1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 33 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 34 35 36 static u16 bits_per_symbol[][2] = { 37 /* 20MHz 40MHz */ 38 { 26, 54 }, /* 0: BPSK */ 39 { 52, 108 }, /* 1: QPSK 1/2 */ 40 { 78, 162 }, /* 2: QPSK 3/4 */ 41 { 104, 216 }, /* 3: 16-QAM 1/2 */ 42 { 156, 324 }, /* 4: 16-QAM 3/4 */ 43 { 208, 432 }, /* 5: 64-QAM 2/3 */ 44 { 234, 486 }, /* 6: 64-QAM 3/4 */ 45 { 260, 540 }, /* 7: 64-QAM 5/6 */ 46 }; 47 48 #define IS_HT_RATE(_rate) ((_rate) & 0x80) 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, 52 struct list_head *bf_head); 53 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 54 struct ath_txq *txq, struct list_head *bf_q, 55 struct ath_tx_status *ts, int txok, int sendbar); 56 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 57 struct list_head *head, bool internal); 58 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok, bool update_rc); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 65 enum { 66 MCS_HT20, 67 MCS_HT20_SGI, 68 MCS_HT40, 69 MCS_HT40_SGI, 70 }; 71 72 static int ath_max_4ms_framelen[4][32] = { 73 [MCS_HT20] = { 74 3212, 6432, 9648, 12864, 19300, 25736, 28952, 32172, 75 6424, 12852, 19280, 25708, 38568, 51424, 57852, 64280, 76 9628, 19260, 28896, 38528, 57792, 65532, 65532, 65532, 77 12828, 25656, 38488, 51320, 65532, 65532, 65532, 65532, 78 }, 79 [MCS_HT20_SGI] = { 80 3572, 7144, 10720, 14296, 21444, 28596, 32172, 35744, 81 7140, 14284, 21428, 28568, 42856, 57144, 64288, 65532, 82 10700, 21408, 32112, 42816, 64228, 65532, 65532, 65532, 83 14256, 28516, 42780, 57040, 65532, 65532, 65532, 65532, 84 }, 85 [MCS_HT40] = { 86 6680, 13360, 20044, 26724, 40092, 53456, 60140, 65532, 87 13348, 26700, 40052, 53400, 65532, 65532, 65532, 65532, 88 20004, 40008, 60016, 65532, 65532, 65532, 65532, 65532, 89 26644, 53292, 65532, 65532, 65532, 65532, 65532, 65532, 90 }, 91 [MCS_HT40_SGI] = { 92 7420, 14844, 22272, 29696, 44544, 59396, 65532, 65532, 93 14832, 29668, 44504, 59340, 65532, 65532, 65532, 65532, 94 22232, 44464, 65532, 65532, 65532, 65532, 65532, 65532, 95 29616, 59232, 65532, 65532, 65532, 65532, 65532, 65532, 96 } 97 }; 98 99 /*********************/ 100 /* Aggregation logic */ 101 /*********************/ 102 103 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid) 104 { 105 struct ath_atx_ac *ac = tid->ac; 106 107 if (tid->paused) 108 return; 109 110 if (tid->sched) 111 return; 112 113 tid->sched = true; 114 list_add_tail(&tid->list, &ac->tid_q); 115 116 if (ac->sched) 117 return; 118 119 ac->sched = true; 120 list_add_tail(&ac->list, &txq->axq_acq); 121 } 122 123 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 124 { 125 struct ath_txq *txq = tid->ac->txq; 126 127 WARN_ON(!tid->paused); 128 129 spin_lock_bh(&txq->axq_lock); 130 tid->paused = false; 131 132 if (list_empty(&tid->buf_q)) 133 goto unlock; 134 135 ath_tx_queue_tid(txq, tid); 136 ath_txq_schedule(sc, txq); 137 unlock: 138 spin_unlock_bh(&txq->axq_lock); 139 } 140 141 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 142 { 143 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 144 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 145 sizeof(tx_info->rate_driver_data)); 146 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 147 } 148 149 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 150 { 151 struct ath_txq *txq = tid->ac->txq; 152 struct ath_buf *bf; 153 struct list_head bf_head; 154 struct ath_tx_status ts; 155 struct ath_frame_info *fi; 156 157 INIT_LIST_HEAD(&bf_head); 158 159 memset(&ts, 0, sizeof(ts)); 160 spin_lock_bh(&txq->axq_lock); 161 162 while (!list_empty(&tid->buf_q)) { 163 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 164 list_move_tail(&bf->list, &bf_head); 165 166 spin_unlock_bh(&txq->axq_lock); 167 fi = get_frame_info(bf->bf_mpdu); 168 if (fi->retries) { 169 ath_tx_update_baw(sc, tid, fi->seqno); 170 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 1); 171 } else { 172 ath_tx_send_normal(sc, txq, NULL, &bf_head); 173 } 174 spin_lock_bh(&txq->axq_lock); 175 } 176 177 spin_unlock_bh(&txq->axq_lock); 178 } 179 180 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 