 index = (index + 1) % reorder_buf->buf_size; 651 /* modify timer to match next frame's expiration time */ 652 mod_timer(&reorder_buf->reorder_timer, 653 entries[index].e.reorder_time + 1 + 654 RX_REORDER_BUF_TIMEOUT_MQ); 655 } else { 656 del_timer(&reorder_buf->reorder_timer); 657 } 658 } 659 660 void iwl_mvm_reorder_timer_expired(struct timer_list *t) 661 { 662 struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer); 663 struct iwl_mvm_baid_data *baid_data = 664 iwl_mvm_baid_data_from_reorder_buf(buf); 665 struct iwl_mvm_reorder_buf_entry *entries = 666 &baid_data->entries[buf->queue * baid_data->entries_per_queue]; 667 int i; 668 u16 sn = 0, index = 0; 669 bool expired = false; 670 bool cont = false; 671 672 spin_lock(&buf->lock); 673 674 if (!buf->num_stored || buf->removed) { 675 spin_unlock(&buf->lock); 676 return; 677 } 678 679 for (i = 0; i < buf->buf_size ; i++) { 680 index = (buf->head_sn + i) % buf->buf_size; 681 682 if (skb_queue_empty(&entries[index].e.frames)) { 683 /* 684 * If there is a hole and the next frame didn't expire 685 * we want to break and not advance SN 686 */ 687 cont = false; 688 continue; 689 } 690 if (!cont && 691 !time_after(jiffies, entries[index].e.reorder_time + 692 RX_REORDER_BUF_TIMEOUT_MQ)) 693 break; 694 695 expired = true; 696 /* continue until next hole after this expired frames */ 697 cont = true; 698 sn = ieee80211_sn_add(buf->head_sn, i + 1); 699 } 700 701 if (expired) { 702 struct ieee80211_sta *sta; 703 struct iwl_mvm_sta *mvmsta; 704 u8 sta_id = ffs(baid_data->sta_mask) - 1; 705 706 rcu_read_lock(); 707 sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]); 708 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) { 709 rcu_read_unlock(); 710 goto out; 711 } 712 713 mvmsta = iwl_mvm_sta_from_mac80211(sta); 714 715 /* SN is set to the last expired frame + 1 */ 716 IWL_DEBUG_HT(buf->mvm, 717 "Releasing expired frames for sta %u, sn %d\n", 718 sta_id, sn); 719 iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif, 720 sta, baid_data->tid); 721 iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data, 722 buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 723 rcu_read_unlock(); 724 } else { 725 /* 726 * If no frame expired and there are stored frames, index is now 727 * pointing to the first unexpired frame - modify timer 728 * accordingly to this frame. 729 */ 730 mod_timer(&buf->reorder_timer, 731 entries[index].e.reorder_time + 732 1 + RX_REORDER_BUF_TIMEOUT_MQ); 733 } 734 735 out: 736 spin_unlock(&buf->lock); 737 } 738 739 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue, 740 struct iwl_mvm_delba_data *data) 741 { 742 struct iwl_mvm_baid_data *ba_data; 743 struct ieee80211_sta *sta; 744 struct iwl_mvm_reorder_buffer *reorder_buf; 745 u8 baid = data->baid; 746 u32 sta_id; 747 748 if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid)) 749 return; 750 751 rcu_read_lock(); 752 753 ba_data = rcu_dereference(mvm->baid_map[baid]); 754 if (WARN_ON_ONCE(!ba_data)) 755 goto out; 756 757 /* pick any STA ID to find the pointer */ 758 sta_id = ffs(ba_data->sta_mask) - 1; 759 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 760 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 761 goto out; 762 763 reorder_buf = &ba_data->reorder_buf[queue]; 764 765 /* release all frames that are in the reorder buffer to the stack */ 766 spin_lock_bh(&reorder_buf->lock); 767 iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf, 768 ieee80211_sn_add(reorder_buf->head_sn, 769 reorder_buf->buf_size), 770 0); 771 spin_unlock_bh(&reorder_buf->lock); 772 del_timer_sync(&reorder_buf->reorder_timer); 773 774 out: 775 rcu_read_unlock(); 776 } 777 778 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm, 779 struct napi_struct *napi, 780 u8 baid, u16 nssn, int queue, 781 u32 flags) 782 { 783 struct ieee80211_sta *sta; 784 struct iwl_mvm_reorder_buffer *reorder_buf; 785 struct iwl_mvm_baid_data *ba_data; 786 u32 sta_id; 787 788 IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n", 789 baid, nssn); 790 791 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 792 baid >= ARRAY_SIZE(mvm->baid_map))) 793 return; 794 795 rcu_read_lock(); 796 797 ba_data = rcu_dereference(mvm->baid_map[baid]); 798 if (!ba_data) { 799 WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC), 800 "BAID %d not found in map\n", baid); 801 goto out; 802 } 803 804 /* pick any STA ID to find the pointer */ 805 sta_id = ffs(ba_data->sta_mask) - 1; 806 sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]); 807 if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) 808 goto out; 809 810 reorder_buf = &ba_data->reorder_buf[queue]; 811 812 spin_lock_bh(&reorder_buf->lock); 813 iwl_mvm_release_frames(mvm, sta, napi, ba_data, 814 reorder_buf, nssn, flags); 815 spin_unlock_bh(&reorder_buf->lock); 816 817 out: 818 rcu_read_unlock(); 819 } 820 821 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm, 822 struct napi_struct *napi, int queue, 823 const struct iwl_mvm_nssn_sync_data *data) 824 { 825 iwl_mvm_release_frames_from_notif(mvm, napi, data->baid, 826 data->nssn, queue, 827 IWL_MVM_RELEASE_FROM_RSS_SYNC); 828 } 829 830 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi, 831 struct iwl_rx_cmd_buffer *rxb, int queue) 832 { 833 struct iwl_rx_packet *pkt = rxb_addr(rxb); 834 struct iwl_rxq_sync_notification *notif; 835 struct iwl_mvm_internal_rxq_notif *internal_notif; 836 u32 len = iwl_rx_packet_payload_len(pkt); 837 838 notif = (void *)pkt->data; 839 internal_notif = (void *)notif->payload; 840 841 if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif), 842 "invalid notification size %d (%d)", 843 len, (int)(sizeof(*notif) + sizeof(*internal_notif)))) 844 return; 845 len -= sizeof(*notif) + sizeof(*internal_notif); 846 847 if (internal_notif->sync && 848 mvm->queue_sync_cookie != internal_notif->cookie) { 849 WARN_ONCE(1, "Received expired RX queue sync message\n"); 850 return; 851 } 852 853 switch (internal_notif->type) { 854 case IWL_MVM_RXQ_EMPTY: 855 WARN_ONCE(len, "invalid empty notification size %d", len); 856 break; 857 case IWL_MVM_RXQ_NOTIF_DEL_BA: 858 if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data), 859 "invalid delba notification size %d (%d)", 860 len, (int)sizeof(struct iwl_mvm_delba_data))) 861 break; 862 iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data); 863 break; 864 case IWL_MVM_RXQ_NSSN_SYNC: 865 if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data), 866 "invalid nssn sync notification size %d (%d)", 867 len, (int)sizeof(struct iwl_mvm_nssn_sync_data))) 868 break; 869 iwl_mvm_nssn_sync(mvm, napi, queue, 870 (void *)internal_notif->data); 871 break; 872 default: 873 WARN_ONCE(1, "Invalid identifier %d", internal_notif->type); 874 } 875 876 if (internal_notif->sync) { 877 WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state), 878 "queue sync: queue %d responded a second time!\n", 879 queue); 880 if (READ_ONCE(mvm->queue_sync_state) == 0) 881 wake_up(&mvm->rx_sync_waitq); 882 } 883 } 884 885 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm, 886 struct ieee80211_sta *sta, int tid, 887 struct iwl_mvm_reorder_buffer *buffer, 888 u32 reorder, u32 gp2, int queue) 889 { 890 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 891 892 if (gp2 != buffer->consec_oldsn_ampdu_gp2) { 893 /* we have a new (A-)MPDU ... */ 894 895 /* 896 * reset counter to 0 if we didn't have any oldsn in 897 * the last A-MPDU (as detected by GP2 being identical) 898 */ 899 if (!buffer->consec_oldsn_prev_drop) 900 buffer->consec_oldsn_drops = 0; 901 902 /* either way, update our tracking state */ 903 buffer->consec_oldsn_ampdu_gp2 = gp2; 904 } else if (buffer->consec_oldsn_prev_drop) { 905 /* 906 * tracking state didn't change, and we had an old SN 907 * indication before - do nothing in this case, we 908 * already noted this one down and are waiting for the 909 * next A-MPDU (by GP2) 910 */ 911 return; 912 } 913 914 /* return unless this MPDU has old SN */ 915 if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN)) 916 return; 917 918 /* update state */ 919 buffer->consec_oldsn_prev_drop = 1; 920 buffer->consec_oldsn_drops++; 921 922 /* if limit is reached, send del BA and reset state */ 923 if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) { 924 IWL_WARN(mvm, 925 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n", 926 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA, 927 sta->addr, queue, tid); 928 ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr); 929 buffer->consec_oldsn_prev_drop = 0; 930 buffer->consec_oldsn_drops = 0; 931 } 932 } 933 934 /* 935 * Returns true if the MPDU was buffered\dropped, false if it should be passed 936 * to upper layer. 937 */ 938 static bool iwl_mvm_reorder(struct iwl_mvm *mvm, 939 struct napi_struct *napi, 940 int queue, 941 struct ieee80211_sta *sta, 942 struct sk_buff *skb, 943 struct iwl_rx_mpdu_desc *desc) 944 { 945 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 946 struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb); 947 struct iwl_mvm_baid_data *baid_data; 948 struct iwl_mvm_reorder_buffer *buffer; 949 struct sk_buff *tail; 950 u32 reorder = le32_to_cpu(desc->reorder_data); 951 bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU; 952 bool last_subframe = 953 desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME; 954 u8 tid = ieee80211_get_tid(hdr); 955 u8 sub_frame_idx = desc->amsdu_info & 956 IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK; 957 struct iwl_mvm_reorder_buf_entry *entries; 958 u32 sta_mask; 959 int index; 960 u16 nssn, sn; 961 u8 baid; 962 963 baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >> 964 IWL_RX_MPDU_REORDER_BAID_SHIFT; 965 966 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000) 967 return false; 968 969 /* 970 * This also covers the case of receiving a Block Ack Request 971 * outside a BA session; we'll pass it to mac80211 and that 972 * then sends a delBA action frame. 