xref: /openbmc/linux/drivers/net/wireless/intel/iwlegacy/common.c (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /******************************************************************************
3  *
4  * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
5  *
6  * Contact Information:
7  *  Intel Linux Wireless <ilw@linux.intel.com>
8  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
9  *****************************************************************************/
10 
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/etherdevice.h>
14 #include <linux/sched.h>
15 #include <linux/slab.h>
16 #include <linux/types.h>
17 #include <linux/lockdep.h>
18 #include <linux/pci.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/delay.h>
21 #include <linux/skbuff.h>
22 #include <net/mac80211.h>
23 
24 #include "common.h"
25 
26 int
27 _il_poll_bit(struct il_priv *il, u32 addr, u32 bits, u32 mask, int timeout)
28 {
29 	const int interval = 10; /* microseconds */
30 	int t = 0;
31 
32 	do {
33 		if ((_il_rd(il, addr) & mask) == (bits & mask))
34 			return t;
35 		udelay(interval);
36 		t += interval;
37 	} while (t < timeout);
38 
39 	return -ETIMEDOUT;
40 }
41 EXPORT_SYMBOL(_il_poll_bit);
42 
43 void
44 il_set_bit(struct il_priv *p, u32 r, u32 m)
45 {
46 	unsigned long reg_flags;
47 
48 	spin_lock_irqsave(&p->reg_lock, reg_flags);
49 	_il_set_bit(p, r, m);
50 	spin_unlock_irqrestore(&p->reg_lock, reg_flags);
51 }
52 EXPORT_SYMBOL(il_set_bit);
53 
54 void
55 il_clear_bit(struct il_priv *p, u32 r, u32 m)
56 {
57 	unsigned long reg_flags;
58 
59 	spin_lock_irqsave(&p->reg_lock, reg_flags);
60 	_il_clear_bit(p, r, m);
61 	spin_unlock_irqrestore(&p->reg_lock, reg_flags);
62 }
63 EXPORT_SYMBOL(il_clear_bit);
64 
65 bool
66 _il_grab_nic_access(struct il_priv *il)
67 {
68 	int ret;
69 	u32 val;
70 
71 	/* this bit wakes up the NIC */
72 	_il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
73 
74 	/*
75 	 * These bits say the device is running, and should keep running for
76 	 * at least a short while (at least as long as MAC_ACCESS_REQ stays 1),
77 	 * but they do not indicate that embedded SRAM is restored yet;
78 	 * 3945 and 4965 have volatile SRAM, and must save/restore contents
79 	 * to/from host DRAM when sleeping/waking for power-saving.
80 	 * Each direction takes approximately 1/4 millisecond; with this
81 	 * overhead, it's a good idea to grab and hold MAC_ACCESS_REQUEST if a
82 	 * series of register accesses are expected (e.g. reading Event Log),
83 	 * to keep device from sleeping.
84 	 *
85 	 * CSR_UCODE_DRV_GP1 register bit MAC_SLEEP == 0 indicates that
86 	 * SRAM is okay/restored.  We don't check that here because this call
87 	 * is just for hardware register access; but GP1 MAC_SLEEP check is a
88 	 * good idea before accessing 3945/4965 SRAM (e.g. reading Event Log).
89 	 *
90 	 */
91 	ret =
92 	    _il_poll_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_VAL_MAC_ACCESS_EN,
93 			 (CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY |
94 			  CSR_GP_CNTRL_REG_FLAG_GOING_TO_SLEEP), 15000);
95 	if (unlikely(ret < 0)) {
96 		val = _il_rd(il, CSR_GP_CNTRL);
97 		WARN_ONCE(1, "Timeout waiting for ucode processor access "
98 			     "(CSR_GP_CNTRL 0x%08x)\n", val);
99 		_il_wr(il, CSR_RESET, CSR_RESET_REG_FLAG_FORCE_NMI);
100 		return false;
101 	}
102 
103 	return true;
104 }
105 EXPORT_SYMBOL_GPL(_il_grab_nic_access);
106 
107 int
108 il_poll_bit(struct il_priv *il, u32 addr, u32 mask, int timeout)
109 {
110 	const int interval = 10; /* microseconds */
111 	int t = 0;
112 
113 	do {
114 		if ((il_rd(il, addr) & mask) == mask)
115 			return t;
116 		udelay(interval);
117 		t += interval;
118 	} while (t < timeout);
119 
120 	return -ETIMEDOUT;
121 }
122 EXPORT_SYMBOL(il_poll_bit);
123 
124 u32
125 il_rd_prph(struct il_priv *il, u32 reg)
126 {
127 	unsigned long reg_flags;
128 	u32 val;
129 
130 	spin_lock_irqsave(&il->reg_lock, reg_flags);
131 	_il_grab_nic_access(il);
132 	val = _il_rd_prph(il, reg);
133 	_il_release_nic_access(il);
134 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
135 	return val;
136 }
137 EXPORT_SYMBOL(il_rd_prph);
138 
139 void
140 il_wr_prph(struct il_priv *il, u32 addr, u32 val)
141 {
142 	unsigned long reg_flags;
143 
144 	spin_lock_irqsave(&il->reg_lock, reg_flags);
145 	if (likely(_il_grab_nic_access(il))) {
146 		_il_wr_prph(il, addr, val);
147 		_il_release_nic_access(il);
148 	}
149 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
150 }
151 EXPORT_SYMBOL(il_wr_prph);
152 
153 u32
154 il_read_targ_mem(struct il_priv *il, u32 addr)
155 {
156 	unsigned long reg_flags;
157 	u32 value;
158 
159 	spin_lock_irqsave(&il->reg_lock, reg_flags);
160 	_il_grab_nic_access(il);
161 
162 	_il_wr(il, HBUS_TARG_MEM_RADDR, addr);
163 	value = _il_rd(il, HBUS_TARG_MEM_RDAT);
164 
165 	_il_release_nic_access(il);
166 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
167 	return value;
168 }
169 EXPORT_SYMBOL(il_read_targ_mem);
170 
171 void
172 il_write_targ_mem(struct il_priv *il, u32 addr, u32 val)
173 {
174 	unsigned long reg_flags;
175 
176 	spin_lock_irqsave(&il->reg_lock, reg_flags);
177 	if (likely(_il_grab_nic_access(il))) {
178 		_il_wr(il, HBUS_TARG_MEM_WADDR, addr);
179 		_il_wr(il, HBUS_TARG_MEM_WDAT, val);
180 		_il_release_nic_access(il);
181 	}
182 	spin_unlock_irqrestore(&il->reg_lock, reg_flags);
183 }
184 EXPORT_SYMBOL(il_write_targ_mem);
185 
186 const char *
187 il_get_cmd_string(u8 cmd)
188 {
189 	switch (cmd) {
190 		IL_CMD(N_ALIVE);
191 		IL_CMD(N_ERROR);
192 		IL_CMD(C_RXON);
193 		IL_CMD(C_RXON_ASSOC);
194 		IL_CMD(C_QOS_PARAM);
195 		IL_CMD(C_RXON_TIMING);
196 		IL_CMD(C_ADD_STA);
197 		IL_CMD(C_REM_STA);
198 		IL_CMD(C_WEPKEY);
199 		IL_CMD(N_3945_RX);
200 		IL_CMD(C_TX);
201 		IL_CMD(C_RATE_SCALE);
202 		IL_CMD(C_LEDS);
203 		IL_CMD(C_TX_LINK_QUALITY_CMD);
204 		IL_CMD(C_CHANNEL_SWITCH);
205 		IL_CMD(N_CHANNEL_SWITCH);
206 		IL_CMD(C_SPECTRUM_MEASUREMENT);
207 		IL_CMD(N_SPECTRUM_MEASUREMENT);
208 		IL_CMD(C_POWER_TBL);
209 		IL_CMD(N_PM_SLEEP);
210 		IL_CMD(N_PM_DEBUG_STATS);
211 		IL_CMD(C_SCAN);
212 		IL_CMD(C_SCAN_ABORT);
213 		IL_CMD(N_SCAN_START);
214 		IL_CMD(N_SCAN_RESULTS);
215 		IL_CMD(N_SCAN_COMPLETE);
216 		IL_CMD(N_BEACON);
217 		IL_CMD(C_TX_BEACON);
218 		IL_CMD(C_TX_PWR_TBL);
219 		IL_CMD(C_BT_CONFIG);
220 		IL_CMD(C_STATS);
221 		IL_CMD(N_STATS);
222 		IL_CMD(N_CARD_STATE);
223 		IL_CMD(N_MISSED_BEACONS);
224 		IL_CMD(C_CT_KILL_CONFIG);
225 		IL_CMD(C_SENSITIVITY);
226 		IL_CMD(C_PHY_CALIBRATION);
227 		IL_CMD(N_RX_PHY);
228 		IL_CMD(N_RX_MPDU);
229 		IL_CMD(N_RX);
230 		IL_CMD(N_COMPRESSED_BA);
231 	default:
232 		return "UNKNOWN";
233 
234 	}
235 }
236 EXPORT_SYMBOL(il_get_cmd_string);
237 
238 #define HOST_COMPLETE_TIMEOUT (HZ / 2)
239 
240 static void
241 il_generic_cmd_callback(struct il_priv *il, struct il_device_cmd *cmd,
242 			struct il_rx_pkt *pkt)
243 {
244 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
245 		IL_ERR("Bad return from %s (0x%08X)\n",
246 		       il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
247 		return;
248 	}
249 #ifdef CONFIG_IWLEGACY_DEBUG
250 	switch (cmd->hdr.cmd) {
251 	case C_TX_LINK_QUALITY_CMD:
252 	case C_SENSITIVITY:
253 		D_HC_DUMP("back from %s (0x%08X)\n",
254 			  il_get_cmd_string(cmd->hdr.cmd), pkt->hdr.flags);
255 		break;
256 	default:
257 		D_HC("back from %s (0x%08X)\n", il_get_cmd_string(cmd->hdr.cmd),
258 		     pkt->hdr.flags);
259 	}
260 #endif
261 }
262 
263 static int
264 il_send_cmd_async(struct il_priv *il, struct il_host_cmd *cmd)
265 {
266 	int ret;
267 
268 	BUG_ON(!(cmd->flags & CMD_ASYNC));
269 
270 	/* An asynchronous command can not expect an SKB to be set. */
271 	BUG_ON(cmd->flags & CMD_WANT_SKB);
272 
273 	/* Assign a generic callback if one is not provided */
274 	if (!cmd->callback)
275 		cmd->callback = il_generic_cmd_callback;
276 
277 	if (test_bit(S_EXIT_PENDING, &il->status))
278 		return -EBUSY;
279 
280 	ret = il_enqueue_hcmd(il, cmd);
281 	if (ret < 0) {
282 		IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
283 		       il_get_cmd_string(cmd->id), ret);
284 		return ret;
285 	}
286 	return 0;
287 }
288 
289 int
290 il_send_cmd_sync(struct il_priv *il, struct il_host_cmd *cmd)
291 {
292 	int cmd_idx;
293 	int ret;
294 
295 	lockdep_assert_held(&il->mutex);
296 
297 	BUG_ON(cmd->flags & CMD_ASYNC);
298 
299 	/* A synchronous command can not have a callback set. */
300 	BUG_ON(cmd->callback);
301 
302 	D_INFO("Attempting to send sync command %s\n",
303 	       il_get_cmd_string(cmd->id));
304 
305 	set_bit(S_HCMD_ACTIVE, &il->status);
306 	D_INFO("Setting HCMD_ACTIVE for command %s\n",
307 	       il_get_cmd_string(cmd->id));
308 
309 	cmd_idx = il_enqueue_hcmd(il, cmd);
310 	if (cmd_idx < 0) {
311 		ret = cmd_idx;
312 		IL_ERR("Error sending %s: enqueue_hcmd failed: %d\n",
313 		       il_get_cmd_string(cmd->id), ret);
314 		goto out;
315 	}
316 
317 	ret = wait_event_timeout(il->wait_command_queue,
318 				 !test_bit(S_HCMD_ACTIVE, &il->status),
319 				 HOST_COMPLETE_TIMEOUT);
320 	if (!ret) {
321 		if (test_bit(S_HCMD_ACTIVE, &il->status)) {
322 			IL_ERR("Error sending %s: time out after %dms.\n",
323 			       il_get_cmd_string(cmd->id),
324 			       jiffies_to_msecs(HOST_COMPLETE_TIMEOUT));
325 
326 			clear_bit(S_HCMD_ACTIVE, &il->status);
327 			D_INFO("Clearing HCMD_ACTIVE for command %s\n",
328 			       il_get_cmd_string(cmd->id));
329 			ret = -ETIMEDOUT;
330 			goto cancel;
331 		}
332 	}
333 
334 	if (test_bit(S_RFKILL, &il->status)) {
335 		IL_ERR("Command %s aborted: RF KILL Switch\n",
336 		       il_get_cmd_string(cmd->id));
337 		ret = -ECANCELED;
338 		goto fail;
339 	}
340 	if (test_bit(S_FW_ERROR, &il->status)) {
341 		IL_ERR("Command %s failed: FW Error\n",
342 		       il_get_cmd_string(cmd->id));
343 		ret = -EIO;
344 		goto fail;
345 	}
346 	if ((cmd->flags & CMD_WANT_SKB) && !cmd->reply_page) {
347 		IL_ERR("Error: Response NULL in '%s'\n",
348 		       il_get_cmd_string(cmd->id));
349 		ret = -EIO;
350 		goto cancel;
351 	}
352 
353 	ret = 0;
354 	goto out;
355 
356 cancel:
357 	if (cmd->flags & CMD_WANT_SKB) {
358 		/*
359 		 * Cancel the CMD_WANT_SKB flag for the cmd in the
360 		 * TX cmd queue. Otherwise in case the cmd comes
361 		 * in later, it will possibly set an invalid
362 		 * address (cmd->meta.source).
363 		 */
364 		il->txq[il->cmd_queue].meta[cmd_idx].flags &= ~CMD_WANT_SKB;
365 	}
366 fail:
367 	if (cmd->reply_page) {
368 		il_free_pages(il, cmd->reply_page);
369 		cmd->reply_page = 0;
370 	}
371 out:
372 	return ret;
373 }
374 EXPORT_SYMBOL(il_send_cmd_sync);
375 
376 int
377 il_send_cmd(struct il_priv *il, struct il_host_cmd *cmd)
378 {
379 	if (cmd->flags & CMD_ASYNC)
380 		return il_send_cmd_async(il, cmd);
381 
382 	return il_send_cmd_sync(il, cmd);
383 }
384 EXPORT_SYMBOL(il_send_cmd);
385 
386 int
387 il_send_cmd_pdu(struct il_priv *il, u8 id, u16 len, const void *data)
388 {
389 	struct il_host_cmd cmd = {
390 		.id = id,
391 		.len = len,
392 		.data = data,
393 	};
394 
395 	return il_send_cmd_sync(il, &cmd);
396 }
397 EXPORT_SYMBOL(il_send_cmd_pdu);
398 
399 int
400 il_send_cmd_pdu_async(struct il_priv *il, u8 id, u16 len, const void *data,
401 		      void (*callback) (struct il_priv *il,
402 					struct il_device_cmd *cmd,
403 					struct il_rx_pkt *pkt))
404 {
405 	struct il_host_cmd cmd = {
406 		.id = id,
407 		.len = len,
408 		.data = data,
409 	};
410 
411 	cmd.flags |= CMD_ASYNC;
412 	cmd.callback = callback;
413 
414 	return il_send_cmd_async(il, &cmd);
415 }
416 EXPORT_SYMBOL(il_send_cmd_pdu_async);
417 
418 /* default: IL_LED_BLINK(0) using blinking idx table */
419 static int led_mode;
420 module_param(led_mode, int, 0444);
421 MODULE_PARM_DESC(led_mode,
422 		 "0=system default, " "1=On(RF On)/Off(RF Off), 2=blinking");
423 
424 /* Throughput		OFF time(ms)	ON time (ms)
425  *	>300			25		25
426  *	>200 to 300		40		40
427  *	>100 to 200		55		55
428  *	>70 to 100		65		65
429  *	>50 to 70		75		75
430  *	>20 to 50		85		85
431  *	>10 to 20		95		95
432  *	>5 to 10		110		110
433  *	>1 to 5			130		130
434  *	>0 to 1			167		167
435  *	<=0					SOLID ON
436  */
437 static const struct ieee80211_tpt_blink il_blink[] = {
438 	{.throughput = 0,		.blink_time = 334},
439 	{.throughput = 1 * 1024 - 1,	.blink_time = 260},
440 	{.throughput = 5 * 1024 - 1,	.blink_time = 220},
441 	{.throughput = 10 * 1024 - 1,	.blink_time = 190},
442 	{.throughput = 20 * 1024 - 1,	.blink_time = 170},
443 	{.throughput = 50 * 1024 - 1,	.blink_time = 150},
444 	{.throughput = 70 * 1024 - 1,	.blink_time = 130},
445 	{.throughput = 100 * 1024 - 1,	.blink_time = 110},
446 	{.throughput = 200 * 1024 - 1,	.blink_time = 80},
447 	{.throughput = 300 * 1024 - 1,	.blink_time = 50},
448 };
449 
450 /*
451  * Adjust led blink rate to compensate on a MAC Clock difference on every HW
452  * Led blink rate analysis showed an average deviation of 0% on 3945,
453  * 5% on 4965 HW.
454  * Need to compensate on the led on/off time per HW according to the deviation
455  * to achieve the desired led frequency
456  * The calculation is: (100-averageDeviation)/100 * blinkTime
457  * For code efficiency the calculation will be:
458  *     compensation = (100 - averageDeviation) * 64 / 100
459  *     NewBlinkTime = (compensation * BlinkTime) / 64
460  */
461 static inline u8
462 il_blink_compensation(struct il_priv *il, u8 time, u16 compensation)
463 {
464 	if (!compensation) {
465 		IL_ERR("undefined blink compensation: "
466 		       "use pre-defined blinking time\n");
467 		return time;
468 	}
469 
470 	return (u8) ((time * compensation) >> 6);
471 }
472 
473 /* Set led pattern command */
474 static int
475 il_led_cmd(struct il_priv *il, unsigned long on, unsigned long off)
476 {
477 	struct il_led_cmd led_cmd = {
478 		.id = IL_LED_LINK,
479 		.interval = IL_DEF_LED_INTRVL
480 	};
481 	int ret;
482 
483 	if (!test_bit(S_READY, &il->status))
484 		return -EBUSY;
485 
486 	if (il->blink_on == on && il->blink_off == off)
487 		return 0;
488 
489 	if (off == 0) {
490 		/* led is SOLID_ON */
491 		on = IL_LED_SOLID;
492 	}
493 
494 	D_LED("Led blink time compensation=%u\n",
495 	      il->cfg->led_compensation);
496 	led_cmd.on =
497 	    il_blink_compensation(il, on,
498 				  il->cfg->led_compensation);
499 	led_cmd.off =
500 	    il_blink_compensation(il, off,
501 				  il->cfg->led_compensation);
502 
503 	ret = il->ops->send_led_cmd(il, &led_cmd);
504 	if (!ret) {
505 		il->blink_on = on;
506 		il->blink_off = off;
507 	}
508 	return ret;
509 }
510 
511 static void
512 il_led_brightness_set(struct led_classdev *led_cdev,
513 		      enum led_brightness brightness)
514 {
515 	struct il_priv *il = container_of(led_cdev, struct il_priv, led);
516 	unsigned long on = 0;
517 
518 	if (brightness > 0)
519 		on = IL_LED_SOLID;
520 
521 	il_led_cmd(il, on, 0);
522 }
523 
524 static int
525 il_led_blink_set(struct led_classdev *led_cdev, unsigned long *delay_on,
526 		 unsigned long *delay_off)
527 {
528 	struct il_priv *il = container_of(led_cdev, struct il_priv, led);
529 
530 	return il_led_cmd(il, *delay_on, *delay_off);
531 }
532 
533 void
534 il_leds_init(struct il_priv *il)
535 {
536 	int mode = led_mode;
537 	int ret;
538 
539 	if (mode == IL_LED_DEFAULT)
540 		mode = il->cfg->led_mode;
541 
542 	il->led.name =
543 	    kasprintf(GFP_KERNEL, "%s-led", wiphy_name(il->hw->wiphy));
544 	il->led.brightness_set = il_led_brightness_set;
545 	il->led.blink_set = il_led_blink_set;
546 	il->led.max_brightness = 1;
547 
548 	switch (mode) {
549 	case IL_LED_DEFAULT:
550 		WARN_ON(1);
551 		break;
552 	case IL_LED_BLINK:
553 		il->led.default_trigger =
554 		    ieee80211_create_tpt_led_trigger(il->hw,
555 						     IEEE80211_TPT_LEDTRIG_FL_CONNECTED,
556 						     il_blink,
557 						     ARRAY_SIZE(il_blink));
558 		break;
559 	case IL_LED_RF_STATE:
560 		il->led.default_trigger = ieee80211_get_radio_led_name(il->hw);
561 		break;
562 	}
563 
564 	ret = led_classdev_register(&il->pci_dev->dev, &il->led);
565 	if (ret) {
566 		kfree(il->led.name);
567 		return;
568 	}
569 
570 	il->led_registered = true;
571 }
572 EXPORT_SYMBOL(il_leds_init);
573 
574 void
575 il_leds_exit(struct il_priv *il)
576 {
577 	if (!il->led_registered)
578 		return;
579 
580 	led_classdev_unregister(&il->led);
581 	kfree(il->led.name);
582 }
583 EXPORT_SYMBOL(il_leds_exit);
584 
585 /************************** EEPROM BANDS ****************************
586  *
587  * The il_eeprom_band definitions below provide the mapping from the
588  * EEPROM contents to the specific channel number supported for each
589  * band.
590  *
591  * For example, il_priv->eeprom.band_3_channels[4] from the band_3
592  * definition below maps to physical channel 42 in the 5.2GHz spectrum.
593  * The specific geography and calibration information for that channel
594  * is contained in the eeprom map itself.
595  *
596  * During init, we copy the eeprom information and channel map
597  * information into il->channel_info_24/52 and il->channel_map_24/52
598  *
599  * channel_map_24/52 provides the idx in the channel_info array for a
600  * given channel.  We have to have two separate maps as there is channel
601  * overlap with the 2.4GHz and 5.2GHz spectrum as seen in band_1 and
602  * band_2
603  *
604  * A value of 0xff stored in the channel_map indicates that the channel
605  * is not supported by the hardware at all.
606  *
607  * A value of 0xfe in the channel_map indicates that the channel is not
608  * valid for Tx with the current hardware.  This means that
609  * while the system can tune and receive on a given channel, it may not
610  * be able to associate or transmit any frames on that
611  * channel.  There is no corresponding channel information for that
612  * entry.
613  *
614  *********************************************************************/
615 
616 /* 2.4 GHz */
617 const u8 il_eeprom_band_1[14] = {
618 	1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14
619 };
620 
621 /* 5.2 GHz bands */
622 static const u8 il_eeprom_band_2[] = {	/* 4915-5080MHz */
623 	183, 184, 185, 187, 188, 189, 192, 196, 7, 8, 11, 12, 16
624 };
625 
626 static const u8 il_eeprom_band_3[] = {	/* 5170-5320MHz */
627 	34, 36, 38, 40, 42, 44, 46, 48, 52, 56, 60, 64
628 };
629 
630 static const u8 il_eeprom_band_4[] = {	/* 5500-5700MHz */
631 	100, 104, 108, 112, 116, 120, 124, 128, 132, 136, 140
632 };
633 
634 static const u8 il_eeprom_band_5[] = {	/* 5725-5825MHz */
635 	145, 149, 153, 157, 161, 165
636 };
637 
638 static const u8 il_eeprom_band_6[] = {	/* 2.4 ht40 channel */
639 	1, 2, 3, 4, 5, 6, 7
640 };
641 
642 static const u8 il_eeprom_band_7[] = {	/* 5.2 ht40 channel */
643 	36, 44, 52, 60, 100, 108, 116, 124, 132, 149, 157
644 };
645 
646 /******************************************************************************
647  *
648  * EEPROM related functions
649  *
650 ******************************************************************************/
651 
652 static int
653 il_eeprom_verify_signature(struct il_priv *il)
654 {
655 	u32 gp = _il_rd(il, CSR_EEPROM_GP) & CSR_EEPROM_GP_VALID_MSK;
656 	int ret = 0;
657 
658 	D_EEPROM("EEPROM signature=0x%08x\n", gp);
659 	switch (gp) {
660 	case CSR_EEPROM_GP_GOOD_SIG_EEP_LESS_THAN_4K:
661 	case CSR_EEPROM_GP_GOOD_SIG_EEP_MORE_THAN_4K:
662 		break;
663 	default:
664 		IL_ERR("bad EEPROM signature," "EEPROM_GP=0x%08x\n", gp);
665 		ret = -ENOENT;
666 		break;
667 	}
668 	return ret;
669 }
670 
671 const u8 *
672 il_eeprom_query_addr(const struct il_priv *il, size_t offset)
673 {
674 	BUG_ON(offset >= il->cfg->eeprom_size);
675 	return &il->eeprom[offset];
676 }
677 EXPORT_SYMBOL(il_eeprom_query_addr);
678 
679 u16
680 il_eeprom_query16(const struct il_priv *il, size_t offset)
681 {
682 	if (!il->eeprom)
683 		return 0;
684 	return (u16) il->eeprom[offset] | ((u16) il->eeprom[offset + 1] << 8);
685 }
686 EXPORT_SYMBOL(il_eeprom_query16);
687 
688 /**
689  * il_eeprom_init - read EEPROM contents
690  *
691  * Load the EEPROM contents from adapter into il->eeprom
692  *
693  * NOTE:  This routine uses the non-debug IO access functions.
