xref: /openbmc/linux/drivers/net/wireless/intel/iwlwifi/mvm/rxmq.c (revision 13fd96c975969b28669004a3ed5f2044f7ac3053)
1 // SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause
2 /*
3  * Copyright (C) 2012-2014, 2018-2023 Intel Corporation
4  * Copyright (C) 2013-2015 Intel Mobile Communications GmbH
5  * Copyright (C) 2015-2017 Intel Deutschland GmbH
6  */
7 #include <linux/etherdevice.h>
8 #include <linux/skbuff.h>
9 #include "iwl-trans.h"
10 #include "mvm.h"
11 #include "fw-api.h"
12 #include "time-sync.h"
13 
14 static inline int iwl_mvm_check_pn(struct iwl_mvm *mvm, struct sk_buff *skb,
15 				   int queue, struct ieee80211_sta *sta)
16 {
17 	struct iwl_mvm_sta *mvmsta;
18 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
19 	struct ieee80211_rx_status *stats = IEEE80211_SKB_RXCB(skb);
20 	struct iwl_mvm_key_pn *ptk_pn;
21 	int res;
22 	u8 tid, keyidx;
23 	u8 pn[IEEE80211_CCMP_PN_LEN];
24 	u8 *extiv;
25 
26 	/* do PN checking */
27 
28 	/* multicast and non-data only arrives on default queue */
29 	if (!ieee80211_is_data(hdr->frame_control) ||
30 	    is_multicast_ether_addr(hdr->addr1))
31 		return 0;
32 
33 	/* do not check PN for open AP */
34 	if (!(stats->flag & RX_FLAG_DECRYPTED))
35 		return 0;
36 
37 	/*
38 	 * avoid checking for default queue - we don't want to replicate
39 	 * all the logic that's necessary for checking the PN on fragmented
40 	 * frames, leave that to mac80211
41 	 */
42 	if (queue == 0)
43 		return 0;
44 
45 	/* if we are here - this for sure is either CCMP or GCMP */
46 	if (IS_ERR_OR_NULL(sta)) {
47 		IWL_DEBUG_DROP(mvm,
48 			       "expected hw-decrypted unicast frame for station\n");
49 		return -1;
50 	}
51 
52 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
53 
54 	extiv = (u8 *)hdr + ieee80211_hdrlen(hdr->frame_control);
55 	keyidx = extiv[3] >> 6;
56 
57 	ptk_pn = rcu_dereference(mvmsta->ptk_pn[keyidx]);
58 	if (!ptk_pn)
59 		return -1;
60 
61 	if (ieee80211_is_data_qos(hdr->frame_control))
62 		tid = ieee80211_get_tid(hdr);
63 	else
64 		tid = 0;
65 
66 	/* we don't use HCCA/802.11 QoS TSPECs, so drop such frames */
67 	if (tid >= IWL_MAX_TID_COUNT)
68 		return -1;
69 
70 	/* load pn */
71 	pn[0] = extiv[7];
72 	pn[1] = extiv[6];
73 	pn[2] = extiv[5];
74 	pn[3] = extiv[4];
75 	pn[4] = extiv[1];
76 	pn[5] = extiv[0];
77 
78 	res = memcmp(pn, ptk_pn->q[queue].pn[tid], IEEE80211_CCMP_PN_LEN);
79 	if (res < 0)
80 		return -1;
81 	if (!res && !(stats->flag & RX_FLAG_ALLOW_SAME_PN))
82 		return -1;
83 
84 	memcpy(ptk_pn->q[queue].pn[tid], pn, IEEE80211_CCMP_PN_LEN);
85 	stats->flag |= RX_FLAG_PN_VALIDATED;
86 
87 	return 0;
88 }
89 
90 /* iwl_mvm_create_skb Adds the rxb to a new skb */
91 static int iwl_mvm_create_skb(struct iwl_mvm *mvm, struct sk_buff *skb,
92 			      struct ieee80211_hdr *hdr, u16 len, u8 crypt_len,
93 			      struct iwl_rx_cmd_buffer *rxb)
94 {
95 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
96 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
97 	unsigned int headlen, fraglen, pad_len = 0;
98 	unsigned int hdrlen = ieee80211_hdrlen(hdr->frame_control);
99 	u8 mic_crc_len = u8_get_bits(desc->mac_flags1,
100 				     IWL_RX_MPDU_MFLG1_MIC_CRC_LEN_MASK) << 1;
101 
102 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
103 		len -= 2;
104 		pad_len = 2;
105 	}
106 
107 	/*
108 	 * For non monitor interface strip the bytes the RADA might not have
109 	 * removed (it might be disabled, e.g. for mgmt frames). As a monitor
110 	 * interface cannot exist with other interfaces, this removal is safe
111 	 * and sufficient, in monitor mode there's no decryption being done.
112 	 */
113 	if (len > mic_crc_len && !ieee80211_hw_check(mvm->hw, RX_INCLUDES_FCS))
114 		len -= mic_crc_len;
115 
116 	/* If frame is small enough to fit in skb->head, pull it completely.
117 	 * If not, only pull ieee80211_hdr (including crypto if present, and
118 	 * an additional 8 bytes for SNAP/ethertype, see below) so that
119 	 * splice() or TCP coalesce are more efficient.
120 	 *
121 	 * Since, in addition, ieee80211_data_to_8023() always pull in at
122 	 * least 8 bytes (possibly more for mesh) we can do the same here
123 	 * to save the cost of doing it later. That still doesn't pull in
124 	 * the actual IP header since the typical case has a SNAP header.
125 	 * If the latter changes (there are efforts in the standards group
126 	 * to do so) we should revisit this and ieee80211_data_to_8023().
127 	 */
128 	headlen = (len <= skb_tailroom(skb)) ? len :
129 					       hdrlen + crypt_len + 8;
130 
131 	/* The firmware may align the packet to DWORD.
132 	 * The padding is inserted after the IV.
133 	 * After copying the header + IV skip the padding if
134 	 * present before copying packet data.
135 	 */
136 	hdrlen += crypt_len;
137 
138 	if (unlikely(headlen < hdrlen))
139 		return -EINVAL;
140 
141 	/* Since data doesn't move data while putting data on skb and that is
142 	 * the only way we use, data + len is the next place that hdr would be put
143 	 */
144 	skb_set_mac_header(skb, skb->len);
145 	skb_put_data(skb, hdr, hdrlen);
146 	skb_put_data(skb, (u8 *)hdr + hdrlen + pad_len, headlen - hdrlen);
147 
148 	/*
149 	 * If we did CHECKSUM_COMPLETE, the hardware only does it right for
150 	 * certain cases and starts the checksum after the SNAP. Check if
151 	 * this is the case - it's easier to just bail out to CHECKSUM_NONE
152 	 * in the cases the hardware didn't handle, since it's rare to see
153 	 * such packets, even though the hardware did calculate the checksum
154 	 * in this case, just starting after the MAC header instead.
155 	 *
156 	 * Starting from Bz hardware, it calculates starting directly after
157 	 * the MAC header, so that matches mac80211's expectation.
158 	 */
159 	if (skb->ip_summed == CHECKSUM_COMPLETE) {
160 		struct {
161 			u8 hdr[6];
162 			__be16 type;
163 		} __packed *shdr = (void *)((u8 *)hdr + hdrlen + pad_len);
164 
165 		if (unlikely(headlen - hdrlen < sizeof(*shdr) ||
166 			     !ether_addr_equal(shdr->hdr, rfc1042_header) ||
167 			     (shdr->type != htons(ETH_P_IP) &&
168 			      shdr->type != htons(ETH_P_ARP) &&
169 			      shdr->type != htons(ETH_P_IPV6) &&
170 			      shdr->type != htons(ETH_P_8021Q) &&
171 			      shdr->type != htons(ETH_P_PAE) &&
172 			      shdr->type != htons(ETH_P_TDLS))))
173 			skb->ip_summed = CHECKSUM_NONE;
174 		else if (mvm->trans->trans_cfg->device_family < IWL_DEVICE_FAMILY_BZ)
175 			/* mac80211 assumes full CSUM including SNAP header */
176 			skb_postpush_rcsum(skb, shdr, sizeof(*shdr));
177 	}
178 
179 	fraglen = len - headlen;
180 
181 	if (fraglen) {
182 		int offset = (u8 *)hdr + headlen + pad_len -
183 			     (u8 *)rxb_addr(rxb) + rxb_offset(rxb);
184 
185 		skb_add_rx_frag(skb, 0, rxb_steal_page(rxb), offset,
186 				fraglen, rxb->truesize);
187 	}
188 
189 	return 0;
190 }
191 
192 /* put a TLV on the skb and return data pointer
193  *
194  * Also pad to 4 the len and zero out all data part
195  */
196 static void *
197 iwl_mvm_radiotap_put_tlv(struct sk_buff *skb, u16 type, u16 len)
198 {
199 	struct ieee80211_radiotap_tlv *tlv;
200 
201 	tlv = skb_put(skb, sizeof(*tlv));
202 	tlv->type = cpu_to_le16(type);
203 	tlv->len = cpu_to_le16(len);
204 	return skb_put_zero(skb, ALIGN(len, 4));
205 }
206 
207 static void iwl_mvm_add_rtap_sniffer_config(struct iwl_mvm *mvm,
208 					    struct sk_buff *skb)
209 {
210 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
211 	struct ieee80211_radiotap_vendor_content *radiotap;
212 	const u16 vendor_data_len = sizeof(mvm->cur_aid);
213 
214 	if (!mvm->cur_aid)
215 		return;
216 
217 	radiotap = iwl_mvm_radiotap_put_tlv(skb,
218 					    IEEE80211_RADIOTAP_VENDOR_NAMESPACE,
219 					    sizeof(*radiotap) + vendor_data_len);
220 
221 	/* Intel OUI */
222 	radiotap->oui[0] = 0xf6;
223 	radiotap->oui[1] = 0x54;
224 	radiotap->oui[2] = 0x25;
225 	/* radiotap sniffer config sub-namespace */
226 	radiotap->oui_subtype = 1;
227 	radiotap->vendor_type = 0;
228 
229 	/* fill the data now */
230 	memcpy(radiotap->data, &mvm->cur_aid, sizeof(mvm->cur_aid));
231 
232 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
233 }
234 
235 /* iwl_mvm_pass_packet_to_mac80211 - passes the packet for mac80211 */
236 static void iwl_mvm_pass_packet_to_mac80211(struct iwl_mvm *mvm,
237 					    struct napi_struct *napi,
238 					    struct sk_buff *skb, int queue,
239 					    struct ieee80211_sta *sta,
240 					    struct ieee80211_link_sta *link_sta)
241 {
242 	if (unlikely(iwl_mvm_check_pn(mvm, skb, queue, sta))) {
243 		kfree_skb(skb);
244 		return;
245 	}
246 
247 	if (sta && sta->valid_links && link_sta) {
248 		struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
249 
250 		rx_status->link_valid = 1;
251 		rx_status->link_id = link_sta->link_id;
252 	}
253 
254 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
255 }
256 
257 static void iwl_mvm_get_signal_strength(struct iwl_mvm *mvm,
258 					struct ieee80211_rx_status *rx_status,
259 					u32 rate_n_flags, int energy_a,
260 					int energy_b)
261 {
262 	int max_energy;
263 	u32 rate_flags = rate_n_flags;
264 
265 	energy_a = energy_a ? -energy_a : S8_MIN;
266 	energy_b = energy_b ? -energy_b : S8_MIN;
267 	max_energy = max(energy_a, energy_b);
268 
269 	IWL_DEBUG_STATS(mvm, "energy In A %d B %d, and max %d\n",
270 			energy_a, energy_b, max_energy);
271 
272 	rx_status->signal = max_energy;
273 	rx_status->chains =
274 		(rate_flags & RATE_MCS_ANT_AB_MSK) >> RATE_MCS_ANT_POS;
275 	rx_status->chain_signal[0] = energy_a;
276 	rx_status->chain_signal[1] = energy_b;
277 }
278 
279 static int iwl_mvm_rx_mgmt_prot(struct ieee80211_sta *sta,
280 				struct ieee80211_hdr *hdr,
281 				struct iwl_rx_mpdu_desc *desc,
282 				u32 status,
283 				struct ieee80211_rx_status *stats)
284 {
285 	struct wireless_dev *wdev;
286 	struct iwl_mvm_sta *mvmsta;
287 	struct iwl_mvm_vif *mvmvif;
288 	u8 keyid;
289 	struct ieee80211_key_conf *key;
290 	u32 len = le16_to_cpu(desc->mpdu_len);
291 	const u8 *frame = (void *)hdr;
292 
293 	if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) == IWL_RX_MPDU_STATUS_SEC_NONE)
294 		return 0;
295 
296 	/*
297 	 * For non-beacon, we don't really care. But beacons may
298 	 * be filtered out, and we thus need the firmware's replay
299 	 * detection, otherwise beacons the firmware previously
300 	 * filtered could be replayed, or something like that, and
301 	 * it can filter a lot - though usually only if nothing has
302 	 * changed.
303 	 */
304 	if (!ieee80211_is_beacon(hdr->frame_control))
305 		return 0;
306 
307 	if (!sta)
308 		return -1;
309 
310 	mvmsta = iwl_mvm_sta_from_mac80211(sta);
311 	mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
312 
313 	/* key mismatch - will also report !MIC_OK but we shouldn't count it */
314 	if (!(status & IWL_RX_MPDU_STATUS_KEY_VALID))
315 		goto report;
316 
317 	/* good cases */
318 	if (likely(status & IWL_RX_MPDU_STATUS_MIC_OK &&
319 		   !(status & IWL_RX_MPDU_STATUS_REPLAY_ERROR))) {
320 		stats->flag |= RX_FLAG_DECRYPTED;
321 		return 0;
322 	}
323 
324 	/*
325 	 * both keys will have the same cipher and MIC length, use
326 	 * whichever one is available
327 	 */
328 	key = rcu_dereference(mvmvif->bcn_prot.keys[0]);
329 	if (!key) {
330 		key = rcu_dereference(mvmvif->bcn_prot.keys[1]);
331 		if (!key)
332 			goto report;
333 	}
334 
335 	if (len < key->icv_len + IEEE80211_GMAC_PN_LEN + 2)
336 		goto report;
337 
338 	/* get the real key ID */
339 	keyid = frame[len - key->icv_len - IEEE80211_GMAC_PN_LEN - 2];
340 	/* and if that's the other key, look it up */
341 	if (keyid != key->keyidx) {
342 		/*
343 		 * shouldn't happen since firmware checked, but be safe
344 		 * in case the MIC length is wrong too, for example
345 		 */
346 		if (keyid != 6 && keyid != 7)
347 			return -1;
348 		key = rcu_dereference(mvmvif->bcn_prot.keys[keyid - 6]);
349 		if (!key)
350 			goto report;
351 	}
352 
353 	/* Report status to mac80211 */
354 	if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
355 		ieee80211_key_mic_failure(key);
356 	else if (status & IWL_RX_MPDU_STATUS_REPLAY_ERROR)
357 		ieee80211_key_replay(key);
358 report:
359 	wdev = ieee80211_vif_to_wdev(mvmsta->vif);
360 	if (wdev->netdev)
361 		cfg80211_rx_unprot_mlme_mgmt(wdev->netdev, (void *)hdr, len);
362 
363 	return -1;
364 }
365 
366 static int iwl_mvm_rx_crypto(struct iwl_mvm *mvm, struct ieee80211_sta *sta,
367 			     struct ieee80211_hdr *hdr,
368 			     struct ieee80211_rx_status *stats, u16 phy_info,
369 			     struct iwl_rx_mpdu_desc *desc,
370 			     u32 pkt_flags, int queue, u8 *crypt_len)
371 {
372 	u32 status = le32_to_cpu(desc->status);
373 
374 	/*
375 	 * Drop UNKNOWN frames in aggregation, unless in monitor mode
376 	 * (where we don't have the keys).