973 * This also covers pure monitor mode, in which case we won't 974 * have any BA sessions. 975 */ 976 if (baid == IWL_RX_REORDER_DATA_INVALID_BAID) 977 return false; 978 979 /* no sta yet */ 980 if (WARN_ONCE(IS_ERR_OR_NULL(sta), 981 "Got valid BAID without a valid station assigned\n")) 982 return false; 983 984 /* not a data packet or a bar */ 985 if (!ieee80211_is_back_req(hdr->frame_control) && 986 (!ieee80211_is_data_qos(hdr->frame_control) || 987 is_multicast_ether_addr(hdr->addr1))) 988 return false; 989 990 if (unlikely(!ieee80211_is_data_present(hdr->frame_control))) 991 return false; 992 993 baid_data = rcu_dereference(mvm->baid_map[baid]); 994 if (!baid_data) { 995 IWL_DEBUG_RX(mvm, 996 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 997 baid, reorder); 998 return false; 999 } 1000 1001 rcu_read_lock(); 1002 sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1); 1003 rcu_read_unlock(); 1004 1005 if (IWL_FW_CHECK(mvm, 1006 tid != baid_data->tid || 1007 !(sta_mask & baid_data->sta_mask), 1008 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n", 1009 baid, baid_data->sta_mask, baid_data->tid, 1010 sta_mask, tid)) 1011 return false; 1012 1013 nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK; 1014 sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >> 1015 IWL_RX_MPDU_REORDER_SN_SHIFT; 1016 1017 buffer = &baid_data->reorder_buf[queue]; 1018 entries = &baid_data->entries[queue * baid_data->entries_per_queue]; 1019 1020 spin_lock_bh(&buffer->lock); 1021 1022 if (!buffer->valid) { 1023 if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) { 1024 spin_unlock_bh(&buffer->lock); 1025 return false; 1026 } 1027 buffer->valid = true; 1028 } 1029 1030 if (ieee80211_is_back_req(hdr->frame_control)) { 1031 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1032 buffer, nssn, 0); 1033 goto drop; 1034 } 1035 1036 /* 1037 * If there was a significant jump in the nssn - adjust. 1038 * If the SN is smaller than the NSSN it might need to first go into 1039 * the reorder buffer, in which case we just release up to it and the 1040 * rest of the function will take care of storing it and releasing up to 1041 * the nssn. 1042 * This should not happen. This queue has been lagging and it should 1043 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice 1044 * and update the other queues. 1045 */ 1046 if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size, 1047 buffer->buf_size) || 1048 !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) { 1049 u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn; 1050 1051 iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer, 1052 min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC); 1053 } 1054 1055 iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder, 1056 rx_status->device_timestamp, queue); 1057 1058 /* drop any oudated packets */ 1059 if (ieee80211_sn_less(sn, buffer->head_sn)) 1060 goto drop; 1061 1062 /* release immediately if allowed by nssn and no stored frames */ 1063 if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) { 1064 if (iwl_mvm_is_sn_less(buffer->head_sn, nssn, 1065 buffer->buf_size) && 1066 (!amsdu || last_subframe)) { 1067 /* 1068 * If we crossed the 2048 or 0 SN, notify all the 1069 * queues. This is done in order to avoid having a 1070 * head_sn that lags behind for too long. When that 1071 * happens, we can get to a situation where the head_sn 1072 * is within the interval [nssn - buf_size : nssn] 1073 * which will make us think that the nssn is a packet 1074 * that we already freed because of the reordering 1075 * buffer and we will ignore it. So maintain the 1076 * head_sn somewhat updated across all the queues: 1077 * when it crosses 0 and 2048. 1078 */ 1079 if (sn == 2048 || sn == 0) 1080 iwl_mvm_sync_nssn(mvm, baid, sn); 1081 buffer->head_sn = nssn; 1082 } 1083 /* No need to update AMSDU last SN - we are moving the head */ 1084 spin_unlock_bh(&buffer->lock); 1085 return false; 1086 } 1087 1088 /* 1089 * release immediately if there are no stored frames, and the sn is 1090 * equal to the head. 1091 * This can happen due to reorder timer, where NSSN is behind head_sn. 1092 * When we released everything, and we got the next frame in the 1093 * sequence, according to the NSSN we can't release immediately, 1094 * while technically there is no hole and we can move forward. 1095 */ 1096 if (!buffer->num_stored && sn == buffer->head_sn) { 1097 if (!amsdu || last_subframe) { 1098 if (sn == 2048 || sn == 0) 1099 iwl_mvm_sync_nssn(mvm, baid, sn); 1100 buffer->head_sn = ieee80211_sn_inc(buffer->head_sn); 1101 } 1102 /* No need to update AMSDU last SN - we are moving the head */ 1103 spin_unlock_bh(&buffer->lock); 1104 return false; 1105 } 1106 1107 index = sn % buffer->buf_size; 1108 1109 /* 1110 * Check if we already stored this frame 1111 * As AMSDU is either received or not as whole, logic is simple: 1112 * If we have frames in that position in the buffer and the last frame 1113 * originated from AMSDU had a different SN then it is a retransmission. 1114 * If it is the same SN then if the subframe index is incrementing it 1115 * is the same AMSDU - otherwise it is a retransmission. 1116 */ 1117 tail = skb_peek_tail(&entries[index].e.frames); 1118 if (tail && !amsdu) 1119 goto drop; 1120 else if (tail && (sn != buffer->last_amsdu || 1121 buffer->last_sub_index >= sub_frame_idx)) 1122 goto drop; 1123 1124 /* put in reorder buffer */ 1125 __skb_queue_tail(&entries[index].e.frames, skb); 1126 buffer->num_stored++; 1127 entries[index].e.reorder_time = jiffies; 1128 1129 if (amsdu) { 1130 buffer->last_amsdu = sn; 1131 buffer->last_sub_index = sub_frame_idx; 1132 } 1133 1134 /* 1135 * We cannot trust NSSN for AMSDU sub-frames that are not the last. 1136 * The reason is that NSSN advances on the first sub-frame, and may 1137 * cause the reorder buffer to advance before all the sub-frames arrive. 1138 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with 1139 * SN 1. NSSN for first sub frame will be 3 with the result of driver 1140 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is 1141 * already ahead and it will be dropped. 1142 * If the last sub-frame is not on this queue - we will get frame 1143 * release notification with up to date NSSN. 1144 */ 1145 if (!amsdu || last_subframe) 1146 iwl_mvm_release_frames(mvm, sta, napi, baid_data, 1147 buffer, nssn, 1148 IWL_MVM_RELEASE_SEND_RSS_SYNC); 1149 1150 spin_unlock_bh(&buffer->lock); 1151 return true; 1152 1153 drop: 1154 kfree_skb(skb); 1155 spin_unlock_bh(&buffer->lock); 1156 return true; 1157 } 1158 1159 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm, 1160 u32 reorder_data, u8 baid) 1161 { 1162 unsigned long now = jiffies; 1163 unsigned long timeout; 1164 struct iwl_mvm_baid_data *data; 1165 1166 rcu_read_lock(); 1167 1168 data = rcu_dereference(mvm->baid_map[baid]); 1169 if (!data) { 1170 IWL_DEBUG_RX(mvm, 1171 "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n", 1172 baid, reorder_data); 1173 goto out; 1174 } 1175 1176 if (!data->timeout) 1177 goto out; 1178 1179 timeout = data->timeout; 1180 /* 1181 * Do not update last rx all the time to avoid cache bouncing 1182 * between the rx queues. 1183 * Update it every timeout. Worst case is the session will 1184 * expire after ~ 2 * timeout, which doesn't matter that much. 1185 */ 1186 if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now)) 1187 /* Update is atomic */ 1188 data->last_rx = now; 1189 1190 out: 1191 rcu_read_unlock(); 1192 } 1193 1194 static void iwl_mvm_flip_address(u8 *addr) 1195 { 1196 int i; 1197 u8 mac_addr[ETH_ALEN]; 1198 1199 for (i = 0; i < ETH_ALEN; i++) 1200 mac_addr[i] = addr[ETH_ALEN - i - 1]; 1201 ether_addr_copy(addr, mac_addr); 1202 } 1203 1204 struct iwl_mvm_rx_phy_data { 1205 enum iwl_rx_phy_info_type info_type; 1206 __le32 d0, d1, d2, d3, eht_d4, d5; 1207 __le16 d4; 1208 bool with_data; 1209 bool first_subframe; 1210 __le32 rx_vec[4]; 1211 1212 u32 rate_n_flags; 1213 u32 gp2_on_air_rise; 1214 u16 phy_info; 1215 u8 energy_a, energy_b; 1216 u8 channel; 1217 }; 1218 1219 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm, 1220 struct iwl_mvm_rx_phy_data *phy_data, 1221 struct ieee80211_radiotap_he_mu *he_mu) 1222 { 1223 u32 phy_data2 = le32_to_cpu(phy_data->d2); 1224 u32 phy_data3 = le32_to_cpu(phy_data->d3); 1225 u16 phy_data4 = le16_to_cpu(phy_data->d4); 1226 u32 rate_n_flags = phy_data->rate_n_flags; 1227 1228 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) { 1229 he_mu->flags1 |= 1230 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN | 1231 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN); 1232 1233 he_mu->flags1 |= 1234 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU, 1235 phy_data4), 1236 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU); 1237 1238 he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0, 1239 phy_data2); 1240 he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1, 1241 phy_data3); 1242 he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2, 1243 phy_data2); 1244 he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3, 1245 phy_data3); 1246 } 1247 1248 if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) && 1249 (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) { 1250 he_mu->flags1 |= 1251 cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN | 1252 