694  */
695 int
696 il_eeprom_init(struct il_priv *il)
697 {
698 	__le16 *e;
699 	u32 gp = _il_rd(il, CSR_EEPROM_GP);
700 	int sz;
701 	int ret;
702 	u16 addr;
703 
704 	/* allocate eeprom */
705 	sz = il->cfg->eeprom_size;
706 	D_EEPROM("NVM size = %d\n", sz);
707 	il->eeprom = kzalloc(sz, GFP_KERNEL);
708 	if (!il->eeprom)
709 		return -ENOMEM;
710 
711 	e = (__le16 *) il->eeprom;
712 
713 	il->ops->apm_init(il);
714 
715 	ret = il_eeprom_verify_signature(il);
716 	if (ret < 0) {
717 		IL_ERR("EEPROM not found, EEPROM_GP=0x%08x\n", gp);
718 		ret = -ENOENT;
719 		goto err;
720 	}
721 
722 	/* Make sure driver (instead of uCode) is allowed to read EEPROM */
723 	ret = il->ops->eeprom_acquire_semaphore(il);
724 	if (ret < 0) {
725 		IL_ERR("Failed to acquire EEPROM semaphore.\n");
726 		ret = -ENOENT;
727 		goto err;
728 	}
729 
730 	/* eeprom is an array of 16bit values */
731 	for (addr = 0; addr < sz; addr += sizeof(u16)) {
732 		u32 r;
733 
734 		_il_wr(il, CSR_EEPROM_REG,
735 		       CSR_EEPROM_REG_MSK_ADDR & (addr << 1));
736 
737 		ret =
738 		    _il_poll_bit(il, CSR_EEPROM_REG,
739 				 CSR_EEPROM_REG_READ_VALID_MSK,
740 				 CSR_EEPROM_REG_READ_VALID_MSK,
741 				 IL_EEPROM_ACCESS_TIMEOUT);
742 		if (ret < 0) {
743 			IL_ERR("Time out reading EEPROM[%d]\n", addr);
744 			goto done;
745 		}
746 		r = _il_rd(il, CSR_EEPROM_REG);
747 		e[addr / 2] = cpu_to_le16(r >> 16);
748 	}
749 
750 	D_EEPROM("NVM Type: %s, version: 0x%x\n", "EEPROM",
751 		 il_eeprom_query16(il, EEPROM_VERSION));
752 
753 	ret = 0;
754 done:
755 	il->ops->eeprom_release_semaphore(il);
756 
757 err:
758 	if (ret)
759 		il_eeprom_free(il);
760 	/* Reset chip to save power until we load uCode during "up". */
761 	il_apm_stop(il);
762 	return ret;
763 }
764 EXPORT_SYMBOL(il_eeprom_init);
765 
766 void
767 il_eeprom_free(struct il_priv *il)
768 {
769 	kfree(il->eeprom);
770 	il->eeprom = NULL;
771 }
772 EXPORT_SYMBOL(il_eeprom_free);
773 
774 static void
775 il_init_band_reference(const struct il_priv *il, int eep_band,
776 		       int *eeprom_ch_count,
777 		       const struct il_eeprom_channel **eeprom_ch_info,
778 		       const u8 **eeprom_ch_idx)
779 {
780 	u32 offset = il->cfg->regulatory_bands[eep_band - 1];
781 
782 	switch (eep_band) {
783 	case 1:		/* 2.4GHz band */
784 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_1);
785 		*eeprom_ch_info =
786 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
787 								     offset);
788 		*eeprom_ch_idx = il_eeprom_band_1;
789 		break;
790 	case 2:		/* 4.9GHz band */
791 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_2);
792 		*eeprom_ch_info =
793 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
794 								     offset);
795 		*eeprom_ch_idx = il_eeprom_band_2;
796 		break;
797 	case 3:		/* 5.2GHz band */
798 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_3);
799 		*eeprom_ch_info =
800 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
801 								     offset);
802 		*eeprom_ch_idx = il_eeprom_band_3;
803 		break;
804 	case 4:		/* 5.5GHz band */
805 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_4);
806 		*eeprom_ch_info =
807 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
808 								     offset);
809 		*eeprom_ch_idx = il_eeprom_band_4;
810 		break;
811 	case 5:		/* 5.7GHz band */
812 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_5);
813 		*eeprom_ch_info =
814 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
815 								     offset);
816 		*eeprom_ch_idx = il_eeprom_band_5;
817 		break;
818 	case 6:		/* 2.4GHz ht40 channels */
819 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_6);
820 		*eeprom_ch_info =
821 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
822 								     offset);
823 		*eeprom_ch_idx = il_eeprom_band_6;
824 		break;
825 	case 7:		/* 5 GHz ht40 channels */
826 		*eeprom_ch_count = ARRAY_SIZE(il_eeprom_band_7);
827 		*eeprom_ch_info =
828 		    (struct il_eeprom_channel *)il_eeprom_query_addr(il,
829 								     offset);
830 		*eeprom_ch_idx = il_eeprom_band_7;
831 		break;
832 	default:
833 		BUG();
834 	}
835 }
836 
837 #define CHECK_AND_PRINT(x) ((eeprom_ch->flags & EEPROM_CHANNEL_##x) \
838 			    ? # x " " : "")
839 /**
840  * il_mod_ht40_chan_info - Copy ht40 channel info into driver's il.
841  *
842  * Does not set up a command, or touch hardware.
843  */
844 static int
845 il_mod_ht40_chan_info(struct il_priv *il, enum nl80211_band band, u16 channel,
846 		      const struct il_eeprom_channel *eeprom_ch,
847 		      u8 clear_ht40_extension_channel)
848 {
849 	struct il_channel_info *ch_info;
850 
851 	ch_info =
852 	    (struct il_channel_info *)il_get_channel_info(il, band, channel);
853 
854 	if (!il_is_channel_valid(ch_info))
855 		return -1;
856 
857 	D_EEPROM("HT40 Ch. %d [%sGHz] %s%s%s%s%s(0x%02x %ddBm):"
858 		 " Ad-Hoc %ssupported\n", ch_info->channel,
859 		 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
860 		 CHECK_AND_PRINT(IBSS), CHECK_AND_PRINT(ACTIVE),
861 		 CHECK_AND_PRINT(RADAR), CHECK_AND_PRINT(WIDE),
862 		 CHECK_AND_PRINT(DFS), eeprom_ch->flags,
863 		 eeprom_ch->max_power_avg,
864 		 ((eeprom_ch->flags & EEPROM_CHANNEL_IBSS) &&
865 		  !(eeprom_ch->flags & EEPROM_CHANNEL_RADAR)) ? "" : "not ");
866 
867 	ch_info->ht40_eeprom = *eeprom_ch;
868 	ch_info->ht40_max_power_avg = eeprom_ch->max_power_avg;
869 	ch_info->ht40_flags = eeprom_ch->flags;
870 	if (eeprom_ch->flags & EEPROM_CHANNEL_VALID)
871 		ch_info->ht40_extension_channel &=
872 		    ~clear_ht40_extension_channel;
873 
874 	return 0;
875 }
876 
877 #define CHECK_AND_PRINT_I(x) ((eeprom_ch_info[ch].flags & EEPROM_CHANNEL_##x) \
878 			    ? # x " " : "")
879 
880 /**
881  * il_init_channel_map - Set up driver's info for all possible channels
882  */
883 int
884 il_init_channel_map(struct il_priv *il)
885 {
886 	int eeprom_ch_count = 0;
887 	const u8 *eeprom_ch_idx = NULL;
888 	const struct il_eeprom_channel *eeprom_ch_info = NULL;
889 	int band, ch;
890 	struct il_channel_info *ch_info;
891 
892 	if (il->channel_count) {
893 		D_EEPROM("Channel map already initialized.\n");
894 		return 0;
895 	}
896 
897 	D_EEPROM("Initializing regulatory info from EEPROM\n");
898 
899 	il->channel_count =
900 	    ARRAY_SIZE(il_eeprom_band_1) + ARRAY_SIZE(il_eeprom_band_2) +
901 	    ARRAY_SIZE(il_eeprom_band_3) + ARRAY_SIZE(il_eeprom_band_4) +
902 	    ARRAY_SIZE(il_eeprom_band_5);
903 
904 	D_EEPROM("Parsing data for %d channels.\n", il->channel_count);
905 
906 	il->channel_info =
907 	    kcalloc(il->channel_count, sizeof(struct il_channel_info),
908 		    GFP_KERNEL);
909 	if (!il->channel_info) {
910 		IL_ERR("Could not allocate channel_info\n");
911 		il->channel_count = 0;
912 		return -ENOMEM;
913 	}
914 
915 	ch_info = il->channel_info;
916 
917 	/* Loop through the 5 EEPROM bands adding them in order to the
918 	 * channel map we maintain (that contains additional information than
919 	 * what just in the EEPROM) */
920 	for (band = 1; band <= 5; band++) {
921 
922 		il_init_band_reference(il, band, &eeprom_ch_count,
923 				       &eeprom_ch_info, &eeprom_ch_idx);
924 
925 		/* Loop through each band adding each of the channels */
926 		for (ch = 0; ch < eeprom_ch_count; ch++) {
927 			ch_info->channel = eeprom_ch_idx[ch];
928 			ch_info->band =
929 			    (band ==
930 			     1) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
931 
932 			/* permanently store EEPROM's channel regulatory flags
933 			 *   and max power in channel info database. */
934 			ch_info->eeprom = eeprom_ch_info[ch];
935 
936 			/* Copy the run-time flags so they are there even on
937 			 * invalid channels */
938 			ch_info->flags = eeprom_ch_info[ch].flags;
939 			/* First write that ht40 is not enabled, and then enable
940 			 * one by one */
941 			ch_info->ht40_extension_channel =
942 			    IEEE80211_CHAN_NO_HT40;
943 
944 			if (!(il_is_channel_valid(ch_info))) {
945 				D_EEPROM("Ch. %d Flags %x [%sGHz] - "
946 					 "No traffic\n", ch_info->channel,
947 					 ch_info->flags,
948 					 il_is_channel_a_band(ch_info) ? "5.2" :
949 					 "2.4");
950 				ch_info++;
951 				continue;
952 			}
953 
954 			/* Initialize regulatory-based run-time data */
955 			ch_info->max_power_avg = ch_info->curr_txpow =
956 			    eeprom_ch_info[ch].max_power_avg;
957 			ch_info->scan_power = eeprom_ch_info[ch].max_power_avg;
958 			ch_info->min_power = 0;
959 
960 			D_EEPROM("Ch. %d [%sGHz] " "%s%s%s%s%s%s(0x%02x %ddBm):"
961 				 " Ad-Hoc %ssupported\n", ch_info->channel,
962 				 il_is_channel_a_band(ch_info) ? "5.2" : "2.4",
963 				 CHECK_AND_PRINT_I(VALID),
964 				 CHECK_AND_PRINT_I(IBSS),
965 				 CHECK_AND_PRINT_I(ACTIVE),
966 				 CHECK_AND_PRINT_I(RADAR),
967 				 CHECK_AND_PRINT_I(WIDE),
968 				 CHECK_AND_PRINT_I(DFS),
969 				 eeprom_ch_info[ch].flags,
970 				 eeprom_ch_info[ch].max_power_avg,
971 				 ((eeprom_ch_info[ch].
972 				   flags & EEPROM_CHANNEL_IBSS) &&
973 				  !(eeprom_ch_info[ch].
974 				    flags & EEPROM_CHANNEL_RADAR)) ? "" :
975 				 "not ");
976 
977 			ch_info++;
978 		}
979 	}
980 
981 	/* Check if we do have HT40 channels */
982 	if (il->cfg->regulatory_bands[5] == EEPROM_REGULATORY_BAND_NO_HT40 &&
983 	    il->cfg->regulatory_bands[6] == EEPROM_REGULATORY_BAND_NO_HT40)
984 		return 0;
985 
986 	/* Two additional EEPROM bands for 2.4 and 5 GHz HT40 channels */
987 	for (band = 6; band <= 7; band++) {
988 		enum nl80211_band ieeeband;
989 
990 		il_init_band_reference(il, band, &eeprom_ch_count,
991 				       &eeprom_ch_info, &eeprom_ch_idx);
992 
993 		/* EEPROM band 6 is 2.4, band 7 is 5 GHz */
994 		ieeeband =
995 		    (band == 6) ? NL80211_BAND_2GHZ : NL80211_BAND_5GHZ;
996 
997 		/* Loop through each band adding each of the channels */
998 		for (ch = 0; ch < eeprom_ch_count; ch++) {
999 			/* Set up driver's info for lower half */
1000 			il_mod_ht40_chan_info(il, ieeeband, eeprom_ch_idx[ch],
1001 					      &eeprom_ch_info[ch],
1002 					      IEEE80211_CHAN_NO_HT40PLUS);
1003 
1004 			/* Set up driver's info for upper half */
1005 			il_mod_ht40_chan_info(il, ieeeband,
1006 					      eeprom_ch_idx[ch] + 4,
1007 					      &eeprom_ch_info[ch],
1008 					      IEEE80211_CHAN_NO_HT40MINUS);
1009 		}
1010 	}
1011 
1012 	return 0;
1013 }
1014 EXPORT_SYMBOL(il_init_channel_map);
1015 
1016 /*
1017  * il_free_channel_map - undo allocations in il_init_channel_map
1018  */
1019 void
1020 il_free_channel_map(struct il_priv *il)
1021 {
1022 	kfree(il->channel_info);
1023 	il->channel_count = 0;
1024 }
1025 EXPORT_SYMBOL(il_free_channel_map);
1026 
1027 /**
1028  * il_get_channel_info - Find driver's ilate channel info
1029  *
1030  * Based on band and channel number.
1031  */
1032 const struct il_channel_info *
1033 il_get_channel_info(const struct il_priv *il, enum nl80211_band band,
1034 		    u16 channel)
1035 {
1036 	int i;
1037 
1038 	switch (band) {
1039 	case NL80211_BAND_5GHZ:
1040 		for (i = 14; i < il->channel_count; i++) {
1041 			if (il->channel_info[i].channel == channel)
1042 				return &il->channel_info[i];
1043 		}
1044 		break;
1045 	case NL80211_BAND_2GHZ:
1046 		if (channel >= 1 && channel <= 14)
1047 			return &il->channel_info[channel - 1];
1048 		break;
1049 	default:
1050 		BUG();
1051 	}
1052 
1053 	return NULL;
1054 }
1055 EXPORT_SYMBOL(il_get_channel_info);
1056 
1057 /*
1058  * Setting power level allows the card to go to sleep when not busy.
1059  *
1060  * We calculate a sleep command based on the required latency, which
1061  * we get from mac80211.
1062  */
1063 
1064 #define SLP_VEC(X0, X1, X2, X3, X4) { \
1065 		cpu_to_le32(X0), \
1066 		cpu_to_le32(X1), \
1067 		cpu_to_le32(X2), \
1068 		cpu_to_le32(X3), \
1069 		cpu_to_le32(X4)  \
1070 }
1071 
1072 static void
1073 il_build_powertable_cmd(struct il_priv *il, struct il_powertable_cmd *cmd)
1074 {
1075 	static const __le32 interval[3][IL_POWER_VEC_SIZE] = {
1076 		SLP_VEC(2, 2, 4, 6, 0xFF),
1077 		SLP_VEC(2, 4, 7, 10, 10),
1078 		SLP_VEC(4, 7, 10, 10, 0xFF)
1079 	};
1080 	int i, dtim_period, no_dtim;
1081 	u32 max_sleep;
1082 	bool skip;
1083 
1084 	memset(cmd, 0, sizeof(*cmd));
1085 
1086 	if (il->power_data.pci_pm)
1087 		cmd->flags |= IL_POWER_PCI_PM_MSK;
1088 
1089 	/* if no Power Save, we are done */
1090 	if (il->power_data.ps_disabled)
1091 		return;
1092 
1093 	cmd->flags = IL_POWER_DRIVER_ALLOW_SLEEP_MSK;
1094 	cmd->keep_alive_seconds = 0;
1095 	cmd->debug_flags = 0;
1096 	cmd->rx_data_timeout = cpu_to_le32(25 * 1024);
1097 	cmd->tx_data_timeout = cpu_to_le32(25 * 1024);
1098 	cmd->keep_alive_beacons = 0;
1099 
1100 	dtim_period = il->vif ? il->vif->bss_conf.dtim_period : 0;
1101 
1102 	if (dtim_period <= 2) {
1103 		memcpy(cmd->sleep_interval, interval[0], sizeof(interval[0]));
1104 		no_dtim = 2;
1105 	} else if (dtim_period <= 10) {
1106 		memcpy(cmd->sleep_interval, interval[1], sizeof(interval[1]));
1107 		no_dtim = 2;
1108 	} else {
1109 		memcpy(cmd->sleep_interval, interval[2], sizeof(interval[2]));
1110 		no_dtim = 0;
1111 	}
1112 
1113 	if (dtim_period == 0) {
1114 		dtim_period = 1;
1115 		skip = false;
1116 	} else {
1117 		skip = !!no_dtim;
1118 	}
1119 
1120 	if (skip) {
1121 		__le32 tmp = cmd->sleep_interval[IL_POWER_VEC_SIZE - 1];
1122 
1123 		max_sleep = le32_to_cpu(tmp);
1124 		if (max_sleep == 0xFF)
1125 			max_sleep = dtim_period * (skip + 1);
1126 		else if (max_sleep >  dtim_period)
1127 			max_sleep = (max_sleep / dtim_period) * dtim_period;
1128 		cmd->flags |= IL_POWER_SLEEP_OVER_DTIM_MSK;
1129 	} else {
1130 		max_sleep = dtim_period;
1131 		cmd->flags &= ~IL_POWER_SLEEP_OVER_DTIM_MSK;
1132 	}
1133 
1134 	for (i = 0; i < IL_POWER_VEC_SIZE; i++)
1135 		if (le32_to_cpu(cmd->sleep_interval[i]) > max_sleep)
1136 			cmd->sleep_interval[i] = cpu_to_le32(max_sleep);
1137 }
1138 
1139 static int
1140 il_set_power(struct il_priv *il, struct il_powertable_cmd *cmd)
1141 {
1142 	D_POWER("Sending power/sleep command\n");
1143 	D_POWER("Flags value = 0x%08X\n", cmd->flags);
1144 	D_POWER("Tx timeout = %u\n", le32_to_cpu(cmd->tx_data_timeout));
1145 	D_POWER("Rx timeout = %u\n", le32_to_cpu(cmd->rx_data_timeout));
1146 	D_POWER("Sleep interval vector = { %d , %d , %d , %d , %d }\n",
1147 		le32_to_cpu(cmd->sleep_interval[0]),
1148 		le32_to_cpu(cmd->sleep_interval[1]),
1149 		le32_to_cpu(cmd->sleep_interval[2]),
1150 		le32_to_cpu(cmd->sleep_interval[3]),
1151 		le32_to_cpu(cmd->sleep_interval[4]));
1152 
1153 	return il_send_cmd_pdu(il, C_POWER_TBL,
1154 			       sizeof(struct il_powertable_cmd), cmd);
1155 }
1156 
1157 static int
1158 il_power_set_mode(struct il_priv *il, struct il_powertable_cmd *cmd, bool force)
1159 {
1160 	int ret;
1161 	bool update_chains;
1162 
1163 	lockdep_assert_held(&il->mutex);
1164 
1165 	/* Don't update the RX chain when chain noise calibration is running */
1166 	update_chains = il->chain_noise_data.state == IL_CHAIN_NOISE_DONE ||
1167 	    il->chain_noise_data.state == IL_CHAIN_NOISE_ALIVE;
1168 
1169 	if (!memcmp(&il->power_data.sleep_cmd, cmd, sizeof(*cmd)) && !force)
1170 		return 0;
1171 
1172 	if (!il_is_ready_rf(il))
1173 		return -EIO;
1174 
1175 	/* scan complete use sleep_power_next, need to be updated */
1176 	memcpy(&il->power_data.sleep_cmd_next, cmd, sizeof(*cmd));
1177 	if (test_bit(S_SCANNING, &il->status) && !force) {
1178 		D_INFO("Defer power set mode while scanning\n");
1179 		return 0;
1180 	}
1181 
1182 	if (cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK)
1183 		set_bit(S_POWER_PMI, &il->status);
1184 
1185 	ret = il_set_power(il, cmd);
1186 	if (!ret) {
1187 		if (!(cmd->flags & IL_POWER_DRIVER_ALLOW_SLEEP_MSK))
1188 			clear_bit(S_POWER_PMI, &il->status);
1189 
1190 		if (il->ops->update_chain_flags && update_chains)
1191 			il->ops->update_chain_flags(il);
1192 		else if (il->ops->update_chain_flags)
1193 			D_POWER("Cannot update the power, chain noise "
1194 				"calibration running: %d\n",
1195 				il->chain_noise_data.state);
1196 
1197 		memcpy(&il->power_data.sleep_cmd, cmd, sizeof(*cmd));
1198 	} else
1199 		IL_ERR("set power fail, ret = %d", ret);
1200 
1201 	return ret;
1202 }
1203 
1204 int
1205 il_power_update_mode(struct il_priv *il, bool force)
1206 {
1207 	struct il_powertable_cmd cmd;
1208 
1209 	il_build_powertable_cmd(il, &cmd);
1210 
1211 	return il_power_set_mode(il, &cmd, force);
1212 }
1213 EXPORT_SYMBOL(il_power_update_mode);
1214 
1215 /* initialize to default */
1216 void
1217 il_power_initialize(struct il_priv *il)
1218 {
1219 	u16 lctl;
1220 
1221 	pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
1222 	il->power_data.pci_pm = !(lctl & PCI_EXP_LNKCTL_ASPM_L0S);
1223 
1224 	il->power_data.debug_sleep_level_override = -1;
1225 
1226 	memset(&il->power_data.sleep_cmd, 0, sizeof(il->power_data.sleep_cmd));
1227 }
1228 EXPORT_SYMBOL(il_power_initialize);
1229 
1230 /* For active scan, listen ACTIVE_DWELL_TIME (msec) on each channel after
1231  * sending probe req.  This should be set long enough to hear probe responses
1232  * from more than one AP.  */
1233 #define IL_ACTIVE_DWELL_TIME_24    (30)	/* all times in msec */
1234 #define IL_ACTIVE_DWELL_TIME_52    (20)
1235 
1236 #define IL_ACTIVE_DWELL_FACTOR_24GHZ (3)
1237 #define IL_ACTIVE_DWELL_FACTOR_52GHZ (2)
1238 
1239 /* For passive scan, listen PASSIVE_DWELL_TIME (msec) on each channel.
1240  * Must be set longer than active dwell time.
