xref: /openbmc/linux/drivers/net/wireless/broadcom/brcm80211/brcmfmac/chip.c (revision 8d59a64cbec8cebf2e1ec9977de4f67fc7341dc6)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (c) 2014 Broadcom Corporation
4  */
5 #include <linux/kernel.h>
6 #include <linux/delay.h>
7 #include <linux/list.h>
8 #include <linux/ssb/ssb_regs.h>
9 #include <linux/bcma/bcma.h>
10 #include <linux/bcma/bcma_regs.h>
11 
12 #include <defs.h>
13 #include <soc.h>
14 #include <brcm_hw_ids.h>
15 #include <brcmu_utils.h>
16 #include <chipcommon.h>
17 #include "debug.h"
18 #include "chip.h"
19 
20 /* SOC Interconnect types (aka chip types) */
21 #define SOCI_SB		0
22 #define SOCI_AI		1
23 
24 /* PL-368 DMP definitions */
25 #define DMP_DESC_TYPE_MSK	0x0000000F
26 #define  DMP_DESC_EMPTY		0x00000000
27 #define  DMP_DESC_VALID		0x00000001
28 #define  DMP_DESC_COMPONENT	0x00000001
29 #define  DMP_DESC_MASTER_PORT	0x00000003
30 #define  DMP_DESC_ADDRESS	0x00000005
31 #define  DMP_DESC_ADDRSIZE_GT32	0x00000008
32 #define  DMP_DESC_EOT		0x0000000F
33 
34 #define DMP_COMP_DESIGNER	0xFFF00000
35 #define DMP_COMP_DESIGNER_S	20
36 #define DMP_COMP_PARTNUM	0x000FFF00
37 #define DMP_COMP_PARTNUM_S	8
38 #define DMP_COMP_CLASS		0x000000F0
39 #define DMP_COMP_CLASS_S	4
40 #define DMP_COMP_REVISION	0xFF000000
41 #define DMP_COMP_REVISION_S	24
42 #define DMP_COMP_NUM_SWRAP	0x00F80000
43 #define DMP_COMP_NUM_SWRAP_S	19
44 #define DMP_COMP_NUM_MWRAP	0x0007C000
45 #define DMP_COMP_NUM_MWRAP_S	14
46 #define DMP_COMP_NUM_SPORT	0x00003E00
47 #define DMP_COMP_NUM_SPORT_S	9
48 #define DMP_COMP_NUM_MPORT	0x000001F0
49 #define DMP_COMP_NUM_MPORT_S	4
50 
51 #define DMP_MASTER_PORT_UID	0x0000FF00
52 #define DMP_MASTER_PORT_UID_S	8
53 #define DMP_MASTER_PORT_NUM	0x000000F0
54 #define DMP_MASTER_PORT_NUM_S	4
55 
56 #define DMP_SLAVE_ADDR_BASE	0xFFFFF000
57 #define DMP_SLAVE_ADDR_BASE_S	12
58 #define DMP_SLAVE_PORT_NUM	0x00000F00
59 #define DMP_SLAVE_PORT_NUM_S	8
60 #define DMP_SLAVE_TYPE		0x000000C0
61 #define DMP_SLAVE_TYPE_S	6
62 #define  DMP_SLAVE_TYPE_SLAVE	0
63 #define  DMP_SLAVE_TYPE_BRIDGE	1
64 #define  DMP_SLAVE_TYPE_SWRAP	2
65 #define  DMP_SLAVE_TYPE_MWRAP	3
66 #define DMP_SLAVE_SIZE_TYPE	0x00000030
67 #define DMP_SLAVE_SIZE_TYPE_S	4
68 #define  DMP_SLAVE_SIZE_4K	0
69 #define  DMP_SLAVE_SIZE_8K	1
70 #define  DMP_SLAVE_SIZE_16K	2
71 #define  DMP_SLAVE_SIZE_DESC	3
72 
73 /* EROM CompIdentB */
74 #define CIB_REV_MASK		0xff000000
75 #define CIB_REV_SHIFT		24
76 
77 /* ARM CR4 core specific control flag bits */
78 #define ARMCR4_BCMA_IOCTL_CPUHALT	0x0020
79 
80 /* D11 core specific control flag bits */
81 #define D11_BCMA_IOCTL_PHYCLOCKEN	0x0004
82 #define D11_BCMA_IOCTL_PHYRESET		0x0008
83 
84 /* chip core base & ramsize */
85 /* bcm4329 */
86 /* SDIO device core, ID 0x829 */
87 #define BCM4329_CORE_BUS_BASE		0x18011000
88 /* internal memory core, ID 0x80e */
89 #define BCM4329_CORE_SOCRAM_BASE	0x18003000
90 /* ARM Cortex M3 core, ID 0x82a */
91 #define BCM4329_CORE_ARM_BASE		0x18002000
92 
93 /* Max possibly supported memory size (limited by IO mapped memory) */
94 #define BRCMF_CHIP_MAX_MEMSIZE		(4 * 1024 * 1024)
95 
96 #define CORE_SB(base, field) \
97 		(base + SBCONFIGOFF + offsetof(struct sbconfig, field))
98 #define	SBCOREREV(sbidh) \
99 	((((sbidh) & SSB_IDHIGH_RCHI) >> SSB_IDHIGH_RCHI_SHIFT) | \
100 	  ((sbidh) & SSB_IDHIGH_RCLO))
101 
102 struct sbconfig {
103 	u32 PAD[2];
104 	u32 sbipsflag;	/* initiator port ocp slave flag */
105 	u32 PAD[3];
106 	u32 sbtpsflag;	/* target port ocp slave flag */
107 	u32 PAD[11];
108 	u32 sbtmerrloga;	/* (sonics >= 2.3) */
109 	u32 PAD;
110 	u32 sbtmerrlog;	/* (sonics >= 2.3) */
111 	u32 PAD[3];
112 	u32 sbadmatch3;	/* address match3 */
113 	u32 PAD;
114 	u32 sbadmatch2;	/* address match2 */
115 	u32 PAD;
116 	u32 sbadmatch1;	/* address match1 */
117 	u32 PAD[7];
118 	u32 sbimstate;	/* initiator agent state */
119 	u32 sbintvec;	/* interrupt mask */
120 	u32 sbtmstatelow;	/* target state */
121 	u32 sbtmstatehigh;	/* target state */
122 	u32 sbbwa0;		/* bandwidth allocation table0 */
123 	u32 PAD;
124 	u32 sbimconfiglow;	/* initiator configuration */
125 	u32 sbimconfighigh;	/* initiator configuration */
126 	u32 sbadmatch0;	/* address match0 */
127 	u32 PAD;
128 	u32 sbtmconfiglow;	/* target configuration */
129 	u32 sbtmconfighigh;	/* target configuration */
130 	u32 sbbconfig;	/* broadcast configuration */
131 	u32 PAD;
132 	u32 sbbstate;	/* broadcast state */
133 	u32 PAD[3];
134 	u32 sbactcnfg;	/* activate configuration */
135 	u32 PAD[3];
136 	u32 sbflagst;	/* current sbflags */
137 	u32 PAD[3];
138 	u32 sbidlow;		/* identification */
139 	u32 sbidhigh;	/* identification */
140 };
141 
142 #define INVALID_RAMBASE			((u32)(~0))
143 
144 /* bankidx and bankinfo reg defines corerev >= 8 */
145 #define SOCRAM_BANKINFO_RETNTRAM_MASK	0x00010000
146 #define SOCRAM_BANKINFO_SZMASK		0x0000007f
147 #define SOCRAM_BANKIDX_ROM_MASK		0x00000100
148 
149 #define SOCRAM_BANKIDX_MEMTYPE_SHIFT	8
150 /* socram bankinfo memtype */
151 #define SOCRAM_MEMTYPE_RAM		0
152 #define SOCRAM_MEMTYPE_R0M		1
153 #define SOCRAM_MEMTYPE_DEVRAM		2
154 
155 #define SOCRAM_BANKINFO_SZBASE		8192
156 #define SRCI_LSS_MASK		0x00f00000
157 #define SRCI_LSS_SHIFT		20
158 #define	SRCI_SRNB_MASK		0xf0
159 #define	SRCI_SRNB_MASK_EXT	0x100
160 #define	SRCI_SRNB_SHIFT		4
161 #define	SRCI_SRBSZ_MASK		0xf
162 #define	SRCI_SRBSZ_SHIFT	0
163 #define SR_BSZ_BASE		14
164 
165 struct sbsocramregs {
166 	u32 coreinfo;
167 	u32 bwalloc;
168 	u32 extracoreinfo;
169 	u32 biststat;
170 	u32 bankidx;
171 	u32 standbyctrl;
172 
173 	u32 errlogstatus;	/* rev 6 */
174 	u32 errlogaddr;	/* rev 6 */
175 	/* used for patching rev 3 & 5 */
176 	u32 cambankidx;
177 	u32 cambankstandbyctrl;
178 	u32 cambankpatchctrl;
179 	u32 cambankpatchtblbaseaddr;
180 	u32 cambankcmdreg;
181 	u32 cambankdatareg;
182 	u32 cambankmaskreg;
183 	u32 PAD[1];
184 	u32 bankinfo;	/* corev 8 */
185 	u32 bankpda;
186 	u32 PAD[14];
187 	u32 extmemconfig;
188 	u32 extmemparitycsr;
189 	u32 extmemparityerrdata;
190 	u32 extmemparityerrcnt;
191 	u32 extmemwrctrlandsize;
192 	u32 PAD[84];
193 	u32 workaround;
194 	u32 pwrctl;		/* corerev >= 2 */
195 	u32 PAD[133];
196 	u32 sr_control;     /* corerev >= 15 */
197 	u32 sr_status;      /* corerev >= 15 */
198 	u32 sr_address;     /* corerev >= 15 */