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN); 1253 1254 he_mu->flags2 |= 1255 le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU, 1256 phy_data4), 1257 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU); 1258 1259 he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0, 1260 phy_data2); 1261 he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1, 1262 phy_data3); 1263 he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2, 1264 phy_data2); 1265 he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3, 1266 phy_data3); 1267 } 1268 } 1269 1270 static void 1271 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data, 1272 struct ieee80211_radiotap_he *he, 1273 struct ieee80211_radiotap_he_mu *he_mu, 1274 struct ieee80211_rx_status *rx_status) 1275 { 1276 /* 1277 * Unfortunately, we have to leave the mac80211 data 1278 * incorrect for the case that we receive an HE-MU 1279 * transmission and *don't* have the HE phy data (due 1280 * to the bits being used for TSF). This shouldn't 1281 * happen though as management frames where we need 1282 * the TSF/timers are not be transmitted in HE-MU. 1283 */ 1284 u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK); 1285 u32 rate_n_flags = phy_data->rate_n_flags; 1286 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1; 1287 u8 offs = 0; 1288 1289 rx_status->bw = RATE_INFO_BW_HE_RU; 1290 1291 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 1292 1293 switch (ru) { 1294 case 0 ... 36: 1295 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26; 1296 offs = ru; 1297 break; 1298 case 37 ... 52: 1299 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52; 1300 offs = ru - 37; 1301 break; 1302 case 53 ... 60: 1303 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 1304 offs = ru - 53; 1305 break; 1306 case 61 ... 64: 1307 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242; 1308 offs = ru - 61; 1309 break; 1310 case 65 ... 66: 1311 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484; 1312 offs = ru - 65; 1313 break; 1314 case 67: 1315 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996; 1316 break; 1317 case 68: 1318 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996; 1319 break; 1320 } 1321 he->data2 |= le16_encode_bits(offs, 1322 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET); 1323 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN | 1324 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN); 1325 if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80)) 1326 he->data2 |= 1327 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC); 1328 1329 #define CHECK_BW(bw) \ 1330 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \ 1331 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \ 1332 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \ 1333 RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS) 1334 CHECK_BW(20); 1335 CHECK_BW(40); 1336 CHECK_BW(80); 1337 CHECK_BW(160); 1338 1339 if (he_mu) 1340 he_mu->flags2 |= 1341 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1342 rate_n_flags), 1343 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW); 1344 else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1) 1345 he->data6 |= 1346 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) | 1347 le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1, 1348 rate_n_flags), 1349 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW); 1350 } 1351 1352 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm, 1353 struct iwl_mvm_rx_phy_data *phy_data, 1354 struct ieee80211_radiotap_he *he, 1355 struct ieee80211_radiotap_he_mu *he_mu, 1356 struct ieee80211_rx_status *rx_status, 1357 int queue) 1358 { 1359 switch (phy_data->info_type) { 1360 case IWL_RX_PHY_INFO_TYPE_NONE: 1361 case IWL_RX_PHY_INFO_TYPE_CCK: 1362 case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY: 1363 case IWL_RX_PHY_INFO_TYPE_HT: 1364 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 1365 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 1366 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 1367 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 1368 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 1369 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 1370 return; 1371 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1372 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN | 1373 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN | 1374 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN | 1375 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN); 1376 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1377 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1), 1378 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1); 1379 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1380 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2), 1381 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2); 1382 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1383 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3), 1384 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3); 1385 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2, 1386 IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4), 1387 IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4); 1388 fallthrough; 1389 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1390 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1391 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1392 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1393 /* HE common */ 1394 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN | 1395 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN | 1396 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN); 1397 he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN | 1398 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN | 1399 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN | 1400 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN); 1401 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1402 IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK), 1403 IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR); 1404 if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB && 1405 phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) { 1406 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN); 1407 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1408 IWL_RX_PHY_DATA0_HE_UPLINK), 1409 IEEE80211_RADIOTAP_HE_DATA3_UL_DL); 1410 } 1411 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1412 IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM), 1413 IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG); 1414 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1415 IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK), 1416 IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD); 1417 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1418 IWL_RX_PHY_DATA0_HE_PE_DISAMBIG), 1419 IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG); 1420 he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1, 1421 IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK), 1422 IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS); 1423 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1424 IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK), 1425 IEEE80211_RADIOTAP_HE_DATA6_TXOP); 1426 he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1427 IWL_RX_PHY_DATA0_HE_DOPPLER), 1428 IEEE80211_RADIOTAP_HE_DATA6_DOPPLER); 1429 break; 1430 } 1431 1432 switch (phy_data->info_type) { 1433 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1434 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1435 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1436 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN); 1437 he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1438 IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK), 1439 IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE); 1440 break; 1441 default: 1442 /* nothing here */ 1443 break; 1444 } 1445 1446 switch (phy_data->info_type) { 1447 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 1448 he_mu->flags1 |= 1449 le16_encode_bits(le16_get_bits(phy_data->d4, 1450 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM), 1451 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM); 1452 he_mu->flags1 |= 1453 le16_encode_bits(le16_get_bits(phy_data->d4, 1454 IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK), 1455 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS); 1456 he_mu->flags2 |= 1457 le16_encode_bits(le16_get_bits(phy_data->d4, 1458 IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK), 1459 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW); 1460 iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu); 1461 fallthrough; 1462 case IWL_RX_PHY_INFO_TYPE_HE_MU: 1463 he_mu->flags2 |= 1464 le16_encode_bits(le32_get_bits(phy_data->d1, 1465 IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK), 1466 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS); 1467 he_mu->flags2 |= 1468 le16_encode_bits(le32_get_bits(phy_data->d1, 1469 IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION), 1470 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP); 1471 fallthrough; 1472 case IWL_RX_PHY_INFO_TYPE_HE_TB: 1473 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 1474 iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status); 1475 break; 1476 case IWL_RX_PHY_INFO_TYPE_HE_SU: 1477 he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN); 1478 he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0, 1479 IWL_RX_PHY_DATA0_HE_BEAM_CHNG), 