1241  * For the most reliable scan, set > AP beacon interval (typically 100msec). */
1242 #define IL_PASSIVE_DWELL_TIME_24   (20)	/* all times in msec */
1243 #define IL_PASSIVE_DWELL_TIME_52   (10)
1244 #define IL_PASSIVE_DWELL_BASE      (100)
1245 #define IL_CHANNEL_TUNE_TIME       5
1246 
1247 static int
1248 il_send_scan_abort(struct il_priv *il)
1249 {
1250 	int ret;
1251 	struct il_rx_pkt *pkt;
1252 	struct il_host_cmd cmd = {
1253 		.id = C_SCAN_ABORT,
1254 		.flags = CMD_WANT_SKB,
1255 	};
1256 
1257 	/* Exit instantly with error when device is not ready
1258 	 * to receive scan abort command or it does not perform
1259 	 * hardware scan currently */
1260 	if (!test_bit(S_READY, &il->status) ||
1261 	    !test_bit(S_GEO_CONFIGURED, &il->status) ||
1262 	    !test_bit(S_SCAN_HW, &il->status) ||
1263 	    test_bit(S_FW_ERROR, &il->status) ||
1264 	    test_bit(S_EXIT_PENDING, &il->status))
1265 		return -EIO;
1266 
1267 	ret = il_send_cmd_sync(il, &cmd);
1268 	if (ret)
1269 		return ret;
1270 
1271 	pkt = (struct il_rx_pkt *)cmd.reply_page;
1272 	if (pkt->u.status != CAN_ABORT_STATUS) {
1273 		/* The scan abort will return 1 for success or
1274 		 * 2 for "failure".  A failure condition can be
1275 		 * due to simply not being in an active scan which
1276 		 * can occur if we send the scan abort before we
1277 		 * the microcode has notified us that a scan is
1278 		 * completed. */
1279 		D_SCAN("SCAN_ABORT ret %d.\n", pkt->u.status);
1280 		ret = -EIO;
1281 	}
1282 
1283 	il_free_pages(il, cmd.reply_page);
1284 	return ret;
1285 }
1286 
1287 static void
1288 il_complete_scan(struct il_priv *il, bool aborted)
1289 {
1290 	struct cfg80211_scan_info info = {
1291 		.aborted = aborted,
1292 	};
1293 
1294 	/* check if scan was requested from mac80211 */
1295 	if (il->scan_request) {
1296 		D_SCAN("Complete scan in mac80211\n");
1297 		ieee80211_scan_completed(il->hw, &info);
1298 	}
1299 
1300 	il->scan_vif = NULL;
1301 	il->scan_request = NULL;
1302 }
1303 
1304 void
1305 il_force_scan_end(struct il_priv *il)
1306 {
1307 	lockdep_assert_held(&il->mutex);
1308 
1309 	if (!test_bit(S_SCANNING, &il->status)) {
1310 		D_SCAN("Forcing scan end while not scanning\n");
1311 		return;
1312 	}
1313 
1314 	D_SCAN("Forcing scan end\n");
1315 	clear_bit(S_SCANNING, &il->status);
1316 	clear_bit(S_SCAN_HW, &il->status);
1317 	clear_bit(S_SCAN_ABORTING, &il->status);
1318 	il_complete_scan(il, true);
1319 }
1320 
1321 static void
1322 il_do_scan_abort(struct il_priv *il)
1323 {
1324 	int ret;
1325 
1326 	lockdep_assert_held(&il->mutex);
1327 
1328 	if (!test_bit(S_SCANNING, &il->status)) {
1329 		D_SCAN("Not performing scan to abort\n");
1330 		return;
1331 	}
1332 
1333 	if (test_and_set_bit(S_SCAN_ABORTING, &il->status)) {
1334 		D_SCAN("Scan abort in progress\n");
1335 		return;
1336 	}
1337 
1338 	ret = il_send_scan_abort(il);
1339 	if (ret) {
1340 		D_SCAN("Send scan abort failed %d\n", ret);
1341 		il_force_scan_end(il);
1342 	} else
1343 		D_SCAN("Successfully send scan abort\n");
1344 }
1345 
1346 /**
1347  * il_scan_cancel - Cancel any currently executing HW scan
1348  */
1349 int
1350 il_scan_cancel(struct il_priv *il)
1351 {
1352 	D_SCAN("Queuing abort scan\n");
1353 	queue_work(il->workqueue, &il->abort_scan);
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(il_scan_cancel);
1357 
1358 /**
1359  * il_scan_cancel_timeout - Cancel any currently executing HW scan
1360  * @ms: amount of time to wait (in milliseconds) for scan to abort
1361  *
1362  */
1363 int
1364 il_scan_cancel_timeout(struct il_priv *il, unsigned long ms)
1365 {
1366 	unsigned long timeout = jiffies + msecs_to_jiffies(ms);
1367 
1368 	lockdep_assert_held(&il->mutex);
1369 
1370 	D_SCAN("Scan cancel timeout\n");
1371 
1372 	il_do_scan_abort(il);
1373 
1374 	while (time_before_eq(jiffies, timeout)) {
1375 		if (!test_bit(S_SCAN_HW, &il->status))
1376 			break;
1377 		msleep(20);
1378 	}
1379 
1380 	return test_bit(S_SCAN_HW, &il->status);
1381 }
1382 EXPORT_SYMBOL(il_scan_cancel_timeout);
1383 
1384 /* Service response to C_SCAN (0x80) */
1385 static void
1386 il_hdl_scan(struct il_priv *il, struct il_rx_buf *rxb)
1387 {
1388 #ifdef CONFIG_IWLEGACY_DEBUG
1389 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1390 	struct il_scanreq_notification *notif =
1391 	    (struct il_scanreq_notification *)pkt->u.raw;
1392 
1393 	D_SCAN("Scan request status = 0x%x\n", notif->status);
1394 #endif
1395 }
1396 
1397 /* Service N_SCAN_START (0x82) */
1398 static void
1399 il_hdl_scan_start(struct il_priv *il, struct il_rx_buf *rxb)
1400 {
1401 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1402 	struct il_scanstart_notification *notif =
1403 	    (struct il_scanstart_notification *)pkt->u.raw;
1404 	il->scan_start_tsf = le32_to_cpu(notif->tsf_low);
1405 	D_SCAN("Scan start: " "%d [802.11%s] "
1406 	       "(TSF: 0x%08X:%08X) - %d (beacon timer %u)\n", notif->channel,
1407 	       notif->band ? "bg" : "a", le32_to_cpu(notif->tsf_high),
1408 	       le32_to_cpu(notif->tsf_low), notif->status, notif->beacon_timer);
1409 }
1410 
1411 /* Service N_SCAN_RESULTS (0x83) */
1412 static void
1413 il_hdl_scan_results(struct il_priv *il, struct il_rx_buf *rxb)
1414 {
1415 #ifdef CONFIG_IWLEGACY_DEBUG
1416 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1417 	struct il_scanresults_notification *notif =
1418 	    (struct il_scanresults_notification *)pkt->u.raw;
1419 
1420 	D_SCAN("Scan ch.res: " "%d [802.11%s] " "(TSF: 0x%08X:%08X) - %d "
1421 	       "elapsed=%lu usec\n", notif->channel, notif->band ? "bg" : "a",
1422 	       le32_to_cpu(notif->tsf_high), le32_to_cpu(notif->tsf_low),
1423 	       le32_to_cpu(notif->stats[0]),
1424 	       le32_to_cpu(notif->tsf_low) - il->scan_start_tsf);
1425 #endif
1426 }
1427 
1428 /* Service N_SCAN_COMPLETE (0x84) */
1429 static void
1430 il_hdl_scan_complete(struct il_priv *il, struct il_rx_buf *rxb)
1431 {
1432 
1433 #ifdef CONFIG_IWLEGACY_DEBUG
1434 	struct il_rx_pkt *pkt = rxb_addr(rxb);
1435 	struct il_scancomplete_notification *scan_notif = (void *)pkt->u.raw;
1436 #endif
1437 
1438 	D_SCAN("Scan complete: %d channels (TSF 0x%08X:%08X) - %d\n",
1439 	       scan_notif->scanned_channels, scan_notif->tsf_low,
1440 	       scan_notif->tsf_high, scan_notif->status);
1441 
1442 	/* The HW is no longer scanning */
1443 	clear_bit(S_SCAN_HW, &il->status);
1444 
1445 	D_SCAN("Scan on %sGHz took %dms\n",
1446 	       (il->scan_band == NL80211_BAND_2GHZ) ? "2.4" : "5.2",
1447 	       jiffies_to_msecs(jiffies - il->scan_start));
1448 
1449 	queue_work(il->workqueue, &il->scan_completed);
1450 }
1451 
1452 void
1453 il_setup_rx_scan_handlers(struct il_priv *il)
1454 {
1455 	/* scan handlers */
1456 	il->handlers[C_SCAN] = il_hdl_scan;
1457 	il->handlers[N_SCAN_START] = il_hdl_scan_start;
1458 	il->handlers[N_SCAN_RESULTS] = il_hdl_scan_results;
1459 	il->handlers[N_SCAN_COMPLETE] = il_hdl_scan_complete;
1460 }
1461 EXPORT_SYMBOL(il_setup_rx_scan_handlers);
1462 
1463 u16
1464 il_get_active_dwell_time(struct il_priv *il, enum nl80211_band band,
1465 			 u8 n_probes)
1466 {
1467 	if (band == NL80211_BAND_5GHZ)
1468 		return IL_ACTIVE_DWELL_TIME_52 +
1469 		    IL_ACTIVE_DWELL_FACTOR_52GHZ * (n_probes + 1);
1470 	else
1471 		return IL_ACTIVE_DWELL_TIME_24 +
1472 		    IL_ACTIVE_DWELL_FACTOR_24GHZ * (n_probes + 1);
1473 }
1474 EXPORT_SYMBOL(il_get_active_dwell_time);
1475 
1476 u16
1477 il_get_passive_dwell_time(struct il_priv *il, enum nl80211_band band,
1478 			  struct ieee80211_vif *vif)
1479 {
1480 	u16 value;
1481 
1482 	u16 passive =
1483 	    (band ==
1484 	     NL80211_BAND_2GHZ) ? IL_PASSIVE_DWELL_BASE +
1485 	    IL_PASSIVE_DWELL_TIME_24 : IL_PASSIVE_DWELL_BASE +
1486 	    IL_PASSIVE_DWELL_TIME_52;
1487 
1488 	if (il_is_any_associated(il)) {
1489 		/*
1490 		 * If we're associated, we clamp the maximum passive
1491 		 * dwell time to be 98% of the smallest beacon interval
1492 		 * (minus 2 * channel tune time)
1493 		 */
1494 		value = il->vif ? il->vif->bss_conf.beacon_int : 0;
1495 		if (value > IL_PASSIVE_DWELL_BASE || !value)
1496 			value = IL_PASSIVE_DWELL_BASE;
1497 		value = (value * 98) / 100 - IL_CHANNEL_TUNE_TIME * 2;
1498 		passive = min(value, passive);
1499 	}
1500 
1501 	return passive;
1502 }
1503 EXPORT_SYMBOL(il_get_passive_dwell_time);
1504 
1505 void
1506 il_init_scan_params(struct il_priv *il)
1507 {
1508 	u8 ant_idx = fls(il->hw_params.valid_tx_ant) - 1;
1509 	if (!il->scan_tx_ant[NL80211_BAND_5GHZ])
1510 		il->scan_tx_ant[NL80211_BAND_5GHZ] = ant_idx;
1511 	if (!il->scan_tx_ant[NL80211_BAND_2GHZ])
1512 		il->scan_tx_ant[NL80211_BAND_2GHZ] = ant_idx;
1513 }
1514 EXPORT_SYMBOL(il_init_scan_params);
1515 
1516 static int
1517 il_scan_initiate(struct il_priv *il, struct ieee80211_vif *vif)
1518 {
1519 	int ret;
1520 
1521 	lockdep_assert_held(&il->mutex);
1522 
1523 	cancel_delayed_work(&il->scan_check);
1524 
1525 	if (!il_is_ready_rf(il)) {
1526 		IL_WARN("Request scan called when driver not ready.\n");
1527 		return -EIO;
1528 	}
1529 
1530 	if (test_bit(S_SCAN_HW, &il->status)) {
1531 		D_SCAN("Multiple concurrent scan requests in parallel.\n");
1532 		return -EBUSY;
1533 	}
1534 
1535 	if (test_bit(S_SCAN_ABORTING, &il->status)) {
1536 		D_SCAN("Scan request while abort pending.\n");
1537 		return -EBUSY;
1538 	}
1539 
1540 	D_SCAN("Starting scan...\n");
1541 
1542 	set_bit(S_SCANNING, &il->status);
1543 	il->scan_start = jiffies;
1544 
1545 	ret = il->ops->request_scan(il, vif);
1546 	if (ret) {
1547 		clear_bit(S_SCANNING, &il->status);
1548 		return ret;
1549 	}
1550 
1551 	queue_delayed_work(il->workqueue, &il->scan_check,
1552 			   IL_SCAN_CHECK_WATCHDOG);
1553 
1554 	return 0;
1555 }
1556 
1557 int
1558 il_mac_hw_scan(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
1559 	       struct ieee80211_scan_request *hw_req)
1560 {
1561 	struct cfg80211_scan_request *req = &hw_req->req;
1562 	struct il_priv *il = hw->priv;
1563 	int ret;
1564 
1565 	if (req->n_channels == 0) {
1566 		IL_ERR("Can not scan on no channels.\n");
1567 		return -EINVAL;
1568 	}
1569 
1570 	mutex_lock(&il->mutex);
1571 	D_MAC80211("enter\n");
1572 
1573 	if (test_bit(S_SCANNING, &il->status)) {
1574 		D_SCAN("Scan already in progress.\n");
1575 		ret = -EAGAIN;
1576 		goto out_unlock;
1577 	}
1578 
1579 	/* mac80211 will only ask for one band at a time */
1580 	il->scan_request = req;
1581 	il->scan_vif = vif;
1582 	il->scan_band = req->channels[0]->band;
1583 
1584 	ret = il_scan_initiate(il, vif);
1585 
1586 out_unlock:
1587 	D_MAC80211("leave ret %d\n", ret);
1588 	mutex_unlock(&il->mutex);
1589 
1590 	return ret;
1591 }
1592 EXPORT_SYMBOL(il_mac_hw_scan);
1593 
1594 static void
1595 il_bg_scan_check(struct work_struct *data)
1596 {
1597 	struct il_priv *il =
1598 	    container_of(data, struct il_priv, scan_check.work);
1599 
1600 	D_SCAN("Scan check work\n");
1601 
1602 	/* Since we are here firmware does not finish scan and
1603 	 * most likely is in bad shape, so we don't bother to
1604 	 * send abort command, just force scan complete to mac80211 */
1605 	mutex_lock(&il->mutex);
1606 	il_force_scan_end(il);
1607 	mutex_unlock(&il->mutex);
1608 }
1609 
1610 /**
1611  * il_fill_probe_req - fill in all required fields and IE for probe request
1612  */
1613 
1614 u16
1615 il_fill_probe_req(struct il_priv *il, struct ieee80211_mgmt *frame,
1616 		  const u8 *ta, const u8 *ies, int ie_len, int left)
1617 {
1618 	int len = 0;
1619 	u8 *pos = NULL;
1620 
1621 	/* Make sure there is enough space for the probe request,
1622 	 * two mandatory IEs and the data */
1623 	left -= 24;
1624 	if (left < 0)
1625 		return 0;
1626 
1627 	frame->frame_control = cpu_to_le16(IEEE80211_STYPE_PROBE_REQ);
1628 	eth_broadcast_addr(frame->da);
1629 	memcpy(frame->sa, ta, ETH_ALEN);
1630 	eth_broadcast_addr(frame->bssid);
1631 	frame->seq_ctrl = 0;
1632 
1633 	len += 24;
1634 
1635 	/* ...next IE... */
1636 	pos = &frame->u.probe_req.variable[0];
1637 
1638 	/* fill in our indirect SSID IE */
1639 	left -= 2;
1640 	if (left < 0)
1641 		return 0;
1642 	*pos++ = WLAN_EID_SSID;
1643 	*pos++ = 0;
1644 
1645 	len += 2;
1646 
1647 	if (WARN_ON(left < ie_len))
1648 		return len;
1649 
1650 	if (ies && ie_len) {
1651 		memcpy(pos, ies, ie_len);
1652 		len += ie_len;
1653 	}
1654 
1655 	return (u16) len;
1656 }
1657 EXPORT_SYMBOL(il_fill_probe_req);
1658 
1659 static void
1660 il_bg_abort_scan(struct work_struct *work)
1661 {
1662 	struct il_priv *il = container_of(work, struct il_priv, abort_scan);
1663 
1664 	D_SCAN("Abort scan work\n");
1665 
1666 	/* We keep scan_check work queued in case when firmware will not
1667 	 * report back scan completed notification */
1668 	mutex_lock(&il->mutex);
1669 	il_scan_cancel_timeout(il, 200);
1670 	mutex_unlock(&il->mutex);
1671 }
1672 
1673 static void
1674 il_bg_scan_completed(struct work_struct *work)
1675 {
1676 	struct il_priv *il = container_of(work, struct il_priv, scan_completed);
1677 	bool aborted;
1678 
1679 	D_SCAN("Completed scan.\n");
1680 
1681 	cancel_delayed_work(&il->scan_check);
1682 
1683 	mutex_lock(&il->mutex);
1684 
1685 	aborted = test_and_clear_bit(S_SCAN_ABORTING, &il->status);
1686 	if (aborted)
1687 		D_SCAN("Aborted scan completed.\n");
1688 
1689 	if (!test_and_clear_bit(S_SCANNING, &il->status)) {
1690 		D_SCAN("Scan already completed.\n");
1691 		goto out_settings;
1692 	}
1693 
1694 	il_complete_scan(il, aborted);
1695 
1696 out_settings:
1697 	/* Can we still talk to firmware ? */
1698 	if (!il_is_ready_rf(il))
1699 		goto out;
1700 
1701 	/*
1702 	 * We do not commit power settings while scan is pending,
1703 	 * do it now if the settings changed.
1704 	 */
1705 	il_power_set_mode(il, &il->power_data.sleep_cmd_next, false);
1706 	il_set_tx_power(il, il->tx_power_next, false);
1707 
1708 	il->ops->post_scan(il);
1709 
1710 out:
1711 	mutex_unlock(&il->mutex);
1712 }
1713 
1714 void
1715 il_setup_scan_deferred_work(struct il_priv *il)
1716 {
1717 	INIT_WORK(&il->scan_completed, il_bg_scan_completed);
1718 	INIT_WORK(&il->abort_scan, il_bg_abort_scan);
1719 	INIT_DELAYED_WORK(&il->scan_check, il_bg_scan_check);
1720 }
1721 EXPORT_SYMBOL(il_setup_scan_deferred_work);
1722 
1723 void
1724 il_cancel_scan_deferred_work(struct il_priv *il)
1725 {
1726 	cancel_work_sync(&il->abort_scan);
1727 	cancel_work_sync(&il->scan_completed);
1728 
1729 	if (cancel_delayed_work_sync(&il->scan_check)) {
1730 		mutex_lock(&il->mutex);
1731 		il_force_scan_end(il);
1732 		mutex_unlock(&il->mutex);
1733 	}
1734 }
1735 EXPORT_SYMBOL(il_cancel_scan_deferred_work);
1736 
1737 /* il->sta_lock must be held */
1738 static void
1739 il_sta_ucode_activate(struct il_priv *il, u8 sta_id)
1740 {
1741 
1742 	if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE))
1743 		IL_ERR("ACTIVATE a non DRIVER active station id %u addr %pM\n",
1744 		       sta_id, il->stations[sta_id].sta.sta.addr);
1745 
1746 	if (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) {
1747 		D_ASSOC("STA id %u addr %pM already present"
1748 			" in uCode (according to driver)\n", sta_id,
1749 			il->stations[sta_id].sta.sta.addr);
1750 	} else {
1751 		il->stations[sta_id].used |= IL_STA_UCODE_ACTIVE;
1752 		D_ASSOC("Added STA id %u addr %pM to uCode\n", sta_id,
1753 			il->stations[sta_id].sta.sta.addr);
1754 	}
1755 }
1756 
1757 static int
1758 il_process_add_sta_resp(struct il_priv *il, struct il_addsta_cmd *addsta,
1759 			struct il_rx_pkt *pkt, bool sync)
1760 {
1761 	u8 sta_id = addsta->sta.sta_id;
1762 	unsigned long flags;
1763 	int ret = -EIO;
1764 
1765 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
1766 		IL_ERR("Bad return from C_ADD_STA (0x%08X)\n", pkt->hdr.flags);
1767 		return ret;
1768 	}
1769 
1770 	D_INFO("Processing response for adding station %u\n", sta_id);
1771 
1772 	spin_lock_irqsave(&il->sta_lock, flags);
1773 
1774 	switch (pkt->u.add_sta.status) {
1775 	case ADD_STA_SUCCESS_MSK:
1776 		D_INFO("C_ADD_STA PASSED\n");
1777 		il_sta_ucode_activate(il, sta_id);
1778 		ret = 0;
1779 		break;
1780 	case ADD_STA_NO_ROOM_IN_TBL:
1781 		IL_ERR("Adding station %d failed, no room in table.\n", sta_id);
1782 		break;
1783 	case ADD_STA_NO_BLOCK_ACK_RESOURCE:
1784 		IL_ERR("Adding station %d failed, no block ack resource.\n",
1785 		       sta_id);
1786 		break;
1787 	case ADD_STA_MODIFY_NON_EXIST_STA:
1788 		IL_ERR("Attempting to modify non-existing station %d\n",
1789 		       sta_id);
1790 		break;
1791 	default:
1792 		D_ASSOC("Received C_ADD_STA:(0x%08X)\n", pkt->u.add_sta.status);
1793 		break;
1794 	}
1795 
1796 	D_INFO("%s station id %u addr %pM\n",
1797 	       il->stations[sta_id].sta.mode ==
1798 	       STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", sta_id,
1799 	       il->stations[sta_id].sta.sta.addr);
1800 
1801 	/*
1802 	 * XXX: The MAC address in the command buffer is often changed from
1803 	 * the original sent to the device. That is, the MAC address
1804 	 * written to the command buffer often is not the same MAC address
1805 	 * read from the command buffer when the command returns. This
1806 	 * issue has not yet been resolved and this debugging is left to
1807 	 * observe the problem.
1808 	 */
1809 	D_INFO("%s station according to cmd buffer %pM\n",
1810 	       il->stations[sta_id].sta.mode ==
1811 	       STA_CONTROL_MODIFY_MSK ? "Modified" : "Added", addsta->sta.addr);
1812 	spin_unlock_irqrestore(&il->sta_lock, flags);
1813 
1814 	return ret;
1815 }
1816 
1817 static void
1818 il_add_sta_callback(struct il_priv *il, struct il_device_cmd *cmd,
1819 		    struct il_rx_pkt *pkt)
1820 {
1821 	struct il_addsta_cmd *addsta = (struct il_addsta_cmd *)cmd->cmd.payload;
1822 
1823 	il_process_add_sta_resp(il, addsta, pkt, false);
1824 
1825 }
1826 
1827 int
1828 il_send_add_sta(struct il_priv *il, struct il_addsta_cmd *sta, u8 flags)
1829 {
1830 	struct il_rx_pkt *pkt = NULL;
1831 	int ret = 0;
1832 	u8 data[sizeof(*sta)];
1833 	struct il_host_cmd cmd = {
1834 		.id = C_ADD_STA,
1835 		.flags = flags,
1836 		.data = data,
1837 	};
1838 	u8 sta_id __maybe_unused = sta->sta.sta_id;
1839 
1840 	D_INFO("Adding sta %u (%pM) %ssynchronously\n", sta_id, sta->sta.addr,
1841 	       flags & CMD_ASYNC ? "a" : "");
1842 
1843 	if (flags & CMD_ASYNC)
1844 		cmd.callback = il_add_sta_callback;
1845 	else {
1846 		cmd.flags |= CMD_WANT_SKB;
1847 		might_sleep();
1848 	}
1849 
1850 	cmd.len = il->ops->build_addsta_hcmd(sta, data);
1851 	ret = il_send_cmd(il, &cmd);
1852 	if (ret)
1853 		return ret;
1854 	if (flags & CMD_ASYNC)
1855 		return 0;
1856 
1857 	pkt = (struct il_rx_pkt *)cmd.reply_page;
1858 	ret = il_process_add_sta_resp(il, sta, pkt, true);
1859 
1860 	il_free_pages(il, cmd.reply_page);
1861 
1862 	return ret;
1863 }
1864 EXPORT_SYMBOL(il_send_add_sta);
1865 
1866 static void
1867 il_set_ht_add_station(struct il_priv *il, u8 idx, struct ieee80211_sta *sta)
1868 {
1869 	struct ieee80211_sta_ht_cap *sta_ht_inf = &sta->ht_cap;
1870 	__le32 sta_flags;
1871 
1872 	if (!sta || !sta_ht_inf->ht_supported)
1873 		goto done;
1874 
1875 	D_ASSOC("spatial multiplexing power save mode: %s\n",
1876 		(sta->smps_mode == IEEE80211_SMPS_STATIC) ? "static" :
1877 		(sta->smps_mode == IEEE80211_SMPS_DYNAMIC) ? "dynamic" :
1878 		"disabled");
1879 
1880 	sta_flags = il->stations[idx].sta.station_flags;
1881 
1882 	sta_flags &= ~(STA_FLG_RTS_MIMO_PROT_MSK | STA_FLG_MIMO_DIS_MSK);
1883 
1884 	switch (sta->smps_mode) {
1885 	case IEEE80211_SMPS_STATIC:
1886 		sta_flags |= STA_FLG_MIMO_DIS_MSK;
1887 		break;
1888 	case IEEE80211_SMPS_DYNAMIC:
1889 		sta_flags |= STA_FLG_RTS_MIMO_PROT_MSK;
1890 		break;
1891 	case IEEE80211_SMPS_OFF:
1892 		break;
1893 	default:
1894 		IL_WARN("Invalid MIMO PS mode %d\n", sta->smps_mode);
1895 		break;
1896 	}
1897 
1898 	sta_flags |=
1899 	    cpu_to_le32((u32) sta_ht_inf->
1900 			ampdu_factor << STA_FLG_MAX_AGG_SIZE_POS);
1901 
1902 	sta_flags |=
1903 	    cpu_to_le32((u32) sta_ht_inf->
1904 			ampdu_density << STA_FLG_AGG_MPDU_DENSITY_POS);
1905 
1906 	if (il_is_ht40_tx_allowed(il, &sta->ht_cap))
1907 		sta_flags |= STA_FLG_HT40_EN_MSK;
1908 	else
1909 		sta_flags &= ~STA_FLG_HT40_EN_MSK;
1910 
1911 	il->stations[idx].sta.station_flags = sta_flags;
1912 done:
1913 	return;
1914 }
1915 
1916 /**
1917  * il_prep_station - Prepare station information for addition
1918  *
1919  * should be called with sta_lock held
1920  */
1921 u8
1922 il_prep_station(struct il_priv *il, const u8 *addr, bool is_ap,
1923 		struct ieee80211_sta *sta)
1924 {
1925 	struct il_station_entry *station;
1926 	int i;
1927 	u8 sta_id = IL_INVALID_STATION;
1928 	u16 rate;
1929 
1930 	if (is_ap)
1931 		sta_id = IL_AP_ID;
1932 	else if (is_broadcast_ether_addr(addr))
1933 		sta_id = il->hw_params.bcast_id;
1934 	else
1935 		for (i = IL_STA_ID; i < il->hw_params.max_stations; i++) {
1936 			if (ether_addr_equal(il->stations[i].sta.sta.addr,
1937 					     addr)) {
1938 				sta_id = i;
1939 				break;
1940 			}
1941 
1942 			if (!il->stations[i].used &&
1943 			    sta_id == IL_INVALID_STATION)
1944 				sta_id = i;
1945 		}
1946 
1947 	/*
1948 	 * These two conditions have the same outcome, but keep them
1949 	 * separate
1950 	 */
1951 	if (unlikely(sta_id == IL_INVALID_STATION))
1952 		return sta_id;
1953 
1954 	/*
1955 	 * uCode is not able to deal with multiple requests to add a
1956 	 * station. Keep track if one is in progress so that we do not send
1957 	 * another.
1958 	 */
1959 	if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
1960 		D_INFO("STA %d already in process of being added.\n", sta_id);
1961 		return sta_id;
1962 	}
1963 
1964 	if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
1965 	    (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE) &&
1966 	    ether_addr_equal(il->stations[sta_id].sta.sta.addr, addr)) {
1967 		D_ASSOC("STA %d (%pM) already added, not adding again.\n",
1968 			sta_id, addr);
1969 		return sta_id;
1970 	}
1971 
1972 	station = &il->stations[sta_id];
1973 	station->used = IL_STA_DRIVER_ACTIVE;
1974 	D_ASSOC("Add STA to driver ID %d: %pM\n", sta_id, addr);
1975 	il->num_stations++;
1976 
1977 	/* Set up the C_ADD_STA command to send to device */
1978 	memset(&station->sta, 0, sizeof(struct il_addsta_cmd));
1979 	memcpy(station->sta.sta.addr, addr, ETH_ALEN);
1980 	station->sta.mode = 0;
1981 	station->sta.sta.sta_id = sta_id;
1982 	station->sta.station_flags = 0;
1983 
1984 	/*
1985 	 * OK to call unconditionally, since local stations (IBSS BSSID
1986 	 * STA and broadcast STA) pass in a NULL sta, and mac80211
1987 	 * doesn't allow HT IBSS.
1988 	 */
1989 	il_set_ht_add_station(il, sta_id, sta);
1990 
1991 	/* 3945 only */
1992 	rate = (il->band == NL80211_BAND_5GHZ) ? RATE_6M_PLCP : RATE_1M_PLCP;
1993 	/* Turn on both antennas for the station... */
1994 	station->sta.rate_n_flags = cpu_to_le16(rate | RATE_MCS_ANT_AB_MSK);
1995 
1996 	return sta_id;
1997 
1998 }
1999 EXPORT_SYMBOL_GPL(il_prep_station);
2000 
2001 #define STA_WAIT_TIMEOUT (HZ/2)
2002 
2003 /**
2004  * il_add_station_common -
2005  */
2006 int
2007 il_add_station_common(struct il_priv *il, const u8 *addr, bool is_ap,
2008 		      struct ieee80211_sta *sta, u8 *sta_id_r)
2009 {
2010 	unsigned long flags_spin;
2011 	int ret = 0;
2012 	u8 sta_id;
2013 	struct il_addsta_cmd sta_cmd;
2014 
2015 	*sta_id_r = 0;
2016 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2017 	sta_id = il_prep_station(il, addr, is_ap, sta);
2018 	if (sta_id == IL_INVALID_STATION) {
2019 		IL_ERR("Unable to prepare station %pM for addition\n", addr);
2020 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2021 		return -EINVAL;
2022 	}
2023 
2024 	/*
2025 	 * uCode is not able to deal with multiple requests to add a
2026 	 * station. Keep track if one is in progress so that we do not send
2027 	 * another.
2028 	 */
2029 	if (il->stations[sta_id].used & IL_STA_UCODE_INPROGRESS) {
2030 		D_INFO("STA %d already in process of being added.\n", sta_id);
2031 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2032 		return -EEXIST;
2033 	}
2034 
2035 	if ((il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE) &&
2036 	    (il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2037 		D_ASSOC("STA %d (%pM) already added, not adding again.\n",
2038 			sta_id, addr);
2039 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2040 		return -EEXIST;
2041 	}
2042 
2043 	il->stations[sta_id].used |= IL_STA_UCODE_INPROGRESS;
2044 	memcpy(&sta_cmd, &il->stations[sta_id].sta,
2045 	       sizeof(struct il_addsta_cmd));
2046 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2047 
2048 	/* Add station to device's station table */
2049 	ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2050 	if (ret) {
2051 		spin_lock_irqsave(&il->sta_lock, flags_spin);
2052 		IL_ERR("Adding station %pM failed.\n",
2053 		       il->stations[sta_id].sta.sta.addr);
2054 		il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2055 		il->stations[sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2056 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2057 	}
2058 	*sta_id_r = sta_id;
2059 	return ret;
2060 }
2061 EXPORT_SYMBOL(il_add_station_common);
2062 
2063 /**
2064  * il_sta_ucode_deactivate - deactivate ucode status for a station
2065  *
2066  * il->sta_lock must be held
2067  */
2068 static void
2069 il_sta_ucode_deactivate(struct il_priv *il, u8 sta_id)
2070 {
2071 	/* Ucode must be active and driver must be non active */
2072 	if ((il->stations[sta_id].
2073 	     used & (IL_STA_UCODE_ACTIVE | IL_STA_DRIVER_ACTIVE)) !=
2074 	    IL_STA_UCODE_ACTIVE)
2075 		IL_ERR("removed non active STA %u\n", sta_id);
2076 
2077 	il->stations[sta_id].used &= ~IL_STA_UCODE_ACTIVE;
2078 
2079 	memset(&il->stations[sta_id], 0, sizeof(struct il_station_entry));
2080 	D_ASSOC("Removed STA %u\n", sta_id);
2081 }
2082 
2083 static int
2084 il_send_remove_station(struct il_priv *il, const u8 * addr, int sta_id,
2085 		       bool temporary)
2086 {
2087 	struct il_rx_pkt *pkt;
2088 	int ret;
2089 
2090 	unsigned long flags_spin;
2091 	struct il_rem_sta_cmd rm_sta_cmd;
2092 
2093 	struct il_host_cmd cmd = {
2094 		.id = C_REM_STA,
2095 		.len = sizeof(struct il_rem_sta_cmd),
2096 		.flags = CMD_SYNC,
2097 		.data = &rm_sta_cmd,
2098 	};
2099 
2100 	memset(&rm_sta_cmd, 0, sizeof(rm_sta_cmd));
2101 	rm_sta_cmd.num_sta = 1;
2102 	memcpy(&rm_sta_cmd.addr, addr, ETH_ALEN);
2103 
2104 	cmd.flags |= CMD_WANT_SKB;
2105 
2106 	ret = il_send_cmd(il, &cmd);
2107 
2108 	if (ret)
2109 		return ret;
2110 
2111 	pkt = (struct il_rx_pkt *)cmd.reply_page;
2112 	if (pkt->hdr.flags & IL_CMD_FAILED_MSK) {
2113 		IL_ERR("Bad return from C_REM_STA (0x%08X)\n", pkt->hdr.flags);
2114 		ret = -EIO;
2115 	}
2116 
2117 	if (!ret) {
2118 		switch (pkt->u.rem_sta.status) {
2119 		case REM_STA_SUCCESS_MSK:
2120 			if (!temporary) {
2121 				spin_lock_irqsave(&il->sta_lock, flags_spin);
2122 				il_sta_ucode_deactivate(il, sta_id);
2123 				spin_unlock_irqrestore(&il->sta_lock,
2124 						       flags_spin);
2125 			}
2126 			D_ASSOC("C_REM_STA PASSED\n");
2127 			break;
2128 		default:
2129 			ret = -EIO;
2130 			IL_ERR("C_REM_STA failed\n");
2131 			break;
2132 		}
2133 	}
2134 	il_free_pages(il, cmd.reply_page);
2135 
2136 	return ret;
2137 }
2138 
2139 /**
2140  * il_remove_station - Remove driver's knowledge of station.