181 int seqno) 182 { 183 int index, cindex; 184 185 index = ATH_BA_INDEX(tid->seq_start, seqno); 186 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 187 188 __clear_bit(cindex, tid->tx_buf); 189 190 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 191 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 192 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 193 } 194 } 195 196 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 197 u16 seqno) 198 { 199 int index, cindex; 200 201 index = ATH_BA_INDEX(tid->seq_start, seqno); 202 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 203 __set_bit(cindex, tid->tx_buf); 204 205 if (index >= ((tid->baw_tail - tid->baw_head) & 206 (ATH_TID_MAX_BUFS - 1))) { 207 tid->baw_tail = cindex; 208 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 209 } 210 } 211 212 /* 213 * TODO: For frame(s) that are in the retry state, we will reuse the 214 * sequence number(s) without setting the retry bit. The 215 * alternative is to give up on these and BAR the receiver's window 216 * forward. 217 */ 218 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 219 struct ath_atx_tid *tid) 220 221 { 222 struct ath_buf *bf; 223 struct list_head bf_head; 224 struct ath_tx_status ts; 225 struct ath_frame_info *fi; 226 227 memset(&ts, 0, sizeof(ts)); 228 INIT_LIST_HEAD(&bf_head); 229 230 for (;;) { 231 if (list_empty(&tid->buf_q)) 232 break; 233 234 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 235 list_move_tail(&bf->list, &bf_head); 236 237 fi = get_frame_info(bf->bf_mpdu); 238 if (fi->retries) 239 ath_tx_update_baw(sc, tid, fi->seqno); 240 241 spin_unlock(&txq->axq_lock); 242 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); 243 spin_lock(&txq->axq_lock); 244 } 245 246 tid->seq_next = tid->seq_start; 247 tid->baw_tail = tid->baw_head; 248 } 249 250 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 251 struct sk_buff *skb) 252 { 253 struct ath_frame_info *fi = get_frame_info(skb); 254 struct ieee80211_hdr *hdr; 255 256 TX_STAT_INC(txq->axq_qnum, a_retries); 257 if (fi->retries++ > 0) 258 return; 259 260 hdr = (struct ieee80211_hdr *)skb->data; 261 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 262 } 263 264 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 265 { 266 struct ath_buf *bf = NULL; 267 268 spin_lock_bh(&sc->tx.txbuflock); 269 270 if (unlikely(list_empty(&sc->tx.txbuf))) { 271 spin_unlock_bh(&sc->tx.txbuflock); 272 return NULL; 273 } 274 275 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 276 list_del(&bf->list); 277 278 spin_unlock_bh(&sc->tx.txbuflock); 279 280 return bf; 281 } 282 283 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 284 { 285 spin_lock_bh(&sc->tx.txbuflock); 286 list_add_tail(&bf->list, &sc->tx.txbuf); 287 spin_unlock_bh(&sc->tx.txbuflock); 288 } 289 290 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 291 { 292 struct ath_buf *tbf; 293 294 tbf = ath_tx_get_buffer(sc); 295 if (WARN_ON(!tbf)) 296 return NULL; 297 298 ATH_TXBUF_RESET(tbf); 299 300 tbf->bf_mpdu = bf->bf_mpdu; 301 tbf->bf_buf_addr = bf->bf_buf_addr; 302 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 303 tbf->bf_state = bf->bf_state; 304 305 return tbf; 306 } 307 308 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 309 struct ath_tx_status *ts, int txok, 310 int *nframes, int *nbad) 311 { 312 struct ath_frame_info *fi; 313 u16 seq_st = 0; 314 u32 ba[WME_BA_BMP_SIZE >> 5]; 315 int ba_index; 316 int isaggr = 0; 317 318 *nbad = 0; 319 *nframes = 0; 320 321 isaggr = bf_isaggr(bf); 322 if (isaggr) { 323 seq_st = ts->ts_seqnum; 324 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 325 } 326 327 while (bf) { 328 fi = get_frame_info(bf->bf_mpdu); 329 ba_index = ATH_BA_INDEX(seq_st, fi->seqno); 330 331 (*nframes)++; 332 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 333 (*nbad)++; 334 335 bf = bf->bf_next; 336 } 337 } 338 339 340 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 341 struct ath_buf *bf, struct list_head *bf_q, 342 struct ath_tx_status *ts, int txok, bool retry) 343 { 344 struct ath_node *an = NULL; 345 struct sk_buff *skb; 346 struct ieee80211_sta *sta; 347 struct ieee80211_hw *hw = sc->hw; 348 struct ieee80211_hdr *hdr; 349 struct ieee80211_tx_info *tx_info; 350 struct ath_atx_tid *tid = NULL; 351 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 352 struct list_head bf_head, bf_pending; 353 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0; 354 u32 ba[WME_BA_BMP_SIZE >> 5]; 355 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 356 bool rc_update = true; 357 struct ieee80211_tx_rate rates[4]; 358 struct ath_frame_info *fi; 359 int nframes; 360 u8 tidno; 361 bool clear_filter; 362 363 skb = bf->bf_mpdu; 364 hdr = (struct ieee80211_hdr *)skb->data; 365 366 tx_info = IEEE80211_SKB_CB(skb); 367 368 memcpy(rates, tx_info->control.rates, sizeof(rates)); 369 370 rcu_read_lock(); 371 372 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 373 if (!sta) { 374 rcu_read_unlock(); 375 376 INIT_LIST_HEAD(&bf_head); 377 while (bf) { 378 bf_next = bf->bf_next; 379 380 bf->bf_state.bf_type |= BUF_XRETRY; 381 if (!bf->bf_stale || bf_next != NULL) 382 list_move_tail(&bf->list, &bf_head); 383 384 ath_tx_rc_status(sc, bf, ts, 1, 1, 0, false); 385 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 386 0, 0); 387 388 bf = bf_next; 389 } 390 return; 391 } 392 393 an = (struct ath_node *)sta->drv_priv; 394 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; 395 tid = ATH_AN_2_TID(an, tidno); 396 397 /* 398 * The hardware occasionally sends a tx status for the wrong TID. 399 * In this case, the BA status cannot be considered valid and all 400 * subframes need to be retransmitted 401 */ 402 if (tidno != ts->tid) 403 txok = false; 404 405 isaggr = bf_isaggr(bf); 406 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 407 408 if (isaggr && txok) { 409 if (ts->ts_flags & ATH9K_TX_BA) { 410 seq_st = ts->ts_seqnum; 411 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 412 } else { 413 /* 414 * AR5416 can become deaf/mute when BA 415 * issue happens. Chip needs to be reset. 416 * But AP code may have sychronization issues 417 * when perform internal reset in this routine. 418 * Only enable reset in STA mode for now. 419 */ 420 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 421 needreset = 1; 422 } 423 } 424 425 INIT_LIST_HEAD(&bf_pending); 426 INIT_LIST_HEAD(&bf_head); 427 428 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 429 while (bf) { 430 txfail = txpending = sendbar = 0; 431 bf_next = bf->bf_next; 432 433 skb = bf->bf_mpdu; 434 tx_info = IEEE80211_SKB_CB(skb); 435 fi = get_frame_info(skb); 436 437 if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, fi->seqno))) { 438 /* transmit completion, subframe is 439 * acked by block ack */ 440 acked_cnt++; 441 } else if (!isaggr && txok) { 442 /* transmit completion */ 443 acked_cnt++; 444 } else { 445 if ((tid->state & AGGR_CLEANUP) || !retry) { 446 /* 447 * cleanup in progress, just fail 448 * the un-acked sub-frames 449 */ 450 txfail = 1; 451 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 452 if (!(ts->ts_status & ATH9K_TXERR_FILT) || 453 !an->sleeping) 454 ath_tx_set_retry(sc, txq, bf->bf_mpdu); 455 456 clear_filter = true; 457 txpending = 1; 458 } else { 459 bf->bf_state.bf_type |= BUF_XRETRY; 460 txfail = 1; 461 sendbar = 1; 462 txfail_cnt++; 463 } 464 } 465 466 /* 467 * Make sure the last desc is reclaimed if it 468 * not a holding desc. 469 */ 470 if (!bf_last->bf_stale || bf_next != NULL) 471 list_move_tail(&bf->list, &bf_head); 472 else 473 INIT_LIST_HEAD(&bf_head); 474 475 if (!txpending || (tid->state & AGGR_CLEANUP)) { 476 /* 477 * complete the acked-ones/xretried ones; update 478 * block-ack window 479 */ 480 spin_lock_bh(&txq->axq_lock); 481 ath_tx_update_baw(sc, tid, fi->seqno); 482 spin_unlock_bh(&txq->axq_lock); 483 484 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 485 memcpy(tx_info->control.rates, rates, sizeof(rates)); 486 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, true); 487 rc_update = false; 488 } else { 489 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok, false); 490 } 491 492 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 493 !txfail, sendbar); 494 } else { 495 /* retry the un-acked ones */ 496 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, false); 