377 	 * We limit this to aggregation because in TKIP this is a valid
378 	 * scenario, since we may not have the (correct) TTAK (phase 1
379 	 * key) in the firmware.
380 	 */
381 	if (phy_info & IWL_RX_MPDU_PHY_AMPDU &&
382 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
383 	    IWL_RX_MPDU_STATUS_SEC_UNKNOWN && !mvm->monitor_on)
384 		return -1;
385 
386 	if (unlikely(ieee80211_is_mgmt(hdr->frame_control) &&
387 		     !ieee80211_has_protected(hdr->frame_control)))
388 		return iwl_mvm_rx_mgmt_prot(sta, hdr, desc, status, stats);
389 
390 	if (!ieee80211_has_protected(hdr->frame_control) ||
391 	    (status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
392 	    IWL_RX_MPDU_STATUS_SEC_NONE)
393 		return 0;
394 
395 	/* TODO: handle packets encrypted with unknown alg */
396 
397 	switch (status & IWL_RX_MPDU_STATUS_SEC_MASK) {
398 	case IWL_RX_MPDU_STATUS_SEC_CCM:
399 	case IWL_RX_MPDU_STATUS_SEC_GCM:
400 		BUILD_BUG_ON(IEEE80211_CCMP_PN_LEN != IEEE80211_GCMP_PN_LEN);
401 		/* alg is CCM: check MIC only */
402 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
403 			return -1;
404 
405 		stats->flag |= RX_FLAG_DECRYPTED | RX_FLAG_MIC_STRIPPED;
406 		*crypt_len = IEEE80211_CCMP_HDR_LEN;
407 		return 0;
408 	case IWL_RX_MPDU_STATUS_SEC_TKIP:
409 		/* Don't drop the frame and decrypt it in SW */
410 		if (!fw_has_api(&mvm->fw->ucode_capa,
411 				IWL_UCODE_TLV_API_DEPRECATE_TTAK) &&
412 		    !(status & IWL_RX_MPDU_RES_STATUS_TTAK_OK))
413 			return 0;
414 
415 		if (mvm->trans->trans_cfg->gen2 &&
416 		    !(status & RX_MPDU_RES_STATUS_MIC_OK))
417 			stats->flag |= RX_FLAG_MMIC_ERROR;
418 
419 		*crypt_len = IEEE80211_TKIP_IV_LEN;
420 		fallthrough;
421 	case IWL_RX_MPDU_STATUS_SEC_WEP:
422 		if (!(status & IWL_RX_MPDU_STATUS_ICV_OK))
423 			return -1;
424 
425 		stats->flag |= RX_FLAG_DECRYPTED;
426 		if ((status & IWL_RX_MPDU_STATUS_SEC_MASK) ==
427 				IWL_RX_MPDU_STATUS_SEC_WEP)
428 			*crypt_len = IEEE80211_WEP_IV_LEN;
429 
430 		if (pkt_flags & FH_RSCSR_RADA_EN) {
431 			stats->flag |= RX_FLAG_ICV_STRIPPED;
432 			if (mvm->trans->trans_cfg->gen2)
433 				stats->flag |= RX_FLAG_MMIC_STRIPPED;
434 		}
435 
436 		return 0;
437 	case IWL_RX_MPDU_STATUS_SEC_EXT_ENC:
438 		if (!(status & IWL_RX_MPDU_STATUS_MIC_OK))
439 			return -1;
440 		stats->flag |= RX_FLAG_DECRYPTED;
441 		return 0;
442 	case RX_MPDU_RES_STATUS_SEC_CMAC_GMAC_ENC:
443 		break;
444 	default:
445 		/*
446 		 * Sometimes we can get frames that were not decrypted
447 		 * because the firmware didn't have the keys yet. This can
448 		 * happen after connection where we can get multicast frames
449 		 * before the GTK is installed.
450 		 * Silently drop those frames.
451 		 * Also drop un-decrypted frames in monitor mode.
452 		 */
453 		if (!is_multicast_ether_addr(hdr->addr1) &&
454 		    !mvm->monitor_on && net_ratelimit())
455 			IWL_WARN(mvm, "Unhandled alg: 0x%x\n", status);
456 	}
457 
458 	return 0;
459 }
460 
461 static void iwl_mvm_rx_csum(struct iwl_mvm *mvm,
462 			    struct ieee80211_sta *sta,
463 			    struct sk_buff *skb,
464 			    struct iwl_rx_packet *pkt)
465 {
466 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
467 
468 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
469 		if (pkt->len_n_flags & cpu_to_le32(FH_RSCSR_RPA_EN)) {
470 			u16 hwsum = be16_to_cpu(desc->v3.raw_xsum);
471 
472 			skb->ip_summed = CHECKSUM_COMPLETE;
473 			skb->csum = csum_unfold(~(__force __sum16)hwsum);
474 		}
475 	} else {
476 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
477 		struct iwl_mvm_vif *mvmvif;
478 		u16 flags = le16_to_cpu(desc->l3l4_flags);
479 		u8 l3_prot = (u8)((flags & IWL_RX_L3L4_L3_PROTO_MASK) >>
480 				  IWL_RX_L3_PROTO_POS);
481 
482 		mvmvif = iwl_mvm_vif_from_mac80211(mvmsta->vif);
483 
484 		if (mvmvif->features & NETIF_F_RXCSUM &&
485 		    flags & IWL_RX_L3L4_TCP_UDP_CSUM_OK &&
486 		    (flags & IWL_RX_L3L4_IP_HDR_CSUM_OK ||
487 		     l3_prot == IWL_RX_L3_TYPE_IPV6 ||
488 		     l3_prot == IWL_RX_L3_TYPE_IPV6_FRAG))
489 			skb->ip_summed = CHECKSUM_UNNECESSARY;
490 	}
491 }
492 
493 /*
494  * returns true if a packet is a duplicate or invalid tid and should be dropped.
495  * Updates AMSDU PN tracking info
496  */
497 static bool iwl_mvm_is_dup(struct ieee80211_sta *sta, int queue,
498 			   struct ieee80211_rx_status *rx_status,
499 			   struct ieee80211_hdr *hdr,
500 			   struct iwl_rx_mpdu_desc *desc)
501 {
502 	struct iwl_mvm_sta *mvm_sta;
503 	struct iwl_mvm_rxq_dup_data *dup_data;
504 	u8 tid, sub_frame_idx;
505 
506 	if (WARN_ON(IS_ERR_OR_NULL(sta)))
507 		return false;
508 
509 	mvm_sta = iwl_mvm_sta_from_mac80211(sta);
510 
511 	if (WARN_ON_ONCE(!mvm_sta->dup_data))
512 		return false;
513 
514 	dup_data = &mvm_sta->dup_data[queue];
515 
516 	/*
517 	 * Drop duplicate 802.11 retransmissions
518 	 * (IEEE 802.11-2012: 9.3.2.10 "Duplicate detection and recovery")
519 	 */
520 	if (ieee80211_is_ctl(hdr->frame_control) ||
521 	    ieee80211_is_qos_nullfunc(hdr->frame_control) ||
522 	    is_multicast_ether_addr(hdr->addr1)) {
523 		rx_status->flag |= RX_FLAG_DUP_VALIDATED;
524 		return false;
525 	}
526 
527 	if (ieee80211_is_data_qos(hdr->frame_control)) {
528 		/* frame has qos control */
529 		tid = ieee80211_get_tid(hdr);
530 		if (tid >= IWL_MAX_TID_COUNT)
531 			return true;
532 	} else {
533 		tid = IWL_MAX_TID_COUNT;
534 	}
535 
536 	/* If this wasn't a part of an A-MSDU the sub-frame index will be 0 */
537 	sub_frame_idx = desc->amsdu_info &
538 		IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
539 
540 	if (unlikely(ieee80211_has_retry(hdr->frame_control) &&
541 		     dup_data->last_seq[tid] == hdr->seq_ctrl &&
542 		     dup_data->last_sub_frame[tid] >= sub_frame_idx))
543 		return true;
544 
545 	/* Allow same PN as the first subframe for following sub frames */
546 	if (dup_data->last_seq[tid] == hdr->seq_ctrl &&
547 	    sub_frame_idx > dup_data->last_sub_frame[tid] &&
548 	    desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU)
549 		rx_status->flag |= RX_FLAG_ALLOW_SAME_PN;
550 
551 	dup_data->last_seq[tid] = hdr->seq_ctrl;
552 	dup_data->last_sub_frame[tid] = sub_frame_idx;
553 
554 	rx_status->flag |= RX_FLAG_DUP_VALIDATED;
555 
556 	return false;
557 }
558 
559 /*
560  * Returns true if sn2 - buffer_size < sn1 < sn2.
561  * To be used only in order to compare reorder buffer head with NSSN.
562  * We fully trust NSSN unless it is behind us due to reorder timeout.
563  * Reorder timeout can only bring us up to buffer_size SNs ahead of NSSN.
564  */
565 static bool iwl_mvm_is_sn_less(u16 sn1, u16 sn2, u16 buffer_size)
566 {
567 	return ieee80211_sn_less(sn1, sn2) &&
568 	       !ieee80211_sn_less(sn1, sn2 - buffer_size);
569 }
570 
571 static void iwl_mvm_sync_nssn(struct iwl_mvm *mvm, u8 baid, u16 nssn)
572 {
573 	if (IWL_MVM_USE_NSSN_SYNC) {
574 		struct iwl_mvm_nssn_sync_data notif = {
575 			.baid = baid,
576 			.nssn = nssn,
577 		};
578 
579 		iwl_mvm_sync_rx_queues_internal(mvm, IWL_MVM_RXQ_NSSN_SYNC, false,
580 						&notif, sizeof(notif));
581 	}
582 }
583 
584 #define RX_REORDER_BUF_TIMEOUT_MQ (HZ / 10)
585 
586 enum iwl_mvm_release_flags {
587 	IWL_MVM_RELEASE_SEND_RSS_SYNC = BIT(0),
588 	IWL_MVM_RELEASE_FROM_RSS_SYNC = BIT(1),
589 };
590 
591 static void iwl_mvm_release_frames(struct iwl_mvm *mvm,
592 				   struct ieee80211_sta *sta,
593 				   struct napi_struct *napi,
594 				   struct iwl_mvm_baid_data *baid_data,
595 				   struct iwl_mvm_reorder_buffer *reorder_buf,
596 				   u16 nssn, u32 flags)
597 {
598 	struct iwl_mvm_reorder_buf_entry *entries =
599 		&baid_data->entries[reorder_buf->queue *
600 				    baid_data->entries_per_queue];
601 	u16 ssn = reorder_buf->head_sn;
602 
603 	lockdep_assert_held(&reorder_buf->lock);
604 
605 	/*
606 	 * We keep the NSSN not too far behind, if we are sync'ing it and it
607 	 * is more than 2048 ahead of us, it must be behind us. Discard it.
608 	 * This can happen if the queue that hit the 0 / 2048 seqno was lagging
609 	 * behind and this queue already processed packets. The next if
610 	 * would have caught cases where this queue would have processed less
611 	 * than 64 packets, but it may have processed more than 64 packets.
612 	 */
613 	if ((flags & IWL_MVM_RELEASE_FROM_RSS_SYNC) &&
614 	    ieee80211_sn_less(nssn, ssn))
615 		goto set_timer;
616 
617 	/* ignore nssn smaller than head sn - this can happen due to timeout */
618 	if (iwl_mvm_is_sn_less(nssn, ssn, reorder_buf->buf_size))
619 		goto set_timer;
620 
621 	while (iwl_mvm_is_sn_less(ssn, nssn, reorder_buf->buf_size)) {
622 		int index = ssn % reorder_buf->buf_size;
623 		struct sk_buff_head *skb_list = &entries[index].e.frames;
624 		struct sk_buff *skb;
625 
626 		ssn = ieee80211_sn_inc(ssn);
627 		if ((flags & IWL_MVM_RELEASE_SEND_RSS_SYNC) &&
628 		    (ssn == 2048 || ssn == 0))
629 			iwl_mvm_sync_nssn(mvm, baid_data->baid, ssn);
630 
631 		/*
632 		 * Empty the list. Will have more than one frame for A-MSDU.
633 		 * Empty list is valid as well since nssn indicates frames were
634 		 * received.
635 		 */
636 		while ((skb = __skb_dequeue(skb_list))) {
637 			iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb,
638 							reorder_buf->queue,
639 							sta, NULL /* FIXME */);
640 			reorder_buf->num_stored--;
641 		}
642 	}
643 	reorder_buf->head_sn = nssn;
644 
645 set_timer:
646 	if (reorder_buf->num_stored && !reorder_buf->removed) {
647 		u16 index = reorder_buf->head_sn % reorder_buf->buf_size;
648 
649 		while (skb_queue_empty(&entries[index].e.frames))
650 			index = (index + 1) % reorder_buf->buf_size;
651 		/* modify timer to match next frame's expiration time */
652 		mod_timer(&reorder_buf->reorder_timer,
653 			  entries[index].e.reorder_time + 1 +
654 			  RX_REORDER_BUF_TIMEOUT_MQ);
655 	} else {
656 		del_timer(&reorder_buf->reorder_timer);
657 	}
658 }
659 
660 void iwl_mvm_reorder_timer_expired(struct timer_list *t)
661 {
662 	struct iwl_mvm_reorder_buffer *buf = from_timer(buf, t, reorder_timer);
663 	struct iwl_mvm_baid_data *baid_data =
664 		iwl_mvm_baid_data_from_reorder_buf(buf);
665 	struct iwl_mvm_reorder_buf_entry *entries =
666 		&baid_data->entries[buf->queue * baid_data->entries_per_queue];
667 	int i;
668 	u16 sn = 0, index = 0;
669 	bool expired = false;
670 	bool cont = false;
671 
672 	spin_lock(&buf->lock);
673 
674 	if (!buf->num_stored || buf->removed) {
675 		spin_unlock(&buf->lock);
676 		return;
677 	}
678 
679 	for (i = 0; i < buf->buf_size ; i++) {
680 		index = (buf->head_sn + i) % buf->buf_size;
681 
682 		if (skb_queue_empty(&entries[index].e.frames)) {
683 			/*
684 			 * If there is a hole and the next frame didn't expire
685 			 * we want to break and not advance SN
686 			 */
687 			cont = false;
688 			continue;
689 		}
690 		if (!cont &&
691 		    !time_after(jiffies, entries[index].e.reorder_time +
692 					 RX_REORDER_BUF_TIMEOUT_MQ))
693 			break;
694 
695 		expired = true;
696 		/* continue until next hole after this expired frames */
697 		cont = true;
698 		sn = ieee80211_sn_add(buf->head_sn, i + 1);
699 	}
700 
701 	if (expired) {
702 		struct ieee80211_sta *sta;
703 		struct iwl_mvm_sta *mvmsta;
704 		u8 sta_id = ffs(baid_data->sta_mask) - 1;
705 
706 		rcu_read_lock();
707 		sta = rcu_dereference(buf->mvm->fw_id_to_mac_id[sta_id]);
708 		if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta))) {
709 			rcu_read_unlock();
710 			goto out;
711 		}
712 
713 		mvmsta = iwl_mvm_sta_from_mac80211(sta);
714 
715 		/* SN is set to the last expired frame + 1 */
716 		IWL_DEBUG_HT(buf->mvm,
717 			     "Releasing expired frames for sta %u, sn %d\n",
718 			     sta_id, sn);
719 		iwl_mvm_event_frame_timeout_callback(buf->mvm, mvmsta->vif,
720 						     sta, baid_data->tid);
721 		iwl_mvm_release_frames(buf->mvm, sta, NULL, baid_data,
722 				       buf, sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
723 		rcu_read_unlock();
724 	} else {
725 		/*
726 		 * If no frame expired and there are stored frames, index is now
727 		 * pointing to the first unexpired frame - modify timer
728 		 * accordingly to this frame.