1480 IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE); 1481 break; 1482 default: 1483 /* nothing */ 1484 break; 1485 } 1486 } 1487 1488 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \ 1489 le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits) 1490 1491 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \ 1492 typeof(enc_bits) _enc_bits = enc_bits; \ 1493 typeof(usig) _usig = usig; \ 1494 (_usig)->mask |= cpu_to_le32(_enc_bits); \ 1495 (_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \ 1496 } while (0) 1497 1498 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1499 eht->data[(rt_data)] |= \ 1500 (cpu_to_le32 \ 1501 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \ 1502 LE32_DEC_ENC(data ## fw_data, \ 1503 IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \ 1504 IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru)) 1505 1506 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \ 1507 __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) 1508 1509 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1 1 1510 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1 2 1511 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2 2 1512 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2 2 1513 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1 3 1514 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1 3 1515 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2 3 1516 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2 4 1517 1518 #define IWL_RX_RU_DATA_A1 2 1519 #define IWL_RX_RU_DATA_A2 2 1520 #define IWL_RX_RU_DATA_B1 2 1521 #define IWL_RX_RU_DATA_B2 3 1522 #define IWL_RX_RU_DATA_C1 3 1523 #define IWL_RX_RU_DATA_C2 3 1524 #define IWL_RX_RU_DATA_D1 4 1525 #define IWL_RX_RU_DATA_D2 4 1526 1527 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru) \ 1528 _IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru, \ 1529 rt_ru, \ 1530 IWL_RX_RU_DATA_ ## fw_ru, \ 1531 fw_ru) 1532 1533 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm, 1534 struct iwl_mvm_rx_phy_data *phy_data, 1535 struct ieee80211_rx_status *rx_status, 1536 struct ieee80211_radiotap_eht *eht, 1537 struct ieee80211_radiotap_eht_usig *usig) 1538 { 1539 if (phy_data->with_data) { 1540 __le32 data1 = phy_data->d1; 1541 __le32 data2 = phy_data->d2; 1542 __le32 data3 = phy_data->d3; 1543 __le32 data4 = phy_data->eht_d4; 1544 __le32 data5 = phy_data->d5; 1545 u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK; 1546 1547 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1548 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1549 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1550 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1551 IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE, 1552 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1553 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4, 1554 IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS, 1555 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1556 IWL_MVM_ENC_USIG_VALUE_MASK 1557 (usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2, 1558 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1559 1560 eht->user_info[0] |= 1561 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) | 1562 LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR, 1563 IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID); 1564 1565 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M); 1566 eht->data[7] |= LE32_DEC_ENC 1567 (data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA, 1568 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS); 1569 1570 /* 1571 * Hardware labels the content channels/RU allocation values 1572 * as follows: 1573 * Content Channel 1 Content Channel 2 1574 * 20 MHz: A1 1575 * 40 MHz: A1 B1 1576 * 80 MHz: A1 C1 B1 D1 1577 * 160 MHz: A1 C1 A2 C2 B1 D1 B2 D2 1578 * 320 MHz: A1 C1 A2 C2 A3 C3 A4 C4 B1 D1 B2 D2 B3 D3 B4 D4 1579 * 1580 * However firmware can only give us A1-D2, so the higher 1581 * frequencies are missing. 1582 */ 1583 1584 switch (phy_bw) { 1585 case RATE_MCS_CHAN_WIDTH_320: 1586 /* additional values are missing in RX metadata */ 1587 case RATE_MCS_CHAN_WIDTH_160: 1588 /* content channel 1 */ 1589 IWL_MVM_ENC_EHT_RU(1_2_1, A2); 1590 IWL_MVM_ENC_EHT_RU(1_2_2, C2); 1591 /* content channel 2 */ 1592 IWL_MVM_ENC_EHT_RU(2_2_1, B2); 1593 IWL_MVM_ENC_EHT_RU(2_2_2, D2); 1594 fallthrough; 1595 case RATE_MCS_CHAN_WIDTH_80: 1596 /* content channel 1 */ 1597 IWL_MVM_ENC_EHT_RU(1_1_2, C1); 1598 /* content channel 2 */ 1599 IWL_MVM_ENC_EHT_RU(2_1_2, D1); 1600 fallthrough; 1601 case RATE_MCS_CHAN_WIDTH_40: 1602 /* content channel 2 */ 1603 IWL_MVM_ENC_EHT_RU(2_1_1, B1); 1604 fallthrough; 1605 case RATE_MCS_CHAN_WIDTH_20: 1606 IWL_MVM_ENC_EHT_RU(1_1_1, A1); 1607 break; 1608 } 1609 } else { 1610 __le32 usig_a1 = phy_data->rx_vec[0]; 1611 __le32 usig_a2 = phy_data->rx_vec[1]; 1612 1613 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1614 IWL_RX_USIG_A1_DISREGARD, 1615 IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD); 1616 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1617 IWL_RX_USIG_A1_VALIDATE, 1618 IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE); 1619 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1620 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1621 IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE); 1622 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1623 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1624 IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE); 1625 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1626 IWL_RX_USIG_A2_EHT_PUNC_CHANNEL, 1627 IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO); 1628 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1629 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8, 1630 IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE); 1631 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1632 IWL_RX_USIG_A2_EHT_SIG_MCS, 1633 IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS); 1634 IWL_MVM_ENC_USIG_VALUE_MASK 1635 (usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM, 1636 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS); 1637 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1638 IWL_RX_USIG_A2_EHT_CRC_OK, 1639 IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC); 1640 } 1641 } 1642 1643 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm, 1644 struct iwl_mvm_rx_phy_data *phy_data, 1645 struct ieee80211_rx_status *rx_status, 1646 struct ieee80211_radiotap_eht *eht, 1647 struct ieee80211_radiotap_eht_usig *usig) 1648 { 1649 if (phy_data->with_data) { 1650 __le32 data5 = phy_data->d5; 1651 1652 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1653 IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP, 1654 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1655 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1656 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1, 1657 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1658 1659 IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5, 1660 IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2, 1661 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1662 } else { 1663 __le32 usig_a1 = phy_data->rx_vec[0]; 1664 __le32 usig_a2 = phy_data->rx_vec[1]; 1665 1666 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1, 1667 IWL_RX_USIG_A1_DISREGARD, 1668 IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD); 1669 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1670 IWL_RX_USIG_A2_EHT_PPDU_TYPE, 1671 IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE); 1672 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1673 IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2, 1674 IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE); 1675 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1676 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1, 1677 IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1); 1678 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1679 IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2, 1680 IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2); 1681 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1682 IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD, 1683 IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD); 1684 IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2, 1685 IWL_RX_USIG_A2_EHT_CRC_OK, 1686 IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC); 1687 } 1688 } 1689 1690 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm, 1691 struct ieee80211_rx_status *rx_status, 1692 struct ieee80211_radiotap_eht *eht) 1693 { 1694 u32 ru = le32_get_bits(eht->data[8], 1695 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1696 enum nl80211_eht_ru_alloc nl_ru; 1697 1698 /* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields 1699 * in an EHT variant User Info field 1700 */ 1701 1702 switch (ru) { 1703 case 0 ... 36: 1704 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26; 1705 break; 1706 case 37 ... 52: 1707 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52; 1708 break; 1709 case 53 ... 60: 1710 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106; 1711 break; 1712 case 61 ... 64: 1713 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242; 1714 break; 1715 case 65 ... 66: 1716 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484; 1717 break; 1718 case 67: 1719 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996; 1720 break; 1721 case 68: 1722 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996; 1723 break; 1724 case 69: 1725 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996; 1726 break; 1727 case 70 ... 