199 	u32 sr_data;        /* corerev >= 15 */
200 };
201 
202 #define SOCRAMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
203 #define SYSMEMREGOFFS(_f)	offsetof(struct sbsocramregs, _f)
204 
205 #define ARMCR4_CAP		(0x04)
206 #define ARMCR4_BANKIDX		(0x40)
207 #define ARMCR4_BANKINFO		(0x44)
208 #define ARMCR4_BANKPDA		(0x4C)
209 
210 #define	ARMCR4_TCBBNB_MASK	0xf0
211 #define	ARMCR4_TCBBNB_SHIFT	4
212 #define	ARMCR4_TCBANB_MASK	0xf
213 #define	ARMCR4_TCBANB_SHIFT	0
214 
215 #define	ARMCR4_BSZ_MASK		0x7f
216 #define	ARMCR4_BSZ_MULT		8192
217 #define	ARMCR4_BLK_1K_MASK	0x200
218 
219 struct brcmf_core_priv {
220 	struct brcmf_core pub;
221 	u32 wrapbase;
222 	struct list_head list;
223 	struct brcmf_chip_priv *chip;
224 };
225 
226 struct brcmf_chip_priv {
227 	struct brcmf_chip pub;
228 	const struct brcmf_buscore_ops *ops;
229 	void *ctx;
230 	/* assured first core is chipcommon, second core is buscore */
231 	struct list_head cores;
232 	u16 num_cores;
233 
234 	bool (*iscoreup)(struct brcmf_core_priv *core);
235 	void (*coredisable)(struct brcmf_core_priv *core, u32 prereset,
236 			    u32 reset);
237 	void (*resetcore)(struct brcmf_core_priv *core, u32 prereset, u32 reset,
238 			  u32 postreset);
239 };
240 
241 static void brcmf_chip_sb_corerev(struct brcmf_chip_priv *ci,
242 				  struct brcmf_core *core)
243 {
244 	u32 regdata;
245 
246 	regdata = ci->ops->read32(ci->ctx, CORE_SB(core->base, sbidhigh));
247 	core->rev = SBCOREREV(regdata);
248 }
249 
250 static bool brcmf_chip_sb_iscoreup(struct brcmf_core_priv *core)
251 {
252 	struct brcmf_chip_priv *ci;
253 	u32 regdata;
254 	u32 address;
255 
256 	ci = core->chip;
257 	address = CORE_SB(core->pub.base, sbtmstatelow);
258 	regdata = ci->ops->read32(ci->ctx, address);
259 	regdata &= (SSB_TMSLOW_RESET | SSB_TMSLOW_REJECT |
260 		    SSB_IMSTATE_REJECT | SSB_TMSLOW_CLOCK);
261 	return SSB_TMSLOW_CLOCK == regdata;
262 }
263 
264 static bool brcmf_chip_ai_iscoreup(struct brcmf_core_priv *core)
265 {
266 	struct brcmf_chip_priv *ci;
267 	u32 regdata;
268 	bool ret;
269 
270 	ci = core->chip;
271 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
272 	ret = (regdata & (BCMA_IOCTL_FGC | BCMA_IOCTL_CLK)) == BCMA_IOCTL_CLK;
273 
274 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
275 	ret = ret && ((regdata & BCMA_RESET_CTL_RESET) == 0);
276 
277 	return ret;
278 }
279 
280 static void brcmf_chip_sb_coredisable(struct brcmf_core_priv *core,
281 				      u32 prereset, u32 reset)
282 {
283 	struct brcmf_chip_priv *ci;
284 	u32 val, base;
285 
286 	ci = core->chip;
287 	base = core->pub.base;
288 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
289 	if (val & SSB_TMSLOW_RESET)
290 		return;
291 
292 	val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
293 	if ((val & SSB_TMSLOW_CLOCK) != 0) {
294 		/*
295 		 * set target reject and spin until busy is clear
296 		 * (preserve core-specific bits)
297 		 */
298 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
299 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
300 					 val | SSB_TMSLOW_REJECT);
301 
302 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
303 		udelay(1);
304 		SPINWAIT((ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh))
305 			  & SSB_TMSHIGH_BUSY), 100000);
306 
307 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
308 		if (val & SSB_TMSHIGH_BUSY)
309 			brcmf_err("core state still busy\n");
310 
311 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
312 		if (val & SSB_IDLOW_INITIATOR) {
313 			val = ci->ops->read32(ci->ctx,
314 					      CORE_SB(base, sbimstate));
315 			val |= SSB_IMSTATE_REJECT;
316 			ci->ops->write32(ci->ctx,
317 					 CORE_SB(base, sbimstate), val);
318 			val = ci->ops->read32(ci->ctx,
319 					      CORE_SB(base, sbimstate));
320 			udelay(1);
321 			SPINWAIT((ci->ops->read32(ci->ctx,
322 						  CORE_SB(base, sbimstate)) &
323 				  SSB_IMSTATE_BUSY), 100000);
324 		}
325 
326 		/* set reset and reject while enabling the clocks */
327 		val = SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
328 		      SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET;
329 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow), val);
330 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
331 		udelay(10);
332 
333 		/* clear the initiator reject bit */
334 		val = ci->ops->read32(ci->ctx, CORE_SB(base, sbidlow));
335 		if (val & SSB_IDLOW_INITIATOR) {
336 			val = ci->ops->read32(ci->ctx,
337 					      CORE_SB(base, sbimstate));
338 			val &= ~SSB_IMSTATE_REJECT;
339 			ci->ops->write32(ci->ctx,
340 					 CORE_SB(base, sbimstate), val);
341 		}
342 	}
343 
344 	/* leave reset and reject asserted */
345 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
346 			 (SSB_TMSLOW_REJECT | SSB_TMSLOW_RESET));
347 	udelay(1);
348 }
349 
350 static void brcmf_chip_ai_coredisable(struct brcmf_core_priv *core,
351 				      u32 prereset, u32 reset)
352 {
353 	struct brcmf_chip_priv *ci;
354 	u32 regdata;
355 
356 	ci = core->chip;
357 
358 	/* if core is already in reset, skip reset */
359 	regdata = ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL);
360 	if ((regdata & BCMA_RESET_CTL_RESET) != 0)
361 		goto in_reset_configure;
362 
363 	/* configure reset */
364 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
365 			 prereset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
366 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
367 
368 	/* put in reset */
369 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL,
370 			 BCMA_RESET_CTL_RESET);
371 	usleep_range(10, 20);
372 
373 	/* wait till reset is 1 */
374 	SPINWAIT(ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) !=
375 		 BCMA_RESET_CTL_RESET, 300);
376 
377 in_reset_configure:
378 	/* in-reset configure */
379 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
380 			 reset | BCMA_IOCTL_FGC | BCMA_IOCTL_CLK);
381 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
382 }
383 
384 static void brcmf_chip_sb_resetcore(struct brcmf_core_priv *core, u32 prereset,
385 				    u32 reset, u32 postreset)
386 {
387 	struct brcmf_chip_priv *ci;
388 	u32 regdata;
389 	u32 base;
390 
391 	ci = core->chip;
392 	base = core->pub.base;
393 	/*
394 	 * Must do the disable sequence first to work for
395 	 * arbitrary current core state.