2141  */
2142 int
2143 il_remove_station(struct il_priv *il, const u8 sta_id, const u8 * addr)
2144 {
2145 	unsigned long flags;
2146 
2147 	if (!il_is_ready(il)) {
2148 		D_INFO("Unable to remove station %pM, device not ready.\n",
2149 		       addr);
2150 		/*
2151 		 * It is typical for stations to be removed when we are
2152 		 * going down. Return success since device will be down
2153 		 * soon anyway
2154 		 */
2155 		return 0;
2156 	}
2157 
2158 	D_ASSOC("Removing STA from driver:%d  %pM\n", sta_id, addr);
2159 
2160 	if (WARN_ON(sta_id == IL_INVALID_STATION))
2161 		return -EINVAL;
2162 
2163 	spin_lock_irqsave(&il->sta_lock, flags);
2164 
2165 	if (!(il->stations[sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2166 		D_INFO("Removing %pM but non DRIVER active\n", addr);
2167 		goto out_err;
2168 	}
2169 
2170 	if (!(il->stations[sta_id].used & IL_STA_UCODE_ACTIVE)) {
2171 		D_INFO("Removing %pM but non UCODE active\n", addr);
2172 		goto out_err;
2173 	}
2174 
2175 	if (il->stations[sta_id].used & IL_STA_LOCAL) {
2176 		kfree(il->stations[sta_id].lq);
2177 		il->stations[sta_id].lq = NULL;
2178 	}
2179 
2180 	il->stations[sta_id].used &= ~IL_STA_DRIVER_ACTIVE;
2181 
2182 	il->num_stations--;
2183 
2184 	BUG_ON(il->num_stations < 0);
2185 
2186 	spin_unlock_irqrestore(&il->sta_lock, flags);
2187 
2188 	return il_send_remove_station(il, addr, sta_id, false);
2189 out_err:
2190 	spin_unlock_irqrestore(&il->sta_lock, flags);
2191 	return -EINVAL;
2192 }
2193 EXPORT_SYMBOL_GPL(il_remove_station);
2194 
2195 /**
2196  * il_clear_ucode_stations - clear ucode station table bits
2197  *
2198  * This function clears all the bits in the driver indicating
2199  * which stations are active in the ucode. Call when something
2200  * other than explicit station management would cause this in
2201  * the ucode, e.g. unassociated RXON.
2202  */
2203 void
2204 il_clear_ucode_stations(struct il_priv *il)
2205 {
2206 	int i;
2207 	unsigned long flags_spin;
2208 	bool cleared = false;
2209 
2210 	D_INFO("Clearing ucode stations in driver\n");
2211 
2212 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2213 	for (i = 0; i < il->hw_params.max_stations; i++) {
2214 		if (il->stations[i].used & IL_STA_UCODE_ACTIVE) {
2215 			D_INFO("Clearing ucode active for station %d\n", i);
2216 			il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2217 			cleared = true;
2218 		}
2219 	}
2220 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2221 
2222 	if (!cleared)
2223 		D_INFO("No active stations found to be cleared\n");
2224 }
2225 EXPORT_SYMBOL(il_clear_ucode_stations);
2226 
2227 /**
2228  * il_restore_stations() - Restore driver known stations to device
2229  *
2230  * All stations considered active by driver, but not present in ucode, is
2231  * restored.
2232  *
2233  * Function sleeps.
2234  */
2235 void
2236 il_restore_stations(struct il_priv *il)
2237 {
2238 	struct il_addsta_cmd sta_cmd;
2239 	struct il_link_quality_cmd lq;
2240 	unsigned long flags_spin;
2241 	int i;
2242 	bool found = false;
2243 	int ret;
2244 	bool send_lq;
2245 
2246 	if (!il_is_ready(il)) {
2247 		D_INFO("Not ready yet, not restoring any stations.\n");
2248 		return;
2249 	}
2250 
2251 	D_ASSOC("Restoring all known stations ... start.\n");
2252 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2253 	for (i = 0; i < il->hw_params.max_stations; i++) {
2254 		if ((il->stations[i].used & IL_STA_DRIVER_ACTIVE) &&
2255 		    !(il->stations[i].used & IL_STA_UCODE_ACTIVE)) {
2256 			D_ASSOC("Restoring sta %pM\n",
2257 				il->stations[i].sta.sta.addr);
2258 			il->stations[i].sta.mode = 0;
2259 			il->stations[i].used |= IL_STA_UCODE_INPROGRESS;
2260 			found = true;
2261 		}
2262 	}
2263 
2264 	for (i = 0; i < il->hw_params.max_stations; i++) {
2265 		if ((il->stations[i].used & IL_STA_UCODE_INPROGRESS)) {
2266 			memcpy(&sta_cmd, &il->stations[i].sta,
2267 			       sizeof(struct il_addsta_cmd));
2268 			send_lq = false;
2269 			if (il->stations[i].lq) {
2270 				memcpy(&lq, il->stations[i].lq,
2271 				       sizeof(struct il_link_quality_cmd));
2272 				send_lq = true;
2273 			}
2274 			spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2275 			ret = il_send_add_sta(il, &sta_cmd, CMD_SYNC);
2276 			if (ret) {
2277 				spin_lock_irqsave(&il->sta_lock, flags_spin);
2278 				IL_ERR("Adding station %pM failed.\n",
2279 				       il->stations[i].sta.sta.addr);
2280 				il->stations[i].used &= ~IL_STA_DRIVER_ACTIVE;
2281 				il->stations[i].used &=
2282 				    ~IL_STA_UCODE_INPROGRESS;
2283 				spin_unlock_irqrestore(&il->sta_lock,
2284 						       flags_spin);
2285 			}
2286 			/*
2287 			 * Rate scaling has already been initialized, send
2288 			 * current LQ command
2289 			 */
2290 			if (send_lq)
2291 				il_send_lq_cmd(il, &lq, CMD_SYNC, true);
2292 			spin_lock_irqsave(&il->sta_lock, flags_spin);
2293 			il->stations[i].used &= ~IL_STA_UCODE_INPROGRESS;
2294 		}
2295 	}
2296 
2297 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2298 	if (!found)
2299 		D_INFO("Restoring all known stations"
2300 		       " .... no stations to be restored.\n");
2301 	else
2302 		D_INFO("Restoring all known stations" " .... complete.\n");
2303 }
2304 EXPORT_SYMBOL(il_restore_stations);
2305 
2306 int
2307 il_get_free_ucode_key_idx(struct il_priv *il)
2308 {
2309 	int i;
2310 
2311 	for (i = 0; i < il->sta_key_max_num; i++)
2312 		if (!test_and_set_bit(i, &il->ucode_key_table))
2313 			return i;
2314 
2315 	return WEP_INVALID_OFFSET;
2316 }
2317 EXPORT_SYMBOL(il_get_free_ucode_key_idx);
2318 
2319 void
2320 il_dealloc_bcast_stations(struct il_priv *il)
2321 {
2322 	unsigned long flags;
2323 	int i;
2324 
2325 	spin_lock_irqsave(&il->sta_lock, flags);
2326 	for (i = 0; i < il->hw_params.max_stations; i++) {
2327 		if (!(il->stations[i].used & IL_STA_BCAST))
2328 			continue;
2329 
2330 		il->stations[i].used &= ~IL_STA_UCODE_ACTIVE;
2331 		il->num_stations--;
2332 		BUG_ON(il->num_stations < 0);
2333 		kfree(il->stations[i].lq);
2334 		il->stations[i].lq = NULL;
2335 	}
2336 	spin_unlock_irqrestore(&il->sta_lock, flags);
2337 }
2338 EXPORT_SYMBOL_GPL(il_dealloc_bcast_stations);
2339 
2340 #ifdef CONFIG_IWLEGACY_DEBUG
2341 static void
2342 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2343 {
2344 	int i;
2345 	D_RATE("lq station id 0x%x\n", lq->sta_id);
2346 	D_RATE("lq ant 0x%X 0x%X\n", lq->general_params.single_stream_ant_msk,
2347 	       lq->general_params.dual_stream_ant_msk);
2348 
2349 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++)
2350 		D_RATE("lq idx %d 0x%X\n", i, lq->rs_table[i].rate_n_flags);
2351 }
2352 #else
2353 static inline void
2354 il_dump_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq)
2355 {
2356 }
2357 #endif
2358 
2359 /**
2360  * il_is_lq_table_valid() - Test one aspect of LQ cmd for validity
2361  *
2362  * It sometimes happens when a HT rate has been in use and we
2363  * loose connectivity with AP then mac80211 will first tell us that the
2364  * current channel is not HT anymore before removing the station. In such a
2365  * scenario the RXON flags will be updated to indicate we are not
2366  * communicating HT anymore, but the LQ command may still contain HT rates.
2367  * Test for this to prevent driver from sending LQ command between the time
2368  * RXON flags are updated and when LQ command is updated.
2369  */
2370 static bool
2371 il_is_lq_table_valid(struct il_priv *il, struct il_link_quality_cmd *lq)
2372 {
2373 	int i;
2374 
2375 	if (il->ht.enabled)
2376 		return true;
2377 
2378 	D_INFO("Channel %u is not an HT channel\n", il->active.channel);
2379 	for (i = 0; i < LINK_QUAL_MAX_RETRY_NUM; i++) {
2380 		if (le32_to_cpu(lq->rs_table[i].rate_n_flags) & RATE_MCS_HT_MSK) {
2381 			D_INFO("idx %d of LQ expects HT channel\n", i);
2382 			return false;
2383 		}
2384 	}
2385 	return true;
2386 }
2387 
2388 /**
2389  * il_send_lq_cmd() - Send link quality command
2390  * @init: This command is sent as part of station initialization right
2391  *        after station has been added.
2392  *
2393  * The link quality command is sent as the last step of station creation.
2394  * This is the special case in which init is set and we call a callback in
2395  * this case to clear the state indicating that station creation is in
2396  * progress.
2397  */
2398 int
2399 il_send_lq_cmd(struct il_priv *il, struct il_link_quality_cmd *lq,
2400 	       u8 flags, bool init)
2401 {
2402 	int ret = 0;
2403 	unsigned long flags_spin;
2404 
2405 	struct il_host_cmd cmd = {
2406 		.id = C_TX_LINK_QUALITY_CMD,
2407 		.len = sizeof(struct il_link_quality_cmd),
2408 		.flags = flags,
2409 		.data = lq,
2410 	};
2411 
2412 	if (WARN_ON(lq->sta_id == IL_INVALID_STATION))
2413 		return -EINVAL;
2414 
2415 	spin_lock_irqsave(&il->sta_lock, flags_spin);
2416 	if (!(il->stations[lq->sta_id].used & IL_STA_DRIVER_ACTIVE)) {
2417 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2418 		return -EINVAL;
2419 	}
2420 	spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2421 
2422 	il_dump_lq_cmd(il, lq);
2423 	BUG_ON(init && (cmd.flags & CMD_ASYNC));
2424 
2425 	if (il_is_lq_table_valid(il, lq))
2426 		ret = il_send_cmd(il, &cmd);
2427 	else
2428 		ret = -EINVAL;
2429 
2430 	if (cmd.flags & CMD_ASYNC)
2431 		return ret;
2432 
2433 	if (init) {
2434 		D_INFO("init LQ command complete,"
2435 		       " clearing sta addition status for sta %d\n",
2436 		       lq->sta_id);
2437 		spin_lock_irqsave(&il->sta_lock, flags_spin);
2438 		il->stations[lq->sta_id].used &= ~IL_STA_UCODE_INPROGRESS;
2439 		spin_unlock_irqrestore(&il->sta_lock, flags_spin);
2440 	}
2441 	return ret;
2442 }
2443 EXPORT_SYMBOL(il_send_lq_cmd);
2444 
2445 int
2446 il_mac_sta_remove(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2447 		  struct ieee80211_sta *sta)
2448 {
2449 	struct il_priv *il = hw->priv;
2450 	struct il_station_priv_common *sta_common = (void *)sta->drv_priv;
2451 	int ret;
2452 
2453 	mutex_lock(&il->mutex);
2454 	D_MAC80211("enter station %pM\n", sta->addr);
2455 
2456 	ret = il_remove_station(il, sta_common->sta_id, sta->addr);
2457 	if (ret)
2458 		IL_ERR("Error removing station %pM\n", sta->addr);
2459 
2460 	D_MAC80211("leave ret %d\n", ret);
2461 	mutex_unlock(&il->mutex);
2462 
2463 	return ret;
2464 }
2465 EXPORT_SYMBOL(il_mac_sta_remove);
2466 
2467 /************************** RX-FUNCTIONS ****************************/
2468 /*
2469  * Rx theory of operation
2470  *
2471  * Driver allocates a circular buffer of Receive Buffer Descriptors (RBDs),
2472  * each of which point to Receive Buffers to be filled by the NIC.  These get
2473  * used not only for Rx frames, but for any command response or notification
2474  * from the NIC.  The driver and NIC manage the Rx buffers by means
2475  * of idxes into the circular buffer.
2476  *
2477  * Rx Queue Indexes
2478  * The host/firmware share two idx registers for managing the Rx buffers.
2479  *
2480  * The READ idx maps to the first position that the firmware may be writing
2481  * to -- the driver can read up to (but not including) this position and get
2482  * good data.
2483  * The READ idx is managed by the firmware once the card is enabled.
2484  *
2485  * The WRITE idx maps to the last position the driver has read from -- the
2486  * position preceding WRITE is the last slot the firmware can place a packet.
2487  *
2488  * The queue is empty (no good data) if WRITE = READ - 1, and is full if
2489  * WRITE = READ.
2490  *
2491  * During initialization, the host sets up the READ queue position to the first
2492  * IDX position, and WRITE to the last (READ - 1 wrapped)
2493  *
2494  * When the firmware places a packet in a buffer, it will advance the READ idx
2495  * and fire the RX interrupt.  The driver can then query the READ idx and
2496  * process as many packets as possible, moving the WRITE idx forward as it
2497  * resets the Rx queue buffers with new memory.
2498  *
2499  * The management in the driver is as follows:
2500  * + A list of pre-allocated SKBs is stored in iwl->rxq->rx_free.  When
2501  *   iwl->rxq->free_count drops to or below RX_LOW_WATERMARK, work is scheduled
2502  *   to replenish the iwl->rxq->rx_free.
2503  * + In il_rx_replenish (scheduled) if 'processed' != 'read' then the
2504  *   iwl->rxq is replenished and the READ IDX is updated (updating the
2505  *   'processed' and 'read' driver idxes as well)
2506  * + A received packet is processed and handed to the kernel network stack,
2507  *   detached from the iwl->rxq.  The driver 'processed' idx is updated.
2508  * + The Host/Firmware iwl->rxq is replenished at tasklet time from the rx_free
2509  *   list. If there are no allocated buffers in iwl->rxq->rx_free, the READ
2510  *   IDX is not incremented and iwl->status(RX_STALLED) is set.  If there
2511  *   were enough free buffers and RX_STALLED is set it is cleared.
2512  *
2513  *
2514  * Driver sequence:
2515  *
2516  * il_rx_queue_alloc()   Allocates rx_free
2517  * il_rx_replenish()     Replenishes rx_free list from rx_used, and calls
2518  *                            il_rx_queue_restock
2519  * il_rx_queue_restock() Moves available buffers from rx_free into Rx
2520  *                            queue, updates firmware pointers, and updates
2521  *                            the WRITE idx.  If insufficient rx_free buffers
2522  *                            are available, schedules il_rx_replenish
2523  *
2524  * -- enable interrupts --
2525  * ISR - il_rx()         Detach il_rx_bufs from pool up to the
2526  *                            READ IDX, detaching the SKB from the pool.
2527  *                            Moves the packet buffer from queue to rx_used.
2528  *                            Calls il_rx_queue_restock to refill any empty
2529  *                            slots.
2530  * ...
2531  *
2532  */
2533 
2534 /**
2535  * il_rx_queue_space - Return number of free slots available in queue.
2536  */
2537 int
2538 il_rx_queue_space(const struct il_rx_queue *q)
2539 {
2540 	int s = q->read - q->write;
2541 	if (s <= 0)
2542 		s += RX_QUEUE_SIZE;
2543 	/* keep some buffer to not confuse full and empty queue */
2544 	s -= 2;
2545 	if (s < 0)
2546 		s = 0;
2547 	return s;
2548 }
2549 EXPORT_SYMBOL(il_rx_queue_space);
2550 
2551 /**
2552  * il_rx_queue_update_write_ptr - Update the write pointer for the RX queue
2553  */
2554 void
2555 il_rx_queue_update_write_ptr(struct il_priv *il, struct il_rx_queue *q)
2556 {
2557 	unsigned long flags;
2558 	u32 rx_wrt_ptr_reg = il->hw_params.rx_wrt_ptr_reg;
2559 	u32 reg;
2560 
2561 	spin_lock_irqsave(&q->lock, flags);
2562 
2563 	if (q->need_update == 0)
2564 		goto exit_unlock;
2565 
2566 	/* If power-saving is in use, make sure device is awake */
2567 	if (test_bit(S_POWER_PMI, &il->status)) {
2568 		reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2569 
2570 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2571 			D_INFO("Rx queue requesting wakeup," " GP1 = 0x%x\n",
2572 			       reg);
2573 			il_set_bit(il, CSR_GP_CNTRL,
2574 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2575 			goto exit_unlock;
2576 		}
2577 
2578 		q->write_actual = (q->write & ~0x7);
2579 		il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2580 
2581 		/* Else device is assumed to be awake */
2582 	} else {
2583 		/* Device expects a multiple of 8 */
2584 		q->write_actual = (q->write & ~0x7);
2585 		il_wr(il, rx_wrt_ptr_reg, q->write_actual);
2586 	}
2587 
2588 	q->need_update = 0;
2589 
2590 exit_unlock:
2591 	spin_unlock_irqrestore(&q->lock, flags);
2592 }
2593 EXPORT_SYMBOL(il_rx_queue_update_write_ptr);
2594 
2595 int
2596 il_rx_queue_alloc(struct il_priv *il)
2597 {
2598 	struct il_rx_queue *rxq = &il->rxq;
2599 	struct device *dev = &il->pci_dev->dev;
2600 	int i;
2601 
2602 	spin_lock_init(&rxq->lock);
2603 	INIT_LIST_HEAD(&rxq->rx_free);
2604 	INIT_LIST_HEAD(&rxq->rx_used);
2605 
2606 	/* Alloc the circular buffer of Read Buffer Descriptors (RBDs) */
2607 	rxq->bd = dma_alloc_coherent(dev, 4 * RX_QUEUE_SIZE, &rxq->bd_dma,
2608 				     GFP_KERNEL);
2609 	if (!rxq->bd)
2610 		goto err_bd;
2611 
2612 	rxq->rb_stts = dma_alloc_coherent(dev, sizeof(struct il_rb_status),
2613 					  &rxq->rb_stts_dma, GFP_KERNEL);
2614 	if (!rxq->rb_stts)
2615 		goto err_rb;
2616 
2617 	/* Fill the rx_used queue with _all_ of the Rx buffers */
2618 	for (i = 0; i < RX_FREE_BUFFERS + RX_QUEUE_SIZE; i++)
2619 		list_add_tail(&rxq->pool[i].list, &rxq->rx_used);
2620 
2621 	/* Set us so that we have processed and used all buffers, but have
2622 	 * not restocked the Rx queue with fresh buffers */
2623 	rxq->read = rxq->write = 0;
2624 	rxq->write_actual = 0;
2625 	rxq->free_count = 0;
2626 	rxq->need_update = 0;
2627 	return 0;
2628 
2629 err_rb:
2630 	dma_free_coherent(&il->pci_dev->dev, 4 * RX_QUEUE_SIZE, rxq->bd,
2631 			  rxq->bd_dma);
2632 err_bd:
2633 	return -ENOMEM;
2634 }
2635 EXPORT_SYMBOL(il_rx_queue_alloc);
2636 
2637 void
2638 il_hdl_spectrum_measurement(struct il_priv *il, struct il_rx_buf *rxb)
2639 {
2640 	struct il_rx_pkt *pkt = rxb_addr(rxb);
2641 	struct il_spectrum_notification *report = &(pkt->u.spectrum_notif);
2642 
2643 	if (!report->state) {
2644 		D_11H("Spectrum Measure Notification: Start\n");
2645 		return;
2646 	}
2647 
2648 	memcpy(&il->measure_report, report, sizeof(*report));
2649 	il->measurement_status |= MEASUREMENT_READY;
2650 }
2651 EXPORT_SYMBOL(il_hdl_spectrum_measurement);
2652 
2653 /*
2654  * returns non-zero if packet should be dropped
2655  */
2656 int
2657 il_set_decrypted_flag(struct il_priv *il, struct ieee80211_hdr *hdr,
2658 		      u32 decrypt_res, struct ieee80211_rx_status *stats)
2659 {
2660 	u16 fc = le16_to_cpu(hdr->frame_control);
2661 
2662 	/*
2663 	 * All contexts have the same setting here due to it being
2664 	 * a module parameter, so OK to check any context.
2665 	 */
2666 	if (il->active.filter_flags & RXON_FILTER_DIS_DECRYPT_MSK)
2667 		return 0;
2668 
2669 	if (!(fc & IEEE80211_FCTL_PROTECTED))
2670 		return 0;
2671 
2672 	D_RX("decrypt_res:0x%x\n", decrypt_res);
2673 	switch (decrypt_res & RX_RES_STATUS_SEC_TYPE_MSK) {
2674 	case RX_RES_STATUS_SEC_TYPE_TKIP:
2675 		/* The uCode has got a bad phase 1 Key, pushes the packet.
2676 		 * Decryption will be done in SW. */
2677 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2678 		    RX_RES_STATUS_BAD_KEY_TTAK)
2679 			break;
2680 		/* fall through */
2681 
2682 	case RX_RES_STATUS_SEC_TYPE_WEP:
2683 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2684 		    RX_RES_STATUS_BAD_ICV_MIC) {
2685 			/* bad ICV, the packet is destroyed since the
2686 			 * decryption is inplace, drop it */
2687 			D_RX("Packet destroyed\n");
2688 			return -1;
2689 		}
2690 		/* fall through */
2691 	case RX_RES_STATUS_SEC_TYPE_CCMP:
2692 		if ((decrypt_res & RX_RES_STATUS_DECRYPT_TYPE_MSK) ==
2693 		    RX_RES_STATUS_DECRYPT_OK) {
2694 			D_RX("hw decrypt successfully!!!\n");
2695 			stats->flag |= RX_FLAG_DECRYPTED;
2696 		}
2697 		break;
2698 
2699 	default:
2700 		break;
2701 	}
2702 	return 0;
2703 }
2704 EXPORT_SYMBOL(il_set_decrypted_flag);
2705 
2706 /**
2707  * il_txq_update_write_ptr - Send new write idx to hardware
2708  */
2709 void
2710 il_txq_update_write_ptr(struct il_priv *il, struct il_tx_queue *txq)
2711 {
2712 	u32 reg = 0;
2713 	int txq_id = txq->q.id;
2714 
2715 	if (txq->need_update == 0)
2716 		return;
2717 
2718 	/* if we're trying to save power */
2719 	if (test_bit(S_POWER_PMI, &il->status)) {
2720 		/* wake up nic if it's powered down ...
2721 		 * uCode will wake up, and interrupt us again, so next
2722 		 * time we'll skip this part. */
2723 		reg = _il_rd(il, CSR_UCODE_DRV_GP1);
2724 
2725 		if (reg & CSR_UCODE_DRV_GP1_BIT_MAC_SLEEP) {
2726 			D_INFO("Tx queue %d requesting wakeup," " GP1 = 0x%x\n",
2727 			       txq_id, reg);
2728 			il_set_bit(il, CSR_GP_CNTRL,
2729 				   CSR_GP_CNTRL_REG_FLAG_MAC_ACCESS_REQ);
2730 			return;
2731 		}
2732 
2733 		il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2734 
2735 		/*
2736 		 * else not in power-save mode,
2737 		 * uCode will never sleep when we're
2738 		 * trying to tx (during RFKILL, we're not trying to tx).
2739 		 */
2740 	} else
2741 		_il_wr(il, HBUS_TARG_WRPTR, txq->q.write_ptr | (txq_id << 8));
2742 	txq->need_update = 0;
2743 }
2744 EXPORT_SYMBOL(il_txq_update_write_ptr);
2745 
2746 /**
2747  * il_tx_queue_unmap -  Unmap any remaining DMA mappings and free skb's
2748  */
2749 void
2750 il_tx_queue_unmap(struct il_priv *il, int txq_id)
2751 {
2752 	struct il_tx_queue *txq = &il->txq[txq_id];
2753 	struct il_queue *q = &txq->q;
2754 
2755 	if (q->n_bd == 0)
2756 		return;
2757 
2758 	while (q->write_ptr != q->read_ptr) {
2759 		il->ops->txq_free_tfd(il, txq);
2760 		q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2761 	}
2762 }
2763 EXPORT_SYMBOL(il_tx_queue_unmap);
2764 
2765 /**
2766  * il_tx_queue_free - Deallocate DMA queue.
2767  * @txq: Transmit queue to deallocate.
2768  *
2769  * Empty queue by removing and destroying all BD's.
2770  * Free all buffers.
2771  * 0-fill, but do not free "txq" descriptor structure.
2772  */
2773 void
2774 il_tx_queue_free(struct il_priv *il, int txq_id)
2775 {
2776 	struct il_tx_queue *txq = &il->txq[txq_id];
2777 	struct device *dev = &il->pci_dev->dev;
2778 	int i;
2779 
2780 	il_tx_queue_unmap(il, txq_id);
2781 
2782 	/* De-alloc array of command/tx buffers */
2783 	if (txq->cmd) {
2784 		for (i = 0; i < TFD_TX_CMD_SLOTS; i++)
2785 			kfree(txq->cmd[i]);
2786 	}
2787 
2788 	/* De-alloc circular buffer of TFDs */
2789 	if (txq->q.n_bd)
2790 		dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2791 				  txq->tfds, txq->q.dma_addr);
2792 
2793 	/* De-alloc array of per-TFD driver data */
2794 	kfree(txq->skbs);
2795 	txq->skbs = NULL;
2796 
2797 	/* deallocate arrays */
2798 	kfree(txq->cmd);
2799 	kfree(txq->meta);
2800 	txq->cmd = NULL;
2801 	txq->meta = NULL;
2802 
2803 	/* 0-fill queue descriptor structure */
2804 	memset(txq, 0, sizeof(*txq));
2805 }
2806 EXPORT_SYMBOL(il_tx_queue_free);
2807 
2808 /**
2809  * il_cmd_queue_unmap - Unmap any remaining DMA mappings from command queue
2810  */
2811 void
2812 il_cmd_queue_unmap(struct il_priv *il)
2813 {
2814 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2815 	struct il_queue *q = &txq->q;
2816 	int i;
2817 
2818 	if (q->n_bd == 0)
2819 		return;
2820 
2821 	while (q->read_ptr != q->write_ptr) {
2822 		i = il_get_cmd_idx(q, q->read_ptr, 0);
2823 
2824 		if (txq->meta[i].flags & CMD_MAPPED) {
2825 			pci_unmap_single(il->pci_dev,
2826 					 dma_unmap_addr(&txq->meta[i], mapping),
2827 					 dma_unmap_len(&txq->meta[i], len),
2828 					 PCI_DMA_BIDIRECTIONAL);
2829 			txq->meta[i].flags = 0;
2830 		}
2831 
2832 		q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd);
2833 	}
2834 
2835 	i = q->n_win;
2836 	if (txq->meta[i].flags & CMD_MAPPED) {
2837 		pci_unmap_single(il->pci_dev,
2838 				 dma_unmap_addr(&txq->meta[i], mapping),
2839 				 dma_unmap_len(&txq->meta[i], len),
2840 				 PCI_DMA_BIDIRECTIONAL);
2841 		txq->meta[i].flags = 0;
2842 	}
2843 }
2844 EXPORT_SYMBOL(il_cmd_queue_unmap);
2845 
2846 /**
2847  * il_cmd_queue_free - Deallocate DMA queue.
2848  * @txq: Transmit queue to deallocate.
2849  *
2850  * Empty queue by removing and destroying all BD's.
2851  * Free all buffers.
2852  * 0-fill, but do not free "txq" descriptor structure.