729 		 */
730 		mod_timer(&buf->reorder_timer,
731 			  entries[index].e.reorder_time +
732 			  1 + RX_REORDER_BUF_TIMEOUT_MQ);
733 	}
734 
735 out:
736 	spin_unlock(&buf->lock);
737 }
738 
739 static void iwl_mvm_del_ba(struct iwl_mvm *mvm, int queue,
740 			   struct iwl_mvm_delba_data *data)
741 {
742 	struct iwl_mvm_baid_data *ba_data;
743 	struct ieee80211_sta *sta;
744 	struct iwl_mvm_reorder_buffer *reorder_buf;
745 	u8 baid = data->baid;
746 	u32 sta_id;
747 
748 	if (WARN_ONCE(baid >= IWL_MAX_BAID, "invalid BAID: %x\n", baid))
749 		return;
750 
751 	rcu_read_lock();
752 
753 	ba_data = rcu_dereference(mvm->baid_map[baid]);
754 	if (WARN_ON_ONCE(!ba_data))
755 		goto out;
756 
757 	/* pick any STA ID to find the pointer */
758 	sta_id = ffs(ba_data->sta_mask) - 1;
759 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
760 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
761 		goto out;
762 
763 	reorder_buf = &ba_data->reorder_buf[queue];
764 
765 	/* release all frames that are in the reorder buffer to the stack */
766 	spin_lock_bh(&reorder_buf->lock);
767 	iwl_mvm_release_frames(mvm, sta, NULL, ba_data, reorder_buf,
768 			       ieee80211_sn_add(reorder_buf->head_sn,
769 						reorder_buf->buf_size),
770 			       0);
771 	spin_unlock_bh(&reorder_buf->lock);
772 	del_timer_sync(&reorder_buf->reorder_timer);
773 
774 out:
775 	rcu_read_unlock();
776 }
777 
778 static void iwl_mvm_release_frames_from_notif(struct iwl_mvm *mvm,
779 					      struct napi_struct *napi,
780 					      u8 baid, u16 nssn, int queue,
781 					      u32 flags)
782 {
783 	struct ieee80211_sta *sta;
784 	struct iwl_mvm_reorder_buffer *reorder_buf;
785 	struct iwl_mvm_baid_data *ba_data;
786 	u32 sta_id;
787 
788 	IWL_DEBUG_HT(mvm, "Frame release notification for BAID %u, NSSN %d\n",
789 		     baid, nssn);
790 
791 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
792 			 baid >= ARRAY_SIZE(mvm->baid_map)))
793 		return;
794 
795 	rcu_read_lock();
796 
797 	ba_data = rcu_dereference(mvm->baid_map[baid]);
798 	if (!ba_data) {
799 		WARN(!(flags & IWL_MVM_RELEASE_FROM_RSS_SYNC),
800 		     "BAID %d not found in map\n", baid);
801 		goto out;
802 	}
803 
804 	/* pick any STA ID to find the pointer */
805 	sta_id = ffs(ba_data->sta_mask) - 1;
806 	sta = rcu_dereference(mvm->fw_id_to_mac_id[sta_id]);
807 	if (WARN_ON_ONCE(IS_ERR_OR_NULL(sta)))
808 		goto out;
809 
810 	reorder_buf = &ba_data->reorder_buf[queue];
811 
812 	spin_lock_bh(&reorder_buf->lock);
813 	iwl_mvm_release_frames(mvm, sta, napi, ba_data,
814 			       reorder_buf, nssn, flags);
815 	spin_unlock_bh(&reorder_buf->lock);
816 
817 out:
818 	rcu_read_unlock();
819 }
820 
821 static void iwl_mvm_nssn_sync(struct iwl_mvm *mvm,
822 			      struct napi_struct *napi, int queue,
823 			      const struct iwl_mvm_nssn_sync_data *data)
824 {
825 	iwl_mvm_release_frames_from_notif(mvm, napi, data->baid,
826 					  data->nssn, queue,
827 					  IWL_MVM_RELEASE_FROM_RSS_SYNC);
828 }
829 
830 void iwl_mvm_rx_queue_notif(struct iwl_mvm *mvm, struct napi_struct *napi,
831 			    struct iwl_rx_cmd_buffer *rxb, int queue)
832 {
833 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
834 	struct iwl_rxq_sync_notification *notif;
835 	struct iwl_mvm_internal_rxq_notif *internal_notif;
836 	u32 len = iwl_rx_packet_payload_len(pkt);
837 
838 	notif = (void *)pkt->data;
839 	internal_notif = (void *)notif->payload;
840 
841 	if (WARN_ONCE(len < sizeof(*notif) + sizeof(*internal_notif),
842 		      "invalid notification size %d (%d)",
843 		      len, (int)(sizeof(*notif) + sizeof(*internal_notif))))
844 		return;
845 	len -= sizeof(*notif) + sizeof(*internal_notif);
846 
847 	if (internal_notif->sync &&
848 	    mvm->queue_sync_cookie != internal_notif->cookie) {
849 		WARN_ONCE(1, "Received expired RX queue sync message\n");
850 		return;
851 	}
852 
853 	switch (internal_notif->type) {
854 	case IWL_MVM_RXQ_EMPTY:
855 		WARN_ONCE(len, "invalid empty notification size %d", len);
856 		break;
857 	case IWL_MVM_RXQ_NOTIF_DEL_BA:
858 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_delba_data),
859 			      "invalid delba notification size %d (%d)",
860 			      len, (int)sizeof(struct iwl_mvm_delba_data)))
861 			break;
862 		iwl_mvm_del_ba(mvm, queue, (void *)internal_notif->data);
863 		break;
864 	case IWL_MVM_RXQ_NSSN_SYNC:
865 		if (WARN_ONCE(len != sizeof(struct iwl_mvm_nssn_sync_data),
866 			      "invalid nssn sync notification size %d (%d)",
867 			      len, (int)sizeof(struct iwl_mvm_nssn_sync_data)))
868 			break;
869 		iwl_mvm_nssn_sync(mvm, napi, queue,
870 				  (void *)internal_notif->data);
871 		break;
872 	default:
873 		WARN_ONCE(1, "Invalid identifier %d", internal_notif->type);
874 	}
875 
876 	if (internal_notif->sync) {
877 		WARN_ONCE(!test_and_clear_bit(queue, &mvm->queue_sync_state),
878 			  "queue sync: queue %d responded a second time!\n",
879 			  queue);
880 		if (READ_ONCE(mvm->queue_sync_state) == 0)
881 			wake_up(&mvm->rx_sync_waitq);
882 	}
883 }
884 
885 static void iwl_mvm_oldsn_workaround(struct iwl_mvm *mvm,
886 				     struct ieee80211_sta *sta, int tid,
887 				     struct iwl_mvm_reorder_buffer *buffer,
888 				     u32 reorder, u32 gp2, int queue)
889 {
890 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
891 
892 	if (gp2 != buffer->consec_oldsn_ampdu_gp2) {
893 		/* we have a new (A-)MPDU ... */
894 
895 		/*
896 		 * reset counter to 0 if we didn't have any oldsn in
897 		 * the last A-MPDU (as detected by GP2 being identical)
898 		 */
899 		if (!buffer->consec_oldsn_prev_drop)
900 			buffer->consec_oldsn_drops = 0;
901 
902 		/* either way, update our tracking state */
903 		buffer->consec_oldsn_ampdu_gp2 = gp2;
904 	} else if (buffer->consec_oldsn_prev_drop) {
905 		/*
906 		 * tracking state didn't change, and we had an old SN
907 		 * indication before - do nothing in this case, we
908 		 * already noted this one down and are waiting for the
909 		 * next A-MPDU (by GP2)
910 		 */
911 		return;
912 	}
913 
914 	/* return unless this MPDU has old SN */
915 	if (!(reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN))
916 		return;
917 
918 	/* update state */
919 	buffer->consec_oldsn_prev_drop = 1;
920 	buffer->consec_oldsn_drops++;
921 
922 	/* if limit is reached, send del BA and reset state */
923 	if (buffer->consec_oldsn_drops == IWL_MVM_AMPDU_CONSEC_DROPS_DELBA) {
924 		IWL_WARN(mvm,
925 			 "reached %d old SN frames from %pM on queue %d, stopping BA session on TID %d\n",
926 			 IWL_MVM_AMPDU_CONSEC_DROPS_DELBA,
927 			 sta->addr, queue, tid);
928 		ieee80211_stop_rx_ba_session(mvmsta->vif, BIT(tid), sta->addr);
929 		buffer->consec_oldsn_prev_drop = 0;
930 		buffer->consec_oldsn_drops = 0;
931 	}
932 }
933 
934 /*
935  * Returns true if the MPDU was buffered\dropped, false if it should be passed
936  * to upper layer.
937  */
938 static bool iwl_mvm_reorder(struct iwl_mvm *mvm,
939 			    struct napi_struct *napi,
940 			    int queue,
941 			    struct ieee80211_sta *sta,
942 			    struct sk_buff *skb,
943 			    struct iwl_rx_mpdu_desc *desc)
944 {
945 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
946 	struct ieee80211_hdr *hdr = (void *)skb_mac_header(skb);
947 	struct iwl_mvm_baid_data *baid_data;
948 	struct iwl_mvm_reorder_buffer *buffer;
949 	struct sk_buff *tail;
950 	u32 reorder = le32_to_cpu(desc->reorder_data);
951 	bool amsdu = desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU;
952 	bool last_subframe =
953 		desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME;
954 	u8 tid = ieee80211_get_tid(hdr);
955 	u8 sub_frame_idx = desc->amsdu_info &
956 			   IWL_RX_MPDU_AMSDU_SUBFRAME_IDX_MASK;
957 	struct iwl_mvm_reorder_buf_entry *entries;
958 	u32 sta_mask;
959 	int index;
960 	u16 nssn, sn;
961 	u8 baid;
962 
963 	baid = (reorder & IWL_RX_MPDU_REORDER_BAID_MASK) >>
964 		IWL_RX_MPDU_REORDER_BAID_SHIFT;
965 
966 	if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000)
967 		return false;
968 
969 	/*
970 	 * This also covers the case of receiving a Block Ack Request
971 	 * outside a BA session; we'll pass it to mac80211 and that
972 	 * then sends a delBA action frame.
973 	 * This also covers pure monitor mode, in which case we won't
974 	 * have any BA sessions.
975 	 */
976 	if (baid == IWL_RX_REORDER_DATA_INVALID_BAID)
977 		return false;
978 
979 	/* no sta yet */
980 	if (WARN_ONCE(IS_ERR_OR_NULL(sta),
981 		      "Got valid BAID without a valid station assigned\n"))
982 		return false;
983 
984 	/* not a data packet or a bar */
985 	if (!ieee80211_is_back_req(hdr->frame_control) &&
986 	    (!ieee80211_is_data_qos(hdr->frame_control) ||
987 	     is_multicast_ether_addr(hdr->addr1)))
988 		return false;
989 
990 	if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
991 		return false;
992 
993 	baid_data = rcu_dereference(mvm->baid_map[baid]);
994 	if (!baid_data) {
995 		IWL_DEBUG_RX(mvm,
996 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
997 			      baid, reorder);
998 		return false;
999 	}
1000 
1001 	rcu_read_lock();
1002 	sta_mask = iwl_mvm_sta_fw_id_mask(mvm, sta, -1);
1003 	rcu_read_unlock();
1004 
1005 	if (IWL_FW_CHECK(mvm,
1006 			 tid != baid_data->tid ||
1007 			 !(sta_mask & baid_data->sta_mask),
1008 			 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but was received for sta_mask:0x%x tid:%d\n",
1009 			 baid, baid_data->sta_mask, baid_data->tid,
1010 			 sta_mask, tid))
1011 		return false;
1012 
1013 	nssn = reorder & IWL_RX_MPDU_REORDER_NSSN_MASK;
1014 	sn = (reorder & IWL_RX_MPDU_REORDER_SN_MASK) >>
1015 		IWL_RX_MPDU_REORDER_SN_SHIFT;
1016 
1017 	buffer = &baid_data->reorder_buf[queue];
1018 	entries = &baid_data->entries[queue * baid_data->entries_per_queue];
1019 
1020 	spin_lock_bh(&buffer->lock);
1021 
1022 	if (!buffer->valid) {
1023 		if (reorder & IWL_RX_MPDU_REORDER_BA_OLD_SN) {
1024 			spin_unlock_bh(&buffer->lock);
1025 			return false;
1026 		}
1027 		buffer->valid = true;
1028 	}
1029 
1030 	if (ieee80211_is_back_req(hdr->frame_control)) {
1031 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1032 				       buffer, nssn, 0);
1033 		goto drop;
1034 	}
1035 
1036 	/*
1037 	 * If there was a significant jump in the nssn - adjust.
1038 	 * If the SN is smaller than the NSSN it might need to first go into
1039 	 * the reorder buffer, in which case we just release up to it and the
1040 	 * rest of the function will take care of storing it and releasing up to
1041 	 * the nssn.
1042 	 * This should not happen. This queue has been lagging and it should
1043 	 * have been updated by a IWL_MVM_RXQ_NSSN_SYNC notification. Be nice
1044 	 * and update the other queues.
1045 	 */
1046 	if (!iwl_mvm_is_sn_less(nssn, buffer->head_sn + buffer->buf_size,
1047 				buffer->buf_size) ||
1048 	    !ieee80211_sn_less(sn, buffer->head_sn + buffer->buf_size)) {
1049 		u16 min_sn = ieee80211_sn_less(sn, nssn) ? sn : nssn;
1050 
1051 		iwl_mvm_release_frames(mvm, sta, napi, baid_data, buffer,
1052 				       min_sn, IWL_MVM_RELEASE_SEND_RSS_SYNC);
1053 	}
1054 
1055 	iwl_mvm_oldsn_workaround(mvm, sta, tid, buffer, reorder,
1056 				 rx_status->device_timestamp, queue);
1057 
1058 	/* drop any oudated packets */
1059 	if (ieee80211_sn_less(sn, buffer->head_sn))
1060 		goto drop;
1061 
1062 	/* release immediately if allowed by nssn and no stored frames */
1063 	if (!buffer->num_stored && ieee80211_sn_less(sn, nssn)) {
1064 		if (iwl_mvm_is_sn_less(buffer->head_sn, nssn,
1065 				       buffer->buf_size) &&
1066 		   (!amsdu || last_subframe)) {
1067 			/*
1068 			 * If we crossed the 2048 or 0 SN, notify all the
1069 			 * queues. This is done in order to avoid having a
1070 			 * head_sn that lags behind for too long. When that
1071 			 * happens, we can get to a situation where the head_sn
1072 			 * is within the interval [nssn - buf_size : nssn]
1073 			 * which will make us think that the nssn is a packet
1074 			 * that we already freed because of the reordering
1075 			 * buffer and we will ignore it. So maintain the
1076 			 * head_sn somewhat updated across all the queues:
1077 			 * when it crosses 0 and 2048.
1078 			 */
1079 			if (sn == 2048 || sn == 0)
1080 				iwl_mvm_sync_nssn(mvm, baid, sn);
1081 			buffer->head_sn = nssn;
1082 		}
1083 		/* No need to update AMSDU last SN - we are moving the head */
1084 		spin_unlock_bh(&buffer->lock);
1085 		return false;
1086 	}
1087 
1088 	/*
1089 	 * release immediately if there are no stored frames, and the sn is
1090 	 * equal to the head.
1091 	 * This can happen due to reorder timer, where NSSN is behind head_sn.
1092 	 * When we released everything, and we got the next frame in the
1093 	 * sequence, according to the NSSN we can't release immediately,
1094 	 * while technically there is no hole and we can move forward.
1095 	 */
1096 	if (!buffer->num_stored && sn == buffer->head_sn) {
1097 		if (!amsdu || last_subframe) {
1098 			if (sn == 2048 || sn == 0)
1099 				iwl_mvm_sync_nssn(mvm, baid, sn);
1100 			buffer->head_sn = ieee80211_sn_inc(buffer->head_sn);
1101 		}
1102 		/* No need to update AMSDU last SN - we are moving the head */
1103 		spin_unlock_bh(&buffer->lock);
1104 		return false;
1105 	}
1106 
1107 	index = sn % buffer->buf_size;
1108 
1109 	/*
1110 	 * Check if we already stored this frame
1111 	 * As AMSDU is either received or not as whole, logic is simple:
1112 	 * If we have frames in that position in the buffer and the last frame
1113 	 * originated from AMSDU had a different SN then it is a retransmission.