396 	 */
397 	brcmf_chip_sb_coredisable(core, 0, 0);
398 
399 	/*
400 	 * Now do the initialization sequence.
401 	 * set reset while enabling the clock and
402 	 * forcing them on throughout the core
403 	 */
404 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
405 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK |
406 			 SSB_TMSLOW_RESET);
407 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
408 	udelay(1);
409 
410 	/* clear any serror */
411 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatehigh));
412 	if (regdata & SSB_TMSHIGH_SERR)
413 		ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatehigh), 0);
414 
415 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbimstate));
416 	if (regdata & (SSB_IMSTATE_IBE | SSB_IMSTATE_TO)) {
417 		regdata &= ~(SSB_IMSTATE_IBE | SSB_IMSTATE_TO);
418 		ci->ops->write32(ci->ctx, CORE_SB(base, sbimstate), regdata);
419 	}
420 
421 	/* clear reset and allow it to propagate throughout the core */
422 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
423 			 SSB_TMSLOW_FGC | SSB_TMSLOW_CLOCK);
424 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
425 	udelay(1);
426 
427 	/* leave clock enabled */
428 	ci->ops->write32(ci->ctx, CORE_SB(base, sbtmstatelow),
429 			 SSB_TMSLOW_CLOCK);
430 	regdata = ci->ops->read32(ci->ctx, CORE_SB(base, sbtmstatelow));
431 	udelay(1);
432 }
433 
434 static void brcmf_chip_ai_resetcore(struct brcmf_core_priv *core, u32 prereset,
435 				    u32 reset, u32 postreset)
436 {
437 	struct brcmf_chip_priv *ci;
438 	int count;
439 	struct brcmf_core *d11core2 = NULL;
440 	struct brcmf_core_priv *d11priv2 = NULL;
441 
442 	ci = core->chip;
443 
444 	/* special handle two D11 cores reset */
445 	if (core->pub.id == BCMA_CORE_80211) {
446 		d11core2 = brcmf_chip_get_d11core(&ci->pub, 1);
447 		if (d11core2) {
448 			brcmf_dbg(INFO, "found two d11 cores, reset both\n");
449 			d11priv2 = container_of(d11core2,
450 						struct brcmf_core_priv, pub);
451 		}
452 	}
453 
454 	/* must disable first to work for arbitrary current core state */
455 	brcmf_chip_ai_coredisable(core, prereset, reset);
456 	if (d11priv2)
457 		brcmf_chip_ai_coredisable(d11priv2, prereset, reset);
458 
459 	count = 0;
460 	while (ci->ops->read32(ci->ctx, core->wrapbase + BCMA_RESET_CTL) &
461 	       BCMA_RESET_CTL_RESET) {
462 		ci->ops->write32(ci->ctx, core->wrapbase + BCMA_RESET_CTL, 0);
463 		count++;
464 		if (count > 50)
465 			break;
466 		usleep_range(40, 60);
467 	}
468 
469 	if (d11priv2) {
470 		count = 0;
471 		while (ci->ops->read32(ci->ctx,
472 				       d11priv2->wrapbase + BCMA_RESET_CTL) &
473 				       BCMA_RESET_CTL_RESET) {
474 			ci->ops->write32(ci->ctx,
475 					 d11priv2->wrapbase + BCMA_RESET_CTL,
476 					 0);
477 			count++;
478 			if (count > 50)
479 				break;
480 			usleep_range(40, 60);
481 		}
482 	}
483 
484 	ci->ops->write32(ci->ctx, core->wrapbase + BCMA_IOCTL,
485 			 postreset | BCMA_IOCTL_CLK);
486 	ci->ops->read32(ci->ctx, core->wrapbase + BCMA_IOCTL);
487 
488 	if (d11priv2) {
489 		ci->ops->write32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL,
490 				 postreset | BCMA_IOCTL_CLK);
491 		ci->ops->read32(ci->ctx, d11priv2->wrapbase + BCMA_IOCTL);
492 	}
493 }
494 
495 char *brcmf_chip_name(u32 id, u32 rev, char *buf, uint len)
496 {
497 	const char *fmt;
498 
499 	fmt = ((id > 0xa000) || (id < 0x4000)) ? "BCM%d/%u" : "BCM%x/%u";
500 	snprintf(buf, len, fmt, id, rev);
501 	return buf;
502 }
503 
504 static struct brcmf_core *brcmf_chip_add_core(struct brcmf_chip_priv *ci,
505 					      u16 coreid, u32 base,
506 					      u32 wrapbase)
507 {
508 	struct brcmf_core_priv *core;
509 
510 	core = kzalloc(sizeof(*core), GFP_KERNEL);
511 	if (!core)
512 		return ERR_PTR(-ENOMEM);
513 
514 	core->pub.id = coreid;
515 	core->pub.base = base;
516 	core->chip = ci;
517 	core->wrapbase = wrapbase;
518 
519 	list_add_tail(&core->list, &ci->cores);
520 	return &core->pub;
521 }
522 
523 /* safety check for chipinfo */
524 static int brcmf_chip_cores_check(struct brcmf_chip_priv *ci)
525 {
526 	struct brcmf_core_priv *core;
527 	bool need_socram = false;
528 	bool has_socram = false;
529 	bool cpu_found = false;
530 	int idx = 1;
531 
532 	list_for_each_entry(core, &ci->cores, list) {
533 		brcmf_dbg(INFO, " [%-2d] core 0x%x:%-3d base 0x%08x wrap 0x%08x\n",
534 			  idx++, core->pub.id, core->pub.rev, core->pub.base,
535 			  core->wrapbase);
536 
537 		switch (core->pub.id) {
538 		case BCMA_CORE_ARM_CM3:
539 			cpu_found = true;
540 			need_socram = true;
541 			break;
542 		case BCMA_CORE_INTERNAL_MEM:
543 			has_socram = true;
544 			break;
545 		case BCMA_CORE_ARM_CR4:
546 			cpu_found = true;
547 			break;
548 		case BCMA_CORE_ARM_CA7:
549 			cpu_found = true;
550 			break;
551 		default:
552 			break;
553 		}
554 	}
555 
556 	if (!cpu_found) {
557 		brcmf_err("CPU core not detected\n");
558 		return -ENXIO;