2853  */
2854 void
2855 il_cmd_queue_free(struct il_priv *il)
2856 {
2857 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
2858 	struct device *dev = &il->pci_dev->dev;
2859 	int i;
2860 
2861 	il_cmd_queue_unmap(il);
2862 
2863 	/* De-alloc array of command/tx buffers */
2864 	if (txq->cmd) {
2865 		for (i = 0; i <= TFD_CMD_SLOTS; i++)
2866 			kfree(txq->cmd[i]);
2867 	}
2868 
2869 	/* De-alloc circular buffer of TFDs */
2870 	if (txq->q.n_bd)
2871 		dma_free_coherent(dev, il->hw_params.tfd_size * txq->q.n_bd,
2872 				  txq->tfds, txq->q.dma_addr);
2873 
2874 	/* deallocate arrays */
2875 	kfree(txq->cmd);
2876 	kfree(txq->meta);
2877 	txq->cmd = NULL;
2878 	txq->meta = NULL;
2879 
2880 	/* 0-fill queue descriptor structure */
2881 	memset(txq, 0, sizeof(*txq));
2882 }
2883 EXPORT_SYMBOL(il_cmd_queue_free);
2884 
2885 /*************** DMA-QUEUE-GENERAL-FUNCTIONS  *****
2886  * DMA services
2887  *
2888  * Theory of operation
2889  *
2890  * A Tx or Rx queue resides in host DRAM, and is comprised of a circular buffer
2891  * of buffer descriptors, each of which points to one or more data buffers for
2892  * the device to read from or fill.  Driver and device exchange status of each
2893  * queue via "read" and "write" pointers.  Driver keeps minimum of 2 empty
2894  * entries in each circular buffer, to protect against confusing empty and full
2895  * queue states.
2896  *
2897  * The device reads or writes the data in the queues via the device's several
2898  * DMA/FIFO channels.  Each queue is mapped to a single DMA channel.
2899  *
2900  * For Tx queue, there are low mark and high mark limits. If, after queuing
2901  * the packet for Tx, free space become < low mark, Tx queue stopped. When
2902  * reclaiming packets (on 'tx done IRQ), if free space become > high mark,
2903  * Tx queue resumed.
2904  *
2905  * See more detailed info in 4965.h.
2906  ***************************************************/
2907 
2908 int
2909 il_queue_space(const struct il_queue *q)
2910 {
2911 	int s = q->read_ptr - q->write_ptr;
2912 
2913 	if (q->read_ptr > q->write_ptr)
2914 		s -= q->n_bd;
2915 
2916 	if (s <= 0)
2917 		s += q->n_win;
2918 	/* keep some reserve to not confuse empty and full situations */
2919 	s -= 2;
2920 	if (s < 0)
2921 		s = 0;
2922 	return s;
2923 }
2924 EXPORT_SYMBOL(il_queue_space);
2925 
2926 
2927 /**
2928  * il_queue_init - Initialize queue's high/low-water and read/write idxes
2929  */
2930 static int
2931 il_queue_init(struct il_priv *il, struct il_queue *q, int slots, u32 id)
2932 {
2933 	/*
2934 	 * TFD_QUEUE_SIZE_MAX must be power-of-two size, otherwise
2935 	 * il_queue_inc_wrap and il_queue_dec_wrap are broken.
2936 	 */
2937 	BUILD_BUG_ON(TFD_QUEUE_SIZE_MAX & (TFD_QUEUE_SIZE_MAX - 1));
2938 	/* FIXME: remove q->n_bd */
2939 	q->n_bd = TFD_QUEUE_SIZE_MAX;
2940 
2941 	q->n_win = slots;
2942 	q->id = id;
2943 
2944 	/* slots_must be power-of-two size, otherwise
2945 	 * il_get_cmd_idx is broken. */
2946 	BUG_ON(!is_power_of_2(slots));
2947 
2948 	q->low_mark = q->n_win / 4;
2949 	if (q->low_mark < 4)
2950 		q->low_mark = 4;
2951 
2952 	q->high_mark = q->n_win / 8;
2953 	if (q->high_mark < 2)
2954 		q->high_mark = 2;
2955 
2956 	q->write_ptr = q->read_ptr = 0;
2957 
2958 	return 0;
2959 }
2960 
2961 /**
2962  * il_tx_queue_alloc - Alloc driver data and TFD CB for one Tx/cmd queue
2963  */
2964 static int
2965 il_tx_queue_alloc(struct il_priv *il, struct il_tx_queue *txq, u32 id)
2966 {
2967 	struct device *dev = &il->pci_dev->dev;
2968 	size_t tfd_sz = il->hw_params.tfd_size * TFD_QUEUE_SIZE_MAX;
2969 
2970 	/* Driver ilate data, only for Tx (not command) queues,
2971 	 * not shared with device. */
2972 	if (id != il->cmd_queue) {
2973 		txq->skbs = kcalloc(TFD_QUEUE_SIZE_MAX,
2974 				    sizeof(struct sk_buff *),
2975 				    GFP_KERNEL);
2976 		if (!txq->skbs) {
2977 			IL_ERR("Fail to alloc skbs\n");
2978 			goto error;
2979 		}
2980 	} else
2981 		txq->skbs = NULL;
2982 
2983 	/* Circular buffer of transmit frame descriptors (TFDs),
2984 	 * shared with device */
2985 	txq->tfds =
2986 	    dma_alloc_coherent(dev, tfd_sz, &txq->q.dma_addr, GFP_KERNEL);
2987 	if (!txq->tfds)
2988 		goto error;
2989 
2990 	txq->q.id = id;
2991 
2992 	return 0;
2993 
2994 error:
2995 	kfree(txq->skbs);
2996 	txq->skbs = NULL;
2997 
2998 	return -ENOMEM;
2999 }
3000 
3001 /**
3002  * il_tx_queue_init - Allocate and initialize one tx/cmd queue
3003  */
3004 int
3005 il_tx_queue_init(struct il_priv *il, u32 txq_id)
3006 {
3007 	int i, len, ret;
3008 	int slots, actual_slots;
3009 	struct il_tx_queue *txq = &il->txq[txq_id];
3010 
3011 	/*
3012 	 * Alloc buffer array for commands (Tx or other types of commands).
3013 	 * For the command queue (#4/#9), allocate command space + one big
3014 	 * command for scan, since scan command is very huge; the system will
3015 	 * not have two scans at the same time, so only one is needed.
3016 	 * For normal Tx queues (all other queues), no super-size command
3017 	 * space is needed.
3018 	 */
3019 	if (txq_id == il->cmd_queue) {
3020 		slots = TFD_CMD_SLOTS;
3021 		actual_slots = slots + 1;
3022 	} else {
3023 		slots = TFD_TX_CMD_SLOTS;
3024 		actual_slots = slots;
3025 	}
3026 
3027 	txq->meta =
3028 	    kcalloc(actual_slots, sizeof(struct il_cmd_meta), GFP_KERNEL);
3029 	txq->cmd =
3030 	    kcalloc(actual_slots, sizeof(struct il_device_cmd *), GFP_KERNEL);
3031 
3032 	if (!txq->meta || !txq->cmd)
3033 		goto out_free_arrays;
3034 
3035 	len = sizeof(struct il_device_cmd);
3036 	for (i = 0; i < actual_slots; i++) {
3037 		/* only happens for cmd queue */
3038 		if (i == slots)
3039 			len = IL_MAX_CMD_SIZE;
3040 
3041 		txq->cmd[i] = kmalloc(len, GFP_KERNEL);
3042 		if (!txq->cmd[i])
3043 			goto err;
3044 	}
3045 
3046 	/* Alloc driver data array and TFD circular buffer */
3047 	ret = il_tx_queue_alloc(il, txq, txq_id);
3048 	if (ret)
3049 		goto err;
3050 
3051 	txq->need_update = 0;
3052 
3053 	/*
3054 	 * For the default queues 0-3, set up the swq_id
3055 	 * already -- all others need to get one later
3056 	 * (if they need one at all).
3057 	 */
3058 	if (txq_id < 4)
3059 		il_set_swq_id(txq, txq_id, txq_id);
3060 
3061 	/* Initialize queue's high/low-water marks, and head/tail idxes */
3062 	il_queue_init(il, &txq->q, slots, txq_id);
3063 
3064 	/* Tell device where to find queue */
3065 	il->ops->txq_init(il, txq);
3066 
3067 	return 0;
3068 err:
3069 	for (i = 0; i < actual_slots; i++)
3070 		kfree(txq->cmd[i]);
3071 out_free_arrays:
3072 	kfree(txq->meta);
3073 	txq->meta = NULL;
3074 	kfree(txq->cmd);
3075 	txq->cmd = NULL;
3076 
3077 	return -ENOMEM;
3078 }
3079 EXPORT_SYMBOL(il_tx_queue_init);
3080 
3081 void
3082 il_tx_queue_reset(struct il_priv *il, u32 txq_id)
3083 {
3084 	int slots, actual_slots;
3085 	struct il_tx_queue *txq = &il->txq[txq_id];
3086 
3087 	if (txq_id == il->cmd_queue) {
3088 		slots = TFD_CMD_SLOTS;
3089 		actual_slots = TFD_CMD_SLOTS + 1;
3090 	} else {
3091 		slots = TFD_TX_CMD_SLOTS;
3092 		actual_slots = TFD_TX_CMD_SLOTS;
3093 	}
3094 
3095 	memset(txq->meta, 0, sizeof(struct il_cmd_meta) * actual_slots);
3096 	txq->need_update = 0;
3097 
3098 	/* Initialize queue's high/low-water marks, and head/tail idxes */
3099 	il_queue_init(il, &txq->q, slots, txq_id);
3100 
3101 	/* Tell device where to find queue */
3102 	il->ops->txq_init(il, txq);
3103 }
3104 EXPORT_SYMBOL(il_tx_queue_reset);
3105 
3106 /*************** HOST COMMAND QUEUE FUNCTIONS   *****/
3107 
3108 /**
3109  * il_enqueue_hcmd - enqueue a uCode command
3110  * @il: device ilate data point
3111  * @cmd: a point to the ucode command structure
3112  *
3113  * The function returns < 0 values to indicate the operation is
3114  * failed. On success, it turns the idx (> 0) of command in the
3115  * command queue.
3116  */
3117 int
3118 il_enqueue_hcmd(struct il_priv *il, struct il_host_cmd *cmd)
3119 {
3120 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3121 	struct il_queue *q = &txq->q;
3122 	struct il_device_cmd *out_cmd;
3123 	struct il_cmd_meta *out_meta;
3124 	dma_addr_t phys_addr;
3125 	unsigned long flags;
3126 	int len;
3127 	u32 idx;
3128 	u16 fix_size;
3129 
3130 	cmd->len = il->ops->get_hcmd_size(cmd->id, cmd->len);
3131 	fix_size = (u16) (cmd->len + sizeof(out_cmd->hdr));
3132 
3133 	/* If any of the command structures end up being larger than
3134 	 * the TFD_MAX_PAYLOAD_SIZE, and it sent as a 'small' command then
3135 	 * we will need to increase the size of the TFD entries
3136 	 * Also, check to see if command buffer should not exceed the size
3137 	 * of device_cmd and max_cmd_size. */
3138 	BUG_ON((fix_size > TFD_MAX_PAYLOAD_SIZE) &&
3139 	       !(cmd->flags & CMD_SIZE_HUGE));
3140 	BUG_ON(fix_size > IL_MAX_CMD_SIZE);
3141 
3142 	if (il_is_rfkill(il) || il_is_ctkill(il)) {
3143 		IL_WARN("Not sending command - %s KILL\n",
3144 			il_is_rfkill(il) ? "RF" : "CT");
3145 		return -EIO;
3146 	}
3147 
3148 	spin_lock_irqsave(&il->hcmd_lock, flags);
3149 
3150 	if (il_queue_space(q) < ((cmd->flags & CMD_ASYNC) ? 2 : 1)) {
3151 		spin_unlock_irqrestore(&il->hcmd_lock, flags);
3152 
3153 		IL_ERR("Restarting adapter due to command queue full\n");
3154 		queue_work(il->workqueue, &il->restart);
3155 		return -ENOSPC;
3156 	}
3157 
3158 	idx = il_get_cmd_idx(q, q->write_ptr, cmd->flags & CMD_SIZE_HUGE);
3159 	out_cmd = txq->cmd[idx];
3160 	out_meta = &txq->meta[idx];
3161 
3162 	if (WARN_ON(out_meta->flags & CMD_MAPPED)) {
3163 		spin_unlock_irqrestore(&il->hcmd_lock, flags);
3164 		return -ENOSPC;
3165 	}
3166 
3167 	memset(out_meta, 0, sizeof(*out_meta));	/* re-initialize to NULL */
3168 	out_meta->flags = cmd->flags | CMD_MAPPED;
3169 	if (cmd->flags & CMD_WANT_SKB)
3170 		out_meta->source = cmd;
3171 	if (cmd->flags & CMD_ASYNC)
3172 		out_meta->callback = cmd->callback;
3173 
3174 	out_cmd->hdr.cmd = cmd->id;
3175 	memcpy(&out_cmd->cmd.payload, cmd->data, cmd->len);
3176 
3177 	/* At this point, the out_cmd now has all of the incoming cmd
3178 	 * information */
3179 
3180 	out_cmd->hdr.flags = 0;
3181 	out_cmd->hdr.sequence =
3182 	    cpu_to_le16(QUEUE_TO_SEQ(il->cmd_queue) | IDX_TO_SEQ(q->write_ptr));
3183 	if (cmd->flags & CMD_SIZE_HUGE)
3184 		out_cmd->hdr.sequence |= SEQ_HUGE_FRAME;
3185 	len = sizeof(struct il_device_cmd);
3186 	if (idx == TFD_CMD_SLOTS)
3187 		len = IL_MAX_CMD_SIZE;
3188 
3189 #ifdef CONFIG_IWLEGACY_DEBUG
3190 	switch (out_cmd->hdr.cmd) {
3191 	case C_TX_LINK_QUALITY_CMD:
3192 	case C_SENSITIVITY:
3193 		D_HC_DUMP("Sending command %s (#%x), seq: 0x%04X, "
3194 			  "%d bytes at %d[%d]:%d\n",
3195 			  il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3196 			  le16_to_cpu(out_cmd->hdr.sequence), fix_size,
3197 			  q->write_ptr, idx, il->cmd_queue);
3198 		break;
3199 	default:
3200 		D_HC("Sending command %s (#%x), seq: 0x%04X, "
3201 		     "%d bytes at %d[%d]:%d\n",
3202 		     il_get_cmd_string(out_cmd->hdr.cmd), out_cmd->hdr.cmd,
3203 		     le16_to_cpu(out_cmd->hdr.sequence), fix_size, q->write_ptr,
3204 		     idx, il->cmd_queue);
3205 	}
3206 #endif
3207 
3208 	phys_addr =
3209 	    pci_map_single(il->pci_dev, &out_cmd->hdr, fix_size,
3210 			   PCI_DMA_BIDIRECTIONAL);
3211 	if (unlikely(pci_dma_mapping_error(il->pci_dev, phys_addr))) {
3212 		idx = -ENOMEM;
3213 		goto out;
3214 	}
3215 	dma_unmap_addr_set(out_meta, mapping, phys_addr);
3216 	dma_unmap_len_set(out_meta, len, fix_size);
3217 
3218 	txq->need_update = 1;
3219 
3220 	if (il->ops->txq_update_byte_cnt_tbl)
3221 		/* Set up entry in queue's byte count circular buffer */
3222 		il->ops->txq_update_byte_cnt_tbl(il, txq, 0);
3223 
3224 	il->ops->txq_attach_buf_to_tfd(il, txq, phys_addr, fix_size, 1,
3225 					    U32_PAD(cmd->len));
3226 
3227 	/* Increment and update queue's write idx */
3228 	q->write_ptr = il_queue_inc_wrap(q->write_ptr, q->n_bd);
3229 	il_txq_update_write_ptr(il, txq);
3230 
3231 out:
3232 	spin_unlock_irqrestore(&il->hcmd_lock, flags);
3233 	return idx;
3234 }
3235 
3236 /**
3237  * il_hcmd_queue_reclaim - Reclaim TX command queue entries already Tx'd
3238  *
3239  * When FW advances 'R' idx, all entries between old and new 'R' idx
3240  * need to be reclaimed. As result, some free space forms.  If there is
3241  * enough free space (> low mark), wake the stack that feeds us.
3242  */
3243 static void
3244 il_hcmd_queue_reclaim(struct il_priv *il, int txq_id, int idx, int cmd_idx)
3245 {
3246 	struct il_tx_queue *txq = &il->txq[txq_id];
3247 	struct il_queue *q = &txq->q;
3248 	int nfreed = 0;
3249 
3250 	if (idx >= q->n_bd || il_queue_used(q, idx) == 0) {
3251 		IL_ERR("Read idx for DMA queue txq id (%d), idx %d, "
3252 		       "is out of range [0-%d] %d %d.\n", txq_id, idx, q->n_bd,
3253 		       q->write_ptr, q->read_ptr);
3254 		return;
3255 	}
3256 
3257 	for (idx = il_queue_inc_wrap(idx, q->n_bd); q->read_ptr != idx;
3258 	     q->read_ptr = il_queue_inc_wrap(q->read_ptr, q->n_bd)) {
3259 
3260 		if (nfreed++ > 0) {
3261 			IL_ERR("HCMD skipped: idx (%d) %d %d\n", idx,
3262 			       q->write_ptr, q->read_ptr);
3263 			queue_work(il->workqueue, &il->restart);
3264 		}
3265 
3266 	}
3267 }
3268 
3269 /**
3270  * il_tx_cmd_complete - Pull unused buffers off the queue and reclaim them
3271  * @rxb: Rx buffer to reclaim
3272  *
3273  * If an Rx buffer has an async callback associated with it the callback
3274  * will be executed.  The attached skb (if present) will only be freed
3275  * if the callback returns 1
3276  */
3277 void
3278 il_tx_cmd_complete(struct il_priv *il, struct il_rx_buf *rxb)
3279 {
3280 	struct il_rx_pkt *pkt = rxb_addr(rxb);
3281 	u16 sequence = le16_to_cpu(pkt->hdr.sequence);
3282 	int txq_id = SEQ_TO_QUEUE(sequence);
3283 	int idx = SEQ_TO_IDX(sequence);
3284 	int cmd_idx;
3285 	bool huge = !!(pkt->hdr.sequence & SEQ_HUGE_FRAME);
3286 	struct il_device_cmd *cmd;
3287 	struct il_cmd_meta *meta;
3288 	struct il_tx_queue *txq = &il->txq[il->cmd_queue];
3289 	unsigned long flags;
3290 
3291 	/* If a Tx command is being handled and it isn't in the actual
3292 	 * command queue then there a command routing bug has been introduced
3293 	 * in the queue management code. */
3294 	if (WARN
3295 	    (txq_id != il->cmd_queue,
3296 	     "wrong command queue %d (should be %d), sequence 0x%X readp=%d writep=%d\n",
3297 	     txq_id, il->cmd_queue, sequence, il->txq[il->cmd_queue].q.read_ptr,
3298 	     il->txq[il->cmd_queue].q.write_ptr)) {
3299 		il_print_hex_error(il, pkt, 32);
3300 		return;
3301 	}
3302 
3303 	cmd_idx = il_get_cmd_idx(&txq->q, idx, huge);
3304 	cmd = txq->cmd[cmd_idx];
3305 	meta = &txq->meta[cmd_idx];
3306 
3307 	txq->time_stamp = jiffies;
3308 
3309 	pci_unmap_single(il->pci_dev, dma_unmap_addr(meta, mapping),
3310 			 dma_unmap_len(meta, len), PCI_DMA_BIDIRECTIONAL);
3311 
3312 	/* Input error checking is done when commands are added to queue. */
3313 	if (meta->flags & CMD_WANT_SKB) {
3314 		meta->source->reply_page = (unsigned long)rxb_addr(rxb);
3315 		rxb->page = NULL;
3316 	} else if (meta->callback)
3317 		meta->callback(il, cmd, pkt);
3318 
3319 	spin_lock_irqsave(&il->hcmd_lock, flags);
3320 
3321 	il_hcmd_queue_reclaim(il, txq_id, idx, cmd_idx);
3322 
3323 	if (!(meta->flags & CMD_ASYNC)) {
3324 		clear_bit(S_HCMD_ACTIVE, &il->status);
3325 		D_INFO("Clearing HCMD_ACTIVE for command %s\n",
3326 		       il_get_cmd_string(cmd->hdr.cmd));
3327 		wake_up(&il->wait_command_queue);
3328 	}
3329 
3330 	/* Mark as unmapped */
3331 	meta->flags = 0;
3332 
3333 	spin_unlock_irqrestore(&il->hcmd_lock, flags);
3334 }
3335 EXPORT_SYMBOL(il_tx_cmd_complete);
3336 
3337 MODULE_DESCRIPTION("iwl-legacy: common functions for 3945 and 4965");
3338 MODULE_VERSION(IWLWIFI_VERSION);
3339 MODULE_AUTHOR(DRV_COPYRIGHT " " DRV_AUTHOR);
3340 MODULE_LICENSE("GPL");
3341 
3342 /*
3343  * set bt_coex_active to true, uCode will do kill/defer
3344  * every time the priority line is asserted (BT is sending signals on the
3345  * priority line in the PCIx).
3346  * set bt_coex_active to false, uCode will ignore the BT activity and
3347  * perform the normal operation
3348  *
3349  * User might experience transmit issue on some platform due to WiFi/BT
3350  * co-exist problem. The possible behaviors are:
3351  *   Able to scan and finding all the available AP
3352  *   Not able to associate with any AP
3353  * On those platforms, WiFi communication can be restored by set
3354  * "bt_coex_active" module parameter to "false"
3355  *
3356  * default: bt_coex_active = true (BT_COEX_ENABLE)
3357  */
3358 static bool bt_coex_active = true;
3359 module_param(bt_coex_active, bool, 0444);
3360 MODULE_PARM_DESC(bt_coex_active, "enable wifi/bluetooth co-exist");
3361 
3362 u32 il_debug_level;
3363 EXPORT_SYMBOL(il_debug_level);
3364 
3365 const u8 il_bcast_addr[ETH_ALEN] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF };
3366 EXPORT_SYMBOL(il_bcast_addr);
3367 
3368 #define MAX_BIT_RATE_40_MHZ 150	/* Mbps */
3369 #define MAX_BIT_RATE_20_MHZ 72	/* Mbps */
3370 static void
3371 il_init_ht_hw_capab(const struct il_priv *il,
3372 		    struct ieee80211_sta_ht_cap *ht_info,
3373 		    enum nl80211_band band)
3374 {
3375 	u16 max_bit_rate = 0;
3376 	u8 rx_chains_num = il->hw_params.rx_chains_num;
3377 	u8 tx_chains_num = il->hw_params.tx_chains_num;
3378 
3379 	ht_info->cap = 0;
3380 	memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
3381 
3382 	ht_info->ht_supported = true;
3383 
3384 	ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
3385 	max_bit_rate = MAX_BIT_RATE_20_MHZ;
3386 	if (il->hw_params.ht40_channel & BIT(band)) {
3387 		ht_info->cap |= IEEE80211_HT_CAP_SUP_WIDTH_20_40;
3388 		ht_info->cap |= IEEE80211_HT_CAP_SGI_40;
3389 		ht_info->mcs.rx_mask[4] = 0x01;
3390 		max_bit_rate = MAX_BIT_RATE_40_MHZ;
3391 	}
3392 
3393 	if (il->cfg->mod_params->amsdu_size_8K)
3394 		ht_info->cap |= IEEE80211_HT_CAP_MAX_AMSDU;
3395 
3396 	ht_info->ampdu_factor = CFG_HT_RX_AMPDU_FACTOR_DEF;
3397 	ht_info->ampdu_density = CFG_HT_MPDU_DENSITY_DEF;
3398 
3399 	ht_info->mcs.rx_mask[0] = 0xFF;
3400 	if (rx_chains_num >= 2)
3401 		ht_info->mcs.rx_mask[1] = 0xFF;
3402 	if (rx_chains_num >= 3)
3403 		ht_info->mcs.rx_mask[2] = 0xFF;
3404 
3405 	/* Highest supported Rx data rate */
3406 	max_bit_rate *= rx_chains_num;
3407 	WARN_ON(max_bit_rate & ~IEEE80211_HT_MCS_RX_HIGHEST_MASK);
3408 	ht_info->mcs.rx_highest = cpu_to_le16(max_bit_rate);
3409 
3410 	/* Tx MCS capabilities */
3411 	ht_info->mcs.tx_params = IEEE80211_HT_MCS_TX_DEFINED;
3412 	if (tx_chains_num != rx_chains_num) {
3413 		ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
3414 		ht_info->mcs.tx_params |=
3415 		    ((tx_chains_num -
3416 		      1) << IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
3417 	}
3418 }
3419 
3420 /**
3421  * il_init_geos - Initialize mac80211's geo/channel info based from eeprom
3422  */
3423 int
3424 il_init_geos(struct il_priv *il)
3425 {
3426 	struct il_channel_info *ch;
3427 	struct ieee80211_supported_band *sband;
3428 	struct ieee80211_channel *channels;
3429 	struct ieee80211_channel *geo_ch;
3430 	struct ieee80211_rate *rates;
3431 	int i = 0;
3432 	s8 max_tx_power = 0;
3433 
3434 	if (il->bands[NL80211_BAND_2GHZ].n_bitrates ||
3435 	    il->bands[NL80211_BAND_5GHZ].n_bitrates) {
3436 		D_INFO("Geography modes already initialized.\n");
3437 		set_bit(S_GEO_CONFIGURED, &il->status);
3438 		return 0;
3439 	}
3440 
3441 	channels =
3442 	    kcalloc(il->channel_count, sizeof(struct ieee80211_channel),
3443 		    GFP_KERNEL);
3444 	if (!channels)
3445 		return -ENOMEM;
3446 
3447 	rates =
3448 	    kzalloc((sizeof(struct ieee80211_rate) * RATE_COUNT_LEGACY),
3449 		    GFP_KERNEL);
3450 	if (!rates) {
3451 		kfree(channels);
3452 		return -ENOMEM;
3453 	}
3454 
3455 	/* 5.2GHz channels start after the 2.4GHz channels */
3456 	sband = &il->bands[NL80211_BAND_5GHZ];
3457 	sband->channels = &channels[ARRAY_SIZE(il_eeprom_band_1)];
3458 	/* just OFDM */
3459 	sband->bitrates = &rates[IL_FIRST_OFDM_RATE];
3460 	sband->n_bitrates = RATE_COUNT_LEGACY - IL_FIRST_OFDM_RATE;
3461 
3462 	if (il->cfg->sku & IL_SKU_N)
3463 		il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_5GHZ);
3464 
3465 	sband = &il->bands[NL80211_BAND_2GHZ];
3466 	sband->channels = channels;
3467 	/* OFDM & CCK */
3468 	sband->bitrates = rates;
3469 	sband->n_bitrates = RATE_COUNT_LEGACY;
3470 
3471 	if (il->cfg->sku & IL_SKU_N)
3472 		il_init_ht_hw_capab(il, &sband->ht_cap, NL80211_BAND_2GHZ);
3473 
3474 	il->ieee_channels = channels;
3475 	il->ieee_rates = rates;
3476 
3477 	for (i = 0; i < il->channel_count; i++) {
3478 		ch = &il->channel_info[i];
3479 
3480 		if (!il_is_channel_valid(ch))
3481 			continue;
3482 
3483 		sband = &il->bands[ch->band];
3484 
3485 		geo_ch = &sband->channels[sband->n_channels++];
3486 
3487 		geo_ch->center_freq =
3488 		    ieee80211_channel_to_frequency(ch->channel, ch->band);
3489 		geo_ch->max_power = ch->max_power_avg;
3490 		geo_ch->max_antenna_gain = 0xff;
3491 		geo_ch->hw_value = ch->channel;
3492 
3493 		if (il_is_channel_valid(ch)) {
3494 			if (!(ch->flags & EEPROM_CHANNEL_IBSS))
3495 				geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3496 
3497 			if (!(ch->flags & EEPROM_CHANNEL_ACTIVE))
3498 				geo_ch->flags |= IEEE80211_CHAN_NO_IR;
3499 
3500 			if (ch->flags & EEPROM_CHANNEL_RADAR)
3501 				geo_ch->flags |= IEEE80211_CHAN_RADAR;
3502 
3503 			geo_ch->flags |= ch->ht40_extension_channel;
3504 
3505 			if (ch->max_power_avg > max_tx_power)
3506 				max_tx_power = ch->max_power_avg;
3507 		} else {
3508 			geo_ch->flags |= IEEE80211_CHAN_DISABLED;
3509 		}
3510 
3511 		D_INFO("Channel %d Freq=%d[%sGHz] %s flag=0x%X\n", ch->channel,
3512 		       geo_ch->center_freq,
3513 		       il_is_channel_a_band(ch) ? "5.2" : "2.4",
3514 		       geo_ch->
3515 		       flags & IEEE80211_CHAN_DISABLED ? "restricted" : "valid",
3516 		       geo_ch->flags);
3517 	}
3518 
3519 	il->tx_power_device_lmt = max_tx_power;
3520 	il->tx_power_user_lmt = max_tx_power;
3521 	il->tx_power_next = max_tx_power;
3522 
3523 	if (il->bands[NL80211_BAND_5GHZ].n_channels == 0 &&
3524 	    (il->cfg->sku & IL_SKU_A)) {
3525 		IL_INFO("Incorrectly detected BG card as ABG. "
3526 			"Please send your PCI ID 0x%04X:0x%04X to maintainer.\n",
3527 			il->pci_dev->device, il->pci_dev->subsystem_device);
3528 		il->cfg->sku &= ~IL_SKU_A;
3529 	}
3530 
3531 	IL_INFO("Tunable channels: %d 802.11bg, %d 802.11a channels\n",
3532 		il->bands[NL80211_BAND_2GHZ].n_channels,
3533 		il->bands[NL80211_BAND_5GHZ].n_channels);
3534 
3535 	set_bit(S_GEO_CONFIGURED, &il->status);
3536 
3537 	return 0;
3538 }
3539 EXPORT_SYMBOL(il_init_geos);
3540 
3541 /*
3542  * il_free_geos - undo allocations in il_init_geos
3543  */
3544 void
3545 il_free_geos(struct il_priv *il)
3546 {
3547 	kfree(il->ieee_channels);
3548 	kfree(il->ieee_rates);
3549 	clear_bit(S_GEO_CONFIGURED, &il->status);
3550 }
3551 EXPORT_SYMBOL(il_free_geos);
3552 
3553 static bool
3554 il_is_channel_extension(struct il_priv *il, enum nl80211_band band,
3555 			u16 channel, u8 extension_chan_offset)
3556 {
3557 	const struct il_channel_info *ch_info;
3558 
3559 	ch_info = il_get_channel_info(il, band, channel);
3560 	if (!il_is_channel_valid(ch_info))
3561 		return false;
3562 
3563 	if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_ABOVE)
3564 		return !(ch_info->
3565 			 ht40_extension_channel & IEEE80211_CHAN_NO_HT40PLUS);
3566 	else if (extension_chan_offset == IEEE80211_HT_PARAM_CHA_SEC_BELOW)
3567 		return !(ch_info->
3568 			 ht40_extension_channel & IEEE80211_CHAN_NO_HT40MINUS);
3569 
3570 	return false;
3571 }
3572 
3573 bool
3574 il_is_ht40_tx_allowed(struct il_priv *il, struct ieee80211_sta_ht_cap *ht_cap)
3575 {
3576 	if (!il->ht.enabled || !il->ht.is_40mhz)
3577 		return false;
3578 
3579 	/*
3580 	 * We do not check for IEEE80211_HT_CAP_SUP_WIDTH_20_40
3581 	 * the bit will not set if it is pure 40MHz case
3582 	 */
3583 	if (ht_cap && !ht_cap->ht_supported)
3584 		return false;
3585 
3586 #ifdef CONFIG_IWLEGACY_DEBUGFS
3587 	if (il->disable_ht40)
3588 		return false;
3589 #endif
3590 
3591 	return il_is_channel_extension(il, il->band,
3592 				       le16_to_cpu(il->staging.channel),
3593 				       il->ht.extension_chan_offset);
3594 }
3595 EXPORT_SYMBOL(il_is_ht40_tx_allowed);
3596 
3597 static u16 noinline
3598 il_adjust_beacon_interval(u16 beacon_val, u16 max_beacon_val)
3599 {
3600 	u16 new_val;
3601 	u16 beacon_factor;
3602 
3603 	/*
3604 	 * If mac80211 hasn't given us a beacon interval, program
3605 	 * the default into the device.