81: 1728 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26; 1729 break; 1730 case 82 ... 89: 1731 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26; 1732 break; 1733 case 90 ... 93: 1734 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242; 1735 break; 1736 case 94 ... 95: 1737 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484; 1738 break; 1739 case 96 ... 99: 1740 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242; 1741 break; 1742 case 100 ... 103: 1743 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484; 1744 break; 1745 case 104: 1746 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996; 1747 break; 1748 case 105 ... 106: 1749 nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484; 1750 break; 1751 default: 1752 return; 1753 } 1754 1755 rx_status->bw = RATE_INFO_BW_EHT_RU; 1756 rx_status->eht.ru = nl_ru; 1757 } 1758 1759 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm, 1760 struct iwl_mvm_rx_phy_data *phy_data, 1761 struct ieee80211_rx_status *rx_status, 1762 struct ieee80211_radiotap_eht *eht, 1763 struct ieee80211_radiotap_eht_usig *usig) 1764 1765 { 1766 __le32 data0 = phy_data->d0; 1767 __le32 data1 = phy_data->d1; 1768 __le32 usig_a1 = phy_data->rx_vec[0]; 1769 u8 info_type = phy_data->info_type; 1770 1771 /* Not in EHT range */ 1772 if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU || 1773 info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT) 1774 return; 1775 1776 usig->common |= cpu_to_le32 1777 (IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN | 1778 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN); 1779 if (phy_data->with_data) { 1780 usig->common |= LE32_DEC_ENC(data0, 1781 IWL_RX_PHY_DATA0_EHT_UPLINK, 1782 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1783 usig->common |= LE32_DEC_ENC(data0, 1784 IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK, 1785 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1786 } else { 1787 usig->common |= LE32_DEC_ENC(usig_a1, 1788 IWL_RX_USIG_A1_UL_FLAG, 1789 IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL); 1790 usig->common |= LE32_DEC_ENC(usig_a1, 1791 IWL_RX_USIG_A1_BSS_COLOR, 1792 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR); 1793 } 1794 1795 if (fw_has_capa(&mvm->fw->ucode_capa, 1796 IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) { 1797 usig->common |= 1798 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED); 1799 usig->common |= 1800 LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE, 1801 IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK); 1802 } 1803 1804 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE); 1805 eht->data[0] |= LE32_DEC_ENC(data0, 1806 IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK, 1807 IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE); 1808 1809 /* All RU allocating size/index is in TB format */ 1810 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT); 1811 eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160, 1812 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160); 1813 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0, 1814 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0); 1815 eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7, 1816 IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1); 1817 1818 iwl_mvm_decode_eht_ru(mvm, rx_status, eht); 1819 1820 /* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set 1821 * which is on only in case of monitor mode so no need to check monitor 1822 * mode 1823 */ 1824 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80); 1825 eht->data[1] |= 1826 le32_encode_bits(mvm->monitor_p80, 1827 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80); 1828 1829 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN); 1830 if (phy_data->with_data) 1831 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK, 1832 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1833 else 1834 usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION, 1835 IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP); 1836 1837 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM); 1838 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM, 1839 IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM); 1840 1841 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM); 1842 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK, 1843 IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM); 1844 1845 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM); 1846 eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG, 1847 IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM); 1848 1849 /* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */ 1850 1851 if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK)) 1852 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC); 1853 1854 usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN); 1855 usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER, 1856 IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER); 1857 1858 /* 1859 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE, 1860 * IWL_RX_PHY_DATA1_EHT_TB_LOW_SS 1861 */ 1862 1863 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF); 1864 eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM, 1865 IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF); 1866 1867 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT || 1868 info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB) 1869 iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig); 1870 1871 if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT || 1872 info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU) 1873 iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig); 1874 } 1875 1876 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb, 1877 struct iwl_mvm_rx_phy_data *phy_data, 1878 int queue) 1879 { 1880 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 1881 1882 struct ieee80211_radiotap_eht *eht; 1883 struct ieee80211_radiotap_eht_usig *usig; 1884 size_t eht_len = sizeof(*eht); 1885 1886 u32 rate_n_flags = phy_data->rate_n_flags; 1887 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 1888 /* EHT and HE have the same valus for LTF */ 1889 u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 1890 u16 phy_info = phy_data->phy_info; 1891 u32 bw; 1892 1893 /* u32 for 1 user_info */ 1894 if (phy_data->with_data) 1895 eht_len += sizeof(u32); 1896 1897 eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len); 1898 1899 usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG, 1900 sizeof(*usig)); 1901 rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END; 1902 usig->common |= 1903 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN); 1904 1905 /* specific handling for 320MHz */ 1906 bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags); 1907 if (bw == RATE_MCS_CHAN_WIDTH_320_VAL) 1908 bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT, 1909 le32_to_cpu(phy_data->d0)); 1910 1911 usig->common |= cpu_to_le32 1912 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw)); 1913 1914 /* report the AMPDU-EOF bit on single frames */ 1915 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 1916 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 1917 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1918 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1919 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1920 } 1921 1922 /* update aggregation data for monitor sake on default queue */ 1923 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 1924 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 1925 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 1926 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 1927 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 1928 } 1929 1930 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 1931 iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig); 1932 1933 #define CHECK_TYPE(F) \ 1934 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 1935 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 1936 1937 CHECK_TYPE(SU); 1938 CHECK_TYPE(EXT_SU); 1939 CHECK_TYPE(MU); 1940 CHECK_TYPE(TRIG); 1941 1942 switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) { 1943 case 0: 1944 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 1945 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1946 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 1947 } else { 1948 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1949 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1950 } 1951 break; 1952 case 1: 1953 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6; 1954 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 1955 break; 1956 case 2: 1957 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1958 if (he_type == RATE_MCS_HE_TYPE_TRIG) 1959 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1960 else 1961 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8; 1962 break; 1963 case 3: 1964 if (he_type != RATE_MCS_HE_TYPE_TRIG) { 1965 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 1966 rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2; 1967 } 1968 break; 1969 default: 1970 /* nothing here */ 1971 break; 1972 } 1973 1974 if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) { 1975 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI); 1976 eht->data[0] |= cpu_to_le32 1977 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF, 1978 ltf) | 1979 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI, 