559 	}
560 	/* check RAM core presence for ARM CM3 core */
561 	if (need_socram && !has_socram) {
562 		brcmf_err("RAM core not provided with ARM CM3 core\n");
563 		return -ENODEV;
564 	}
565 	return 0;
566 }
567 
568 static u32 brcmf_chip_core_read32(struct brcmf_core_priv *core, u16 reg)
569 {
570 	return core->chip->ops->read32(core->chip->ctx, core->pub.base + reg);
571 }
572 
573 static void brcmf_chip_core_write32(struct brcmf_core_priv *core,
574 				    u16 reg, u32 val)
575 {
576 	core->chip->ops->write32(core->chip->ctx, core->pub.base + reg, val);
577 }
578 
579 static bool brcmf_chip_socram_banksize(struct brcmf_core_priv *core, u8 idx,
580 				       u32 *banksize)
581 {
582 	u32 bankinfo;
583 	u32 bankidx = (SOCRAM_MEMTYPE_RAM << SOCRAM_BANKIDX_MEMTYPE_SHIFT);
584 
585 	bankidx |= idx;
586 	brcmf_chip_core_write32(core, SOCRAMREGOFFS(bankidx), bankidx);
587 	bankinfo = brcmf_chip_core_read32(core, SOCRAMREGOFFS(bankinfo));
588 	*banksize = (bankinfo & SOCRAM_BANKINFO_SZMASK) + 1;
589 	*banksize *= SOCRAM_BANKINFO_SZBASE;
590 	return !!(bankinfo & SOCRAM_BANKINFO_RETNTRAM_MASK);
591 }
592 
593 static void brcmf_chip_socram_ramsize(struct brcmf_core_priv *sr, u32 *ramsize,
594 				      u32 *srsize)
595 {
596 	u32 coreinfo;
597 	uint nb, banksize, lss;
598 	bool retent;
599 	int i;
600 
601 	*ramsize = 0;
602 	*srsize = 0;
603 
604 	if (WARN_ON(sr->pub.rev < 4))
605 		return;
606 
607 	if (!brcmf_chip_iscoreup(&sr->pub))
608 		brcmf_chip_resetcore(&sr->pub, 0, 0, 0);
609 
610 	/* Get info for determining size */
611 	coreinfo = brcmf_chip_core_read32(sr, SOCRAMREGOFFS(coreinfo));
612 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
613 
614 	if ((sr->pub.rev <= 7) || (sr->pub.rev == 12)) {
615 		banksize = (coreinfo & SRCI_SRBSZ_MASK);
616 		lss = (coreinfo & SRCI_LSS_MASK) >> SRCI_LSS_SHIFT;
617 		if (lss != 0)
618 			nb--;
619 		*ramsize = nb * (1 << (banksize + SR_BSZ_BASE));
620 		if (lss != 0)
621 			*ramsize += (1 << ((lss - 1) + SR_BSZ_BASE));
622 	} else {
623 		/* length of SRAM Banks increased for corerev greater than 23 */
624 		if (sr->pub.rev >= 23) {
625 			nb = (coreinfo & (SRCI_SRNB_MASK | SRCI_SRNB_MASK_EXT))
626 				>> SRCI_SRNB_SHIFT;
627 		} else {
628 			nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
629 		}
630 		for (i = 0; i < nb; i++) {
631 			retent = brcmf_chip_socram_banksize(sr, i, &banksize);
632 			*ramsize += banksize;
633 			if (retent)
634 				*srsize += banksize;
635 		}
636 	}
637 
638 	/* hardcoded save&restore memory sizes */
639 	switch (sr->chip->pub.chip) {
640 	case BRCM_CC_4334_CHIP_ID:
641 		if (sr->chip->pub.chiprev < 2)
642 			*srsize = (32 * 1024);
643 		break;
644 	case BRCM_CC_43430_CHIP_ID:
645 	case CY_CC_43439_CHIP_ID:
646 		/* assume sr for now as we can not check
647 		 * firmware sr capability at this point.
648 		 */
649 		*srsize = (64 * 1024);
650 		break;
651 	default:
652 		break;
653 	}
654 }
655 
656 /** Return the SYS MEM size */
657 static u32 brcmf_chip_sysmem_ramsize(struct brcmf_core_priv *sysmem)
658 {
659 	u32 memsize = 0;
660 	u32 coreinfo;
661 	u32 idx;
662 	u32 nb;
663 	u32 banksize;
664 
665 	if (!brcmf_chip_iscoreup(&sysmem->pub))
666 		brcmf_chip_resetcore(&sysmem->pub, 0, 0, 0);
667 
668 	coreinfo = brcmf_chip_core_read32(sysmem, SYSMEMREGOFFS(coreinfo));
669 	nb = (coreinfo & SRCI_SRNB_MASK) >> SRCI_SRNB_SHIFT;
670 
671 	for (idx = 0; idx < nb; idx++) {
672 		brcmf_chip_socram_banksize(sysmem, idx, &banksize);
673 		memsize += banksize;
674 	}
675 
676 	return memsize;
677 }
678 
679 /** Return the TCM-RAM size of the ARMCR4 core. */
680 static u32 brcmf_chip_tcm_ramsize(struct brcmf_core_priv *cr4)
681 {
682 	u32 corecap;
683 	u32 memsize = 0;
684 	u32 nab;
685 	u32 nbb;
686 	u32 totb;
687 	u32 bxinfo;
688 	u32 blksize;
689 	u32 idx;
690 
691 	corecap = brcmf_chip_core_read32(cr4, ARMCR4_CAP);
692 
693 	nab = (corecap & ARMCR4_TCBANB_MASK) >> ARMCR4_TCBANB_SHIFT;
694 	nbb = (corecap & ARMCR4_TCBBNB_MASK) >> ARMCR4_TCBBNB_SHIFT;
695 	totb = nab + nbb;
696 
697 	for (idx = 0; idx < totb; idx++) {
698 		brcmf_chip_core_write32(cr4, ARMCR4_BANKIDX, idx);
699 		bxinfo = brcmf_chip_core_read32(cr4, ARMCR4_BANKINFO);
700 		blksize = ARMCR4_BSZ_MULT;
701 		if (bxinfo & ARMCR4_BLK_1K_MASK)
702 			blksize >>= 3;
703 
704 		memsize += ((bxinfo & ARMCR4_BSZ_MASK) + 1) * blksize;
705 	}
706 
707 	return memsize;
708 }
709 
710 static u32 brcmf_chip_tcm_rambase(struct brcmf_chip_priv *ci)
711 {
712 	switch (ci->pub.chip) {
713 	case BRCM_CC_4345_CHIP_ID:
714 	case BRCM_CC_43454_CHIP_ID:
715 		return 0x198000;
716 	case BRCM_CC_4335_CHIP_ID:
717 	case BRCM_CC_4339_CHIP_ID:
718 	case BRCM_CC_4350_CHIP_ID:
719 	case BRCM_CC_4354_CHIP_ID:
720 	case BRCM_CC_4356_CHIP_ID:
721 	case BRCM_CC_43567_CHIP_ID:
722 	case BRCM_CC_43569_CHIP_ID:
723 	case BRCM_CC_43570_CHIP_ID:
724 	case BRCM_CC_4358_CHIP_ID:
725 	case BRCM_CC_43602_CHIP_ID:
726 	case BRCM_CC_4371_CHIP_ID:
727 		return 0x180000;
728 	case BRCM_CC_43465_CHIP_ID:
729 	case BRCM_CC_43525_CHIP_ID:
730 	case BRCM_CC_4365_CHIP_ID:
731 	case BRCM_CC_4366_CHIP_ID:
732 	case BRCM_CC_43664_CHIP_ID:
733 	case BRCM_CC_43666_CHIP_ID:
734 		return 0x200000;
735 	case BRCM_CC_4355_CHIP_ID:
736 	case BRCM_CC_4359_CHIP_ID:
737 		return (ci->pub.chiprev < 9) ? 0x180000 : 0x160000;
738 	case BRCM_CC_4364_CHIP_ID:
739 	case CY_CC_4373_CHIP_ID:
740 		return 0x160000;
741 	case CY_CC_43752_CHIP_ID:
742 	case BRCM_CC_4377_CHIP_ID:
743 		return 0x170000;
744 	case BRCM_CC_4378_CHIP_ID:
745 		return 0x352000;
746 	case BRCM_CC_4387_CHIP_ID:
747 		return 0x740000;
748 	default:
749 		brcmf_err("unknown chip: %s\n", ci->pub.name);
750 		break;
751 	}
752 	return INVALID_RAMBASE;
753 }
754 
755 int brcmf_chip_get_raminfo(struct brcmf_chip *pub)
756 {
757 	struct brcmf_chip_priv *ci = container_of(pub, struct brcmf_chip_priv,
758 						  pub);
759 	struct brcmf_core_priv *mem_core;
760 	struct brcmf_core *mem;
761 
762 	mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_ARM_CR4);
763 	if (mem) {
764 		mem_core = container_of(mem, struct brcmf_core_priv, pub);
765 		ci->pub.ramsize = brcmf_chip_tcm_ramsize(mem_core);
766 		ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
767 		if (ci->pub.rambase == INVALID_RAMBASE) {
768 			brcmf_err("RAM base not provided with ARM CR4 core\n");
769 			return -EINVAL;
770 		}
771 	} else {
772 		mem = brcmf_chip_get_core(&ci->pub, BCMA_CORE_SYS_MEM);
773 		if (mem) {
774 			mem_core = container_of(mem, struct brcmf_core_priv,
775 						pub);
776 			ci->pub.ramsize = brcmf_chip_sysmem_ramsize(mem_core);
777 			ci->pub.rambase = brcmf_chip_tcm_rambase(ci);
778 			if (ci->pub.rambase == INVALID_RAMBASE) {
779 				brcmf_err("RAM base not provided with ARM CA7 core\n");
780 				return -EINVAL;
781 			}
782 		} else {
783 			mem = brcmf_chip_get_core(&ci->pub,
784 						  BCMA_CORE_INTERNAL_MEM);
785 			if (!mem) {
786 				brcmf_err("No memory cores found\n");
787 				return -ENOMEM;
788 			}
789 			mem_core = container_of(mem, struct brcmf_core_priv,
790 						pub);
791 			brcmf_chip_socram_ramsize(mem_core, &ci->pub.ramsize,
792 						  &ci->pub.srsize);
793 		}
794 	}
795 	brcmf_dbg(INFO, "RAM: base=0x%x size=%d (0x%x) sr=%d (0x%x)\n",
796 		  ci->pub.rambase, ci->pub.ramsize, ci->pub.ramsize,
797 		  ci->pub.srsize, ci->pub.srsize);
798 
799 	if (!ci->pub.ramsize) {
800 		brcmf_err("RAM size is undetermined\n");
801 		return -ENOMEM;
802 	}
803 
804 	if (ci->pub.ramsize > BRCMF_CHIP_MAX_MEMSIZE) {
805 		brcmf_err("RAM size is incorrect\n");
806 		return -ENOMEM;
807 	}
808 
809 	return 0;
810 }
811 
812 static u32 brcmf_chip_dmp_get_desc(struct brcmf_chip_priv *ci, u32 *eromaddr,
813 				   u8 *type)
814 {
815 	u32 val;
816 
817 	/* read next descriptor */
818 	val = ci->ops->read32(ci->ctx, *eromaddr);
819 	*eromaddr += 4;
820 
821 	if (!type)
822 		return val;
823 
824 	/* determine descriptor type */
825 	*type = (val & DMP_DESC_TYPE_MSK);
826 	if ((*type & ~DMP_DESC_ADDRSIZE_GT32) == DMP_DESC_ADDRESS)
827 		*type = DMP_DESC_ADDRESS;
828 
829 	return val;
830 }
831 
832 static int brcmf_chip_dmp_get_regaddr(struct brcmf_chip_priv *ci, u32 *eromaddr,
833 				      u32 *regbase, u32 *wrapbase)
834 {
835 	u8 desc;
836 	u32 val, szdesc;
837 	u8 stype, sztype, wraptype;
838 
839 	*regbase = 0;
840 	*wrapbase = 0;
841 
842 	val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
843 	if (desc == DMP_DESC_MASTER_PORT) {
844 		wraptype = DMP_SLAVE_TYPE_MWRAP;
845 	} else if (desc == DMP_DESC_ADDRESS) {
846 		/* revert erom address */
847 		*eromaddr -= 4;
848 		wraptype = DMP_SLAVE_TYPE_SWRAP;
849 	} else {
850 		*eromaddr -= 4;
851 		return -EILSEQ;
852 	}
853 
854 	do {
855 		/* locate address descriptor */
856 		do {
857 			val = brcmf_chip_dmp_get_desc(ci, eromaddr, &desc);
858 			/* unexpected table end */
859 			if (desc == DMP_DESC_EOT) {
860 				*eromaddr -= 4;
861 				return -EFAULT;
862 			}
863 		} while (desc != DMP_DESC_ADDRESS &&
864 			 desc != DMP_DESC_COMPONENT);
865 
866 		/* stop if we crossed current component border */
867 		if (desc == DMP_DESC_COMPONENT) {
868 			*eromaddr -= 4;
869 			return 0;
870 		}
871 
872 		/* skip upper 32-bit address descriptor */
873 		if (val & DMP_DESC_ADDRSIZE_GT32)
874 			brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
875 
876 		sztype = (val & DMP_SLAVE_SIZE_TYPE) >> DMP_SLAVE_SIZE_TYPE_S;
877 
878 		/* next size descriptor can be skipped */
879 		if (sztype == DMP_SLAVE_SIZE_DESC) {
880 			szdesc = brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
881 			/* skip upper size descriptor if present */
882 			if (szdesc & DMP_DESC_ADDRSIZE_GT32)
883 				brcmf_chip_dmp_get_desc(ci, eromaddr, NULL);
884 		}
885 
886 		/* look for 4K or 8K register regions */
887 		if (sztype != DMP_SLAVE_SIZE_4K &&