3606 	 */
3607 	if (!beacon_val)
3608 		return DEFAULT_BEACON_INTERVAL;
3609 
3610 	/*
3611 	 * If the beacon interval we obtained from the peer
3612 	 * is too large, we'll have to wake up more often
3613 	 * (and in IBSS case, we'll beacon too much)
3614 	 *
3615 	 * For example, if max_beacon_val is 4096, and the
3616 	 * requested beacon interval is 7000, we'll have to
3617 	 * use 3500 to be able to wake up on the beacons.
3618 	 *
3619 	 * This could badly influence beacon detection stats.
3620 	 */
3621 
3622 	beacon_factor = (beacon_val + max_beacon_val) / max_beacon_val;
3623 	new_val = beacon_val / beacon_factor;
3624 
3625 	if (!new_val)
3626 		new_val = max_beacon_val;
3627 
3628 	return new_val;
3629 }
3630 
3631 int
3632 il_send_rxon_timing(struct il_priv *il)
3633 {
3634 	u64 tsf;
3635 	s32 interval_tm, rem;
3636 	struct ieee80211_conf *conf = NULL;
3637 	u16 beacon_int;
3638 	struct ieee80211_vif *vif = il->vif;
3639 
3640 	conf = &il->hw->conf;
3641 
3642 	lockdep_assert_held(&il->mutex);
3643 
3644 	memset(&il->timing, 0, sizeof(struct il_rxon_time_cmd));
3645 
3646 	il->timing.timestamp = cpu_to_le64(il->timestamp);
3647 	il->timing.listen_interval = cpu_to_le16(conf->listen_interval);
3648 
3649 	beacon_int = vif ? vif->bss_conf.beacon_int : 0;
3650 
3651 	/*
3652 	 * TODO: For IBSS we need to get atim_win from mac80211,
3653 	 *       for now just always use 0
3654 	 */
3655 	il->timing.atim_win = 0;
3656 
3657 	beacon_int =
3658 	    il_adjust_beacon_interval(beacon_int,
3659 				      il->hw_params.max_beacon_itrvl *
3660 				      TIME_UNIT);
3661 	il->timing.beacon_interval = cpu_to_le16(beacon_int);
3662 
3663 	tsf = il->timestamp;	/* tsf is modifed by do_div: copy it */
3664 	interval_tm = beacon_int * TIME_UNIT;
3665 	rem = do_div(tsf, interval_tm);
3666 	il->timing.beacon_init_val = cpu_to_le32(interval_tm - rem);
3667 
3668 	il->timing.dtim_period = vif ? (vif->bss_conf.dtim_period ? : 1) : 1;
3669 
3670 	D_ASSOC("beacon interval %d beacon timer %d beacon tim %d\n",
3671 		le16_to_cpu(il->timing.beacon_interval),
3672 		le32_to_cpu(il->timing.beacon_init_val),
3673 		le16_to_cpu(il->timing.atim_win));
3674 
3675 	return il_send_cmd_pdu(il, C_RXON_TIMING, sizeof(il->timing),
3676 			       &il->timing);
3677 }
3678 EXPORT_SYMBOL(il_send_rxon_timing);
3679 
3680 void
3681 il_set_rxon_hwcrypto(struct il_priv *il, int hw_decrypt)
3682 {
3683 	struct il_rxon_cmd *rxon = &il->staging;
3684 
3685 	if (hw_decrypt)
3686 		rxon->filter_flags &= ~RXON_FILTER_DIS_DECRYPT_MSK;
3687 	else
3688 		rxon->filter_flags |= RXON_FILTER_DIS_DECRYPT_MSK;
3689 
3690 }
3691 EXPORT_SYMBOL(il_set_rxon_hwcrypto);
3692 
3693 /* validate RXON structure is valid */
3694 int
3695 il_check_rxon_cmd(struct il_priv *il)
3696 {
3697 	struct il_rxon_cmd *rxon = &il->staging;
3698 	bool error = false;
3699 
3700 	if (rxon->flags & RXON_FLG_BAND_24G_MSK) {
3701 		if (rxon->flags & RXON_FLG_TGJ_NARROW_BAND_MSK) {
3702 			IL_WARN("check 2.4G: wrong narrow\n");
3703 			error = true;
3704 		}
3705 		if (rxon->flags & RXON_FLG_RADAR_DETECT_MSK) {
3706 			IL_WARN("check 2.4G: wrong radar\n");
3707 			error = true;
3708 		}
3709 	} else {
3710 		if (!(rxon->flags & RXON_FLG_SHORT_SLOT_MSK)) {
3711 			IL_WARN("check 5.2G: not short slot!\n");
3712 			error = true;
3713 		}
3714 		if (rxon->flags & RXON_FLG_CCK_MSK) {
3715 			IL_WARN("check 5.2G: CCK!\n");
3716 			error = true;
3717 		}
3718 	}
3719 	if ((rxon->node_addr[0] | rxon->bssid_addr[0]) & 0x1) {
3720 		IL_WARN("mac/bssid mcast!\n");
3721 		error = true;
3722 	}
3723 
3724 	/* make sure basic rates 6Mbps and 1Mbps are supported */
3725 	if ((rxon->ofdm_basic_rates & RATE_6M_MASK) == 0 &&
3726 	    (rxon->cck_basic_rates & RATE_1M_MASK) == 0) {
3727 		IL_WARN("neither 1 nor 6 are basic\n");
3728 		error = true;
3729 	}
3730 
3731 	if (le16_to_cpu(rxon->assoc_id) > 2007) {
3732 		IL_WARN("aid > 2007\n");
3733 		error = true;
3734 	}
3735 
3736 	if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) ==
3737 	    (RXON_FLG_CCK_MSK | RXON_FLG_SHORT_SLOT_MSK)) {
3738 		IL_WARN("CCK and short slot\n");
3739 		error = true;
3740 	}
3741 
3742 	if ((rxon->flags & (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) ==
3743 	    (RXON_FLG_CCK_MSK | RXON_FLG_AUTO_DETECT_MSK)) {
3744 		IL_WARN("CCK and auto detect");
3745 		error = true;
3746 	}
3747 
3748 	if ((rxon->
3749 	     flags & (RXON_FLG_AUTO_DETECT_MSK | RXON_FLG_TGG_PROTECT_MSK)) ==
3750 	    RXON_FLG_TGG_PROTECT_MSK) {
3751 		IL_WARN("TGg but no auto-detect\n");
3752 		error = true;
3753 	}
3754 
3755 	if (error)
3756 		IL_WARN("Tuning to channel %d\n", le16_to_cpu(rxon->channel));
3757 
3758 	if (error) {
3759 		IL_ERR("Invalid RXON\n");
3760 		return -EINVAL;
3761 	}
3762 	return 0;
3763 }
3764 EXPORT_SYMBOL(il_check_rxon_cmd);
3765 
3766 /**
3767  * il_full_rxon_required - check if full RXON (vs RXON_ASSOC) cmd is needed
3768  * @il: staging_rxon is compared to active_rxon
3769  *
3770  * If the RXON structure is changing enough to require a new tune,
3771  * or is clearing the RXON_FILTER_ASSOC_MSK, then return 1 to indicate that
3772  * a new tune (full RXON command, rather than RXON_ASSOC cmd) is required.
3773  */
3774 int
3775 il_full_rxon_required(struct il_priv *il)
3776 {
3777 	const struct il_rxon_cmd *staging = &il->staging;
3778 	const struct il_rxon_cmd *active = &il->active;
3779 
3780 #define CHK(cond)							\
3781 	if ((cond)) {							\
3782 		D_INFO("need full RXON - " #cond "\n");	\
3783 		return 1;						\
3784 	}
3785 
3786 #define CHK_NEQ(c1, c2)						\
3787 	if ((c1) != (c2)) {					\
3788 		D_INFO("need full RXON - "	\
3789 			       #c1 " != " #c2 " - %d != %d\n",	\
3790 			       (c1), (c2));			\
3791 		return 1;					\
3792 	}
3793 
3794 	/* These items are only settable from the full RXON command */
3795 	CHK(!il_is_associated(il));
3796 	CHK(!ether_addr_equal_64bits(staging->bssid_addr, active->bssid_addr));
3797 	CHK(!ether_addr_equal_64bits(staging->node_addr, active->node_addr));
3798 	CHK(!ether_addr_equal_64bits(staging->wlap_bssid_addr,
3799 				     active->wlap_bssid_addr));
3800 	CHK_NEQ(staging->dev_type, active->dev_type);
3801 	CHK_NEQ(staging->channel, active->channel);
3802 	CHK_NEQ(staging->air_propagation, active->air_propagation);
3803 	CHK_NEQ(staging->ofdm_ht_single_stream_basic_rates,
3804 		active->ofdm_ht_single_stream_basic_rates);
3805 	CHK_NEQ(staging->ofdm_ht_dual_stream_basic_rates,
3806 		active->ofdm_ht_dual_stream_basic_rates);
3807 	CHK_NEQ(staging->assoc_id, active->assoc_id);
3808 
3809 	/* flags, filter_flags, ofdm_basic_rates, and cck_basic_rates can
3810 	 * be updated with the RXON_ASSOC command -- however only some
3811 	 * flag transitions are allowed using RXON_ASSOC */
3812 
3813 	/* Check if we are not switching bands */
3814 	CHK_NEQ(staging->flags & RXON_FLG_BAND_24G_MSK,
3815 		active->flags & RXON_FLG_BAND_24G_MSK);
3816 
3817 	/* Check if we are switching association toggle */
3818 	CHK_NEQ(staging->filter_flags & RXON_FILTER_ASSOC_MSK,
3819 		active->filter_flags & RXON_FILTER_ASSOC_MSK);
3820 
3821 #undef CHK
3822 #undef CHK_NEQ
3823 
3824 	return 0;
3825 }
3826 EXPORT_SYMBOL(il_full_rxon_required);
3827 
3828 u8
3829 il_get_lowest_plcp(struct il_priv *il)
3830 {
3831 	/*
3832 	 * Assign the lowest rate -- should really get this from
3833 	 * the beacon skb from mac80211.
3834 	 */
3835 	if (il->staging.flags & RXON_FLG_BAND_24G_MSK)
3836 		return RATE_1M_PLCP;
3837 	else
3838 		return RATE_6M_PLCP;
3839 }
3840 EXPORT_SYMBOL(il_get_lowest_plcp);
3841 
3842 static void
3843 _il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3844 {
3845 	struct il_rxon_cmd *rxon = &il->staging;
3846 
3847 	if (!il->ht.enabled) {
3848 		rxon->flags &=
3849 		    ~(RXON_FLG_CHANNEL_MODE_MSK |
3850 		      RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK | RXON_FLG_HT40_PROT_MSK
3851 		      | RXON_FLG_HT_PROT_MSK);
3852 		return;
3853 	}
3854 
3855 	rxon->flags |=
3856 	    cpu_to_le32(il->ht.protection << RXON_FLG_HT_OPERATING_MODE_POS);
3857 
3858 	/* Set up channel bandwidth:
3859 	 * 20 MHz only, 20/40 mixed or pure 40 if ht40 ok */
3860 	/* clear the HT channel mode before set the mode */
3861 	rxon->flags &=
3862 	    ~(RXON_FLG_CHANNEL_MODE_MSK | RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3863 	if (il_is_ht40_tx_allowed(il, NULL)) {
3864 		/* pure ht40 */
3865 		if (il->ht.protection == IEEE80211_HT_OP_MODE_PROTECTION_20MHZ) {
3866 			rxon->flags |= RXON_FLG_CHANNEL_MODE_PURE_40;
3867 			/* Note: control channel is opposite of extension channel */
3868 			switch (il->ht.extension_chan_offset) {
3869 			case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3870 				rxon->flags &=
3871 				    ~RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3872 				break;
3873 			case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3874 				rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3875 				break;
3876 			}
3877 		} else {
3878 			/* Note: control channel is opposite of extension channel */
3879 			switch (il->ht.extension_chan_offset) {
3880 			case IEEE80211_HT_PARAM_CHA_SEC_ABOVE:
3881 				rxon->flags &=
3882 				    ~(RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK);
3883 				rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3884 				break;
3885 			case IEEE80211_HT_PARAM_CHA_SEC_BELOW:
3886 				rxon->flags |= RXON_FLG_CTRL_CHANNEL_LOC_HI_MSK;
3887 				rxon->flags |= RXON_FLG_CHANNEL_MODE_MIXED;
3888 				break;
3889 			case IEEE80211_HT_PARAM_CHA_SEC_NONE:
3890 			default:
3891 				/* channel location only valid if in Mixed mode */
3892 				IL_ERR("invalid extension channel offset\n");
3893 				break;
3894 			}
3895 		}
3896 	} else {
3897 		rxon->flags |= RXON_FLG_CHANNEL_MODE_LEGACY;
3898 	}
3899 
3900 	if (il->ops->set_rxon_chain)
3901 		il->ops->set_rxon_chain(il);
3902 
3903 	D_ASSOC("rxon flags 0x%X operation mode :0x%X "
3904 		"extension channel offset 0x%x\n", le32_to_cpu(rxon->flags),
3905 		il->ht.protection, il->ht.extension_chan_offset);
3906 }
3907 
3908 void
3909 il_set_rxon_ht(struct il_priv *il, struct il_ht_config *ht_conf)
3910 {
3911 	_il_set_rxon_ht(il, ht_conf);
3912 }
3913 EXPORT_SYMBOL(il_set_rxon_ht);
3914 
3915 /* Return valid, unused, channel for a passive scan to reset the RF */
3916 u8
3917 il_get_single_channel_number(struct il_priv *il, enum nl80211_band band)
3918 {
3919 	const struct il_channel_info *ch_info;
3920 	int i;
3921 	u8 channel = 0;
3922 	u8 min, max;
3923 
3924 	if (band == NL80211_BAND_5GHZ) {
3925 		min = 14;
3926 		max = il->channel_count;
3927 	} else {
3928 		min = 0;
3929 		max = 14;
3930 	}
3931 
3932 	for (i = min; i < max; i++) {
3933 		channel = il->channel_info[i].channel;
3934 		if (channel == le16_to_cpu(il->staging.channel))
3935 			continue;
3936 
3937 		ch_info = il_get_channel_info(il, band, channel);
3938 		if (il_is_channel_valid(ch_info))
3939 			break;
3940 	}
3941 
3942 	return channel;
3943 }
3944 EXPORT_SYMBOL(il_get_single_channel_number);
3945 
3946 /**
3947  * il_set_rxon_channel - Set the band and channel values in staging RXON
3948  * @ch: requested channel as a pointer to struct ieee80211_channel
3949 
3950  * NOTE:  Does not commit to the hardware; it sets appropriate bit fields
3951  * in the staging RXON flag structure based on the ch->band
3952  */
3953 int
3954 il_set_rxon_channel(struct il_priv *il, struct ieee80211_channel *ch)
3955 {
3956 	enum nl80211_band band = ch->band;
3957 	u16 channel = ch->hw_value;
3958 
3959 	if (le16_to_cpu(il->staging.channel) == channel && il->band == band)
3960 		return 0;
3961 
3962 	il->staging.channel = cpu_to_le16(channel);
3963 	if (band == NL80211_BAND_5GHZ)
3964 		il->staging.flags &= ~RXON_FLG_BAND_24G_MSK;
3965 	else
3966 		il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3967 
3968 	il->band = band;
3969 
3970 	D_INFO("Staging channel set to %d [%d]\n", channel, band);
3971 
3972 	return 0;
3973 }
3974 EXPORT_SYMBOL(il_set_rxon_channel);
3975 
3976 void
3977 il_set_flags_for_band(struct il_priv *il, enum nl80211_band band,
3978 		      struct ieee80211_vif *vif)
3979 {
3980 	if (band == NL80211_BAND_5GHZ) {
3981 		il->staging.flags &=
3982 		    ~(RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK |
3983 		      RXON_FLG_CCK_MSK);
3984 		il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3985 	} else {
3986 		/* Copied from il_post_associate() */
3987 		if (vif && vif->bss_conf.use_short_slot)
3988 			il->staging.flags |= RXON_FLG_SHORT_SLOT_MSK;
3989 		else
3990 			il->staging.flags &= ~RXON_FLG_SHORT_SLOT_MSK;
3991 
3992 		il->staging.flags |= RXON_FLG_BAND_24G_MSK;
3993 		il->staging.flags |= RXON_FLG_AUTO_DETECT_MSK;
3994 		il->staging.flags &= ~RXON_FLG_CCK_MSK;
3995 	}
3996 }
3997 EXPORT_SYMBOL(il_set_flags_for_band);
3998 
3999 /*
4000  * initialize rxon structure with default values from eeprom
4001  */
4002 void
4003 il_connection_init_rx_config(struct il_priv *il)
4004 {
4005 	const struct il_channel_info *ch_info;
4006 
4007 	memset(&il->staging, 0, sizeof(il->staging));
4008 
4009 	switch (il->iw_mode) {
4010 	case NL80211_IFTYPE_UNSPECIFIED:
4011 		il->staging.dev_type = RXON_DEV_TYPE_ESS;
4012 		break;
4013 	case NL80211_IFTYPE_STATION:
4014 		il->staging.dev_type = RXON_DEV_TYPE_ESS;
4015 		il->staging.filter_flags = RXON_FILTER_ACCEPT_GRP_MSK;
4016 		break;
4017 	case NL80211_IFTYPE_ADHOC:
4018 		il->staging.dev_type = RXON_DEV_TYPE_IBSS;
4019 		il->staging.flags = RXON_FLG_SHORT_PREAMBLE_MSK;
4020 		il->staging.filter_flags =
4021 		    RXON_FILTER_BCON_AWARE_MSK | RXON_FILTER_ACCEPT_GRP_MSK;
4022 		break;
4023 	default:
4024 		IL_ERR("Unsupported interface type %d\n", il->vif->type);
4025 		return;
4026 	}
4027 
4028 #if 0
4029 	/* TODO:  Figure out when short_preamble would be set and cache from
4030 	 * that */
4031 	if (!hw_to_local(il->hw)->short_preamble)
4032 		il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
4033 	else
4034 		il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
4035 #endif
4036 
4037 	ch_info =
4038 	    il_get_channel_info(il, il->band, le16_to_cpu(il->active.channel));
4039 
4040 	if (!ch_info)
4041 		ch_info = &il->channel_info[0];
4042 
4043 	il->staging.channel = cpu_to_le16(ch_info->channel);
4044 	il->band = ch_info->band;
4045 
4046 	il_set_flags_for_band(il, il->band, il->vif);
4047 
4048 	il->staging.ofdm_basic_rates =
4049 	    (IL_OFDM_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4050 	il->staging.cck_basic_rates =
4051 	    (IL_CCK_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4052 
4053 	/* clear both MIX and PURE40 mode flag */
4054 	il->staging.flags &=
4055 	    ~(RXON_FLG_CHANNEL_MODE_MIXED | RXON_FLG_CHANNEL_MODE_PURE_40);
4056 	if (il->vif)
4057 		memcpy(il->staging.node_addr, il->vif->addr, ETH_ALEN);
4058 
4059 	il->staging.ofdm_ht_single_stream_basic_rates = 0xff;
4060 	il->staging.ofdm_ht_dual_stream_basic_rates = 0xff;
4061 }
4062 EXPORT_SYMBOL(il_connection_init_rx_config);
4063 
4064 void
4065 il_set_rate(struct il_priv *il)
4066 {
4067 	const struct ieee80211_supported_band *hw = NULL;
4068 	struct ieee80211_rate *rate;
4069 	int i;
4070 
4071 	hw = il_get_hw_mode(il, il->band);
4072 	if (!hw) {
4073 		IL_ERR("Failed to set rate: unable to get hw mode\n");
4074 		return;
4075 	}
4076 
4077 	il->active_rate = 0;
4078 
4079 	for (i = 0; i < hw->n_bitrates; i++) {
4080 		rate = &(hw->bitrates[i]);
4081 		if (rate->hw_value < RATE_COUNT_LEGACY)
4082 			il->active_rate |= (1 << rate->hw_value);
4083 	}
4084 
4085 	D_RATE("Set active_rate = %0x\n", il->active_rate);
4086 
4087 	il->staging.cck_basic_rates =
4088 	    (IL_CCK_BASIC_RATES_MASK >> IL_FIRST_CCK_RATE) & 0xF;
4089 
4090 	il->staging.ofdm_basic_rates =
4091 	    (IL_OFDM_BASIC_RATES_MASK >> IL_FIRST_OFDM_RATE) & 0xFF;
4092 }
4093 EXPORT_SYMBOL(il_set_rate);
4094 
4095 void
4096 il_chswitch_done(struct il_priv *il, bool is_success)
4097 {
4098 	if (test_bit(S_EXIT_PENDING, &il->status))
4099 		return;
4100 
4101 	if (test_and_clear_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4102 		ieee80211_chswitch_done(il->vif, is_success);
4103 }
4104 EXPORT_SYMBOL(il_chswitch_done);
4105 
4106 void
4107 il_hdl_csa(struct il_priv *il, struct il_rx_buf *rxb)
4108 {
4109 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4110 	struct il_csa_notification *csa = &(pkt->u.csa_notif);
4111 	struct il_rxon_cmd *rxon = (void *)&il->active;
4112 
4113 	if (!test_bit(S_CHANNEL_SWITCH_PENDING, &il->status))
4114 		return;
4115 
4116 	if (!le32_to_cpu(csa->status) && csa->channel == il->switch_channel) {
4117 		rxon->channel = csa->channel;
4118 		il->staging.channel = csa->channel;
4119 		D_11H("CSA notif: channel %d\n", le16_to_cpu(csa->channel));
4120 		il_chswitch_done(il, true);
4121 	} else {
4122 		IL_ERR("CSA notif (fail) : channel %d\n",
4123 		       le16_to_cpu(csa->channel));
4124 		il_chswitch_done(il, false);
4125 	}
4126 }
4127 EXPORT_SYMBOL(il_hdl_csa);
4128 
4129 #ifdef CONFIG_IWLEGACY_DEBUG
4130 void
4131 il_print_rx_config_cmd(struct il_priv *il)
4132 {
4133 	struct il_rxon_cmd *rxon = &il->staging;
4134 
4135 	D_RADIO("RX CONFIG:\n");
4136 	il_print_hex_dump(il, IL_DL_RADIO, (u8 *) rxon, sizeof(*rxon));
4137 	D_RADIO("u16 channel: 0x%x\n", le16_to_cpu(rxon->channel));
4138 	D_RADIO("u32 flags: 0x%08X\n", le32_to_cpu(rxon->flags));
4139 	D_RADIO("u32 filter_flags: 0x%08x\n", le32_to_cpu(rxon->filter_flags));
4140 	D_RADIO("u8 dev_type: 0x%x\n", rxon->dev_type);
4141 	D_RADIO("u8 ofdm_basic_rates: 0x%02x\n", rxon->ofdm_basic_rates);
4142 	D_RADIO("u8 cck_basic_rates: 0x%02x\n", rxon->cck_basic_rates);
4143 	D_RADIO("u8[6] node_addr: %pM\n", rxon->node_addr);
4144 	D_RADIO("u8[6] bssid_addr: %pM\n", rxon->bssid_addr);
4145 	D_RADIO("u16 assoc_id: 0x%x\n", le16_to_cpu(rxon->assoc_id));
4146 }
4147 EXPORT_SYMBOL(il_print_rx_config_cmd);
4148 #endif
4149 /**
4150  * il_irq_handle_error - called for HW or SW error interrupt from card
4151  */
4152 void
4153 il_irq_handle_error(struct il_priv *il)
4154 {
4155 	/* Set the FW error flag -- cleared on il_down */
4156 	set_bit(S_FW_ERROR, &il->status);
4157 
4158 	/* Cancel currently queued command. */
4159 	clear_bit(S_HCMD_ACTIVE, &il->status);
4160 
4161 	IL_ERR("Loaded firmware version: %s\n", il->hw->wiphy->fw_version);
4162 
4163 	il->ops->dump_nic_error_log(il);
4164 	if (il->ops->dump_fh)
4165 		il->ops->dump_fh(il, NULL, false);
4166 #ifdef CONFIG_IWLEGACY_DEBUG
4167 	if (il_get_debug_level(il) & IL_DL_FW_ERRORS)
4168 		il_print_rx_config_cmd(il);
4169 #endif
4170 
4171 	wake_up(&il->wait_command_queue);
4172 
4173 	/* Keep the restart process from trying to send host
4174 	 * commands by clearing the INIT status bit */
4175 	clear_bit(S_READY, &il->status);
4176 
4177 	if (!test_bit(S_EXIT_PENDING, &il->status)) {
4178 		IL_DBG(IL_DL_FW_ERRORS,
4179 		       "Restarting adapter due to uCode error.\n");
4180 
4181 		if (il->cfg->mod_params->restart_fw)
4182 			queue_work(il->workqueue, &il->restart);
4183 	}
4184 }
4185 EXPORT_SYMBOL(il_irq_handle_error);
4186 
4187 static int
4188 _il_apm_stop_master(struct il_priv *il)
4189 {
4190 	int ret = 0;
4191 
4192 	/* stop device's busmaster DMA activity */
4193 	_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_STOP_MASTER);
4194 
4195 	ret =
4196 	    _il_poll_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_MASTER_DISABLED,
4197 			 CSR_RESET_REG_FLAG_MASTER_DISABLED, 100);
4198 	if (ret < 0)
4199 		IL_WARN("Master Disable Timed Out, 100 usec\n");
4200 
4201 	D_INFO("stop master\n");
4202 
4203 	return ret;
4204 }
4205 
4206 void
4207 _il_apm_stop(struct il_priv *il)
4208 {
4209 	lockdep_assert_held(&il->reg_lock);
4210 
4211 	D_INFO("Stop card, put in low power state\n");
4212 
4213 	/* Stop device's DMA activity */
4214 	_il_apm_stop_master(il);
4215 
4216 	/* Reset the entire device */
4217 	_il_set_bit(il, CSR_RESET, CSR_RESET_REG_FLAG_SW_RESET);
4218 
4219 	udelay(10);
4220 
4221 	/*
4222 	 * Clear "initialization complete" bit to move adapter from
4223 	 * D0A* (powered-up Active) --> D0U* (Uninitialized) state.