1980 rx_status->eht.gi)); 1981 } 1982 1983 1984 if (!phy_data->with_data) { 1985 eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S | 1986 IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S); 1987 eht->data[7] |= 1988 le32_encode_bits(le32_get_bits(phy_data->rx_vec[2], 1989 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK), 1990 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S); 1991 if (rate_n_flags & RATE_MCS_BF_MSK) 1992 eht->data[7] |= 1993 cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S); 1994 } else { 1995 eht->user_info[0] |= 1996 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN | 1997 IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN | 1998 IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O | 1999 IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O | 2000 IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER); 2001 2002 if (rate_n_flags & RATE_MCS_BF_MSK) 2003 eht->user_info[0] |= 2004 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O); 2005 2006 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2007 eht->user_info[0] |= 2008 cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING); 2009 2010 eht->user_info[0] |= cpu_to_le32 2011 (FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS, 2012 FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK, 2013 rate_n_flags)) | 2014 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O, 2015 FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags))); 2016 } 2017 } 2018 2019 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb, 2020 struct iwl_mvm_rx_phy_data *phy_data, 2021 int queue) 2022 { 2023 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2024 struct ieee80211_radiotap_he *he = NULL; 2025 struct ieee80211_radiotap_he_mu *he_mu = NULL; 2026 u32 rate_n_flags = phy_data->rate_n_flags; 2027 u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK; 2028 u8 ltf; 2029 static const struct ieee80211_radiotap_he known = { 2030 .data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN | 2031 IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN | 2032 IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN | 2033 IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN), 2034 .data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN | 2035 IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN), 2036 }; 2037 static const struct ieee80211_radiotap_he_mu mu_known = { 2038 .flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN | 2039 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN | 2040 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN | 2041 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN), 2042 .flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN | 2043 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN), 2044 }; 2045 u16 phy_info = phy_data->phy_info; 2046 2047 he = skb_put_data(skb, &known, sizeof(known)); 2048 rx_status->flag |= RX_FLAG_RADIOTAP_HE; 2049 2050 if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU || 2051 phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) { 2052 he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known)); 2053 rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU; 2054 } 2055 2056 /* report the AMPDU-EOF bit on single frames */ 2057 if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2058 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2059 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2060 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF)) 2061 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2062 } 2063 2064 if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2065 iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status, 2066 queue); 2067 2068 /* update aggregation data for monitor sake on default queue */ 2069 if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) && 2070 (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) { 2071 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN; 2072 if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF)) 2073 rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT; 2074 } 2075 2076 if (he_type == RATE_MCS_HE_TYPE_EXT_SU && 2077 rate_n_flags & RATE_MCS_HE_106T_MSK) { 2078 rx_status->bw = RATE_INFO_BW_HE_RU; 2079 rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106; 2080 } 2081 2082 /* actually data is filled in mac80211 */ 2083 if (he_type == RATE_MCS_HE_TYPE_SU || 2084 he_type == RATE_MCS_HE_TYPE_EXT_SU) 2085 he->data1 |= 2086 cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN); 2087 2088 #define CHECK_TYPE(F) \ 2089 BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F != \ 2090 (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS)) 2091 2092 CHECK_TYPE(SU); 2093 CHECK_TYPE(EXT_SU); 2094 CHECK_TYPE(MU); 2095 CHECK_TYPE(TRIG); 2096 2097 he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS); 2098 2099 if (rate_n_flags & RATE_MCS_BF_MSK) 2100 he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF); 2101 2102 switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >> 2103 RATE_MCS_HE_GI_LTF_POS) { 2104 case 0: 2105 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2106 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2107 else 2108 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2109 if (he_type == RATE_MCS_HE_TYPE_MU) 2110 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2111 else 2112 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X; 2113 break; 2114 case 1: 2115 if (he_type == RATE_MCS_HE_TYPE_TRIG) 2116 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2117 else 2118 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2119 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2120 break; 2121 case 2: 2122 if (he_type == RATE_MCS_HE_TYPE_TRIG) { 2123 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2124 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2125 } else { 2126 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6; 2127 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X; 2128 } 2129 break; 2130 case 3: 2131 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2; 2132 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2133 break; 2134 case 4: 2135 rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8; 2136 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X; 2137 break; 2138 default: 2139 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN; 2140 } 2141 2142 he->data5 |= le16_encode_bits(ltf, 2143 IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE); 2144 } 2145 2146 static void iwl_mvm_decode_lsig(struct sk_buff *skb, 2147 struct iwl_mvm_rx_phy_data *phy_data) 2148 { 2149 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2150 struct ieee80211_radiotap_lsig *lsig; 2151 2152 switch (phy_data->info_type) { 2153 case IWL_RX_PHY_INFO_TYPE_HT: 2154 case IWL_RX_PHY_INFO_TYPE_VHT_SU: 2155 case IWL_RX_PHY_INFO_TYPE_VHT_MU: 2156 case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT: 2157 case IWL_RX_PHY_INFO_TYPE_HE_SU: 2158 case IWL_RX_PHY_INFO_TYPE_HE_MU: 2159 case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT: 2160 case IWL_RX_PHY_INFO_TYPE_HE_TB: 2161 case IWL_RX_PHY_INFO_TYPE_EHT_MU: 2162 case IWL_RX_PHY_INFO_TYPE_EHT_TB: 2163 case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT: 2164 case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT: 2165 lsig = skb_put(skb, sizeof(*lsig)); 2166 lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN); 2167 lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1, 2168 IWL_RX_PHY_DATA1_LSIG_LEN_MASK), 2169 IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH); 2170 rx_status->flag |= RX_FLAG_RADIOTAP_LSIG; 2171 break; 2172 default: 2173 break; 2174 } 2175 } 2176 2177 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band) 2178 { 2179 switch (phy_band) { 2180 case PHY_BAND_24: 2181 return NL80211_BAND_2GHZ; 2182 case PHY_BAND_5: 2183 return NL80211_BAND_5GHZ; 2184 case PHY_BAND_6: 2185 return NL80211_BAND_6GHZ; 2186 default: 2187 WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band); 2188 return NL80211_BAND_5GHZ; 2189 } 2190 } 2191 2192 struct iwl_rx_sta_csa { 2193 bool all_sta_unblocked; 2194 struct ieee80211_vif *vif; 2195 }; 2196 2197 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta) 2198 { 2199 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2200 struct iwl_rx_sta_csa *rx_sta_csa = data; 2201 2202 if (mvmsta->vif != rx_sta_csa->vif) 2203 return; 2204 2205 if (mvmsta->disable_tx) 2206 rx_sta_csa->all_sta_unblocked = false; 2207 } 2208 2209 /* 2210 * Note: requires also rx_status->band to be prefilled, as well 2211 * as phy_data (apart from phy_data->info_type) 2212 */ 2213 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm, 2214 struct sk_buff *skb, 2215 struct iwl_mvm_rx_phy_data *phy_data, 2216 int queue) 2217 { 2218 struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb); 2219 u32 rate_n_flags = phy_data->rate_n_flags; 2220 u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK); 2221 u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2222 bool is_sgi; 2223 2224 phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE; 2225 2226 if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) 2227 phy_data->info_type = 2228 le32_get_bits(phy_data->d1, 2229 IWL_RX_PHY_DATA1_INFO_TYPE_MASK); 2230 2231 /* This may be overridden by iwl_mvm_rx_he() to HE_RU */ 2232 switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) { 2233 case RATE_MCS_CHAN_WIDTH_20: 2234 break; 2235 case RATE_MCS_CHAN_WIDTH_40: 2236 rx_status->bw = RATE_INFO_BW_40; 2237 break; 2238 case RATE_MCS_CHAN_WIDTH_80: 2239 rx_status->bw = RATE_INFO_BW_80; 2240 break; 2241 case RATE_MCS_CHAN_WIDTH_160: 2242 rx_status->bw = RATE_INFO_BW_160; 2243 break; 2244 case RATE_MCS_CHAN_WIDTH_320: 2245 rx_status->bw = RATE_INFO_BW_320; 2246 break; 2247 } 2248 2249 /* must be before L-SIG data */ 2250 if (format == RATE_MCS_HE_MSK) 2251 iwl_mvm_rx_he(mvm, skb, phy_data, queue); 2252 2253 iwl_mvm_decode_lsig(skb, phy_data); 2254 2255 rx_status->device_timestamp = phy_data->gp2_on_air_rise; 2256 rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel, 2257 rx_status->band); 2258 iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags, 2259 phy_data->energy_a, phy_data->energy_b); 2260 2261 /* using TLV format and must be after all fixed len fields */ 2262 if (format == RATE_MCS_EHT_MSK) 2263 iwl_mvm_rx_eht(mvm, skb, phy_data, queue); 2264 2265 if (unlikely(mvm->monitor_on)) 2266 iwl_mvm_add_rtap_sniffer_config(mvm, skb); 2267 2268 is_sgi = format == RATE_MCS_HE_MSK ? 