888 		    sztype != DMP_SLAVE_SIZE_8K)
889 			continue;
890 
891 		stype = (val & DMP_SLAVE_TYPE) >> DMP_SLAVE_TYPE_S;
892 
893 		/* only regular slave and wrapper */
894 		if (*regbase == 0 && stype == DMP_SLAVE_TYPE_SLAVE)
895 			*regbase = val & DMP_SLAVE_ADDR_BASE;
896 		if (*wrapbase == 0 && stype == wraptype)
897 			*wrapbase = val & DMP_SLAVE_ADDR_BASE;
898 	} while (*regbase == 0 || *wrapbase == 0);
899 
900 	return 0;
901 }
902 
903 static
904 int brcmf_chip_dmp_erom_scan(struct brcmf_chip_priv *ci)
905 {
906 	struct brcmf_core *core;
907 	u32 eromaddr;
908 	u8 desc_type = 0;
909 	u32 val;
910 	u16 id;
911 	u8 nmw, nsw, rev;
912 	u32 base, wrap;
913 	int err;
914 
915 	eromaddr = ci->ops->read32(ci->ctx,
916 				   CORE_CC_REG(ci->pub.enum_base, eromptr));
917 
918 	while (desc_type != DMP_DESC_EOT) {
919 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
920 		if (!(val & DMP_DESC_VALID))
921 			continue;
922 
923 		if (desc_type == DMP_DESC_EMPTY)
924 			continue;
925 
926 		/* need a component descriptor */
927 		if (desc_type != DMP_DESC_COMPONENT)
928 			continue;
929 
930 		id = (val & DMP_COMP_PARTNUM) >> DMP_COMP_PARTNUM_S;
931 
932 		/* next descriptor must be component as well */
933 		val = brcmf_chip_dmp_get_desc(ci, &eromaddr, &desc_type);
934 		if (WARN_ON((val & DMP_DESC_TYPE_MSK) != DMP_DESC_COMPONENT))
935 			return -EFAULT;
936 
937 		/* only look at cores with master port(s) */
938 		nmw = (val & DMP_COMP_NUM_MWRAP) >> DMP_COMP_NUM_MWRAP_S;
939 		nsw = (val & DMP_COMP_NUM_SWRAP) >> DMP_COMP_NUM_SWRAP_S;
940 		rev = (val & DMP_COMP_REVISION) >> DMP_COMP_REVISION_S;
941 
942 		/* need core with ports */
943 		if (nmw + nsw == 0 &&
944 		    id != BCMA_CORE_PMU &&
945 		    id != BCMA_CORE_GCI)
946 			continue;
947 
948 		/* try to obtain register address info */
949 		err = brcmf_chip_dmp_get_regaddr(ci, &eromaddr, &base, &wrap);
950 		if (err)
951 			continue;
952 
953 		/* finally a core to be added */
954 		core = brcmf_chip_add_core(ci, id, base, wrap);
955 		if (IS_ERR(core))
956 			return PTR_ERR(core);
957 
958 		core->rev = rev;
959 	}
960 
961 	return 0;
962 }
963 
964 u32 brcmf_chip_enum_base(u16 devid)
965 {
966 	return SI_ENUM_BASE_DEFAULT;
967 }
968 
969 static int brcmf_chip_recognition(struct brcmf_chip_priv *ci)
970 {
971 	struct brcmf_core *core;
972 	u32 regdata;
973 	u32 socitype;
974 	int ret;
975 	const u32 READ_FAILED = 0xFFFFFFFF;
976 
977 	/* Get CC core rev
978 	 * Chipid is assume to be at offset 0 from SI_ENUM_BASE
979 	 * For different chiptypes or old sdio hosts w/o chipcommon,
980 	 * other ways of recognition should be added here.
981 	 */
982 	regdata = ci->ops->read32(ci->ctx,
983 				  CORE_CC_REG(ci->pub.enum_base, chipid));
984 	if (regdata == READ_FAILED) {
985 		brcmf_err("MMIO read failed: 0x%08x\n", regdata);
986 		return -ENODEV;
987 	}
988 
989 	ci->pub.chip = regdata & CID_ID_MASK;
990 	ci->pub.chiprev = (regdata & CID_REV_MASK) >> CID_REV_SHIFT;
991 	socitype = (regdata & CID_TYPE_MASK) >> CID_TYPE_SHIFT;
992 
993 	brcmf_chip_name(ci->pub.chip, ci->pub.chiprev,
994 			ci->pub.name, sizeof(ci->pub.name));
995 	brcmf_dbg(INFO, "found %s chip: %s\n",
996 		  socitype == SOCI_SB ? "SB" : "AXI", ci->pub.name);
997 
998 	if (socitype == SOCI_SB) {
999 		if (ci->pub.chip != BRCM_CC_4329_CHIP_ID) {
1000 			brcmf_err("SB chip is not supported\n");
1001 			return -ENODEV;
1002 		}
1003 		ci->iscoreup = brcmf_chip_sb_iscoreup;
1004 		ci->coredisable = brcmf_chip_sb_coredisable;
1005 		ci->resetcore = brcmf_chip_sb_resetcore;
1006 
1007 		core = brcmf_chip_add_core(ci, BCMA_CORE_CHIPCOMMON,
1008 					   SI_ENUM_BASE_DEFAULT, 0);
1009 		brcmf_chip_sb_corerev(ci, core);
1010 		core = brcmf_chip_add_core(ci, BCMA_CORE_SDIO_DEV,
1011 					   BCM4329_CORE_BUS_BASE, 0);
1012 		brcmf_chip_sb_corerev(ci, core);
1013 		core = brcmf_chip_add_core(ci, BCMA_CORE_INTERNAL_MEM,
1014 					   BCM4329_CORE_SOCRAM_BASE, 0);
1015 		brcmf_chip_sb_corerev(ci, core);
1016 		core = brcmf_chip_add_core(ci, BCMA_CORE_ARM_CM3,
1017 					   BCM4329_CORE_ARM_BASE, 0);
1018 		brcmf_chip_sb_corerev(ci, core);
1019 
1020 		core = brcmf_chip_add_core(ci, BCMA_CORE_80211, 0x18001000, 0);
1021 		brcmf_chip_sb_corerev(ci, core);
1022 	} else if (socitype == SOCI_AI) {
1023 		ci->iscoreup = brcmf_chip_ai_iscoreup;
1024 		ci->coredisable = brcmf_chip_ai_coredisable;
1025 		ci->resetcore = brcmf_chip_ai_resetcore;
1026 
1027 		brcmf_chip_dmp_erom_scan(ci);
1028 	} else {
1029 		brcmf_err("chip backplane type %u is not supported\n",
1030 			  socitype);
1031 		return -ENODEV;
1032 	}
1033 
1034 	ret = brcmf_chip_cores_check(ci);
1035 	if (ret)
1036 		return ret;
1037 
1038 	/* assure chip is passive for core access */
1039 	brcmf_chip_set_passive(&ci->pub);
1040 
1041 	/* Call bus specific reset function now. Cores have been determined
1042 	 * but further access may require a chip specific reset at this point.