1114 	 * If it is the same SN then if the subframe index is incrementing it
1115 	 * is the same AMSDU - otherwise it is a retransmission.
1116 	 */
1117 	tail = skb_peek_tail(&entries[index].e.frames);
1118 	if (tail && !amsdu)
1119 		goto drop;
1120 	else if (tail && (sn != buffer->last_amsdu ||
1121 			  buffer->last_sub_index >= sub_frame_idx))
1122 		goto drop;
1123 
1124 	/* put in reorder buffer */
1125 	__skb_queue_tail(&entries[index].e.frames, skb);
1126 	buffer->num_stored++;
1127 	entries[index].e.reorder_time = jiffies;
1128 
1129 	if (amsdu) {
1130 		buffer->last_amsdu = sn;
1131 		buffer->last_sub_index = sub_frame_idx;
1132 	}
1133 
1134 	/*
1135 	 * We cannot trust NSSN for AMSDU sub-frames that are not the last.
1136 	 * The reason is that NSSN advances on the first sub-frame, and may
1137 	 * cause the reorder buffer to advance before all the sub-frames arrive.
1138 	 * Example: reorder buffer contains SN 0 & 2, and we receive AMSDU with
1139 	 * SN 1. NSSN for first sub frame will be 3 with the result of driver
1140 	 * releasing SN 0,1, 2. When sub-frame 1 arrives - reorder buffer is
1141 	 * already ahead and it will be dropped.
1142 	 * If the last sub-frame is not on this queue - we will get frame
1143 	 * release notification with up to date NSSN.
1144 	 */
1145 	if (!amsdu || last_subframe)
1146 		iwl_mvm_release_frames(mvm, sta, napi, baid_data,
1147 				       buffer, nssn,
1148 				       IWL_MVM_RELEASE_SEND_RSS_SYNC);
1149 
1150 	spin_unlock_bh(&buffer->lock);
1151 	return true;
1152 
1153 drop:
1154 	kfree_skb(skb);
1155 	spin_unlock_bh(&buffer->lock);
1156 	return true;
1157 }
1158 
1159 static void iwl_mvm_agg_rx_received(struct iwl_mvm *mvm,
1160 				    u32 reorder_data, u8 baid)
1161 {
1162 	unsigned long now = jiffies;
1163 	unsigned long timeout;
1164 	struct iwl_mvm_baid_data *data;
1165 
1166 	rcu_read_lock();
1167 
1168 	data = rcu_dereference(mvm->baid_map[baid]);
1169 	if (!data) {
1170 		IWL_DEBUG_RX(mvm,
1171 			     "Got valid BAID but no baid allocated, bypass the re-ordering buffer. Baid %d reorder 0x%x\n",
1172 			      baid, reorder_data);
1173 		goto out;
1174 	}
1175 
1176 	if (!data->timeout)
1177 		goto out;
1178 
1179 	timeout = data->timeout;
1180 	/*
1181 	 * Do not update last rx all the time to avoid cache bouncing
1182 	 * between the rx queues.
1183 	 * Update it every timeout. Worst case is the session will
1184 	 * expire after ~ 2 * timeout, which doesn't matter that much.
1185 	 */
1186 	if (time_before(data->last_rx + TU_TO_JIFFIES(timeout), now))
1187 		/* Update is atomic */
1188 		data->last_rx = now;
1189 
1190 out:
1191 	rcu_read_unlock();
1192 }
1193 
1194 static void iwl_mvm_flip_address(u8 *addr)
1195 {
1196 	int i;
1197 	u8 mac_addr[ETH_ALEN];
1198 
1199 	for (i = 0; i < ETH_ALEN; i++)
1200 		mac_addr[i] = addr[ETH_ALEN - i - 1];
1201 	ether_addr_copy(addr, mac_addr);
1202 }
1203 
1204 struct iwl_mvm_rx_phy_data {
1205 	enum iwl_rx_phy_info_type info_type;
1206 	__le32 d0, d1, d2, d3, eht_d4, d5;
1207 	__le16 d4;
1208 	bool with_data;
1209 	bool first_subframe;
1210 	__le32 rx_vec[4];
1211 
1212 	u32 rate_n_flags;
1213 	u32 gp2_on_air_rise;
1214 	u16 phy_info;
1215 	u8 energy_a, energy_b;
1216 	u8 channel;
1217 };
1218 
1219 static void iwl_mvm_decode_he_mu_ext(struct iwl_mvm *mvm,
1220 				     struct iwl_mvm_rx_phy_data *phy_data,
1221 				     struct ieee80211_radiotap_he_mu *he_mu)
1222 {
1223 	u32 phy_data2 = le32_to_cpu(phy_data->d2);
1224 	u32 phy_data3 = le32_to_cpu(phy_data->d3);
1225 	u16 phy_data4 = le16_to_cpu(phy_data->d4);
1226 	u32 rate_n_flags = phy_data->rate_n_flags;
1227 
1228 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CRC_OK, phy_data4)) {
1229 		he_mu->flags1 |=
1230 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_RU_KNOWN |
1231 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU_KNOWN);
1232 
1233 		he_mu->flags1 |=
1234 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH1_CTR_RU,
1235 						   phy_data4),
1236 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH1_CTR_26T_RU);
1237 
1238 		he_mu->ru_ch1[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU0,
1239 					     phy_data2);
1240 		he_mu->ru_ch1[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU1,
1241 					     phy_data3);
1242 		he_mu->ru_ch1[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH1_RU2,
1243 					     phy_data2);
1244 		he_mu->ru_ch1[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH1_RU3,
1245 					     phy_data3);
1246 	}
1247 
1248 	if (FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CRC_OK, phy_data4) &&
1249 	    (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK_V1) != RATE_MCS_CHAN_WIDTH_20) {
1250 		he_mu->flags1 |=
1251 			cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_RU_KNOWN |
1252 				    IEEE80211_RADIOTAP_HE_MU_FLAGS1_CH2_CTR_26T_RU_KNOWN);
1253 
1254 		he_mu->flags2 |=
1255 			le16_encode_bits(FIELD_GET(IWL_RX_PHY_DATA4_HE_MU_EXT_CH2_CTR_RU,
1256 						   phy_data4),
1257 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_CH2_CTR_26T_RU);
1258 
1259 		he_mu->ru_ch2[0] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU0,
1260 					     phy_data2);
1261 		he_mu->ru_ch2[1] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU1,
1262 					     phy_data3);
1263 		he_mu->ru_ch2[2] = FIELD_GET(IWL_RX_PHY_DATA2_HE_MU_EXT_CH2_RU2,
1264 					     phy_data2);
1265 		he_mu->ru_ch2[3] = FIELD_GET(IWL_RX_PHY_DATA3_HE_MU_EXT_CH2_RU3,
1266 					     phy_data3);
1267 	}
1268 }
1269 
1270 static void
1271 iwl_mvm_decode_he_phy_ru_alloc(struct iwl_mvm_rx_phy_data *phy_data,
1272 			       struct ieee80211_radiotap_he *he,
1273 			       struct ieee80211_radiotap_he_mu *he_mu,
1274 			       struct ieee80211_rx_status *rx_status)
1275 {
1276 	/*
1277 	 * Unfortunately, we have to leave the mac80211 data
1278 	 * incorrect for the case that we receive an HE-MU
1279 	 * transmission and *don't* have the HE phy data (due
1280 	 * to the bits being used for TSF). This shouldn't
1281 	 * happen though as management frames where we need
1282 	 * the TSF/timers are not be transmitted in HE-MU.
1283 	 */
1284 	u8 ru = le32_get_bits(phy_data->d1, IWL_RX_PHY_DATA1_HE_RU_ALLOC_MASK);
1285 	u32 rate_n_flags = phy_data->rate_n_flags;
1286 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK_V1;
1287 	u8 offs = 0;
1288 
1289 	rx_status->bw = RATE_INFO_BW_HE_RU;
1290 
1291 	he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
1292 
1293 	switch (ru) {
1294 	case 0 ... 36:
1295 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_26;
1296 		offs = ru;
1297 		break;
1298 	case 37 ... 52:
1299 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_52;
1300 		offs = ru - 37;
1301 		break;
1302 	case 53 ... 60:
1303 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
1304 		offs = ru - 53;
1305 		break;
1306 	case 61 ... 64:
1307 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_242;
1308 		offs = ru - 61;
1309 		break;
1310 	case 65 ... 66:
1311 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_484;
1312 		offs = ru - 65;
1313 		break;
1314 	case 67:
1315 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_996;
1316 		break;
1317 	case 68:
1318 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_2x996;
1319 		break;
1320 	}
1321 	he->data2 |= le16_encode_bits(offs,
1322 				      IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET);
1323 	he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_KNOWN |
1324 				 IEEE80211_RADIOTAP_HE_DATA2_RU_OFFSET_KNOWN);
1325 	if (phy_data->d1 & cpu_to_le32(IWL_RX_PHY_DATA1_HE_RU_ALLOC_SEC80))
1326 		he->data2 |=
1327 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRISEC_80_SEC);
1328 
1329 #define CHECK_BW(bw) \
1330 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_ ## bw ## MHZ != \
1331 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS); \
1332 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_ ## bw ## MHZ != \
1333 		     RATE_MCS_CHAN_WIDTH_##bw >> RATE_MCS_CHAN_WIDTH_POS)
1334 	CHECK_BW(20);
1335 	CHECK_BW(40);
1336 	CHECK_BW(80);
1337 	CHECK_BW(160);
1338 
1339 	if (he_mu)
1340 		he_mu->flags2 |=
1341 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1342 						   rate_n_flags),
1343 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW);
1344 	else if (he_type == RATE_MCS_HE_TYPE_TRIG_V1)
1345 		he->data6 |=
1346 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW_KNOWN) |
1347 			le16_encode_bits(FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK_V1,
1348 						   rate_n_flags),
1349 					 IEEE80211_RADIOTAP_HE_DATA6_TB_PPDU_BW);
1350 }
1351 
1352 static void iwl_mvm_decode_he_phy_data(struct iwl_mvm *mvm,
1353 				       struct iwl_mvm_rx_phy_data *phy_data,
1354 				       struct ieee80211_radiotap_he *he,
1355 				       struct ieee80211_radiotap_he_mu *he_mu,
1356 				       struct ieee80211_rx_status *rx_status,
1357 				       int queue)
1358 {
1359 	switch (phy_data->info_type) {
1360 	case IWL_RX_PHY_INFO_TYPE_NONE:
1361 	case IWL_RX_PHY_INFO_TYPE_CCK:
1362 	case IWL_RX_PHY_INFO_TYPE_OFDM_LGCY:
1363 	case IWL_RX_PHY_INFO_TYPE_HT:
1364 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
1365 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
1366 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
1367 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
1368 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
1369 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
1370 		return;
1371 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1372 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN |
1373 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE2_KNOWN |
1374 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE3_KNOWN |
1375 					 IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE4_KNOWN);
1376 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1377 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE1),
1378 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE1);
1379 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1380 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE2),
1381 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE2);
1382 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1383 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE3),
1384 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE3);
1385 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d2,
1386 							    IWL_RX_PHY_DATA2_HE_TB_EXT_SPTL_REUSE4),
1387 					      IEEE80211_RADIOTAP_HE_DATA4_TB_SPTL_REUSE4);
1388 		fallthrough;
1389 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1390 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1391 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1392 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1393 		/* HE common */
1394 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_LDPC_XSYMSEG_KNOWN |
1395 					 IEEE80211_RADIOTAP_HE_DATA1_DOPPLER_KNOWN |
1396 					 IEEE80211_RADIOTAP_HE_DATA1_BSS_COLOR_KNOWN);
1397 		he->data2 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_PRE_FEC_PAD_KNOWN |
1398 					 IEEE80211_RADIOTAP_HE_DATA2_PE_DISAMBIG_KNOWN |
1399 					 IEEE80211_RADIOTAP_HE_DATA2_TXOP_KNOWN |
1400 					 IEEE80211_RADIOTAP_HE_DATA2_NUM_LTF_SYMS_KNOWN);
1401 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1402 							    IWL_RX_PHY_DATA0_HE_BSS_COLOR_MASK),
1403 					      IEEE80211_RADIOTAP_HE_DATA3_BSS_COLOR);
1404 		if (phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB &&
1405 		    phy_data->info_type != IWL_RX_PHY_INFO_TYPE_HE_TB_EXT) {
1406 			he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_UL_DL_KNOWN);
1407 			he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1408 							    IWL_RX_PHY_DATA0_HE_UPLINK),
1409 						      IEEE80211_RADIOTAP_HE_DATA3_UL_DL);
1410 		}
1411 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1412 							    IWL_RX_PHY_DATA0_HE_LDPC_EXT_SYM),
1413 					      IEEE80211_RADIOTAP_HE_DATA3_LDPC_XSYMSEG);
1414 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1415 							    IWL_RX_PHY_DATA0_HE_PRE_FEC_PAD_MASK),
1416 					      IEEE80211_RADIOTAP_HE_DATA5_PRE_FEC_PAD);
1417 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1418 							    IWL_RX_PHY_DATA0_HE_PE_DISAMBIG),
1419 					      IEEE80211_RADIOTAP_HE_DATA5_PE_DISAMBIG);
1420 		he->data5 |= le16_encode_bits(le32_get_bits(phy_data->d1,
1421 							    IWL_RX_PHY_DATA1_HE_LTF_NUM_MASK),
1422 					      IEEE80211_RADIOTAP_HE_DATA5_NUM_LTF_SYMS);
1423 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1424 							    IWL_RX_PHY_DATA0_HE_TXOP_DUR_MASK),
1425 					      IEEE80211_RADIOTAP_HE_DATA6_TXOP);
1426 		he->data6 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1427 							    IWL_RX_PHY_DATA0_HE_DOPPLER),
1428 					      IEEE80211_RADIOTAP_HE_DATA6_DOPPLER);
1429 		break;
1430 	}
1431 
1432 	switch (phy_data->info_type) {
1433 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1434 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1435 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1436 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_SPTL_REUSE_KNOWN);
1437 		he->data4 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1438 							    IWL_RX_PHY_DATA0_HE_SPATIAL_REUSE_MASK),
1439 					      IEEE80211_RADIOTAP_HE_DATA4_SU_MU_SPTL_REUSE);
1440 		break;
1441 	default:
1442 		/* nothing here */
1443 		break;
1444 	}
1445 
1446 	switch (phy_data->info_type) {
1447 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
1448 		he_mu->flags1 |=
1449 			le16_encode_bits(le16_get_bits(phy_data->d4,
1450 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_DCM),
1451 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM);