2269 iwl_he_is_sgi(rate_n_flags) : 2270 rate_n_flags & RATE_MCS_SGI_MSK; 2271 2272 if (!(format == RATE_MCS_CCK_MSK) && is_sgi) 2273 rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI; 2274 2275 if (rate_n_flags & RATE_MCS_LDPC_MSK) 2276 rx_status->enc_flags |= RX_ENC_FLAG_LDPC; 2277 2278 switch (format) { 2279 case RATE_MCS_VHT_MSK: 2280 rx_status->encoding = RX_ENC_VHT; 2281 break; 2282 case RATE_MCS_HE_MSK: 2283 rx_status->encoding = RX_ENC_HE; 2284 rx_status->he_dcm = 2285 !!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK); 2286 break; 2287 case RATE_MCS_EHT_MSK: 2288 rx_status->encoding = RX_ENC_EHT; 2289 break; 2290 } 2291 2292 switch (format) { 2293 case RATE_MCS_HT_MSK: 2294 rx_status->encoding = RX_ENC_HT; 2295 rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags); 2296 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2297 break; 2298 case RATE_MCS_VHT_MSK: 2299 case RATE_MCS_HE_MSK: 2300 case RATE_MCS_EHT_MSK: 2301 rx_status->nss = 2302 u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1; 2303 rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK; 2304 rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT; 2305 break; 2306 default: { 2307 int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags, 2308 rx_status->band); 2309 2310 rx_status->rate_idx = rate; 2311 2312 if ((rate < 0 || rate > 0xFF)) { 2313 rx_status->rate_idx = 0; 2314 if (net_ratelimit()) 2315 IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n", 2316 rate_n_flags, rx_status->band); 2317 } 2318 2319 break; 2320 } 2321 } 2322 } 2323 2324 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi, 2325 struct iwl_rx_cmd_buffer *rxb, int queue) 2326 { 2327 struct ieee80211_rx_status *rx_status; 2328 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2329 struct iwl_rx_mpdu_desc *desc = (void *)pkt->data; 2330 struct ieee80211_hdr *hdr; 2331 u32 len; 2332 u32 pkt_len = iwl_rx_packet_payload_len(pkt); 2333 struct ieee80211_sta *sta = NULL; 2334 struct ieee80211_link_sta *link_sta = NULL; 2335 struct sk_buff *skb; 2336 u8 crypt_len = 0; 2337 size_t desc_size; 2338 struct iwl_mvm_rx_phy_data phy_data = {}; 2339 u32 format; 2340 2341 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2342 return; 2343 2344 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) 2345 desc_size = sizeof(*desc); 2346 else 2347 desc_size = IWL_RX_DESC_SIZE_V1; 2348 2349 if (unlikely(pkt_len < desc_size)) { 2350 IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n"); 2351 return; 2352 } 2353 2354 if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) { 2355 phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags); 2356 phy_data.channel = desc->v3.channel; 2357 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise); 2358 phy_data.energy_a = desc->v3.energy_a; 2359 phy_data.energy_b = desc->v3.energy_b; 2360 2361 phy_data.d0 = desc->v3.phy_data0; 2362 phy_data.d1 = desc->v3.phy_data1; 2363 phy_data.d2 = desc->v3.phy_data2; 2364 phy_data.d3 = desc->v3.phy_data3; 2365 phy_data.eht_d4 = desc->phy_eht_data4; 2366 phy_data.d5 = desc->v3.phy_data5; 2367 } else { 2368 phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags); 2369 phy_data.channel = desc->v1.channel; 2370 phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise); 2371 phy_data.energy_a = desc->v1.energy_a; 2372 phy_data.energy_b = desc->v1.energy_b; 2373 2374 phy_data.d0 = desc->v1.phy_data0; 2375 phy_data.d1 = desc->v1.phy_data1; 2376 phy_data.d2 = desc->v1.phy_data2; 2377 phy_data.d3 = desc->v1.phy_data3; 2378 } 2379 2380 if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP, 2381 REPLY_RX_MPDU_CMD, 0) < 4) { 2382 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2383 IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n", 2384 phy_data.rate_n_flags); 2385 } 2386 2387 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2388 2389 len = le16_to_cpu(desc->mpdu_len); 2390 2391 if (unlikely(len + desc_size > pkt_len)) { 2392 IWL_DEBUG_DROP(mvm, "FW lied about packet len\n"); 2393 return; 2394 } 2395 2396 phy_data.with_data = true; 2397 phy_data.phy_info = le16_to_cpu(desc->phy_info); 2398 phy_data.d4 = desc->phy_data4; 2399 2400 hdr = (void *)(pkt->data + desc_size); 2401 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2402 * ieee80211_hdr pulled. 2403 */ 2404 skb = alloc_skb(128, GFP_ATOMIC); 2405 if (!skb) { 2406 IWL_ERR(mvm, "alloc_skb failed\n"); 2407 return; 2408 } 2409 2410 if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) { 2411 /* 2412 * If the device inserted padding it means that (it thought) 2413 * the 802.11 header wasn't a multiple of 4 bytes long. In 2414 * this case, reserve two bytes at the start of the SKB to 2415 * align the payload properly in case we end up copying it. 2416 */ 2417 skb_reserve(skb, 2); 2418 } 2419 2420 rx_status = IEEE80211_SKB_RXCB(skb); 2421 2422 /* 2423 * Keep packets with CRC errors (and with overrun) for monitor mode 2424 * (otherwise the firmware discards them) but mark them as bad. 2425 */ 2426 if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) || 2427 !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) { 2428 IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n", 2429 le32_to_cpu(desc->status)); 2430 rx_status->flag |= RX_FLAG_FAILED_FCS_CRC; 2431 } 2432 2433 /* set the preamble flag if appropriate */ 2434 if (format == RATE_MCS_CCK_MSK && 2435 phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE) 2436 rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE; 2437 2438 if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) { 2439 u64 tsf_on_air_rise; 2440 2441 if (mvm->trans->trans_cfg->device_family >= 2442 IWL_DEVICE_FAMILY_AX210) 2443 tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise); 2444 else 2445 tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise); 2446 2447 rx_status->mactime = tsf_on_air_rise; 2448 /* TSF as indicated by the firmware is at INA time */ 2449 rx_status->flag |= RX_FLAG_MACTIME_PLCP_START; 2450 } 2451 2452 if (iwl_mvm_is_band_in_rx_supported(mvm)) { 2453 u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx); 2454 2455 rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band); 2456 } else { 2457 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2458 NL80211_BAND_2GHZ; 2459 } 2460 2461 /* update aggregation data for monitor sake on default queue */ 2462 if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) { 2463 bool toggle_bit; 2464 2465 toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE; 2466 rx_status->flag |= RX_FLAG_AMPDU_DETAILS; 2467 /* 2468 * Toggle is switched whenever new aggregation starts. Make 2469 * sure ampdu_reference is never 0 so we can later use it to 2470 * see if the frame was really part of an A-MPDU or not. 2471 */ 2472 if (toggle_bit != mvm->ampdu_toggle) { 2473 mvm->ampdu_ref++; 2474 if (mvm->ampdu_ref == 0) 2475 mvm->ampdu_ref++; 2476 mvm->ampdu_toggle = toggle_bit; 2477 phy_data.first_subframe = true; 2478 } 2479 rx_status->ampdu_reference = mvm->ampdu_ref; 2480 } 2481 2482 rcu_read_lock(); 2483 2484 if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) { 2485 u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID); 2486 2487 if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) { 2488 sta = rcu_dereference(mvm->fw_id_to_mac_id[id]); 2489 if (IS_ERR(sta)) 2490 sta = NULL; 2491 link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]); 2492 } 2493 } else if (!is_multicast_ether_addr(hdr->addr2)) { 2494 /* 2495 * This is fine since we prevent two stations with the same 2496 * address from being added. 2497 */ 2498 sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL); 2499 } 2500 2501 if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc, 2502 le32_to_cpu(pkt->len_n_flags), queue, 2503 &crypt_len)) { 2504 kfree_skb(skb); 2505 goto out; 2506 } 2507 2508 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2509 2510 if (sta) { 2511 struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta); 2512 struct ieee80211_vif *tx_blocked_vif = 2513 rcu_dereference(mvm->csa_tx_blocked_vif); 2514 u8 baid = (u8)((le32_to_cpu(desc->reorder_data) & 2515 IWL_RX_MPDU_REORDER_BAID_MASK) >> 2516 IWL_RX_MPDU_REORDER_BAID_SHIFT); 2517 struct iwl_fw_dbg_trigger_tlv *trig; 2518 struct ieee80211_vif *vif = mvmsta->vif; 2519 2520 if (!mvm->tcm.paused && len >= sizeof(*hdr) && 2521 !is_multicast_ether_addr(hdr->addr1) && 2522 ieee80211_is_data(hdr->frame_control) && 2523 time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD)) 2524 schedule_delayed_work(&mvm->tcm.work, 0); 2525 2526 /* 2527 * We have tx blocked stations (with CS bit). If we heard 2528 * frames from a blocked station on a new channel we can 2529 * TX to it again. 