1043 	 */
1044 	if (ci->ops->reset) {
1045 		ci->ops->reset(ci->ctx, &ci->pub);
1046 		brcmf_chip_set_passive(&ci->pub);
1047 	}
1048 
1049 	return brcmf_chip_get_raminfo(&ci->pub);
1050 }
1051 
1052 static void brcmf_chip_disable_arm(struct brcmf_chip_priv *chip, u16 id)
1053 {
1054 	struct brcmf_core *core;
1055 	struct brcmf_core_priv *cpu;
1056 	u32 val;
1057 
1058 
1059 	core = brcmf_chip_get_core(&chip->pub, id);
1060 	if (!core)
1061 		return;
1062 
1063 	switch (id) {
1064 	case BCMA_CORE_ARM_CM3:
1065 		brcmf_chip_coredisable(core, 0, 0);
1066 		break;
1067 	case BCMA_CORE_ARM_CR4:
1068 	case BCMA_CORE_ARM_CA7:
1069 		cpu = container_of(core, struct brcmf_core_priv, pub);
1070 
1071 		/* clear all IOCTL bits except HALT bit */
1072 		val = chip->ops->read32(chip->ctx, cpu->wrapbase + BCMA_IOCTL);
1073 		val &= ARMCR4_BCMA_IOCTL_CPUHALT;
1074 		brcmf_chip_resetcore(core, val, ARMCR4_BCMA_IOCTL_CPUHALT,
1075 				     ARMCR4_BCMA_IOCTL_CPUHALT);
1076 		break;
1077 	default:
1078 		brcmf_err("unknown id: %u\n", id);
1079 		break;
1080 	}
1081 }
1082 
1083 static int brcmf_chip_setup(struct brcmf_chip_priv *chip)
1084 {
1085 	struct brcmf_chip *pub;
1086 	struct brcmf_core_priv *cc;
1087 	struct brcmf_core *pmu;
1088 	u32 base;
1089 	u32 val;
1090 	int ret = 0;
1091 
1092 	pub = &chip->pub;
1093 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1094 	base = cc->pub.base;
1095 
1096 	/* get chipcommon capabilites */
1097 	pub->cc_caps = chip->ops->read32(chip->ctx,
1098 					 CORE_CC_REG(base, capabilities));
1099 	pub->cc_caps_ext = chip->ops->read32(chip->ctx,
1100 					     CORE_CC_REG(base,
1101 							 capabilities_ext));
1102 
1103 	/* get pmu caps & rev */
1104 	pmu = brcmf_chip_get_pmu(pub); /* after reading cc_caps_ext */
1105 	if (pub->cc_caps & CC_CAP_PMU) {
1106 		val = chip->ops->read32(chip->ctx,
1107 					CORE_CC_REG(pmu->base, pmucapabilities));
1108 		pub->pmurev = val & PCAP_REV_MASK;
1109 		pub->pmucaps = val;
1110 	}
1111 
1112 	brcmf_dbg(INFO, "ccrev=%d, pmurev=%d, pmucaps=0x%x\n",
1113 		  cc->pub.rev, pub->pmurev, pub->pmucaps);
1114 
1115 	/* execute bus core specific setup */
1116 	if (chip->ops->setup)
1117 		ret = chip->ops->setup(chip->ctx, pub);
1118 
1119 	return ret;
1120 }
1121 
1122 struct brcmf_chip *brcmf_chip_attach(void *ctx, u16 devid,
1123 				     const struct brcmf_buscore_ops *ops)
1124 {
1125 	struct brcmf_chip_priv *chip;
1126 	int err = 0;
1127 
1128 	if (WARN_ON(!ops->read32))
1129 		err = -EINVAL;
1130 	if (WARN_ON(!ops->write32))
1131 		err = -EINVAL;
1132 	if (WARN_ON(!ops->prepare))
1133 		err = -EINVAL;
1134 	if (WARN_ON(!ops->activate))
1135 		err = -EINVAL;
1136 	if (err < 0)
1137 		return ERR_PTR(-EINVAL);
1138 
1139 	chip = kzalloc(sizeof(*chip), GFP_KERNEL);
1140 	if (!chip)
1141 		return ERR_PTR(-ENOMEM);
1142 
1143 	INIT_LIST_HEAD(&chip->cores);
1144 	chip->num_cores = 0;
1145 	chip->ops = ops;
1146 	chip->ctx = ctx;
1147 	chip->pub.enum_base = brcmf_chip_enum_base(devid);
1148 
1149 	err = ops->prepare(ctx);
1150 	if (err < 0)
1151 		goto fail;
1152 
1153 	err = brcmf_chip_recognition(chip);
1154 	if (err < 0)
1155 		goto fail;
1156 
1157 	err = brcmf_chip_setup(chip);
1158 	if (err < 0)
1159 		goto fail;
1160 
1161 	return &chip->pub;
1162 
1163 fail:
1164 	brcmf_chip_detach(&chip->pub);
1165 	return ERR_PTR(err);
1166 }
1167 
1168 void brcmf_chip_detach(struct brcmf_chip *pub)
1169 {
1170 	struct brcmf_chip_priv *chip;
1171 	struct brcmf_core_priv *core;
1172 	struct brcmf_core_priv *tmp;
1173 
1174 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1175 	list_for_each_entry_safe(core, tmp, &chip->cores, list) {
1176 		list_del(&core->list);
1177 		kfree(core);
1178 	}
1179 	kfree(chip);
1180 }
1181 
1182 struct brcmf_core *brcmf_chip_get_d11core(struct brcmf_chip *pub, u8 unit)
1183 {
1184 	struct brcmf_chip_priv *chip;
1185 	struct brcmf_core_priv *core;
1186 
1187 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1188 	list_for_each_entry(core, &chip->cores, list) {
1189 		if (core->pub.id == BCMA_CORE_80211) {
1190 			if (unit-- == 0)
1191 				return &core->pub;
1192 		}
1193 	}
1194 	return NULL;
1195 }
1196 
1197 struct brcmf_core *brcmf_chip_get_core(struct brcmf_chip *pub, u16 coreid)
1198 {
1199 	struct brcmf_chip_priv *chip;
1200 	struct brcmf_core_priv *core;
1201 
1202 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1203 	list_for_each_entry(core, &chip->cores, list)
1204 		if (core->pub.id == coreid)
1205 			return &core->pub;
1206 
1207 	return NULL;
1208 }
1209 
1210 struct brcmf_core *brcmf_chip_get_chipcommon(struct brcmf_chip *pub)
1211 {
1212 	struct brcmf_chip_priv *chip;
1213 	struct brcmf_core_priv *cc;
1214 
1215 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1216 	cc = list_first_entry(&chip->cores, struct brcmf_core_priv, list);
1217 	if (WARN_ON(!cc || cc->pub.id != BCMA_CORE_CHIPCOMMON))
1218 		return brcmf_chip_get_core(pub, BCMA_CORE_CHIPCOMMON);
1219 	return &cc->pub;
1220 }
1221 
1222 struct brcmf_core *brcmf_chip_get_pmu(struct brcmf_chip *pub)
1223 {
1224 	struct brcmf_core *cc = brcmf_chip_get_chipcommon(pub);
1225 	struct brcmf_core *pmu;
1226 
1227 	/* See if there is separated PMU core available */
1228 	if (cc->rev >= 35 &&
1229 	    pub->cc_caps_ext & BCMA_CC_CAP_EXT_AOB_PRESENT) {
1230 		pmu = brcmf_chip_get_core(pub, BCMA_CORE_PMU);
1231 		if (pmu)
1232 			return pmu;
1233 	}
1234 
1235 	/* Fallback to ChipCommon core for older hardware */
1236 	return cc;
1237 }
1238 
1239 bool brcmf_chip_iscoreup(struct brcmf_core *pub)
1240 {
1241 	struct brcmf_core_priv *core;
1242 
1243 	core = container_of(pub, struct brcmf_core_priv, pub);
1244 	return core->chip->iscoreup(core);
1245 }
1246 
1247 void brcmf_chip_coredisable(struct brcmf_core *pub, u32 prereset, u32 reset)
1248 {
1249 	struct brcmf_core_priv *core;
1250 
1251 	core = container_of(pub, struct brcmf_core_priv, pub);
1252 	core->chip->coredisable(core, prereset, reset);
1253 }
1254 
1255 void brcmf_chip_resetcore(struct brcmf_core *pub, u32 prereset, u32 reset,
1256 			  u32 postreset)
1257 {
1258 	struct brcmf_core_priv *core;
1259 
1260 	core = container_of(pub, struct brcmf_core_priv, pub);
1261 	core->chip->resetcore(core, prereset, reset, postreset);
1262 }
1263 
1264 static void
1265 brcmf_chip_cm3_set_passive(struct brcmf_chip_priv *chip)
1266 {
1267 	struct brcmf_core *core;
1268 	struct brcmf_core_priv *sr;
1269 
1270 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CM3);
1271 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1272 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1273 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1274 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1275 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1276 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1277 	brcmf_chip_resetcore(core, 0, 0, 0);
1278 
1279 	/* disable bank #3 remap for this device */
1280 	if (chip->pub.chip == BRCM_CC_43430_CHIP_ID ||
1281 	    chip->pub.chip == CY_CC_43439_CHIP_ID) {
1282 		sr = container_of(core, struct brcmf_core_priv, pub);
1283 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankidx), 3);
1284 		brcmf_chip_core_write32(sr, SOCRAMREGOFFS(bankpda), 0);
1285 	}
1286 }
1287 
1288 static bool brcmf_chip_cm3_set_active(struct brcmf_chip_priv *chip)
1289 {
1290 	struct brcmf_core *core;
1291 
1292 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_INTERNAL_MEM);
1293 	if (!brcmf_chip_iscoreup(core)) {
1294 		brcmf_err("SOCRAM core is down after reset?\n");
1295 		return false;
1296 	}
1297 
1298 	chip->ops->activate(chip->ctx, &chip->pub, 0);
1299 
1300 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CM3);
1301 	brcmf_chip_resetcore(core, 0, 0, 0);
1302 
1303 	return true;
1304 }
1305 
1306 static inline void
1307 brcmf_chip_cr4_set_passive(struct brcmf_chip_priv *chip)
1308 {
1309 	int i;
1310 	struct brcmf_core *core;
1311 
1312 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CR4);
1313 
1314 	/* Disable the cores only and let the firmware enable them.