1452 		he_mu->flags1 |=
1453 			le16_encode_bits(le16_get_bits(phy_data->d4,
1454 						       IWL_RX_PHY_DATA4_HE_MU_EXT_SIGB_MCS_MASK),
1455 					 IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS);
1456 		he_mu->flags2 |=
1457 			le16_encode_bits(le16_get_bits(phy_data->d4,
1458 						       IWL_RX_PHY_DATA4_HE_MU_EXT_PREAMBLE_PUNC_TYPE_MASK),
1459 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW);
1460 		iwl_mvm_decode_he_mu_ext(mvm, phy_data, he_mu);
1461 		fallthrough;
1462 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
1463 		he_mu->flags2 |=
1464 			le16_encode_bits(le32_get_bits(phy_data->d1,
1465 						       IWL_RX_PHY_DATA1_HE_MU_SIBG_SYM_OR_USER_NUM_MASK),
1466 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_SYMS_USERS);
1467 		he_mu->flags2 |=
1468 			le16_encode_bits(le32_get_bits(phy_data->d1,
1469 						       IWL_RX_PHY_DATA1_HE_MU_SIGB_COMPRESSION),
1470 					 IEEE80211_RADIOTAP_HE_MU_FLAGS2_SIG_B_COMP);
1471 		fallthrough;
1472 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
1473 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
1474 		iwl_mvm_decode_he_phy_ru_alloc(phy_data, he, he_mu, rx_status);
1475 		break;
1476 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
1477 		he->data1 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BEAM_CHANGE_KNOWN);
1478 		he->data3 |= le16_encode_bits(le32_get_bits(phy_data->d0,
1479 							    IWL_RX_PHY_DATA0_HE_BEAM_CHNG),
1480 					      IEEE80211_RADIOTAP_HE_DATA3_BEAM_CHANGE);
1481 		break;
1482 	default:
1483 		/* nothing */
1484 		break;
1485 	}
1486 }
1487 
1488 #define LE32_DEC_ENC(value, dec_bits, enc_bits) \
1489 	le32_encode_bits(le32_get_bits(value, dec_bits), enc_bits)
1490 
1491 #define IWL_MVM_ENC_USIG_VALUE_MASK(usig, in_value, dec_bits, enc_bits) do { \
1492 	typeof(enc_bits) _enc_bits = enc_bits; \
1493 	typeof(usig) _usig = usig; \
1494 	(_usig)->mask |= cpu_to_le32(_enc_bits); \
1495 	(_usig)->value |= LE32_DEC_ENC(in_value, dec_bits, _enc_bits); \
1496 } while (0)
1497 
1498 #define __IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru) \
1499 	eht->data[(rt_data)] |= \
1500 		(cpu_to_le32 \
1501 		 (IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru ## _KNOWN) | \
1502 		 LE32_DEC_ENC(data ## fw_data, \
1503 			      IWL_RX_PHY_DATA ## fw_data ## _EHT_MU_EXT_RU_ALLOC_ ## fw_ru, \
1504 			      IEEE80211_RADIOTAP_EHT_DATA ## rt_data ## _RU_ALLOC_CC_ ## rt_ru))
1505 
1506 #define _IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)	\
1507 	__IWL_MVM_ENC_EHT_RU(rt_data, rt_ru, fw_data, fw_ru)
1508 
1509 #define IEEE80211_RADIOTAP_RU_DATA_1_1_1	1
1510 #define IEEE80211_RADIOTAP_RU_DATA_2_1_1	2
1511 #define IEEE80211_RADIOTAP_RU_DATA_1_1_2	2
1512 #define IEEE80211_RADIOTAP_RU_DATA_2_1_2	2
1513 #define IEEE80211_RADIOTAP_RU_DATA_1_2_1	3
1514 #define IEEE80211_RADIOTAP_RU_DATA_2_2_1	3
1515 #define IEEE80211_RADIOTAP_RU_DATA_1_2_2	3
1516 #define IEEE80211_RADIOTAP_RU_DATA_2_2_2	4
1517 
1518 #define IWL_RX_RU_DATA_A1			2
1519 #define IWL_RX_RU_DATA_A2			2
1520 #define IWL_RX_RU_DATA_B1			2
1521 #define IWL_RX_RU_DATA_B2			3
1522 #define IWL_RX_RU_DATA_C1			3
1523 #define IWL_RX_RU_DATA_C2			3
1524 #define IWL_RX_RU_DATA_D1			4
1525 #define IWL_RX_RU_DATA_D2			4
1526 
1527 #define IWL_MVM_ENC_EHT_RU(rt_ru, fw_ru)				\
1528 	_IWL_MVM_ENC_EHT_RU(IEEE80211_RADIOTAP_RU_DATA_ ## rt_ru,	\
1529 			    rt_ru,					\
1530 			    IWL_RX_RU_DATA_ ## fw_ru,			\
1531 			    fw_ru)
1532 
1533 static void iwl_mvm_decode_eht_ext_mu(struct iwl_mvm *mvm,
1534 				      struct iwl_mvm_rx_phy_data *phy_data,
1535 				      struct ieee80211_rx_status *rx_status,
1536 				      struct ieee80211_radiotap_eht *eht,
1537 				      struct ieee80211_radiotap_eht_usig *usig)
1538 {
1539 	if (phy_data->with_data) {
1540 		__le32 data1 = phy_data->d1;
1541 		__le32 data2 = phy_data->d2;
1542 		__le32 data3 = phy_data->d3;
1543 		__le32 data4 = phy_data->eht_d4;
1544 		__le32 data5 = phy_data->d5;
1545 		u32 phy_bw = phy_data->rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK;
1546 
1547 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1548 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1549 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1550 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1551 					    IWL_RX_PHY_DATA5_EHT_MU_PUNC_CH_CODE,
1552 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1553 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data4,
1554 					    IWL_RX_PHY_DATA4_EHT_MU_EXT_SIGB_MCS,
1555 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1556 		IWL_MVM_ENC_USIG_VALUE_MASK
1557 			(usig, data1, IWL_RX_PHY_DATA1_EHT_MU_NUM_SIG_SYM_USIGA2,
1558 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1559 
1560 		eht->user_info[0] |=
1561 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID_KNOWN) |
1562 			LE32_DEC_ENC(data5, IWL_RX_PHY_DATA5_EHT_MU_STA_ID_USR,
1563 				     IEEE80211_RADIOTAP_EHT_USER_INFO_STA_ID);
1564 
1565 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NR_NON_OFDMA_USERS_M);
1566 		eht->data[7] |= LE32_DEC_ENC
1567 			(data5, IWL_RX_PHY_DATA5_EHT_MU_NUM_USR_NON_OFDMA,
1568 			 IEEE80211_RADIOTAP_EHT_DATA7_NUM_OF_NON_OFDMA_USERS);
1569 
1570 		/*
1571 		 * Hardware labels the content channels/RU allocation values
1572 		 * as follows:
1573 		 *           Content Channel 1		Content Channel 2
1574 		 *   20 MHz: A1
1575 		 *   40 MHz: A1				B1
1576 		 *   80 MHz: A1 C1			B1 D1
1577 		 *  160 MHz: A1 C1 A2 C2		B1 D1 B2 D2
1578 		 *  320 MHz: A1 C1 A2 C2 A3 C3 A4 C4	B1 D1 B2 D2 B3 D3 B4 D4
1579 		 *
1580 		 * However firmware can only give us A1-D2, so the higher
1581 		 * frequencies are missing.
1582 		 */
1583 
1584 		switch (phy_bw) {
1585 		case RATE_MCS_CHAN_WIDTH_320:
1586 			/* additional values are missing in RX metadata */
1587 		case RATE_MCS_CHAN_WIDTH_160:
1588 			/* content channel 1 */
1589 			IWL_MVM_ENC_EHT_RU(1_2_1, A2);
1590 			IWL_MVM_ENC_EHT_RU(1_2_2, C2);
1591 			/* content channel 2 */
1592 			IWL_MVM_ENC_EHT_RU(2_2_1, B2);
1593 			IWL_MVM_ENC_EHT_RU(2_2_2, D2);
1594 			fallthrough;
1595 		case RATE_MCS_CHAN_WIDTH_80:
1596 			/* content channel 1 */
1597 			IWL_MVM_ENC_EHT_RU(1_1_2, C1);
1598 			/* content channel 2 */
1599 			IWL_MVM_ENC_EHT_RU(2_1_2, D1);
1600 			fallthrough;
1601 		case RATE_MCS_CHAN_WIDTH_40:
1602 			/* content channel 2 */
1603 			IWL_MVM_ENC_EHT_RU(2_1_1, B1);
1604 			fallthrough;
1605 		case RATE_MCS_CHAN_WIDTH_20:
1606 			IWL_MVM_ENC_EHT_RU(1_1_1, A1);
1607 			break;
1608 		}
1609 	} else {
1610 		__le32 usig_a1 = phy_data->rx_vec[0];
1611 		__le32 usig_a2 = phy_data->rx_vec[1];
1612 
1613 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1614 					    IWL_RX_USIG_A1_DISREGARD,
1615 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B20_B24_DISREGARD);
1616 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1617 					    IWL_RX_USIG_A1_VALIDATE,
1618 					    IEEE80211_RADIOTAP_EHT_USIG1_MU_B25_VALIDATE);
1619 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1620 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1621 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B0_B1_PPDU_TYPE);
1622 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1623 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1624 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B2_VALIDATE);
1625 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1626 					    IWL_RX_USIG_A2_EHT_PUNC_CHANNEL,
1627 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B3_B7_PUNCTURED_INFO);
1628 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1629 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B8,
1630 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B8_VALIDATE);
1631 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1632 					    IWL_RX_USIG_A2_EHT_SIG_MCS,
1633 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B9_B10_SIG_MCS);
1634 		IWL_MVM_ENC_USIG_VALUE_MASK
1635 			(usig, usig_a2, IWL_RX_USIG_A2_EHT_SIG_SYM_NUM,
1636 			 IEEE80211_RADIOTAP_EHT_USIG2_MU_B11_B15_EHT_SIG_SYMBOLS);
1637 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1638 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1639 					    IEEE80211_RADIOTAP_EHT_USIG2_MU_B16_B19_CRC);
1640 	}
1641 }
1642 
1643 static void iwl_mvm_decode_eht_ext_tb(struct iwl_mvm *mvm,
1644 				      struct iwl_mvm_rx_phy_data *phy_data,
1645 				      struct ieee80211_rx_status *rx_status,
1646 				      struct ieee80211_radiotap_eht *eht,
1647 				      struct ieee80211_radiotap_eht_usig *usig)
1648 {
1649 	if (phy_data->with_data) {
1650 		__le32 data5 = phy_data->d5;
1651 
1652 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1653 					    IWL_RX_PHY_DATA5_EHT_TYPE_AND_COMP,
1654 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1655 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1656 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE1,
1657 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1658 
1659 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, data5,
1660 					    IWL_RX_PHY_DATA5_EHT_TB_SPATIAL_REUSE2,
1661 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1662 	} else {
1663 		__le32 usig_a1 = phy_data->rx_vec[0];
1664 		__le32 usig_a2 = phy_data->rx_vec[1];
1665 
1666 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a1,
1667 					    IWL_RX_USIG_A1_DISREGARD,
1668 					    IEEE80211_RADIOTAP_EHT_USIG1_TB_B20_B25_DISREGARD);
1669 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1670 					    IWL_RX_USIG_A2_EHT_PPDU_TYPE,
1671 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B0_B1_PPDU_TYPE);
1672 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1673 					    IWL_RX_USIG_A2_EHT_USIG2_VALIDATE_B2,
1674 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B2_VALIDATE);
1675 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1676 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_1,
1677 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B3_B6_SPATIAL_REUSE_1);
1678 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1679 					    IWL_RX_USIG_A2_EHT_TRIG_SPATIAL_REUSE_2,
1680 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B7_B10_SPATIAL_REUSE_2);
1681 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1682 					    IWL_RX_USIG_A2_EHT_TRIG_USIG2_DISREGARD,
1683 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B11_B15_DISREGARD);
1684 		IWL_MVM_ENC_USIG_VALUE_MASK(usig, usig_a2,
1685 					    IWL_RX_USIG_A2_EHT_CRC_OK,
1686 					    IEEE80211_RADIOTAP_EHT_USIG2_TB_B16_B19_CRC);
1687 	}
1688 }
1689 
1690 static void iwl_mvm_decode_eht_ru(struct iwl_mvm *mvm,
1691 				  struct ieee80211_rx_status *rx_status,
1692 				  struct ieee80211_radiotap_eht *eht)
1693 {
1694 	u32 ru = le32_get_bits(eht->data[8],
1695 			       IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1696 	enum nl80211_eht_ru_alloc nl_ru;
1697 
1698 	/* Using D1.5 Table 9-53a - Encoding of PS160 and RU Allocation subfields
1699 	 * in an EHT variant User Info field
1700 	 */
1701 
1702 	switch (ru) {
1703 	case 0 ... 36:
1704 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_26;
1705 		break;
1706 	case 37 ... 52:
1707 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52;
1708 		break;
1709 	case 53 ... 60:
1710 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106;
1711 		break;
1712 	case 61 ... 64:
1713 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_242;
1714 		break;
1715 	case 65 ... 66:
1716 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484;
1717 		break;
1718 	case 67:
1719 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996;
1720 		break;
1721 	case 68:
1722 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996;
1723 		break;
1724 	case 69:
1725 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_4x996;
1726 		break;
1727 	case 70 ... 81:
1728 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_52P26;
1729 		break;
1730 	case 82 ... 89:
1731 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_106P26;
1732 		break;
1733 	case 90 ... 93:
1734 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_484P242;
1735 		break;
1736 	case 94 ... 95:
1737 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484;
1738 		break;
1739 	case 96 ... 99:
1740 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242;
1741 		break;
1742 	case 100 ... 103:
1743 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484;
1744 		break;
1745 	case 104:
1746 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996;
1747 		break;
1748 	case 105 ... 106:
1749 		nl_ru = NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484;
1750 		break;
1751 	default:
1752 		return;
1753 	}
1754 
1755 	rx_status->bw = RATE_INFO_BW_EHT_RU;
1756 	rx_status->eht.ru = nl_ru;
1757 }
1758 
1759 static void iwl_mvm_decode_eht_phy_data(struct iwl_mvm *mvm,
1760 					struct iwl_mvm_rx_phy_data *phy_data,
1761 					struct ieee80211_rx_status *rx_status,
1762 					struct ieee80211_radiotap_eht *eht,
1763 					struct ieee80211_radiotap_eht_usig *usig)
1764 
1765 {
1766 	__le32 data0 = phy_data->d0;
1767 	__le32 data1 = phy_data->d1;
1768 	__le32 usig_a1 = phy_data->rx_vec[0];
1769 	u8 info_type = phy_data->info_type;
1770 
1771 	/* Not in EHT range */
1772 	if (info_type < IWL_RX_PHY_INFO_TYPE_EHT_MU ||
1773 	    info_type > IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT)
1774 		return;
1775 
1776 	usig->common |= cpu_to_le32
1777 		(IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL_KNOWN |
1778 		 IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR_KNOWN);
1779 	if (phy_data->with_data) {
1780 		usig->common |= LE32_DEC_ENC(data0,
1781 					     IWL_RX_PHY_DATA0_EHT_UPLINK,
1782 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1783 		usig->common |= LE32_DEC_ENC(data0,