2530 */ 2531 if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) { 2532 struct iwl_mvm_vif *mvmvif = 2533 iwl_mvm_vif_from_mac80211(tx_blocked_vif); 2534 struct iwl_rx_sta_csa rx_sta_csa = { 2535 .all_sta_unblocked = true, 2536 .vif = tx_blocked_vif, 2537 }; 2538 2539 if (mvmvif->csa_target_freq == rx_status->freq) 2540 iwl_mvm_sta_modify_disable_tx_ap(mvm, sta, 2541 false); 2542 ieee80211_iterate_stations_atomic(mvm->hw, 2543 iwl_mvm_rx_get_sta_block_tx, 2544 &rx_sta_csa); 2545 2546 if (rx_sta_csa.all_sta_unblocked) { 2547 RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL); 2548 /* Unblock BCAST / MCAST station */ 2549 iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false); 2550 cancel_delayed_work(&mvm->cs_tx_unblock_dwork); 2551 } 2552 } 2553 2554 rs_update_last_rssi(mvm, mvmsta, rx_status); 2555 2556 trig = iwl_fw_dbg_trigger_on(&mvm->fwrt, 2557 ieee80211_vif_to_wdev(vif), 2558 FW_DBG_TRIGGER_RSSI); 2559 2560 if (trig && ieee80211_is_beacon(hdr->frame_control)) { 2561 struct iwl_fw_dbg_trigger_low_rssi *rssi_trig; 2562 s32 rssi; 2563 2564 rssi_trig = (void *)trig->data; 2565 rssi = le32_to_cpu(rssi_trig->rssi); 2566 2567 if (rx_status->signal < rssi) 2568 iwl_fw_dbg_collect_trig(&mvm->fwrt, trig, 2569 NULL); 2570 } 2571 2572 if (ieee80211_is_data(hdr->frame_control)) 2573 iwl_mvm_rx_csum(mvm, sta, skb, pkt); 2574 2575 if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) { 2576 kfree_skb(skb); 2577 goto out; 2578 } 2579 2580 /* 2581 * Our hardware de-aggregates AMSDUs but copies the mac header 2582 * as it to the de-aggregated MPDUs. We need to turn off the 2583 * AMSDU bit in the QoS control ourselves. 2584 * In addition, HW reverses addr3 and addr4 - reverse it back. 2585 */ 2586 if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2587 !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) { 2588 u8 *qc = ieee80211_get_qos_ctl(hdr); 2589 2590 *qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT; 2591 2592 if (mvm->trans->trans_cfg->device_family == 2593 IWL_DEVICE_FAMILY_9000) { 2594 iwl_mvm_flip_address(hdr->addr3); 2595 2596 if (ieee80211_has_a4(hdr->frame_control)) 2597 iwl_mvm_flip_address(hdr->addr4); 2598 } 2599 } 2600 if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) { 2601 u32 reorder_data = le32_to_cpu(desc->reorder_data); 2602 2603 iwl_mvm_agg_rx_received(mvm, reorder_data, baid); 2604 } 2605 } 2606 2607 /* management stuff on default queue */ 2608 if (!queue) { 2609 if (unlikely((ieee80211_is_beacon(hdr->frame_control) || 2610 ieee80211_is_probe_resp(hdr->frame_control)) && 2611 mvm->sched_scan_pass_all == 2612 SCHED_SCAN_PASS_ALL_ENABLED)) 2613 mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND; 2614 2615 if (unlikely(ieee80211_is_beacon(hdr->frame_control) || 2616 ieee80211_is_probe_resp(hdr->frame_control))) 2617 rx_status->boottime_ns = ktime_get_boottime_ns(); 2618 } 2619 2620 if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) { 2621 kfree_skb(skb); 2622 goto out; 2623 } 2624 2625 if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) && 2626 likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) && 2627 likely(!iwl_mvm_mei_filter_scan(mvm, skb))) { 2628 if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 && 2629 (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) && 2630 !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME)) 2631 rx_status->flag |= RX_FLAG_AMSDU_MORE; 2632 2633 iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta, 2634 link_sta); 2635 } 2636 out: 2637 rcu_read_unlock(); 2638 } 2639 2640 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi, 2641 struct iwl_rx_cmd_buffer *rxb, int queue) 2642 { 2643 struct ieee80211_rx_status *rx_status; 2644 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2645 struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data; 2646 u32 rssi; 2647 u32 info_type; 2648 struct ieee80211_sta *sta = NULL; 2649 struct sk_buff *skb; 2650 struct iwl_mvm_rx_phy_data phy_data; 2651 u32 format; 2652 2653 if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status))) 2654 return; 2655 2656 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data))) 2657 return; 2658 2659 rssi = le32_to_cpu(desc->rssi); 2660 info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK; 2661 phy_data.d0 = desc->phy_info[0]; 2662 phy_data.d1 = desc->phy_info[1]; 2663 phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD; 2664 phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time); 2665 phy_data.rate_n_flags = le32_to_cpu(desc->rate); 2666 phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK); 2667 phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK); 2668 phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK); 2669 phy_data.with_data = false; 2670 phy_data.rx_vec[0] = desc->rx_vec[0]; 2671 phy_data.rx_vec[1] = desc->rx_vec[1]; 2672 2673 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2674 RX_NO_DATA_NOTIF, 0) < 2) { 2675 IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n", 2676 phy_data.rate_n_flags); 2677 phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags); 2678 IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n", 2679 phy_data.rate_n_flags); 2680 } 2681 2682 format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK; 2683 2684 if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP, 2685 RX_NO_DATA_NOTIF, 0) >= 3) { 2686 if (unlikely(iwl_rx_packet_payload_len(pkt) < 2687 sizeof(struct iwl_rx_no_data_ver_3))) 2688 /* invalid len for ver 3 */ 2689 return; 2690 phy_data.rx_vec[2] = desc->rx_vec[2]; 2691 phy_data.rx_vec[3] = desc->rx_vec[3]; 2692 } else { 2693 if (format == RATE_MCS_EHT_MSK) 2694 /* no support for EHT before version 3 API */ 2695 return; 2696 } 2697 2698 /* Dont use dev_alloc_skb(), we'll have enough headroom once 2699 * ieee80211_hdr pulled. 2700 */ 2701 skb = alloc_skb(128, GFP_ATOMIC); 2702 if (!skb) { 2703 IWL_ERR(mvm, "alloc_skb failed\n"); 2704 return; 2705 } 2706 2707 rx_status = IEEE80211_SKB_RXCB(skb); 2708 2709 /* 0-length PSDU */ 2710 rx_status->flag |= RX_FLAG_NO_PSDU; 2711 2712 switch (info_type) { 2713 case RX_NO_DATA_INFO_TYPE_NDP: 2714 rx_status->zero_length_psdu_type = 2715 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING; 2716 break; 2717 case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED: 2718 case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED: 2719 rx_status->zero_length_psdu_type = 2720 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED; 2721 break; 2722 default: 2723 rx_status->zero_length_psdu_type = 2724 IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR; 2725 break; 2726 } 2727 2728 rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ : 2729 NL80211_BAND_2GHZ; 2730 2731 iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue); 2732 2733 /* no more radio tap info should be put after this point. 2734 * 2735 * We mark it as mac header, for upper layers to know where 2736 * all radio tap header ends. 2737 */ 2738 skb_reset_mac_header(skb); 2739 2740 /* 2741 * Override the nss from the rx_vec since the rate_n_flags has 2742 * only 2 bits for the nss which gives a max of 4 ss but there 2743 * may be up to 8 spatial streams. 2744 */ 2745 switch (format) { 2746 case RATE_MCS_VHT_MSK: 2747 rx_status->nss = 2748 le32_get_bits(desc->rx_vec[0], 2749 RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1; 2750 break; 2751 case RATE_MCS_HE_MSK: 2752 rx_status->nss = 2753 le32_get_bits(desc->rx_vec[0], 2754 RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1; 2755 break; 2756 case RATE_MCS_EHT_MSK: 2757 rx_status->nss = 2758 le32_get_bits(desc->rx_vec[2], 2759 RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1; 2760 } 2761 2762 rcu_read_lock(); 2763 ieee80211_rx_napi(mvm->hw, sta, skb, napi); 2764 rcu_read_unlock(); 2765 } 2766 2767 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2768 struct iwl_rx_cmd_buffer *rxb, int queue) 2769 { 2770 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2771 struct iwl_frame_release *release = (void *)pkt->data; 2772 2773 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2774 return; 2775 2776 iwl_mvm_release_frames_from_notif(mvm, napi, release->baid, 2777 le16_to_cpu(release->nssn), 2778 queue, 0); 2779 } 2780 2781 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi, 2782 struct iwl_rx_cmd_buffer *rxb, int queue) 2783 { 2784 struct iwl_rx_packet *pkt = rxb_addr(rxb); 2785 struct iwl_bar_frame_release *release = (void *)pkt->data; 2786 unsigned int baid = le32_get_bits(release->ba_info, 2787 IWL_BAR_FRAME_RELEASE_BAID_MASK); 2788 unsigned int nssn = le32_get_bits(release->ba_info, 2789 IWL_BAR_FRAME_RELEASE_NSSN_MASK); 2790 unsigned int sta_id = le32_get_bits(release->sta_tid, 2791 IWL_BAR_FRAME_RELEASE_STA_MASK); 2792 unsigned int tid = le32_get_bits(release->sta_tid, 2793 IWL_BAR_FRAME_RELEASE_TID_MASK); 2794 struct iwl_mvm_baid_data *baid_data; 2795 2796 if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release))) 2797 return; 2798 2799 if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID || 2800 baid >= ARRAY_SIZE(mvm->baid_map))) 2801 return; 2802 2803 rcu_read_lock(); 2804 baid_data = rcu_dereference(mvm->baid_map[baid]); 2805 if (!baid_data) { 2806 IWL_DEBUG_RX(mvm, 2807 "Got valid BAID %d but not allocated, invalid BAR release!\n", 2808 baid); 2809 goto out; 2810 } 2811 2812 if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX || 2813 !(baid_data->sta_mask & BIT(sta_id)), 2814 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n", 2815 baid, baid_data->sta_mask, baid_data->tid, sta_id, 2816 tid)) 2817 goto out; 2818 2819 iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0); 2820 out: 2821 rcu_read_unlock(); 2822 } 2823