4224 	 */
4225 	_il_clear_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4226 }
4227 EXPORT_SYMBOL(_il_apm_stop);
4228 
4229 void
4230 il_apm_stop(struct il_priv *il)
4231 {
4232 	unsigned long flags;
4233 
4234 	spin_lock_irqsave(&il->reg_lock, flags);
4235 	_il_apm_stop(il);
4236 	spin_unlock_irqrestore(&il->reg_lock, flags);
4237 }
4238 EXPORT_SYMBOL(il_apm_stop);
4239 
4240 /*
4241  * Start up NIC's basic functionality after it has been reset
4242  * (e.g. after platform boot, or shutdown via il_apm_stop())
4243  * NOTE:  This does not load uCode nor start the embedded processor
4244  */
4245 int
4246 il_apm_init(struct il_priv *il)
4247 {
4248 	int ret = 0;
4249 	u16 lctl;
4250 
4251 	D_INFO("Init card's basic functions\n");
4252 
4253 	/*
4254 	 * Use "set_bit" below rather than "write", to preserve any hardware
4255 	 * bits already set by default after reset.
4256 	 */
4257 
4258 	/* Disable L0S exit timer (platform NMI Work/Around) */
4259 	il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4260 		   CSR_GIO_CHICKEN_BITS_REG_BIT_DIS_L0S_EXIT_TIMER);
4261 
4262 	/*
4263 	 * Disable L0s without affecting L1;
4264 	 *  don't wait for ICH L0s (ICH bug W/A)
4265 	 */
4266 	il_set_bit(il, CSR_GIO_CHICKEN_BITS,
4267 		   CSR_GIO_CHICKEN_BITS_REG_BIT_L1A_NO_L0S_RX);
4268 
4269 	/* Set FH wait threshold to maximum (HW error during stress W/A) */
4270 	il_set_bit(il, CSR_DBG_HPET_MEM_REG, CSR_DBG_HPET_MEM_REG_VAL);
4271 
4272 	/*
4273 	 * Enable HAP INTA (interrupt from management bus) to
4274 	 * wake device's PCI Express link L1a -> L0s
4275 	 * NOTE:  This is no-op for 3945 (non-existent bit)
4276 	 */
4277 	il_set_bit(il, CSR_HW_IF_CONFIG_REG,
4278 		   CSR_HW_IF_CONFIG_REG_BIT_HAP_WAKE_L1A);
4279 
4280 	/*
4281 	 * HW bug W/A for instability in PCIe bus L0->L0S->L1 transition.
4282 	 * Check if BIOS (or OS) enabled L1-ASPM on this device.
4283 	 * If so (likely), disable L0S, so device moves directly L0->L1;
4284 	 *    costs negligible amount of power savings.
4285 	 * If not (unlikely), enable L0S, so there is at least some
4286 	 *    power savings, even without L1.
4287 	 */
4288 	if (il->cfg->set_l0s) {
4289 		pcie_capability_read_word(il->pci_dev, PCI_EXP_LNKCTL, &lctl);
4290 		if (lctl & PCI_EXP_LNKCTL_ASPM_L1) {
4291 			/* L1-ASPM enabled; disable(!) L0S  */
4292 			il_set_bit(il, CSR_GIO_REG,
4293 				   CSR_GIO_REG_VAL_L0S_ENABLED);
4294 			D_POWER("L1 Enabled; Disabling L0S\n");
4295 		} else {
4296 			/* L1-ASPM disabled; enable(!) L0S */
4297 			il_clear_bit(il, CSR_GIO_REG,
4298 				     CSR_GIO_REG_VAL_L0S_ENABLED);
4299 			D_POWER("L1 Disabled; Enabling L0S\n");
4300 		}
4301 	}
4302 
4303 	/* Configure analog phase-lock-loop before activating to D0A */
4304 	if (il->cfg->pll_cfg_val)
4305 		il_set_bit(il, CSR_ANA_PLL_CFG,
4306 			   il->cfg->pll_cfg_val);
4307 
4308 	/*
4309 	 * Set "initialization complete" bit to move adapter from
4310 	 * D0U* --> D0A* (powered-up active) state.
4311 	 */
4312 	il_set_bit(il, CSR_GP_CNTRL, CSR_GP_CNTRL_REG_FLAG_INIT_DONE);
4313 
4314 	/*
4315 	 * Wait for clock stabilization; once stabilized, access to
4316 	 * device-internal resources is supported, e.g. il_wr_prph()
4317 	 * and accesses to uCode SRAM.
4318 	 */
4319 	ret =
4320 	    _il_poll_bit(il, CSR_GP_CNTRL,
4321 			 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY,
4322 			 CSR_GP_CNTRL_REG_FLAG_MAC_CLOCK_READY, 25000);
4323 	if (ret < 0) {
4324 		D_INFO("Failed to init the card\n");
4325 		goto out;
4326 	}
4327 
4328 	/*
4329 	 * Enable DMA and BSM (if used) clocks, wait for them to stabilize.
4330 	 * BSM (Boostrap State Machine) is only in 3945 and 4965.
4331 	 *
4332 	 * Write to "CLK_EN_REG"; "1" bits enable clocks, while "0" bits
4333 	 * do not disable clocks.  This preserves any hardware bits already
4334 	 * set by default in "CLK_CTRL_REG" after reset.
4335 	 */
4336 	if (il->cfg->use_bsm)
4337 		il_wr_prph(il, APMG_CLK_EN_REG,
4338 			   APMG_CLK_VAL_DMA_CLK_RQT | APMG_CLK_VAL_BSM_CLK_RQT);
4339 	else
4340 		il_wr_prph(il, APMG_CLK_EN_REG, APMG_CLK_VAL_DMA_CLK_RQT);
4341 	udelay(20);
4342 
4343 	/* Disable L1-Active */
4344 	il_set_bits_prph(il, APMG_PCIDEV_STT_REG,
4345 			 APMG_PCIDEV_STT_VAL_L1_ACT_DIS);
4346 
4347 out:
4348 	return ret;
4349 }
4350 EXPORT_SYMBOL(il_apm_init);
4351 
4352 int
4353 il_set_tx_power(struct il_priv *il, s8 tx_power, bool force)
4354 {
4355 	int ret;
4356 	s8 prev_tx_power;
4357 	bool defer;
4358 
4359 	lockdep_assert_held(&il->mutex);
4360 
4361 	if (il->tx_power_user_lmt == tx_power && !force)
4362 		return 0;
4363 
4364 	if (!il->ops->send_tx_power)
4365 		return -EOPNOTSUPP;
4366 
4367 	/* 0 dBm mean 1 milliwatt */
4368 	if (tx_power < 0) {
4369 		IL_WARN("Requested user TXPOWER %d below 1 mW.\n", tx_power);
4370 		return -EINVAL;
4371 	}
4372 
4373 	if (tx_power > il->tx_power_device_lmt) {
4374 		IL_WARN("Requested user TXPOWER %d above upper limit %d.\n",
4375 			tx_power, il->tx_power_device_lmt);
4376 		return -EINVAL;
4377 	}
4378 
4379 	if (!il_is_ready_rf(il))
4380 		return -EIO;
4381 
4382 	/* scan complete and commit_rxon use tx_power_next value,
4383 	 * it always need to be updated for newest request */
4384 	il->tx_power_next = tx_power;
4385 
4386 	/* do not set tx power when scanning or channel changing */
4387 	defer = test_bit(S_SCANNING, &il->status) ||
4388 	    memcmp(&il->active, &il->staging, sizeof(il->staging));
4389 	if (defer && !force) {
4390 		D_INFO("Deferring tx power set\n");
4391 		return 0;
4392 	}
4393 
4394 	prev_tx_power = il->tx_power_user_lmt;
4395 	il->tx_power_user_lmt = tx_power;
4396 
4397 	ret = il->ops->send_tx_power(il);
4398 
4399 	/* if fail to set tx_power, restore the orig. tx power */
4400 	if (ret) {
4401 		il->tx_power_user_lmt = prev_tx_power;
4402 		il->tx_power_next = prev_tx_power;
4403 	}
4404 	return ret;
4405 }
4406 EXPORT_SYMBOL(il_set_tx_power);
4407 
4408 void
4409 il_send_bt_config(struct il_priv *il)
4410 {
4411 	struct il_bt_cmd bt_cmd = {
4412 		.lead_time = BT_LEAD_TIME_DEF,
4413 		.max_kill = BT_MAX_KILL_DEF,
4414 		.kill_ack_mask = 0,
4415 		.kill_cts_mask = 0,
4416 	};
4417 
4418 	if (!bt_coex_active)
4419 		bt_cmd.flags = BT_COEX_DISABLE;
4420 	else
4421 		bt_cmd.flags = BT_COEX_ENABLE;
4422 
4423 	D_INFO("BT coex %s\n",
4424 	       (bt_cmd.flags == BT_COEX_DISABLE) ? "disable" : "active");
4425 
4426 	if (il_send_cmd_pdu(il, C_BT_CONFIG, sizeof(struct il_bt_cmd), &bt_cmd))
4427 		IL_ERR("failed to send BT Coex Config\n");
4428 }
4429 EXPORT_SYMBOL(il_send_bt_config);
4430 
4431 int
4432 il_send_stats_request(struct il_priv *il, u8 flags, bool clear)
4433 {
4434 	struct il_stats_cmd stats_cmd = {
4435 		.configuration_flags = clear ? IL_STATS_CONF_CLEAR_STATS : 0,
4436 	};
4437 
4438 	if (flags & CMD_ASYNC)
4439 		return il_send_cmd_pdu_async(il, C_STATS, sizeof(struct il_stats_cmd),
4440 					     &stats_cmd, NULL);
4441 	else
4442 		return il_send_cmd_pdu(il, C_STATS, sizeof(struct il_stats_cmd),
4443 				       &stats_cmd);
4444 }
4445 EXPORT_SYMBOL(il_send_stats_request);
4446 
4447 void
4448 il_hdl_pm_sleep(struct il_priv *il, struct il_rx_buf *rxb)
4449 {
4450 #ifdef CONFIG_IWLEGACY_DEBUG
4451 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4452 	struct il_sleep_notification *sleep = &(pkt->u.sleep_notif);
4453 	D_RX("sleep mode: %d, src: %d\n",
4454 	     sleep->pm_sleep_mode, sleep->pm_wakeup_src);
4455 #endif
4456 }
4457 EXPORT_SYMBOL(il_hdl_pm_sleep);
4458 
4459 void
4460 il_hdl_pm_debug_stats(struct il_priv *il, struct il_rx_buf *rxb)
4461 {
4462 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4463 	u32 len = le32_to_cpu(pkt->len_n_flags) & IL_RX_FRAME_SIZE_MSK;
4464 	D_RADIO("Dumping %d bytes of unhandled notification for %s:\n", len,
4465 		il_get_cmd_string(pkt->hdr.cmd));
4466 	il_print_hex_dump(il, IL_DL_RADIO, pkt->u.raw, len);
4467 }
4468 EXPORT_SYMBOL(il_hdl_pm_debug_stats);
4469 
4470 void
4471 il_hdl_error(struct il_priv *il, struct il_rx_buf *rxb)
4472 {
4473 	struct il_rx_pkt *pkt = rxb_addr(rxb);
4474 
4475 	IL_ERR("Error Reply type 0x%08X cmd %s (0x%02X) "
4476 	       "seq 0x%04X ser 0x%08X\n",
4477 	       le32_to_cpu(pkt->u.err_resp.error_type),
4478 	       il_get_cmd_string(pkt->u.err_resp.cmd_id),
4479 	       pkt->u.err_resp.cmd_id,
4480 	       le16_to_cpu(pkt->u.err_resp.bad_cmd_seq_num),
4481 	       le32_to_cpu(pkt->u.err_resp.error_info));
4482 }
4483 EXPORT_SYMBOL(il_hdl_error);
4484 
4485 void
4486 il_clear_isr_stats(struct il_priv *il)
4487 {
4488 	memset(&il->isr_stats, 0, sizeof(il->isr_stats));
4489 }
4490 
4491 int
4492 il_mac_conf_tx(struct ieee80211_hw *hw, struct ieee80211_vif *vif, u16 queue,
4493 	       const struct ieee80211_tx_queue_params *params)
4494 {
4495 	struct il_priv *il = hw->priv;
4496 	unsigned long flags;
4497 	int q;
4498 
4499 	D_MAC80211("enter\n");
4500 
4501 	if (!il_is_ready_rf(il)) {
4502 		D_MAC80211("leave - RF not ready\n");
4503 		return -EIO;
4504 	}
4505 
4506 	if (queue >= AC_NUM) {
4507 		D_MAC80211("leave - queue >= AC_NUM %d\n", queue);
4508 		return 0;
4509 	}
4510 
4511 	q = AC_NUM - 1 - queue;
4512 
4513 	spin_lock_irqsave(&il->lock, flags);
4514 
4515 	il->qos_data.def_qos_parm.ac[q].cw_min =
4516 	    cpu_to_le16(params->cw_min);
4517 	il->qos_data.def_qos_parm.ac[q].cw_max =
4518 	    cpu_to_le16(params->cw_max);
4519 	il->qos_data.def_qos_parm.ac[q].aifsn = params->aifs;
4520 	il->qos_data.def_qos_parm.ac[q].edca_txop =
4521 	    cpu_to_le16((params->txop * 32));
4522 
4523 	il->qos_data.def_qos_parm.ac[q].reserved1 = 0;
4524 
4525 	spin_unlock_irqrestore(&il->lock, flags);
4526 
4527 	D_MAC80211("leave\n");
4528 	return 0;
4529 }
4530 EXPORT_SYMBOL(il_mac_conf_tx);
4531 
4532 int
4533 il_mac_tx_last_beacon(struct ieee80211_hw *hw)
4534 {
4535 	struct il_priv *il = hw->priv;
4536 	int ret;
4537 
4538 	D_MAC80211("enter\n");
4539 
4540 	ret = (il->ibss_manager == IL_IBSS_MANAGER);
4541 
4542 	D_MAC80211("leave ret %d\n", ret);
4543 	return ret;
4544 }
4545 EXPORT_SYMBOL_GPL(il_mac_tx_last_beacon);
4546 
4547 static int
4548 il_set_mode(struct il_priv *il)
4549 {
4550 	il_connection_init_rx_config(il);
4551 
4552 	if (il->ops->set_rxon_chain)
4553 		il->ops->set_rxon_chain(il);
4554 
4555 	return il_commit_rxon(il);
4556 }
4557 
4558 int
4559 il_mac_add_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4560 {
4561 	struct il_priv *il = hw->priv;
4562 	int err;
4563 	bool reset;
4564 
4565 	mutex_lock(&il->mutex);
4566 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4567 
4568 	if (!il_is_ready_rf(il)) {
4569 		IL_WARN("Try to add interface when device not ready\n");
4570 		err = -EINVAL;
4571 		goto out;
4572 	}
4573 
4574 	/*
4575 	 * We do not support multiple virtual interfaces, but on hardware reset
4576 	 * we have to add the same interface again.
4577 	 */
4578 	reset = (il->vif == vif);
4579 	if (il->vif && !reset) {
4580 		err = -EOPNOTSUPP;
4581 		goto out;
4582 	}
4583 
4584 	il->vif = vif;
4585 	il->iw_mode = vif->type;
4586 
4587 	err = il_set_mode(il);
4588 	if (err) {
4589 		IL_WARN("Fail to set mode %d\n", vif->type);
4590 		if (!reset) {
4591 			il->vif = NULL;
4592 			il->iw_mode = NL80211_IFTYPE_STATION;
4593 		}
4594 	}
4595 
4596 out:
4597 	D_MAC80211("leave err %d\n", err);
4598 	mutex_unlock(&il->mutex);
4599 
4600 	return err;
4601 }
4602 EXPORT_SYMBOL(il_mac_add_interface);
4603 
4604 static void
4605 il_teardown_interface(struct il_priv *il, struct ieee80211_vif *vif)
4606 {
4607 	lockdep_assert_held(&il->mutex);
4608 
4609 	if (il->scan_vif == vif) {
4610 		il_scan_cancel_timeout(il, 200);
4611 		il_force_scan_end(il);
4612 	}
4613 
4614 	il_set_mode(il);
4615 }
4616 
4617 void
4618 il_mac_remove_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
4619 {
4620 	struct il_priv *il = hw->priv;
4621 
4622 	mutex_lock(&il->mutex);
4623 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
4624 
4625 	WARN_ON(il->vif != vif);
4626 	il->vif = NULL;
4627 	il->iw_mode = NL80211_IFTYPE_UNSPECIFIED;
4628 	il_teardown_interface(il, vif);
4629 	eth_zero_addr(il->bssid);
4630 
4631 	D_MAC80211("leave\n");
4632 	mutex_unlock(&il->mutex);
4633 }
4634 EXPORT_SYMBOL(il_mac_remove_interface);
4635 
4636 int
4637 il_alloc_txq_mem(struct il_priv *il)
4638 {
4639 	if (!il->txq)
4640 		il->txq =
4641 		    kcalloc(il->cfg->num_of_queues,
4642 			    sizeof(struct il_tx_queue),
4643 			    GFP_KERNEL);
4644 	if (!il->txq) {
4645 		IL_ERR("Not enough memory for txq\n");
4646 		return -ENOMEM;
4647 	}
4648 	return 0;
4649 }
4650 EXPORT_SYMBOL(il_alloc_txq_mem);
4651 
4652 void
4653 il_free_txq_mem(struct il_priv *il)
4654 {
4655 	kfree(il->txq);
4656 	il->txq = NULL;
4657 }
4658 EXPORT_SYMBOL(il_free_txq_mem);
4659 
4660 int
4661 il_force_reset(struct il_priv *il, bool external)
4662 {
4663 	struct il_force_reset *force_reset;
4664 
4665 	if (test_bit(S_EXIT_PENDING, &il->status))
4666 		return -EINVAL;
4667 
4668 	force_reset = &il->force_reset;
4669 	force_reset->reset_request_count++;
4670 	if (!external) {
4671 		if (force_reset->last_force_reset_jiffies &&
4672 		    time_after(force_reset->last_force_reset_jiffies +
4673 			       force_reset->reset_duration, jiffies)) {
4674 			D_INFO("force reset rejected\n");
4675 			force_reset->reset_reject_count++;
4676 			return -EAGAIN;
4677 		}
4678 	}
4679 	force_reset->reset_success_count++;
4680 	force_reset->last_force_reset_jiffies = jiffies;
4681 
4682 	/*
4683 	 * if the request is from external(ex: debugfs),
4684 	 * then always perform the request in regardless the module
4685 	 * parameter setting
4686 	 * if the request is from internal (uCode error or driver
4687 	 * detect failure), then fw_restart module parameter
4688 	 * need to be check before performing firmware reload
4689 	 */
4690 
4691 	if (!external && !il->cfg->mod_params->restart_fw) {
4692 		D_INFO("Cancel firmware reload based on "
4693 		       "module parameter setting\n");
4694 		return 0;
4695 	}
4696 
4697 	IL_ERR("On demand firmware reload\n");
4698 
4699 	/* Set the FW error flag -- cleared on il_down */
4700 	set_bit(S_FW_ERROR, &il->status);
4701 	wake_up(&il->wait_command_queue);
4702 	/*
4703 	 * Keep the restart process from trying to send host
4704 	 * commands by clearing the INIT status bit
4705 	 */
4706 	clear_bit(S_READY, &il->status);
4707 	queue_work(il->workqueue, &il->restart);
4708 
4709 	return 0;
4710 }
4711 EXPORT_SYMBOL(il_force_reset);
4712 
4713 int
4714 il_mac_change_interface(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4715 			enum nl80211_iftype newtype, bool newp2p)
4716 {
4717 	struct il_priv *il = hw->priv;
4718 	int err;
4719 
4720 	mutex_lock(&il->mutex);
4721 	D_MAC80211("enter: type %d, addr %pM newtype %d newp2p %d\n",
4722 		    vif->type, vif->addr, newtype, newp2p);
4723 
4724 	if (newp2p) {
4725 		err = -EOPNOTSUPP;
4726 		goto out;
4727 	}
4728 
4729 	if (!il->vif || !il_is_ready_rf(il)) {
4730 		/*
4731 		 * Huh? But wait ... this can maybe happen when
4732 		 * we're in the middle of a firmware restart!
4733 		 */
4734 		err = -EBUSY;
4735 		goto out;
4736 	}
4737 
4738 	/* success */
4739 	vif->type = newtype;
4740 	vif->p2p = false;
4741 	il->iw_mode = newtype;
4742 	il_teardown_interface(il, vif);
4743 	err = 0;
4744 
4745 out:
4746 	D_MAC80211("leave err %d\n", err);
4747 	mutex_unlock(&il->mutex);
4748 
4749 	return err;
4750 }
4751 EXPORT_SYMBOL(il_mac_change_interface);
4752 
4753 void il_mac_flush(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
4754 		  u32 queues, bool drop)
4755 {
4756 	struct il_priv *il = hw->priv;
4757 	unsigned long timeout = jiffies + msecs_to_jiffies(500);
4758 	int i;
4759 
4760 	mutex_lock(&il->mutex);
4761 	D_MAC80211("enter\n");
4762 
4763 	if (il->txq == NULL)
4764 		goto out;
4765 
4766 	for (i = 0; i < il->hw_params.max_txq_num; i++) {
4767 		struct il_queue *q;
4768 
4769 		if (i == il->cmd_queue)
4770 			continue;
4771 
4772 		q = &il->txq[i].q;
4773 		if (q->read_ptr == q->write_ptr)
4774 			continue;
4775 
4776 		if (time_after(jiffies, timeout)) {
4777 			IL_ERR("Failed to flush queue %d\n", q->id);
4778 			break;
4779 		}
4780 
4781 		msleep(20);
4782 	}
4783 out:
4784 	D_MAC80211("leave\n");
4785 	mutex_unlock(&il->mutex);
4786 }
4787 EXPORT_SYMBOL(il_mac_flush);
4788 
4789 /*
4790  * On every watchdog tick we check (latest) time stamp. If it does not
4791  * change during timeout period and queue is not empty we reset firmware.
4792  */
4793 static int
4794 il_check_stuck_queue(struct il_priv *il, int cnt)
4795 {
4796 	struct il_tx_queue *txq = &il->txq[cnt];
4797 	struct il_queue *q = &txq->q;
4798 	unsigned long timeout;
4799 	unsigned long now = jiffies;
4800 	int ret;
4801 
4802 	if (q->read_ptr == q->write_ptr) {
4803 		txq->time_stamp = now;
4804 		return 0;
4805 	}
4806 
4807 	timeout =
4808 	    txq->time_stamp +
4809 	    msecs_to_jiffies(il->cfg->wd_timeout);
4810 
4811 	if (time_after(now, timeout)) {
4812 		IL_ERR("Queue %d stuck for %u ms.\n", q->id,
4813 		       jiffies_to_msecs(now - txq->time_stamp));
4814 		ret = il_force_reset(il, false);
4815 		return (ret == -EAGAIN) ? 0 : 1;
4816 	}
4817 
4818 	return 0;
4819 }
4820 
4821 /*
4822  * Making watchdog tick be a quarter of timeout assure we will
4823  * discover the queue hung between timeout and 1.25*timeout
4824  */
4825 #define IL_WD_TICK(timeout) ((timeout) / 4)
4826 
4827 /*
4828  * Watchdog timer callback, we check each tx queue for stuck, if if hung
4829  * we reset the firmware. If everything is fine just rearm the timer.
4830  */
4831 void
4832 il_bg_watchdog(struct timer_list *t)
4833 {
4834 	struct il_priv *il = from_timer(il, t, watchdog);
4835 	int cnt;
4836 	unsigned long timeout;
4837 
4838 	if (test_bit(S_EXIT_PENDING, &il->status))
4839 		return;
4840 
4841 	timeout = il->cfg->wd_timeout;
4842 	if (timeout == 0)
4843 		return;
4844 
4845 	/* monitor and check for stuck cmd queue */
4846 	if (il_check_stuck_queue(il, il->cmd_queue))
4847 		return;
4848 
4849 	/* monitor and check for other stuck queues */
4850 	for (cnt = 0; cnt < il->hw_params.max_txq_num; cnt++) {
4851 		/* skip as we already checked the command queue */
4852 		if (cnt == il->cmd_queue)
4853 			continue;
4854 		if (il_check_stuck_queue(il, cnt))
4855 			return;
4856 	}
4857 
4858 	mod_timer(&il->watchdog,
4859 		  jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4860 }
4861 EXPORT_SYMBOL(il_bg_watchdog);
4862 
4863 void
4864 il_setup_watchdog(struct il_priv *il)
4865 {
4866 	unsigned int timeout = il->cfg->wd_timeout;
4867 
4868 	if (timeout)
4869 		mod_timer(&il->watchdog,
4870 			  jiffies + msecs_to_jiffies(IL_WD_TICK(timeout)));
4871 	else
4872 		del_timer(&il->watchdog);
4873 }
4874 EXPORT_SYMBOL(il_setup_watchdog);
4875 
4876 /*
4877  * extended beacon time format
4878  * time in usec will be changed into a 32-bit value in extended:internal format
4879  * the extended part is the beacon counts
4880  * the internal part is the time in usec within one beacon interval
4881  */
4882 u32
4883 il_usecs_to_beacons(struct il_priv *il, u32 usec, u32 beacon_interval)
4884 {
4885 	u32 quot;
4886 	u32 rem;
4887 	u32 interval = beacon_interval * TIME_UNIT;
4888 
4889 	if (!interval || !usec)
4890 		return 0;
4891 
4892 	quot =
4893 	    (usec /
4894 	     interval) & (il_beacon_time_mask_high(il,
4895 						   il->hw_params.