1784 					     IWL_RX_PHY_DATA0_EHT_BSS_COLOR_MASK,
1785 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1786 	} else {
1787 		usig->common |= LE32_DEC_ENC(usig_a1,
1788 					     IWL_RX_USIG_A1_UL_FLAG,
1789 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_UL_DL);
1790 		usig->common |= LE32_DEC_ENC(usig_a1,
1791 					     IWL_RX_USIG_A1_BSS_COLOR,
1792 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_BSS_COLOR);
1793 	}
1794 
1795 	if (fw_has_capa(&mvm->fw->ucode_capa,
1796 			IWL_UCODE_TLV_CAPA_SNIFF_VALIDATE_SUPPORT)) {
1797 		usig->common |=
1798 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_CHECKED);
1799 		usig->common |=
1800 			LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_VALIDATE,
1801 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_VALIDATE_BITS_OK);
1802 	}
1803 
1804 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_SPATIAL_REUSE);
1805 	eht->data[0] |= LE32_DEC_ENC(data0,
1806 				     IWL_RX_PHY_DATA0_ETH_SPATIAL_REUSE_MASK,
1807 				     IEEE80211_RADIOTAP_EHT_DATA0_SPATIAL_REUSE);
1808 
1809 	/* All RU allocating size/index is in TB format */
1810 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_RU_ALLOC_TB_FMT);
1811 	eht->data[8] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PS160,
1812 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_PS_160);
1813 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B0,
1814 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B0);
1815 	eht->data[8] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_RU_ALLOC_B1_B7,
1816 				     IEEE80211_RADIOTAP_EHT_DATA8_RU_ALLOC_TB_FMT_B7_B1);
1817 
1818 	iwl_mvm_decode_eht_ru(mvm, rx_status, eht);
1819 
1820 	/* We only get here in case of IWL_RX_MPDU_PHY_TSF_OVERLOAD is set
1821 	 * which is on only in case of monitor mode so no need to check monitor
1822 	 * mode
1823 	 */
1824 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRIMARY_80);
1825 	eht->data[1] |=
1826 		le32_encode_bits(mvm->monitor_p80,
1827 				 IEEE80211_RADIOTAP_EHT_DATA1_PRIMARY_80);
1828 
1829 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP_KNOWN);
1830 	if (phy_data->with_data)
1831 		usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_TXOP_DUR_MASK,
1832 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1833 	else
1834 		usig->common |= LE32_DEC_ENC(usig_a1, IWL_RX_USIG_A1_TXOP_DURATION,
1835 					     IEEE80211_RADIOTAP_EHT_USIG_COMMON_TXOP);
1836 
1837 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_LDPC_EXTRA_SYM_OM);
1838 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_LDPC_EXT_SYM,
1839 				     IEEE80211_RADIOTAP_EHT_DATA0_LDPC_EXTRA_SYM_OM);
1840 
1841 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PRE_PADD_FACOR_OM);
1842 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PRE_FEC_PAD_MASK,
1843 				    IEEE80211_RADIOTAP_EHT_DATA0_PRE_PADD_FACOR_OM);
1844 
1845 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_PE_DISAMBIGUITY_OM);
1846 	eht->data[0] |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PE_DISAMBIG,
1847 				     IEEE80211_RADIOTAP_EHT_DATA0_PE_DISAMBIGUITY_OM);
1848 
1849 	/* TODO: what about IWL_RX_PHY_DATA0_EHT_BW320_SLOT */
1850 
1851 	if (!le32_get_bits(data0, IWL_RX_PHY_DATA0_EHT_SIGA_CRC_OK))
1852 		usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BAD_USIG_CRC);
1853 
1854 	usig->common |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER_KNOWN);
1855 	usig->common |= LE32_DEC_ENC(data0, IWL_RX_PHY_DATA0_EHT_PHY_VER,
1856 				     IEEE80211_RADIOTAP_EHT_USIG_COMMON_PHY_VER);
1857 
1858 	/*
1859 	 * TODO: what about TB - IWL_RX_PHY_DATA1_EHT_TB_PILOT_TYPE,
1860 	 *			 IWL_RX_PHY_DATA1_EHT_TB_LOW_SS
1861 	 */
1862 
1863 	eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_EHT_LTF);
1864 	eht->data[0] |= LE32_DEC_ENC(data1, IWL_RX_PHY_DATA1_EHT_SIG_LTF_NUM,
1865 				     IEEE80211_RADIOTAP_EHT_DATA0_EHT_LTF);
1866 
1867 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT ||
1868 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_TB)
1869 		iwl_mvm_decode_eht_ext_tb(mvm, phy_data, rx_status, eht, usig);
1870 
1871 	if (info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT ||
1872 	    info_type == IWL_RX_PHY_INFO_TYPE_EHT_MU)
1873 		iwl_mvm_decode_eht_ext_mu(mvm, phy_data, rx_status, eht, usig);
1874 }
1875 
1876 static void iwl_mvm_rx_eht(struct iwl_mvm *mvm, struct sk_buff *skb,
1877 			   struct iwl_mvm_rx_phy_data *phy_data,
1878 			   int queue)
1879 {
1880 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
1881 
1882 	struct ieee80211_radiotap_eht *eht;
1883 	struct ieee80211_radiotap_eht_usig *usig;
1884 	size_t eht_len = sizeof(*eht);
1885 
1886 	u32 rate_n_flags = phy_data->rate_n_flags;
1887 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
1888 	/* EHT and HE have the same valus for LTF */
1889 	u8 ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
1890 	u16 phy_info = phy_data->phy_info;
1891 	u32 bw;
1892 
1893 	/* u32 for 1 user_info */
1894 	if (phy_data->with_data)
1895 		eht_len += sizeof(u32);
1896 
1897 	eht = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT, eht_len);
1898 
1899 	usig = iwl_mvm_radiotap_put_tlv(skb, IEEE80211_RADIOTAP_EHT_USIG,
1900 					sizeof(*usig));
1901 	rx_status->flag |= RX_FLAG_RADIOTAP_TLV_AT_END;
1902 	usig->common |=
1903 		cpu_to_le32(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW_KNOWN);
1904 
1905 	/* specific handling for 320MHz */
1906 	bw = FIELD_GET(RATE_MCS_CHAN_WIDTH_MSK, rate_n_flags);
1907 	if (bw == RATE_MCS_CHAN_WIDTH_320_VAL)
1908 		bw += FIELD_GET(IWL_RX_PHY_DATA0_EHT_BW320_SLOT,
1909 				le32_to_cpu(phy_data->d0));
1910 
1911 	usig->common |= cpu_to_le32
1912 		(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USIG_COMMON_BW, bw));
1913 
1914 	/* report the AMPDU-EOF bit on single frames */
1915 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
1916 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
1917 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1918 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1919 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1920 	}
1921 
1922 	/* update aggregation data for monitor sake on default queue */
1923 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
1924 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
1925 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
1926 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
1927 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
1928 	}
1929 
1930 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
1931 		iwl_mvm_decode_eht_phy_data(mvm, phy_data, rx_status, eht, usig);
1932 
1933 #define CHECK_TYPE(F)							\
1934 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
1935 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
1936 
1937 	CHECK_TYPE(SU);
1938 	CHECK_TYPE(EXT_SU);
1939 	CHECK_TYPE(MU);
1940 	CHECK_TYPE(TRIG);
1941 
1942 	switch (FIELD_GET(RATE_MCS_HE_GI_LTF_MSK, rate_n_flags)) {
1943 	case 0:
1944 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
1945 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1946 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
1947 		} else {
1948 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1949 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1950 		}
1951 		break;
1952 	case 1:
1953 		rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_1_6;
1954 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
1955 		break;
1956 	case 2:
1957 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1958 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
1959 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1960 		else
1961 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_0_8;
1962 		break;
1963 	case 3:
1964 		if (he_type != RATE_MCS_HE_TYPE_TRIG) {
1965 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
1966 			rx_status->eht.gi = NL80211_RATE_INFO_EHT_GI_3_2;
1967 		}
1968 		break;
1969 	default:
1970 		/* nothing here */
1971 		break;
1972 	}
1973 
1974 	if (ltf != IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN) {
1975 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_GI);
1976 		eht->data[0] |= cpu_to_le32
1977 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_LTF,
1978 				    ltf) |
1979 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_DATA0_GI,
1980 				    rx_status->eht.gi));
1981 	}
1982 
1983 
1984 	if (!phy_data->with_data) {
1985 		eht->known |= cpu_to_le32(IEEE80211_RADIOTAP_EHT_KNOWN_NSS_S |
1986 					  IEEE80211_RADIOTAP_EHT_KNOWN_BEAMFORMED_S);
1987 		eht->data[7] |=
1988 			le32_encode_bits(le32_get_bits(phy_data->rx_vec[2],
1989 						       RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK),
1990 					 IEEE80211_RADIOTAP_EHT_DATA7_NSS_S);
1991 		if (rate_n_flags & RATE_MCS_BF_MSK)
1992 			eht->data[7] |=
1993 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_DATA7_BEAMFORMED_S);
1994 	} else {
1995 		eht->user_info[0] |=
1996 			cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS_KNOWN |
1997 				    IEEE80211_RADIOTAP_EHT_USER_INFO_CODING_KNOWN |
1998 				    IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_KNOWN_O |
1999 				    IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_KNOWN_O |
2000 				    IEEE80211_RADIOTAP_EHT_USER_INFO_DATA_FOR_USER);
2001 
2002 		if (rate_n_flags & RATE_MCS_BF_MSK)
2003 			eht->user_info[0] |=
2004 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_BEAMFORMING_O);
2005 
2006 		if (rate_n_flags & RATE_MCS_LDPC_MSK)
2007 			eht->user_info[0] |=
2008 				cpu_to_le32(IEEE80211_RADIOTAP_EHT_USER_INFO_CODING);
2009 
2010 		eht->user_info[0] |= cpu_to_le32
2011 			(FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_MCS,
2012 				    FIELD_GET(RATE_VHT_MCS_RATE_CODE_MSK,
2013 					      rate_n_flags)) |
2014 			 FIELD_PREP(IEEE80211_RADIOTAP_EHT_USER_INFO_NSS_O,
2015 				    FIELD_GET(RATE_MCS_NSS_MSK, rate_n_flags)));
2016 	}
2017 }
2018 
2019 static void iwl_mvm_rx_he(struct iwl_mvm *mvm, struct sk_buff *skb,
2020 			  struct iwl_mvm_rx_phy_data *phy_data,
2021 			  int queue)
2022 {
2023 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2024 	struct ieee80211_radiotap_he *he = NULL;
2025 	struct ieee80211_radiotap_he_mu *he_mu = NULL;
2026 	u32 rate_n_flags = phy_data->rate_n_flags;
2027 	u32 he_type = rate_n_flags & RATE_MCS_HE_TYPE_MSK;
2028 	u8 ltf;
2029 	static const struct ieee80211_radiotap_he known = {
2030 		.data1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_DATA_MCS_KNOWN |
2031 				     IEEE80211_RADIOTAP_HE_DATA1_DATA_DCM_KNOWN |
2032 				     IEEE80211_RADIOTAP_HE_DATA1_STBC_KNOWN |
2033 				     IEEE80211_RADIOTAP_HE_DATA1_CODING_KNOWN),
2034 		.data2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA2_GI_KNOWN |
2035 				     IEEE80211_RADIOTAP_HE_DATA2_TXBF_KNOWN),
2036 	};
2037 	static const struct ieee80211_radiotap_he_mu mu_known = {
2038 		.flags1 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_MCS_KNOWN |
2039 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_DCM_KNOWN |
2040 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_SYMS_USERS_KNOWN |
2041 				      IEEE80211_RADIOTAP_HE_MU_FLAGS1_SIG_B_COMP_KNOWN),
2042 		.flags2 = cpu_to_le16(IEEE80211_RADIOTAP_HE_MU_FLAGS2_PUNC_FROM_SIG_A_BW_KNOWN |
2043 				      IEEE80211_RADIOTAP_HE_MU_FLAGS2_BW_FROM_SIG_A_BW_KNOWN),
2044 	};
2045 	u16 phy_info = phy_data->phy_info;
2046 
2047 	he = skb_put_data(skb, &known, sizeof(known));
2048 	rx_status->flag |= RX_FLAG_RADIOTAP_HE;
2049 
2050 	if (phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU ||
2051 	    phy_data->info_type == IWL_RX_PHY_INFO_TYPE_HE_MU_EXT) {
2052 		he_mu = skb_put_data(skb, &mu_known, sizeof(mu_known));
2053 		rx_status->flag |= RX_FLAG_RADIOTAP_HE_MU;
2054 	}
2055 
2056 	/* report the AMPDU-EOF bit on single frames */
2057 	if (!queue && !(phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2058 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2059 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2060 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_HE_DELIM_EOF))
2061 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2062 	}
2063 
2064 	if (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2065 		iwl_mvm_decode_he_phy_data(mvm, phy_data, he, he_mu, rx_status,
2066 					   queue);
2067 
2068 	/* update aggregation data for monitor sake on default queue */
2069 	if (!queue && (phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD) &&
2070 	    (phy_info & IWL_RX_MPDU_PHY_AMPDU) && phy_data->first_subframe) {
2071 		rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT_KNOWN;
2072 		if (phy_data->d0 & cpu_to_le32(IWL_RX_PHY_DATA0_EHT_DELIM_EOF))
2073 			rx_status->flag |= RX_FLAG_AMPDU_EOF_BIT;
2074 	}
2075 
2076 	if (he_type == RATE_MCS_HE_TYPE_EXT_SU &&
2077 	    rate_n_flags & RATE_MCS_HE_106T_MSK) {
2078 		rx_status->bw = RATE_INFO_BW_HE_RU;
2079 		rx_status->he_ru = NL80211_RATE_INFO_HE_RU_ALLOC_106;
2080 	}
2081 
2082 	/* actually data is filled in mac80211 */
2083 	if (he_type == RATE_MCS_HE_TYPE_SU ||
2084 	    he_type == RATE_MCS_HE_TYPE_EXT_SU)
2085 		he->data1 |=
2086 			cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA1_BW_RU_ALLOC_KNOWN);
2087 
2088 #define CHECK_TYPE(F)							\
2089 	BUILD_BUG_ON(IEEE80211_RADIOTAP_HE_DATA1_FORMAT_ ## F !=	\
2090 		     (RATE_MCS_HE_TYPE_ ## F >> RATE_MCS_HE_TYPE_POS))
2091 
2092 	CHECK_TYPE(SU);
2093 	CHECK_TYPE(EXT_SU);
2094 	CHECK_TYPE(MU);
2095 	CHECK_TYPE(TRIG);
2096 
2097 	he->data1 |= cpu_to_le16(he_type >> RATE_MCS_HE_TYPE_POS);
2098 
2099 	if (rate_n_flags & RATE_MCS_BF_MSK)
2100 		he->data5 |= cpu_to_le16(IEEE80211_RADIOTAP_HE_DATA5_TXBF);
2101 
2102 	switch ((rate_n_flags & RATE_MCS_HE_GI_LTF_MSK) >>
2103 		RATE_MCS_HE_GI_LTF_POS) {