1315 	 * Releasing reset ourselves breaks BCM4387 in weird ways.
1316 	 */
1317 	for (i = 0; (core = brcmf_chip_get_d11core(&chip->pub, i)); i++)
1318 		brcmf_chip_coredisable(core, D11_BCMA_IOCTL_PHYRESET |
1319 				       D11_BCMA_IOCTL_PHYCLOCKEN,
1320 				       D11_BCMA_IOCTL_PHYCLOCKEN);
1321 }
1322 
1323 static bool brcmf_chip_cr4_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1324 {
1325 	struct brcmf_core *core;
1326 
1327 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1328 
1329 	/* restore ARM */
1330 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CR4);
1331 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1332 
1333 	return true;
1334 }
1335 
1336 static inline void
1337 brcmf_chip_ca7_set_passive(struct brcmf_chip_priv *chip)
1338 {
1339 	struct brcmf_core *core;
1340 
1341 	brcmf_chip_disable_arm(chip, BCMA_CORE_ARM_CA7);
1342 
1343 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_80211);
1344 	brcmf_chip_resetcore(core, D11_BCMA_IOCTL_PHYRESET |
1345 				   D11_BCMA_IOCTL_PHYCLOCKEN,
1346 			     D11_BCMA_IOCTL_PHYCLOCKEN,
1347 			     D11_BCMA_IOCTL_PHYCLOCKEN);
1348 }
1349 
1350 static bool brcmf_chip_ca7_set_active(struct brcmf_chip_priv *chip, u32 rstvec)
1351 {
1352 	struct brcmf_core *core;
1353 
1354 	chip->ops->activate(chip->ctx, &chip->pub, rstvec);
1355 
1356 	/* restore ARM */
1357 	core = brcmf_chip_get_core(&chip->pub, BCMA_CORE_ARM_CA7);
1358 	brcmf_chip_resetcore(core, ARMCR4_BCMA_IOCTL_CPUHALT, 0, 0);
1359 
1360 	return true;
1361 }
1362 
1363 void brcmf_chip_set_passive(struct brcmf_chip *pub)
1364 {
1365 	struct brcmf_chip_priv *chip;
1366 	struct brcmf_core *arm;
1367 
1368 	brcmf_dbg(TRACE, "Enter\n");
1369 
1370 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1371 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1372 	if (arm) {
1373 		brcmf_chip_cr4_set_passive(chip);
1374 		return;
1375 	}
1376 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1377 	if (arm) {
1378 		brcmf_chip_ca7_set_passive(chip);
1379 		return;
1380 	}
1381 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1382 	if (arm) {
1383 		brcmf_chip_cm3_set_passive(chip);
1384 		return;
1385 	}
1386 }
1387 
1388 bool brcmf_chip_set_active(struct brcmf_chip *pub, u32 rstvec)
1389 {
1390 	struct brcmf_chip_priv *chip;
1391 	struct brcmf_core *arm;
1392 
1393 	brcmf_dbg(TRACE, "Enter\n");
1394 
1395 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1396 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CR4);
1397 	if (arm)
1398 		return brcmf_chip_cr4_set_active(chip, rstvec);
1399 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CA7);
1400 	if (arm)
1401 		return brcmf_chip_ca7_set_active(chip, rstvec);
1402 	arm = brcmf_chip_get_core(pub, BCMA_CORE_ARM_CM3);
1403 	if (arm)
1404 		return brcmf_chip_cm3_set_active(chip);
1405 
1406 	return false;
1407 }
1408 
1409 bool brcmf_chip_sr_capable(struct brcmf_chip *pub)
1410 {
1411 	u32 base, addr, reg, pmu_cc3_mask = ~0;
1412 	struct brcmf_chip_priv *chip;
1413 	struct brcmf_core *pmu = brcmf_chip_get_pmu(pub);
1414 
1415 	brcmf_dbg(TRACE, "Enter\n");
1416 
1417 	/* old chips with PMU version less than 17 don't support save restore */
1418 	if (pub->pmurev < 17)
1419 		return false;
1420 
1421 	base = brcmf_chip_get_chipcommon(pub)->base;
1422 	chip = container_of(pub, struct brcmf_chip_priv, pub);
1423 
1424 	switch (pub->chip) {
1425 	case BRCM_CC_4354_CHIP_ID:
1426 	case BRCM_CC_4356_CHIP_ID:
1427 	case BRCM_CC_4345_CHIP_ID:
1428 	case BRCM_CC_43454_CHIP_ID:
1429 		/* explicitly check SR engine enable bit */
1430 		pmu_cc3_mask = BIT(2);
1431 		fallthrough;
1432 	case BRCM_CC_43241_CHIP_ID:
1433 	case BRCM_CC_4335_CHIP_ID:
1434 	case BRCM_CC_4339_CHIP_ID:
1435 		/* read PMU chipcontrol register 3 */
1436 		addr = CORE_CC_REG(pmu->base, chipcontrol_addr);
1437 		chip->ops->write32(chip->ctx, addr, 3);
1438 		addr = CORE_CC_REG(pmu->base, chipcontrol_data);
1439 		reg = chip->ops->read32(chip->ctx, addr);
1440 		return (reg & pmu_cc3_mask) != 0;
1441 	case BRCM_CC_43430_CHIP_ID:
1442 	case CY_CC_43439_CHIP_ID:
1443 		addr = CORE_CC_REG(base, sr_control1);
1444 		reg = chip->ops->read32(chip->ctx, addr);
1445 		return reg != 0;
1446 	case BRCM_CC_4355_CHIP_ID:
1447 	case CY_CC_4373_CHIP_ID:
1448 		/* explicitly check SR engine enable bit */
1449 		addr = CORE_CC_REG(base, sr_control0);
1450 		reg = chip->ops->read32(chip->ctx, addr);
1451 		return (reg & CC_SR_CTL0_ENABLE_MASK) != 0;
1452 	case BRCM_CC_4359_CHIP_ID:
1453 	case CY_CC_43752_CHIP_ID:
1454 	case CY_CC_43012_CHIP_ID:
1455 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1456 		reg = chip->ops->read32(chip->ctx, addr);
1457 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1458 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1459 	default:
1460 		addr = CORE_CC_REG(pmu->base, pmucapabilities_ext);
1461 		reg = chip->ops->read32(chip->ctx, addr);
1462 		if ((reg & PCAPEXT_SR_SUPPORTED_MASK) == 0)
1463 			return false;
1464 
1465 		addr = CORE_CC_REG(pmu->base, retention_ctl);
1466 		reg = chip->ops->read32(chip->ctx, addr);
1467 		return (reg & (PMU_RCTL_MACPHY_DISABLE_MASK |
1468 			       PMU_RCTL_LOGIC_DISABLE_MASK)) == 0;
1469 	}
1470 }
1471