4896 						   beacon_time_tsf_bits) >> il->
4897 			  hw_params.beacon_time_tsf_bits);
4898 	rem =
4899 	    (usec % interval) & il_beacon_time_mask_low(il,
4900 							il->hw_params.
4901 							beacon_time_tsf_bits);
4902 
4903 	return (quot << il->hw_params.beacon_time_tsf_bits) + rem;
4904 }
4905 EXPORT_SYMBOL(il_usecs_to_beacons);
4906 
4907 /* base is usually what we get from ucode with each received frame,
4908  * the same as HW timer counter counting down
4909  */
4910 __le32
4911 il_add_beacon_time(struct il_priv *il, u32 base, u32 addon,
4912 		   u32 beacon_interval)
4913 {
4914 	u32 base_low = base & il_beacon_time_mask_low(il,
4915 						      il->hw_params.
4916 						      beacon_time_tsf_bits);
4917 	u32 addon_low = addon & il_beacon_time_mask_low(il,
4918 							il->hw_params.
4919 							beacon_time_tsf_bits);
4920 	u32 interval = beacon_interval * TIME_UNIT;
4921 	u32 res = (base & il_beacon_time_mask_high(il,
4922 						   il->hw_params.
4923 						   beacon_time_tsf_bits)) +
4924 	    (addon & il_beacon_time_mask_high(il,
4925 					      il->hw_params.
4926 					      beacon_time_tsf_bits));
4927 
4928 	if (base_low > addon_low)
4929 		res += base_low - addon_low;
4930 	else if (base_low < addon_low) {
4931 		res += interval + base_low - addon_low;
4932 		res += (1 << il->hw_params.beacon_time_tsf_bits);
4933 	} else
4934 		res += (1 << il->hw_params.beacon_time_tsf_bits);
4935 
4936 	return cpu_to_le32(res);
4937 }
4938 EXPORT_SYMBOL(il_add_beacon_time);
4939 
4940 #ifdef CONFIG_PM_SLEEP
4941 
4942 static int
4943 il_pci_suspend(struct device *device)
4944 {
4945 	struct il_priv *il = dev_get_drvdata(device);
4946 
4947 	/*
4948 	 * This function is called when system goes into suspend state
4949 	 * mac80211 will call il_mac_stop() from the mac80211 suspend function
4950 	 * first but since il_mac_stop() has no knowledge of who the caller is,
4951 	 * it will not call apm_ops.stop() to stop the DMA operation.
4952 	 * Calling apm_ops.stop here to make sure we stop the DMA.
4953 	 */
4954 	il_apm_stop(il);
4955 
4956 	return 0;
4957 }
4958 
4959 static int
4960 il_pci_resume(struct device *device)
4961 {
4962 	struct pci_dev *pdev = to_pci_dev(device);
4963 	struct il_priv *il = pci_get_drvdata(pdev);
4964 	bool hw_rfkill = false;
4965 
4966 	/*
4967 	 * We disable the RETRY_TIMEOUT register (0x41) to keep
4968 	 * PCI Tx retries from interfering with C3 CPU state.
4969 	 */
4970 	pci_write_config_byte(pdev, PCI_CFG_RETRY_TIMEOUT, 0x00);
4971 
4972 	il_enable_interrupts(il);
4973 
4974 	if (!(_il_rd(il, CSR_GP_CNTRL) & CSR_GP_CNTRL_REG_FLAG_HW_RF_KILL_SW))
4975 		hw_rfkill = true;
4976 
4977 	if (hw_rfkill)
4978 		set_bit(S_RFKILL, &il->status);
4979 	else
4980 		clear_bit(S_RFKILL, &il->status);
4981 
4982 	wiphy_rfkill_set_hw_state(il->hw->wiphy, hw_rfkill);
4983 
4984 	return 0;
4985 }
4986 
4987 SIMPLE_DEV_PM_OPS(il_pm_ops, il_pci_suspend, il_pci_resume);
4988 EXPORT_SYMBOL(il_pm_ops);
4989 
4990 #endif /* CONFIG_PM_SLEEP */
4991 
4992 static void
4993 il_update_qos(struct il_priv *il)
4994 {
4995 	if (test_bit(S_EXIT_PENDING, &il->status))
4996 		return;
4997 
4998 	il->qos_data.def_qos_parm.qos_flags = 0;
4999 
5000 	if (il->qos_data.qos_active)
5001 		il->qos_data.def_qos_parm.qos_flags |=
5002 		    QOS_PARAM_FLG_UPDATE_EDCA_MSK;
5003 
5004 	if (il->ht.enabled)
5005 		il->qos_data.def_qos_parm.qos_flags |= QOS_PARAM_FLG_TGN_MSK;
5006 
5007 	D_QOS("send QoS cmd with Qos active=%d FLAGS=0x%X\n",
5008 	      il->qos_data.qos_active, il->qos_data.def_qos_parm.qos_flags);
5009 
5010 	il_send_cmd_pdu_async(il, C_QOS_PARAM, sizeof(struct il_qosparam_cmd),
5011 			      &il->qos_data.def_qos_parm, NULL);
5012 }
5013 
5014 /**
5015  * il_mac_config - mac80211 config callback
5016  */
5017 int
5018 il_mac_config(struct ieee80211_hw *hw, u32 changed)
5019 {
5020 	struct il_priv *il = hw->priv;
5021 	const struct il_channel_info *ch_info;
5022 	struct ieee80211_conf *conf = &hw->conf;
5023 	struct ieee80211_channel *channel = conf->chandef.chan;
5024 	struct il_ht_config *ht_conf = &il->current_ht_config;
5025 	unsigned long flags = 0;
5026 	int ret = 0;
5027 	u16 ch;
5028 	int scan_active = 0;
5029 	bool ht_changed = false;
5030 
5031 	mutex_lock(&il->mutex);
5032 	D_MAC80211("enter: channel %d changed 0x%X\n", channel->hw_value,
5033 		   changed);
5034 
5035 	if (unlikely(test_bit(S_SCANNING, &il->status))) {
5036 		scan_active = 1;
5037 		D_MAC80211("scan active\n");
5038 	}
5039 
5040 	if (changed &
5041 	    (IEEE80211_CONF_CHANGE_SMPS | IEEE80211_CONF_CHANGE_CHANNEL)) {
5042 		/* mac80211 uses static for non-HT which is what we want */
5043 		il->current_ht_config.smps = conf->smps_mode;
5044 
5045 		/*
5046 		 * Recalculate chain counts.
5047 		 *
5048 		 * If monitor mode is enabled then mac80211 will
5049 		 * set up the SM PS mode to OFF if an HT channel is
5050 		 * configured.
5051 		 */
5052 		if (il->ops->set_rxon_chain)
5053 			il->ops->set_rxon_chain(il);
5054 	}
5055 
5056 	/* during scanning mac80211 will delay channel setting until
5057 	 * scan finish with changed = 0
5058 	 */
5059 	if (!changed || (changed & IEEE80211_CONF_CHANGE_CHANNEL)) {
5060 
5061 		if (scan_active)
5062 			goto set_ch_out;
5063 
5064 		ch = channel->hw_value;
5065 		ch_info = il_get_channel_info(il, channel->band, ch);
5066 		if (!il_is_channel_valid(ch_info)) {
5067 			D_MAC80211("leave - invalid channel\n");
5068 			ret = -EINVAL;
5069 			goto set_ch_out;
5070 		}
5071 
5072 		if (il->iw_mode == NL80211_IFTYPE_ADHOC &&
5073 		    !il_is_channel_ibss(ch_info)) {
5074 			D_MAC80211("leave - not IBSS channel\n");
5075 			ret = -EINVAL;
5076 			goto set_ch_out;
5077 		}
5078 
5079 		spin_lock_irqsave(&il->lock, flags);
5080 
5081 		/* Configure HT40 channels */
5082 		if (il->ht.enabled != conf_is_ht(conf)) {
5083 			il->ht.enabled = conf_is_ht(conf);
5084 			ht_changed = true;
5085 		}
5086 		if (il->ht.enabled) {
5087 			if (conf_is_ht40_minus(conf)) {
5088 				il->ht.extension_chan_offset =
5089 				    IEEE80211_HT_PARAM_CHA_SEC_BELOW;
5090 				il->ht.is_40mhz = true;
5091 			} else if (conf_is_ht40_plus(conf)) {
5092 				il->ht.extension_chan_offset =
5093 				    IEEE80211_HT_PARAM_CHA_SEC_ABOVE;
5094 				il->ht.is_40mhz = true;
5095 			} else {
5096 				il->ht.extension_chan_offset =
5097 				    IEEE80211_HT_PARAM_CHA_SEC_NONE;
5098 				il->ht.is_40mhz = false;
5099 			}
5100 		} else
5101 			il->ht.is_40mhz = false;
5102 
5103 		/*
5104 		 * Default to no protection. Protection mode will
5105 		 * later be set from BSS config in il_ht_conf
5106 		 */
5107 		il->ht.protection = IEEE80211_HT_OP_MODE_PROTECTION_NONE;
5108 
5109 		/* if we are switching from ht to 2.4 clear flags
5110 		 * from any ht related info since 2.4 does not
5111 		 * support ht */
5112 		if ((le16_to_cpu(il->staging.channel) != ch))
5113 			il->staging.flags = 0;
5114 
5115 		il_set_rxon_channel(il, channel);
5116 		il_set_rxon_ht(il, ht_conf);
5117 
5118 		il_set_flags_for_band(il, channel->band, il->vif);
5119 
5120 		spin_unlock_irqrestore(&il->lock, flags);
5121 
5122 		if (il->ops->update_bcast_stations)
5123 			ret = il->ops->update_bcast_stations(il);
5124 
5125 set_ch_out:
5126 		/* The list of supported rates and rate mask can be different
5127 		 * for each band; since the band may have changed, reset
5128 		 * the rate mask to what mac80211 lists */
5129 		il_set_rate(il);
5130 	}
5131 
5132 	if (changed & (IEEE80211_CONF_CHANGE_PS | IEEE80211_CONF_CHANGE_IDLE)) {
5133 		il->power_data.ps_disabled = !(conf->flags & IEEE80211_CONF_PS);
5134 		if (!il->power_data.ps_disabled)
5135 			IL_WARN_ONCE("Enabling power save might cause firmware crashes\n");
5136 		ret = il_power_update_mode(il, false);
5137 		if (ret)
5138 			D_MAC80211("Error setting sleep level\n");
5139 	}
5140 
5141 	if (changed & IEEE80211_CONF_CHANGE_POWER) {
5142 		D_MAC80211("TX Power old=%d new=%d\n", il->tx_power_user_lmt,
5143 			   conf->power_level);
5144 
5145 		il_set_tx_power(il, conf->power_level, false);
5146 	}
5147 
5148 	if (!il_is_ready(il)) {
5149 		D_MAC80211("leave - not ready\n");
5150 		goto out;
5151 	}
5152 
5153 	if (scan_active)
5154 		goto out;
5155 
5156 	if (memcmp(&il->active, &il->staging, sizeof(il->staging)))
5157 		il_commit_rxon(il);
5158 	else
5159 		D_INFO("Not re-sending same RXON configuration.\n");
5160 	if (ht_changed)
5161 		il_update_qos(il);
5162 
5163 out:
5164 	D_MAC80211("leave ret %d\n", ret);
5165 	mutex_unlock(&il->mutex);
5166 
5167 	return ret;
5168 }
5169 EXPORT_SYMBOL(il_mac_config);
5170 
5171 void
5172 il_mac_reset_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5173 {
5174 	struct il_priv *il = hw->priv;
5175 	unsigned long flags;
5176 
5177 	mutex_lock(&il->mutex);
5178 	D_MAC80211("enter: type %d, addr %pM\n", vif->type, vif->addr);
5179 
5180 	spin_lock_irqsave(&il->lock, flags);
5181 
5182 	memset(&il->current_ht_config, 0, sizeof(struct il_ht_config));
5183 
5184 	/* new association get rid of ibss beacon skb */
5185 	dev_kfree_skb(il->beacon_skb);
5186 	il->beacon_skb = NULL;
5187 	il->timestamp = 0;
5188 
5189 	spin_unlock_irqrestore(&il->lock, flags);
5190 
5191 	il_scan_cancel_timeout(il, 100);
5192 	if (!il_is_ready_rf(il)) {
5193 		D_MAC80211("leave - not ready\n");
5194 		mutex_unlock(&il->mutex);
5195 		return;
5196 	}
5197 
5198 	/* we are restarting association process */
5199 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5200 	il_commit_rxon(il);
5201 
5202 	il_set_rate(il);
5203 
5204 	D_MAC80211("leave\n");
5205 	mutex_unlock(&il->mutex);
5206 }
5207 EXPORT_SYMBOL(il_mac_reset_tsf);
5208 
5209 static void
5210 il_ht_conf(struct il_priv *il, struct ieee80211_vif *vif)
5211 {
5212 	struct il_ht_config *ht_conf = &il->current_ht_config;
5213 	struct ieee80211_sta *sta;
5214 	struct ieee80211_bss_conf *bss_conf = &vif->bss_conf;
5215 
5216 	D_ASSOC("enter:\n");
5217 
5218 	if (!il->ht.enabled)
5219 		return;
5220 
5221 	il->ht.protection =
5222 	    bss_conf->ht_operation_mode & IEEE80211_HT_OP_MODE_PROTECTION;
5223 	il->ht.non_gf_sta_present =
5224 	    !!(bss_conf->
5225 	       ht_operation_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
5226 
5227 	ht_conf->single_chain_sufficient = false;
5228 
5229 	switch (vif->type) {
5230 	case NL80211_IFTYPE_STATION:
5231 		rcu_read_lock();
5232 		sta = ieee80211_find_sta(vif, bss_conf->bssid);
5233 		if (sta) {
5234 			struct ieee80211_sta_ht_cap *ht_cap = &sta->ht_cap;
5235 			int maxstreams;
5236 
5237 			maxstreams =
5238 			    (ht_cap->mcs.
5239 			     tx_params & IEEE80211_HT_MCS_TX_MAX_STREAMS_MASK)
5240 			    >> IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT;
5241 			maxstreams += 1;
5242 
5243 			if (ht_cap->mcs.rx_mask[1] == 0 &&
5244 			    ht_cap->mcs.rx_mask[2] == 0)
5245 				ht_conf->single_chain_sufficient = true;
5246 			if (maxstreams <= 1)
5247 				ht_conf->single_chain_sufficient = true;
5248 		} else {
5249 			/*
5250 			 * If at all, this can only happen through a race
5251 			 * when the AP disconnects us while we're still
5252 			 * setting up the connection, in that case mac80211
5253 			 * will soon tell us about that.
5254 			 */
5255 			ht_conf->single_chain_sufficient = true;
5256 		}
5257 		rcu_read_unlock();
5258 		break;
5259 	case NL80211_IFTYPE_ADHOC:
5260 		ht_conf->single_chain_sufficient = true;
5261 		break;
5262 	default:
5263 		break;
5264 	}
5265 
5266 	D_ASSOC("leave\n");
5267 }
5268 
5269 static inline void
5270 il_set_no_assoc(struct il_priv *il, struct ieee80211_vif *vif)
5271 {
5272 	/*
5273 	 * inform the ucode that there is no longer an
5274 	 * association and that no more packets should be
5275 	 * sent
5276 	 */
5277 	il->staging.filter_flags &= ~RXON_FILTER_ASSOC_MSK;
5278 	il->staging.assoc_id = 0;
5279 	il_commit_rxon(il);
5280 }
5281 
5282 static void
5283 il_beacon_update(struct ieee80211_hw *hw, struct ieee80211_vif *vif)
5284 {
5285 	struct il_priv *il = hw->priv;
5286 	unsigned long flags;
5287 	__le64 timestamp;
5288 	struct sk_buff *skb = ieee80211_beacon_get(hw, vif);
5289 
5290 	if (!skb)
5291 		return;
5292 
5293 	D_MAC80211("enter\n");
5294 
5295 	lockdep_assert_held(&il->mutex);
5296 
5297 	if (!il->beacon_enabled) {
5298 		IL_ERR("update beacon with no beaconing enabled\n");
5299 		dev_kfree_skb(skb);
5300 		return;
5301 	}
5302 
5303 	spin_lock_irqsave(&il->lock, flags);
5304 	dev_kfree_skb(il->beacon_skb);
5305 	il->beacon_skb = skb;
5306 
5307 	timestamp = ((struct ieee80211_mgmt *)skb->data)->u.beacon.timestamp;
5308 	il->timestamp = le64_to_cpu(timestamp);
5309 
5310 	D_MAC80211("leave\n");
5311 	spin_unlock_irqrestore(&il->lock, flags);
5312 
5313 	if (!il_is_ready_rf(il)) {
5314 		D_MAC80211("leave - RF not ready\n");
5315 		return;
5316 	}
5317 
5318 	il->ops->post_associate(il);
5319 }
5320 
5321 void
5322 il_mac_bss_info_changed(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
5323 			struct ieee80211_bss_conf *bss_conf, u32 changes)
5324 {
5325 	struct il_priv *il = hw->priv;
5326 	int ret;
5327 
5328 	mutex_lock(&il->mutex);
5329 	D_MAC80211("enter: changes 0x%x\n", changes);
5330 
5331 	if (!il_is_alive(il)) {
5332 		D_MAC80211("leave - not alive\n");
5333 		mutex_unlock(&il->mutex);
5334 		return;
5335 	}
5336 
5337 	if (changes & BSS_CHANGED_QOS) {
5338 		unsigned long flags;
5339 
5340 		spin_lock_irqsave(&il->lock, flags);
5341 		il->qos_data.qos_active = bss_conf->qos;
5342 		il_update_qos(il);
5343 		spin_unlock_irqrestore(&il->lock, flags);
5344 	}
5345 
5346 	if (changes & BSS_CHANGED_BEACON_ENABLED) {
5347 		/* FIXME: can we remove beacon_enabled ? */
5348 		if (vif->bss_conf.enable_beacon)
5349 			il->beacon_enabled = true;
5350 		else
5351 			il->beacon_enabled = false;
5352 	}
5353 
5354 	if (changes & BSS_CHANGED_BSSID) {
5355 		D_MAC80211("BSSID %pM\n", bss_conf->bssid);
5356 
5357 		/*
5358 		 * On passive channel we wait with blocked queues to see if
5359 		 * there is traffic on that channel. If no frame will be
5360 		 * received (what is very unlikely since scan detects AP on
5361 		 * that channel, but theoretically possible), mac80211 associate
5362 		 * procedure will time out and mac80211 will call us with NULL
5363 		 * bssid. We have to unblock queues on such condition.
5364 		 */
5365 		if (is_zero_ether_addr(bss_conf->bssid))
5366 			il_wake_queues_by_reason(il, IL_STOP_REASON_PASSIVE);
5367 
5368 		/*
5369 		 * If there is currently a HW scan going on in the background,
5370 		 * then we need to cancel it, otherwise sometimes we are not
5371 		 * able to authenticate (FIXME: why ?)
5372 		 */
5373 		if (il_scan_cancel_timeout(il, 100)) {
5374 			D_MAC80211("leave - scan abort failed\n");
5375 			mutex_unlock(&il->mutex);
5376 			return;
5377 		}
5378 
5379 		/* mac80211 only sets assoc when in STATION mode */
5380 		memcpy(il->staging.bssid_addr, bss_conf->bssid, ETH_ALEN);
5381 
5382 		/* FIXME: currently needed in a few places */
5383 		memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5384 	}
5385 
5386 	/*
5387 	 * This needs to be after setting the BSSID in case
5388 	 * mac80211 decides to do both changes at once because
5389 	 * it will invoke post_associate.
5390 	 */
5391 	if (vif->type == NL80211_IFTYPE_ADHOC && (changes & BSS_CHANGED_BEACON))
5392 		il_beacon_update(hw, vif);
5393 
5394 	if (changes & BSS_CHANGED_ERP_PREAMBLE) {
5395 		D_MAC80211("ERP_PREAMBLE %d\n", bss_conf->use_short_preamble);
5396 		if (bss_conf->use_short_preamble)
5397 			il->staging.flags |= RXON_FLG_SHORT_PREAMBLE_MSK;
5398 		else
5399 			il->staging.flags &= ~RXON_FLG_SHORT_PREAMBLE_MSK;
5400 	}
5401 
5402 	if (changes & BSS_CHANGED_ERP_CTS_PROT) {
5403 		D_MAC80211("ERP_CTS %d\n", bss_conf->use_cts_prot);
5404 		if (bss_conf->use_cts_prot && il->band != NL80211_BAND_5GHZ)
5405 			il->staging.flags |= RXON_FLG_TGG_PROTECT_MSK;
5406 		else
5407 			il->staging.flags &= ~RXON_FLG_TGG_PROTECT_MSK;
5408 		if (bss_conf->use_cts_prot)
5409 			il->staging.flags |= RXON_FLG_SELF_CTS_EN;
5410 		else
5411 			il->staging.flags &= ~RXON_FLG_SELF_CTS_EN;
5412 	}
5413 
5414 	if (changes & BSS_CHANGED_BASIC_RATES) {
5415 		/* XXX use this information
5416 		 *
5417 		 * To do that, remove code from il_set_rate() and put something
5418 		 * like this here:
5419 		 *
5420 		 if (A-band)
5421 		 il->staging.ofdm_basic_rates =
5422 		 bss_conf->basic_rates;
5423 		 else
5424 		 il->staging.ofdm_basic_rates =
5425 		 bss_conf->basic_rates >> 4;
5426 		 il->staging.cck_basic_rates =
5427 		 bss_conf->basic_rates & 0xF;
5428 		 */
5429 	}
5430 
5431 	if (changes & BSS_CHANGED_HT) {
5432 		il_ht_conf(il, vif);
5433 
5434 		if (il->ops->set_rxon_chain)
5435 			il->ops->set_rxon_chain(il);
5436 	}
5437 
5438 	if (changes & BSS_CHANGED_ASSOC) {
5439 		D_MAC80211("ASSOC %d\n", bss_conf->assoc);
5440 		if (bss_conf->assoc) {
5441 			il->timestamp = bss_conf->sync_tsf;
5442 
5443 			if (!il_is_rfkill(il))
5444 				il->ops->post_associate(il);
5445 		} else
5446 			il_set_no_assoc(il, vif);
5447 	}
5448 
5449 	if (changes && il_is_associated(il) && bss_conf->aid) {
5450 		D_MAC80211("Changes (%#x) while associated\n", changes);
5451 		ret = il_send_rxon_assoc(il);
5452 		if (!ret) {
5453 			/* Sync active_rxon with latest change. */
5454 			memcpy((void *)&il->active, &il->staging,
5455 			       sizeof(struct il_rxon_cmd));
5456 		}
5457 	}
5458 
5459 	if (changes & BSS_CHANGED_BEACON_ENABLED) {
5460 		if (vif->bss_conf.enable_beacon) {
5461 			memcpy(il->staging.bssid_addr, bss_conf->bssid,
5462 			       ETH_ALEN);
5463 			memcpy(il->bssid, bss_conf->bssid, ETH_ALEN);
5464 			il->ops->config_ap(il);
5465 		} else
5466 			il_set_no_assoc(il, vif);
5467 	}
5468 
5469 	if (changes & BSS_CHANGED_IBSS) {
5470 		ret = il->ops->manage_ibss_station(il, vif,
5471 						   bss_conf->ibss_joined);
5472 		if (ret)
5473 			IL_ERR("failed to %s IBSS station %pM\n",
5474 			       bss_conf->ibss_joined ? "add" : "remove",
5475 			       bss_conf->bssid);
5476 	}
5477 
5478 	D_MAC80211("leave\n");
5479 	mutex_unlock(&il->mutex);
5480 }
5481 EXPORT_SYMBOL(il_mac_bss_info_changed);
5482 
5483 irqreturn_t
5484 il_isr(int irq, void *data)
5485 {
5486 	struct il_priv *il = data;
5487 	u32 inta, inta_mask;
5488 	u32 inta_fh;
5489 	unsigned long flags;
5490 	if (!il)
5491 		return IRQ_NONE;
5492 
5493 	spin_lock_irqsave(&il->lock, flags);
5494 
5495 	/* Disable (but don't clear!) interrupts here to avoid
5496 	 *    back-to-back ISRs and sporadic interrupts from our NIC.
5497 	 * If we have something to service, the tasklet will re-enable ints.
5498 	 * If we *don't* have something, we'll re-enable before leaving here. */
5499 	inta_mask = _il_rd(il, CSR_INT_MASK);	/* just for debug */
5500 	_il_wr(il, CSR_INT_MASK, 0x00000000);
5501 
5502 	/* Discover which interrupts are active/pending */
5503 	inta = _il_rd(il, CSR_INT);
5504 	inta_fh = _il_rd(il, CSR_FH_INT_STATUS);
5505 
5506 	/* Ignore interrupt if there's nothing in NIC to service.
5507 	 * This may be due to IRQ shared with another device,
5508 	 * or due to sporadic interrupts thrown from our NIC. */
5509 	if (!inta && !inta_fh) {
5510 		D_ISR("Ignore interrupt, inta == 0, inta_fh == 0\n");
5511 		goto none;
5512 	}
5513 
5514 	if (inta == 0xFFFFFFFF || (inta & 0xFFFFFFF0) == 0xa5a5a5a0) {
5515 		/* Hardware disappeared. It might have already raised
5516 		 * an interrupt */
5517 		IL_WARN("HARDWARE GONE?? INTA == 0x%08x\n", inta);
5518 		goto unplugged;
5519 	}
5520 
5521 	D_ISR("ISR inta 0x%08x, enabled 0x%08x, fh 0x%08x\n", inta, inta_mask,
5522 	      inta_fh);
5523 
5524 	inta &= ~CSR_INT_BIT_SCD;
5525 
5526 	/* il_irq_tasklet() will service interrupts and re-enable them */
5527 	if (likely(inta || inta_fh))
5528 		tasklet_schedule(&il->irq_tasklet);
5529 
5530 unplugged:
5531 	spin_unlock_irqrestore(&il->lock, flags);
5532 	return IRQ_HANDLED;
5533 
5534 none:
5535 	/* re-enable interrupts here since we don't have anything to service. */
5536 	/* only Re-enable if disabled by irq */
5537 	if (test_bit(S_INT_ENABLED, &il->status))
5538 		il_enable_interrupts(il);
5539 	spin_unlock_irqrestore(&il->lock, flags);
5540 	return IRQ_NONE;
5541 }
5542 EXPORT_SYMBOL(il_isr);
5543 
5544 /*
5545  *  il_tx_cmd_protection: Set rts/cts. 3945 and 4965 only share this
5546  *  function.
5547  */
5548 void
5549 il_tx_cmd_protection(struct il_priv *il, struct ieee80211_tx_info *info,
5550 		     __le16 fc, __le32 *tx_flags)
5551 {
5552 	if (info->control.rates[0].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
5553 		*tx_flags |= TX_CMD_FLG_RTS_MSK;
5554 		*tx_flags &= ~TX_CMD_FLG_CTS_MSK;
5555 		*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5556 
5557 		if (!ieee80211_is_mgmt(fc))
5558 			return;
5559 
5560 		switch (fc & cpu_to_le16(IEEE80211_FCTL_STYPE)) {
5561 		case cpu_to_le16(IEEE80211_STYPE_AUTH):
5562 		case cpu_to_le16(IEEE80211_STYPE_DEAUTH):
5563 		case cpu_to_le16(IEEE80211_STYPE_ASSOC_REQ):
5564 		case cpu_to_le16(IEEE80211_STYPE_REASSOC_REQ):
5565 			*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5566 			*tx_flags |= TX_CMD_FLG_CTS_MSK;
5567 			break;
5568 		}
5569 	} else if (info->control.rates[0].
5570 		   flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
5571 		*tx_flags &= ~TX_CMD_FLG_RTS_MSK;
5572 		*tx_flags |= TX_CMD_FLG_CTS_MSK;
5573 		*tx_flags |= TX_CMD_FLG_FULL_TXOP_PROT_MSK;
5574 	}
5575 }
5576 EXPORT_SYMBOL(il_tx_cmd_protection);
5577