2104 	case 0:
2105 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2106 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2107 		else
2108 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2109 		if (he_type == RATE_MCS_HE_TYPE_MU)
2110 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2111 		else
2112 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_1X;
2113 		break;
2114 	case 1:
2115 		if (he_type == RATE_MCS_HE_TYPE_TRIG)
2116 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2117 		else
2118 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2119 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2120 		break;
2121 	case 2:
2122 		if (he_type == RATE_MCS_HE_TYPE_TRIG) {
2123 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2124 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2125 		} else {
2126 			rx_status->he_gi = NL80211_RATE_INFO_HE_GI_1_6;
2127 			ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_2X;
2128 		}
2129 		break;
2130 	case 3:
2131 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_3_2;
2132 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2133 		break;
2134 	case 4:
2135 		rx_status->he_gi = NL80211_RATE_INFO_HE_GI_0_8;
2136 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_4X;
2137 		break;
2138 	default:
2139 		ltf = IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE_UNKNOWN;
2140 	}
2141 
2142 	he->data5 |= le16_encode_bits(ltf,
2143 				      IEEE80211_RADIOTAP_HE_DATA5_LTF_SIZE);
2144 }
2145 
2146 static void iwl_mvm_decode_lsig(struct sk_buff *skb,
2147 				struct iwl_mvm_rx_phy_data *phy_data)
2148 {
2149 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2150 	struct ieee80211_radiotap_lsig *lsig;
2151 
2152 	switch (phy_data->info_type) {
2153 	case IWL_RX_PHY_INFO_TYPE_HT:
2154 	case IWL_RX_PHY_INFO_TYPE_VHT_SU:
2155 	case IWL_RX_PHY_INFO_TYPE_VHT_MU:
2156 	case IWL_RX_PHY_INFO_TYPE_HE_TB_EXT:
2157 	case IWL_RX_PHY_INFO_TYPE_HE_SU:
2158 	case IWL_RX_PHY_INFO_TYPE_HE_MU:
2159 	case IWL_RX_PHY_INFO_TYPE_HE_MU_EXT:
2160 	case IWL_RX_PHY_INFO_TYPE_HE_TB:
2161 	case IWL_RX_PHY_INFO_TYPE_EHT_MU:
2162 	case IWL_RX_PHY_INFO_TYPE_EHT_TB:
2163 	case IWL_RX_PHY_INFO_TYPE_EHT_MU_EXT:
2164 	case IWL_RX_PHY_INFO_TYPE_EHT_TB_EXT:
2165 		lsig = skb_put(skb, sizeof(*lsig));
2166 		lsig->data1 = cpu_to_le16(IEEE80211_RADIOTAP_LSIG_DATA1_LENGTH_KNOWN);
2167 		lsig->data2 = le16_encode_bits(le32_get_bits(phy_data->d1,
2168 							     IWL_RX_PHY_DATA1_LSIG_LEN_MASK),
2169 					       IEEE80211_RADIOTAP_LSIG_DATA2_LENGTH);
2170 		rx_status->flag |= RX_FLAG_RADIOTAP_LSIG;
2171 		break;
2172 	default:
2173 		break;
2174 	}
2175 }
2176 
2177 static inline u8 iwl_mvm_nl80211_band_from_rx_msdu(u8 phy_band)
2178 {
2179 	switch (phy_band) {
2180 	case PHY_BAND_24:
2181 		return NL80211_BAND_2GHZ;
2182 	case PHY_BAND_5:
2183 		return NL80211_BAND_5GHZ;
2184 	case PHY_BAND_6:
2185 		return NL80211_BAND_6GHZ;
2186 	default:
2187 		WARN_ONCE(1, "Unsupported phy band (%u)\n", phy_band);
2188 		return NL80211_BAND_5GHZ;
2189 	}
2190 }
2191 
2192 struct iwl_rx_sta_csa {
2193 	bool all_sta_unblocked;
2194 	struct ieee80211_vif *vif;
2195 };
2196 
2197 static void iwl_mvm_rx_get_sta_block_tx(void *data, struct ieee80211_sta *sta)
2198 {
2199 	struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2200 	struct iwl_rx_sta_csa *rx_sta_csa = data;
2201 
2202 	if (mvmsta->vif != rx_sta_csa->vif)
2203 		return;
2204 
2205 	if (mvmsta->disable_tx)
2206 		rx_sta_csa->all_sta_unblocked = false;
2207 }
2208 
2209 /*
2210  * Note: requires also rx_status->band to be prefilled, as well
2211  * as phy_data (apart from phy_data->info_type)
2212  */
2213 static void iwl_mvm_rx_fill_status(struct iwl_mvm *mvm,
2214 				   struct sk_buff *skb,
2215 				   struct iwl_mvm_rx_phy_data *phy_data,
2216 				   int queue)
2217 {
2218 	struct ieee80211_rx_status *rx_status = IEEE80211_SKB_RXCB(skb);
2219 	u32 rate_n_flags = phy_data->rate_n_flags;
2220 	u8 stbc = u32_get_bits(rate_n_flags, RATE_MCS_STBC_MSK);
2221 	u32 format = rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2222 	bool is_sgi;
2223 
2224 	phy_data->info_type = IWL_RX_PHY_INFO_TYPE_NONE;
2225 
2226 	if (phy_data->phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD)
2227 		phy_data->info_type =
2228 			le32_get_bits(phy_data->d1,
2229 				      IWL_RX_PHY_DATA1_INFO_TYPE_MASK);
2230 
2231 	/* This may be overridden by iwl_mvm_rx_he() to HE_RU */
2232 	switch (rate_n_flags & RATE_MCS_CHAN_WIDTH_MSK) {
2233 	case RATE_MCS_CHAN_WIDTH_20:
2234 		break;
2235 	case RATE_MCS_CHAN_WIDTH_40:
2236 		rx_status->bw = RATE_INFO_BW_40;
2237 		break;
2238 	case RATE_MCS_CHAN_WIDTH_80:
2239 		rx_status->bw = RATE_INFO_BW_80;
2240 		break;
2241 	case RATE_MCS_CHAN_WIDTH_160:
2242 		rx_status->bw = RATE_INFO_BW_160;
2243 		break;
2244 	case RATE_MCS_CHAN_WIDTH_320:
2245 		rx_status->bw = RATE_INFO_BW_320;
2246 		break;
2247 	}
2248 
2249 	/* must be before L-SIG data */
2250 	if (format == RATE_MCS_HE_MSK)
2251 		iwl_mvm_rx_he(mvm, skb, phy_data, queue);
2252 
2253 	iwl_mvm_decode_lsig(skb, phy_data);
2254 
2255 	rx_status->device_timestamp = phy_data->gp2_on_air_rise;
2256 	rx_status->freq = ieee80211_channel_to_frequency(phy_data->channel,
2257 							 rx_status->band);
2258 	iwl_mvm_get_signal_strength(mvm, rx_status, rate_n_flags,
2259 				    phy_data->energy_a, phy_data->energy_b);
2260 
2261 	/* using TLV format and must be after all fixed len fields */
2262 	if (format == RATE_MCS_EHT_MSK)
2263 		iwl_mvm_rx_eht(mvm, skb, phy_data, queue);
2264 
2265 	if (unlikely(mvm->monitor_on))
2266 		iwl_mvm_add_rtap_sniffer_config(mvm, skb);
2267 
2268 	is_sgi = format == RATE_MCS_HE_MSK ?
2269 		iwl_he_is_sgi(rate_n_flags) :
2270 		rate_n_flags & RATE_MCS_SGI_MSK;
2271 
2272 	if (!(format == RATE_MCS_CCK_MSK) && is_sgi)
2273 		rx_status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
2274 
2275 	if (rate_n_flags & RATE_MCS_LDPC_MSK)
2276 		rx_status->enc_flags |= RX_ENC_FLAG_LDPC;
2277 
2278 	switch (format) {
2279 	case RATE_MCS_VHT_MSK:
2280 		rx_status->encoding = RX_ENC_VHT;
2281 		break;
2282 	case RATE_MCS_HE_MSK:
2283 		rx_status->encoding = RX_ENC_HE;
2284 		rx_status->he_dcm =
2285 			!!(rate_n_flags & RATE_HE_DUAL_CARRIER_MODE_MSK);
2286 		break;
2287 	case RATE_MCS_EHT_MSK:
2288 		rx_status->encoding = RX_ENC_EHT;
2289 		break;
2290 	}
2291 
2292 	switch (format) {
2293 	case RATE_MCS_HT_MSK:
2294 		rx_status->encoding = RX_ENC_HT;
2295 		rx_status->rate_idx = RATE_HT_MCS_INDEX(rate_n_flags);
2296 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2297 		break;
2298 	case RATE_MCS_VHT_MSK:
2299 	case RATE_MCS_HE_MSK:
2300 	case RATE_MCS_EHT_MSK:
2301 		rx_status->nss =
2302 			u32_get_bits(rate_n_flags, RATE_MCS_NSS_MSK) + 1;
2303 		rx_status->rate_idx = rate_n_flags & RATE_MCS_CODE_MSK;
2304 		rx_status->enc_flags |= stbc << RX_ENC_FLAG_STBC_SHIFT;
2305 		break;
2306 	default: {
2307 		int rate = iwl_mvm_legacy_hw_idx_to_mac80211_idx(rate_n_flags,
2308 								 rx_status->band);
2309 
2310 		rx_status->rate_idx = rate;
2311 
2312 		if ((rate < 0 || rate > 0xFF)) {
2313 			rx_status->rate_idx = 0;
2314 			if (net_ratelimit())
2315 				IWL_ERR(mvm, "Invalid rate flags 0x%x, band %d,\n",
2316 					rate_n_flags, rx_status->band);
2317 		}
2318 
2319 		break;
2320 		}
2321 	}
2322 }
2323 
2324 void iwl_mvm_rx_mpdu_mq(struct iwl_mvm *mvm, struct napi_struct *napi,
2325 			struct iwl_rx_cmd_buffer *rxb, int queue)
2326 {
2327 	struct ieee80211_rx_status *rx_status;
2328 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2329 	struct iwl_rx_mpdu_desc *desc = (void *)pkt->data;
2330 	struct ieee80211_hdr *hdr;
2331 	u32 len;
2332 	u32 pkt_len = iwl_rx_packet_payload_len(pkt);
2333 	struct ieee80211_sta *sta = NULL;
2334 	struct ieee80211_link_sta *link_sta = NULL;
2335 	struct sk_buff *skb;
2336 	u8 crypt_len = 0;
2337 	size_t desc_size;
2338 	struct iwl_mvm_rx_phy_data phy_data = {};
2339 	u32 format;
2340 
2341 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2342 		return;
2343 
2344 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210)
2345 		desc_size = sizeof(*desc);
2346 	else
2347 		desc_size = IWL_RX_DESC_SIZE_V1;
2348 
2349 	if (unlikely(pkt_len < desc_size)) {
2350 		IWL_DEBUG_DROP(mvm, "Bad REPLY_RX_MPDU_CMD size\n");
2351 		return;
2352 	}
2353 
2354 	if (mvm->trans->trans_cfg->device_family >= IWL_DEVICE_FAMILY_AX210) {
2355 		phy_data.rate_n_flags = le32_to_cpu(desc->v3.rate_n_flags);
2356 		phy_data.channel = desc->v3.channel;
2357 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v3.gp2_on_air_rise);
2358 		phy_data.energy_a = desc->v3.energy_a;
2359 		phy_data.energy_b = desc->v3.energy_b;
2360 
2361 		phy_data.d0 = desc->v3.phy_data0;
2362 		phy_data.d1 = desc->v3.phy_data1;
2363 		phy_data.d2 = desc->v3.phy_data2;
2364 		phy_data.d3 = desc->v3.phy_data3;
2365 		phy_data.eht_d4 = desc->phy_eht_data4;
2366 		phy_data.d5 = desc->v3.phy_data5;
2367 	} else {
2368 		phy_data.rate_n_flags = le32_to_cpu(desc->v1.rate_n_flags);
2369 		phy_data.channel = desc->v1.channel;
2370 		phy_data.gp2_on_air_rise = le32_to_cpu(desc->v1.gp2_on_air_rise);
2371 		phy_data.energy_a = desc->v1.energy_a;
2372 		phy_data.energy_b = desc->v1.energy_b;
2373 
2374 		phy_data.d0 = desc->v1.phy_data0;
2375 		phy_data.d1 = desc->v1.phy_data1;
2376 		phy_data.d2 = desc->v1.phy_data2;
2377 		phy_data.d3 = desc->v1.phy_data3;
2378 	}
2379 
2380 	if (iwl_fw_lookup_notif_ver(mvm->fw, LEGACY_GROUP,
2381 				    REPLY_RX_MPDU_CMD, 0) < 4) {
2382 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2383 		IWL_DEBUG_DROP(mvm, "Got old format rate, converting. New rate: 0x%x\n",
2384 			       phy_data.rate_n_flags);
2385 	}
2386 
2387 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2388 
2389 	len = le16_to_cpu(desc->mpdu_len);
2390 
2391 	if (unlikely(len + desc_size > pkt_len)) {
2392 		IWL_DEBUG_DROP(mvm, "FW lied about packet len\n");
2393 		return;
2394 	}
2395 
2396 	phy_data.with_data = true;
2397 	phy_data.phy_info = le16_to_cpu(desc->phy_info);
2398 	phy_data.d4 = desc->phy_data4;
2399 
2400 	hdr = (void *)(pkt->data + desc_size);
2401 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2402 	 * ieee80211_hdr pulled.
2403 	 */
2404 	skb = alloc_skb(128, GFP_ATOMIC);
2405 	if (!skb) {
2406 		IWL_ERR(mvm, "alloc_skb failed\n");
2407 		return;
2408 	}
2409 
2410 	if (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_PAD) {
2411 		/*
2412 		 * If the device inserted padding it means that (it thought)
2413 		 * the 802.11 header wasn't a multiple of 4 bytes long. In
2414 		 * this case, reserve two bytes at the start of the SKB to
2415 		 * align the payload properly in case we end up copying it.
2416 		 */
2417 		skb_reserve(skb, 2);
2418 	}
2419 
2420 	rx_status = IEEE80211_SKB_RXCB(skb);
2421 
2422 	/*
2423 	 * Keep packets with CRC errors (and with overrun) for monitor mode
2424 	 * (otherwise the firmware discards them) but mark them as bad.
2425 	 */
2426 	if (!(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_CRC_OK)) ||
2427 	    !(desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_OVERRUN_OK))) {
2428 		IWL_DEBUG_RX(mvm, "Bad CRC or FIFO: 0x%08X.\n",
2429 			     le32_to_cpu(desc->status));
2430 		rx_status->flag |= RX_FLAG_FAILED_FCS_CRC;
2431 	}
2432 
2433 	/* set the preamble flag if appropriate */
2434 	if (format == RATE_MCS_CCK_MSK &&
2435 	    phy_data.phy_info & IWL_RX_MPDU_PHY_SHORT_PREAMBLE)
2436 		rx_status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
2437 
2438 	if (likely(!(phy_data.phy_info & IWL_RX_MPDU_PHY_TSF_OVERLOAD))) {
2439 		u64 tsf_on_air_rise;
2440 
2441 		if (mvm->trans->trans_cfg->device_family >=
2442 		    IWL_DEVICE_FAMILY_AX210)
2443 			tsf_on_air_rise = le64_to_cpu(desc->v3.tsf_on_air_rise);
2444 		else
2445 			tsf_on_air_rise = le64_to_cpu(desc->v1.tsf_on_air_rise);
2446 
2447 		rx_status->mactime = tsf_on_air_rise;
2448 		/* TSF as indicated by the firmware is at INA time */
2449 		rx_status->flag |= RX_FLAG_MACTIME_PLCP_START;
2450 	}
2451 
2452 	if (iwl_mvm_is_band_in_rx_supported(mvm)) {
2453 		u8 band = BAND_IN_RX_STATUS(desc->mac_phy_idx);
2454 
2455 		rx_status->band = iwl_mvm_nl80211_band_from_rx_msdu(band);
2456 	} else {
2457 		rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2458 			NL80211_BAND_2GHZ;
2459 	}
2460 
2461 	/* update aggregation data for monitor sake on default queue */
2462 	if (!queue && (phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU)) {
2463 		bool toggle_bit;
2464 
2465 		toggle_bit = phy_data.phy_info & IWL_RX_MPDU_PHY_AMPDU_TOGGLE;
2466 		rx_status->flag |= RX_FLAG_AMPDU_DETAILS;
2467 		/*
2468 		 * Toggle is switched whenever new aggregation starts. Make
2469 		 * sure ampdu_reference is never 0 so we can later use it to
2470 		 * see if the frame was really part of an A-MPDU or not.
2471 		 */
2472 		if (toggle_bit != mvm->ampdu_toggle) {
2473 			mvm->ampdu_ref++;
2474 			if (mvm->ampdu_ref == 0)
2475 				mvm->ampdu_ref++;
2476 			mvm->ampdu_toggle = toggle_bit;
2477 			phy_data.first_subframe = true;
2478 		}
2479 		rx_status->ampdu_reference = mvm->ampdu_ref;
2480 	}
2481 
2482 	rcu_read_lock();
2483 
2484 	if (desc->status & cpu_to_le32(IWL_RX_MPDU_STATUS_SRC_STA_FOUND)) {
2485 		u8 id = le32_get_bits(desc->status, IWL_RX_MPDU_STATUS_STA_ID);
2486 
2487 		if (!WARN_ON_ONCE(id >= mvm->fw->ucode_capa.num_stations)) {
2488 			sta = rcu_dereference(mvm->fw_id_to_mac_id[id]);
2489 			if (IS_ERR(sta))
2490 				sta = NULL;
2491 			link_sta = rcu_dereference(mvm->fw_id_to_link_sta[id]);
2492 		}
2493 	} else if (!is_multicast_ether_addr(hdr->addr2)) {
2494 		/*
2495 		 * This is fine since we prevent two stations with the same
2496 		 * address from being added.
2497 		 */
2498 		sta = ieee80211_find_sta_by_ifaddr(mvm->hw, hdr->addr2, NULL);
2499 	}
2500 
2501 	if (iwl_mvm_rx_crypto(mvm, sta, hdr, rx_status, phy_data.phy_info, desc,
2502 			      le32_to_cpu(pkt->len_n_flags), queue,
2503 			      &crypt_len)) {
2504 		kfree_skb(skb);
2505 		goto out;
2506 	}
2507 
2508 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2509 
2510 	if (sta) {
2511 		struct iwl_mvm_sta *mvmsta = iwl_mvm_sta_from_mac80211(sta);
2512 		struct ieee80211_vif *tx_blocked_vif =
2513 			rcu_dereference(mvm->csa_tx_blocked_vif);
2514 		u8 baid = (u8)((le32_to_cpu(desc->reorder_data) &
2515 			       IWL_RX_MPDU_REORDER_BAID_MASK) >>
2516 			       IWL_RX_MPDU_REORDER_BAID_SHIFT);
2517 		struct iwl_fw_dbg_trigger_tlv *trig;
2518 		struct ieee80211_vif *vif = mvmsta->vif;
2519 
2520 		if (!mvm->tcm.paused && len >= sizeof(*hdr) &&
2521 		    !is_multicast_ether_addr(hdr->addr1) &&
2522 		    ieee80211_is_data(hdr->frame_control) &&
2523 		    time_after(jiffies, mvm->tcm.ts + MVM_TCM_PERIOD))
2524 			schedule_delayed_work(&mvm->tcm.work, 0);
2525 
2526 		/*
2527 		 * We have tx blocked stations (with CS bit). If we heard
2528 		 * frames from a blocked station on a new channel we can
2529 		 * TX to it again.
2530 		 */
2531 		if (unlikely(tx_blocked_vif) && tx_blocked_vif == vif) {
2532 			struct iwl_mvm_vif *mvmvif =
2533 				iwl_mvm_vif_from_mac80211(tx_blocked_vif);
2534 			struct iwl_rx_sta_csa rx_sta_csa = {
2535 				.all_sta_unblocked = true,
2536 				.vif = tx_blocked_vif,
2537 			};
2538 
2539 			if (mvmvif->csa_target_freq == rx_status->freq)
2540 				iwl_mvm_sta_modify_disable_tx_ap(mvm, sta,
2541 								 false);
2542 			ieee80211_iterate_stations_atomic(mvm->hw,
2543 							  iwl_mvm_rx_get_sta_block_tx,
2544 							  &rx_sta_csa);
2545 
2546 			if (rx_sta_csa.all_sta_unblocked) {
2547 				RCU_INIT_POINTER(mvm->csa_tx_blocked_vif, NULL);
2548 				/* Unblock BCAST / MCAST station */
2549 				iwl_mvm_modify_all_sta_disable_tx(mvm, mvmvif, false);
2550 				cancel_delayed_work(&mvm->cs_tx_unblock_dwork);
2551 			}
2552 		}
2553 
2554 		rs_update_last_rssi(mvm, mvmsta, rx_status);
2555 
2556 		trig = iwl_fw_dbg_trigger_on(&mvm->fwrt,
2557 					     ieee80211_vif_to_wdev(vif),
2558 					     FW_DBG_TRIGGER_RSSI);
2559 
2560 		if (trig && ieee80211_is_beacon(hdr->frame_control)) {
2561 			struct iwl_fw_dbg_trigger_low_rssi *rssi_trig;
2562 			s32 rssi;
2563 
2564 			rssi_trig = (void *)trig->data;
2565 			rssi = le32_to_cpu(rssi_trig->rssi);
2566 
2567 			if (rx_status->signal < rssi)
2568 				iwl_fw_dbg_collect_trig(&mvm->fwrt, trig,
2569 							NULL);
2570 		}
2571 
2572 		if (ieee80211_is_data(hdr->frame_control))
2573 			iwl_mvm_rx_csum(mvm, sta, skb, pkt);
2574 
2575 		if (iwl_mvm_is_dup(sta, queue, rx_status, hdr, desc)) {
2576 			kfree_skb(skb);
2577 			goto out;
2578 		}
2579 
2580 		/*
2581 		 * Our hardware de-aggregates AMSDUs but copies the mac header
2582 		 * as it to the de-aggregated MPDUs. We need to turn off the
2583 		 * AMSDU bit in the QoS control ourselves.
2584 		 * In addition, HW reverses addr3 and addr4 - reverse it back.
2585 		 */
2586 		if ((desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2587 		    !WARN_ON(!ieee80211_is_data_qos(hdr->frame_control))) {
2588 			u8 *qc = ieee80211_get_qos_ctl(hdr);
2589 
2590 			*qc &= ~IEEE80211_QOS_CTL_A_MSDU_PRESENT;
2591 
2592 			if (mvm->trans->trans_cfg->device_family ==
2593 			    IWL_DEVICE_FAMILY_9000) {
2594 				iwl_mvm_flip_address(hdr->addr3);
2595 
2596 				if (ieee80211_has_a4(hdr->frame_control))
2597 					iwl_mvm_flip_address(hdr->addr4);
2598 			}
2599 		}
2600 		if (baid != IWL_RX_REORDER_DATA_INVALID_BAID) {
2601 			u32 reorder_data = le32_to_cpu(desc->reorder_data);
2602 
2603 			iwl_mvm_agg_rx_received(mvm, reorder_data, baid);
2604 		}
2605 	}
2606 
2607 	/* management stuff on default queue */
2608 	if (!queue) {
2609 		if (unlikely((ieee80211_is_beacon(hdr->frame_control) ||
2610 			      ieee80211_is_probe_resp(hdr->frame_control)) &&
2611 			     mvm->sched_scan_pass_all ==
2612 			     SCHED_SCAN_PASS_ALL_ENABLED))
2613 			mvm->sched_scan_pass_all = SCHED_SCAN_PASS_ALL_FOUND;
2614 
2615 		if (unlikely(ieee80211_is_beacon(hdr->frame_control) ||
2616 			     ieee80211_is_probe_resp(hdr->frame_control)))
2617 			rx_status->boottime_ns = ktime_get_boottime_ns();
2618 	}
2619 
2620 	if (iwl_mvm_create_skb(mvm, skb, hdr, len, crypt_len, rxb)) {
2621 		kfree_skb(skb);
2622 		goto out;
2623 	}
2624 
2625 	if (!iwl_mvm_reorder(mvm, napi, queue, sta, skb, desc) &&
2626 	    likely(!iwl_mvm_time_sync_frame(mvm, skb, hdr->addr2)) &&
2627 	    likely(!iwl_mvm_mei_filter_scan(mvm, skb))) {
2628 		if (mvm->trans->trans_cfg->device_family == IWL_DEVICE_FAMILY_9000 &&
2629 		    (desc->mac_flags2 & IWL_RX_MPDU_MFLG2_AMSDU) &&
2630 		    !(desc->amsdu_info & IWL_RX_MPDU_AMSDU_LAST_SUBFRAME))
2631 			rx_status->flag |= RX_FLAG_AMSDU_MORE;
2632 
2633 		iwl_mvm_pass_packet_to_mac80211(mvm, napi, skb, queue, sta,
2634 						link_sta);
2635 	}
2636 out:
2637 	rcu_read_unlock();
2638 }
2639 
2640 void iwl_mvm_rx_monitor_no_data(struct iwl_mvm *mvm, struct napi_struct *napi,
2641 				struct iwl_rx_cmd_buffer *rxb, int queue)
2642 {
2643 	struct ieee80211_rx_status *rx_status;
2644 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2645 	struct iwl_rx_no_data_ver_3 *desc = (void *)pkt->data;
2646 	u32 rssi;
2647 	u32 info_type;
2648 	struct ieee80211_sta *sta = NULL;
2649 	struct sk_buff *skb;
2650 	struct iwl_mvm_rx_phy_data phy_data;
2651 	u32 format;
2652 
2653 	if (unlikely(test_bit(IWL_MVM_STATUS_IN_HW_RESTART, &mvm->status)))
2654 		return;
2655 
2656 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(struct iwl_rx_no_data)))
2657 		return;
2658 
2659 	rssi = le32_to_cpu(desc->rssi);
2660 	info_type = le32_to_cpu(desc->info) & RX_NO_DATA_INFO_TYPE_MSK;
2661 	phy_data.d0 = desc->phy_info[0];
2662 	phy_data.d1 = desc->phy_info[1];
2663 	phy_data.phy_info = IWL_RX_MPDU_PHY_TSF_OVERLOAD;
2664 	phy_data.gp2_on_air_rise = le32_to_cpu(desc->on_air_rise_time);
2665 	phy_data.rate_n_flags = le32_to_cpu(desc->rate);
2666 	phy_data.energy_a = u32_get_bits(rssi, RX_NO_DATA_CHAIN_A_MSK);
2667 	phy_data.energy_b = u32_get_bits(rssi, RX_NO_DATA_CHAIN_B_MSK);
2668 	phy_data.channel = u32_get_bits(rssi, RX_NO_DATA_CHANNEL_MSK);
2669 	phy_data.with_data = false;
2670 	phy_data.rx_vec[0] = desc->rx_vec[0];
2671 	phy_data.rx_vec[1] = desc->rx_vec[1];
2672 
2673 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2674 				    RX_NO_DATA_NOTIF, 0) < 2) {
2675 		IWL_DEBUG_DROP(mvm, "Got an old rate format. Old rate: 0x%x\n",
2676 			       phy_data.rate_n_flags);
2677 		phy_data.rate_n_flags = iwl_new_rate_from_v1(phy_data.rate_n_flags);
2678 		IWL_DEBUG_DROP(mvm, " Rate after conversion to the new format: 0x%x\n",
2679 			       phy_data.rate_n_flags);
2680 	}
2681 
2682 	format = phy_data.rate_n_flags & RATE_MCS_MOD_TYPE_MSK;
2683 
2684 	if (iwl_fw_lookup_notif_ver(mvm->fw, DATA_PATH_GROUP,
2685 				    RX_NO_DATA_NOTIF, 0) >= 3) {
2686 		if (unlikely(iwl_rx_packet_payload_len(pkt) <
2687 		    sizeof(struct iwl_rx_no_data_ver_3)))
2688 		/* invalid len for ver 3 */
2689 			return;
2690 		phy_data.rx_vec[2] = desc->rx_vec[2];
2691 		phy_data.rx_vec[3] = desc->rx_vec[3];
2692 	} else {
2693 		if (format == RATE_MCS_EHT_MSK)
2694 			/* no support for EHT before version 3 API */
2695 			return;
2696 	}
2697 
2698 	/* Dont use dev_alloc_skb(), we'll have enough headroom once
2699 	 * ieee80211_hdr pulled.
2700 	 */
2701 	skb = alloc_skb(128, GFP_ATOMIC);
2702 	if (!skb) {
2703 		IWL_ERR(mvm, "alloc_skb failed\n");
2704 		return;
2705 	}
2706 
2707 	rx_status = IEEE80211_SKB_RXCB(skb);
2708 
2709 	/* 0-length PSDU */
2710 	rx_status->flag |= RX_FLAG_NO_PSDU;
2711 
2712 	switch (info_type) {
2713 	case RX_NO_DATA_INFO_TYPE_NDP:
2714 		rx_status->zero_length_psdu_type =
2715 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_SOUNDING;
2716 		break;
2717 	case RX_NO_DATA_INFO_TYPE_MU_UNMATCHED:
2718 	case RX_NO_DATA_INFO_TYPE_TB_UNMATCHED:
2719 		rx_status->zero_length_psdu_type =
2720 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_NOT_CAPTURED;
2721 		break;
2722 	default:
2723 		rx_status->zero_length_psdu_type =
2724 			IEEE80211_RADIOTAP_ZERO_LEN_PSDU_VENDOR;
2725 		break;
2726 	}
2727 
2728 	rx_status->band = phy_data.channel > 14 ? NL80211_BAND_5GHZ :
2729 		NL80211_BAND_2GHZ;
2730 
2731 	iwl_mvm_rx_fill_status(mvm, skb, &phy_data, queue);
2732 
2733 	/* no more radio tap info should be put after this point.
2734 	 *
2735 	 * We mark it as mac header, for upper layers to know where
2736 	 * all radio tap header ends.
2737 	 */
2738 	skb_reset_mac_header(skb);
2739 
2740 	/*
2741 	 * Override the nss from the rx_vec since the rate_n_flags has
2742 	 * only 2 bits for the nss which gives a max of 4 ss but there
2743 	 * may be up to 8 spatial streams.
2744 	 */
2745 	switch (format) {
2746 	case RATE_MCS_VHT_MSK:
2747 		rx_status->nss =
2748 			le32_get_bits(desc->rx_vec[0],
2749 				      RX_NO_DATA_RX_VEC0_VHT_NSTS_MSK) + 1;
2750 		break;
2751 	case RATE_MCS_HE_MSK:
2752 		rx_status->nss =
2753 			le32_get_bits(desc->rx_vec[0],
2754 				      RX_NO_DATA_RX_VEC0_HE_NSTS_MSK) + 1;
2755 		break;
2756 	case RATE_MCS_EHT_MSK:
2757 		rx_status->nss =
2758 			le32_get_bits(desc->rx_vec[2],
2759 				      RX_NO_DATA_RX_VEC2_EHT_NSTS_MSK) + 1;
2760 	}
2761 
2762 	rcu_read_lock();
2763 	ieee80211_rx_napi(mvm->hw, sta, skb, napi);
2764 	rcu_read_unlock();
2765 }
2766 
2767 void iwl_mvm_rx_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2768 			      struct iwl_rx_cmd_buffer *rxb, int queue)
2769 {
2770 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2771 	struct iwl_frame_release *release = (void *)pkt->data;
2772 
2773 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2774 		return;
2775 
2776 	iwl_mvm_release_frames_from_notif(mvm, napi, release->baid,
2777 					  le16_to_cpu(release->nssn),
2778 					  queue, 0);
2779 }
2780 
2781 void iwl_mvm_rx_bar_frame_release(struct iwl_mvm *mvm, struct napi_struct *napi,
2782 				  struct iwl_rx_cmd_buffer *rxb, int queue)
2783 {
2784 	struct iwl_rx_packet *pkt = rxb_addr(rxb);
2785 	struct iwl_bar_frame_release *release = (void *)pkt->data;
2786 	unsigned int baid = le32_get_bits(release->ba_info,
2787 					  IWL_BAR_FRAME_RELEASE_BAID_MASK);
2788 	unsigned int nssn = le32_get_bits(release->ba_info,
2789 					  IWL_BAR_FRAME_RELEASE_NSSN_MASK);
2790 	unsigned int sta_id = le32_get_bits(release->sta_tid,
2791 					    IWL_BAR_FRAME_RELEASE_STA_MASK);
2792 	unsigned int tid = le32_get_bits(release->sta_tid,
2793 					 IWL_BAR_FRAME_RELEASE_TID_MASK);
2794 	struct iwl_mvm_baid_data *baid_data;
2795 
2796 	if (unlikely(iwl_rx_packet_payload_len(pkt) < sizeof(*release)))
2797 		return;
2798 
2799 	if (WARN_ON_ONCE(baid == IWL_RX_REORDER_DATA_INVALID_BAID ||
2800 			 baid >= ARRAY_SIZE(mvm->baid_map)))
2801 		return;
2802 
2803 	rcu_read_lock();
2804 	baid_data = rcu_dereference(mvm->baid_map[baid]);
2805 	if (!baid_data) {
2806 		IWL_DEBUG_RX(mvm,
2807 			     "Got valid BAID %d but not allocated, invalid BAR release!\n",
2808 			      baid);
2809 		goto out;
2810 	}
2811 
2812 	if (WARN(tid != baid_data->tid || sta_id > IWL_MVM_STATION_COUNT_MAX ||
2813 		 !(baid_data->sta_mask & BIT(sta_id)),
2814 		 "baid 0x%x is mapped to sta_mask:0x%x tid:%d, but BAR release received for sta:%d tid:%d\n",
2815 		 baid, baid_data->sta_mask, baid_data->tid, sta_id,
2816 		 tid))
2817 		goto out;
2818 
2819 	iwl_mvm_release_frames_from_notif(mvm, napi, baid, nssn, queue, 0);
2820 out:
2821 	rcu_read_unlock();
2822 }
2823