497 if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) { 498 if (bf->bf_next == NULL && bf_last->bf_stale) { 499 struct ath_buf *tbf; 500 501 tbf = ath_clone_txbuf(sc, bf_last); 502 /* 503 * Update tx baw and complete the 504 * frame with failed status if we 505 * run out of tx buf. 506 */ 507 if (!tbf) { 508 spin_lock_bh(&txq->axq_lock); 509 ath_tx_update_baw(sc, tid, fi->seqno); 510 spin_unlock_bh(&txq->axq_lock); 511 512 bf->bf_state.bf_type |= 513 BUF_XRETRY; 514 ath_tx_rc_status(sc, bf, ts, nframes, 515 nbad, 0, false); 516 ath_tx_complete_buf(sc, bf, txq, 517 &bf_head, 518 ts, 0, 0); 519 break; 520 } 521 522 ath9k_hw_cleartxdesc(sc->sc_ah, 523 tbf->bf_desc); 524 list_add_tail(&tbf->list, &bf_head); 525 } else { 526 /* 527 * Clear descriptor status words for 528 * software retry 529 */ 530 ath9k_hw_cleartxdesc(sc->sc_ah, 531 bf->bf_desc); 532 } 533 } 534 535 /* 536 * Put this buffer to the temporary pending 537 * queue to retain ordering 538 */ 539 list_splice_tail_init(&bf_head, &bf_pending); 540 } 541 542 bf = bf_next; 543 } 544 545 /* prepend un-acked frames to the beginning of the pending frame queue */ 546 if (!list_empty(&bf_pending)) { 547 if (an->sleeping) 548 ieee80211_sta_set_tim(sta); 549 550 spin_lock_bh(&txq->axq_lock); 551 if (clear_filter) 552 tid->ac->clear_ps_filter = true; 553 list_splice(&bf_pending, &tid->buf_q); 554 if (!an->sleeping) 555 ath_tx_queue_tid(txq, tid); 556 spin_unlock_bh(&txq->axq_lock); 557 } 558 559 if (tid->state & AGGR_CLEANUP) { 560 ath_tx_flush_tid(sc, tid); 561 562 if (tid->baw_head == tid->baw_tail) { 563 tid->state &= ~AGGR_ADDBA_COMPLETE; 564 tid->state &= ~AGGR_CLEANUP; 565 } 566 } 567 568 rcu_read_unlock(); 569 570 if (needreset) 571 ath_reset(sc, false); 572 } 573 574 static bool ath_lookup_legacy(struct ath_buf *bf) 575 { 576 struct sk_buff *skb; 577 struct ieee80211_tx_info *tx_info; 578 struct ieee80211_tx_rate *rates; 579 int i; 580 581 skb = bf->bf_mpdu; 582 tx_info = IEEE80211_SKB_CB(skb); 583 rates = tx_info->control.rates; 584 585 for (i = 3; i >= 0; i--) { 586 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 587 return true; 588 } 589 590 return false; 591 } 592 593 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 594 struct ath_atx_tid *tid) 595 { 596 struct sk_buff *skb; 597 struct ieee80211_tx_info *tx_info; 598 struct ieee80211_tx_rate *rates; 599 u32 max_4ms_framelen, frmlen; 600 u16 aggr_limit, legacy = 0; 601 int i; 602 603 skb = bf->bf_mpdu; 604 tx_info = IEEE80211_SKB_CB(skb); 605 rates = tx_info->control.rates; 606 607 /* 608 * Find the lowest frame length among the rate series that will have a 609 * 4ms transmit duration. 610 * TODO - TXOP limit needs to be considered. 611 */ 612 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 613 614 for (i = 0; i < 4; i++) { 615 if (rates[i].count) { 616 int modeidx; 617 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 618 legacy = 1; 619 break; 620 } 621 622 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 623 modeidx = MCS_HT40; 624 else 625 modeidx = MCS_HT20; 626 627 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 628 modeidx++; 629 630 frmlen = ath_max_4ms_framelen[modeidx][rates[i].idx]; 631 max_4ms_framelen = min(max_4ms_framelen, frmlen); 632 } 633 } 634 635 /* 636 * limit aggregate size by the minimum rate if rate selected is 637 * not a probe rate, if rate selected is a probe rate then 638 * avoid aggregation of this packet. 639 */ 640 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 641 return 0; 642 643 if (sc->sc_flags & SC_OP_BT_PRIORITY_DETECTED) 644 aggr_limit = min((max_4ms_framelen * 3) / 8, 645 (u32)ATH_AMPDU_LIMIT_MAX); 646 else 647 aggr_limit = min(max_4ms_framelen, 648 (u32)ATH_AMPDU_LIMIT_MAX); 649 650 /* 651 * h/w can accept aggregates up to 16 bit lengths (65535). 652 * The IE, however can hold up to 65536, which shows up here 653 * as zero. Ignore 65536 since we are constrained by hw. 654 */ 655 if (tid->an->maxampdu) 656 aggr_limit = min(aggr_limit, tid->an->maxampdu); 657 658 return aggr_limit; 659 } 660 661 /* 662 * Returns the number of delimiters to be added to 663 * meet the minimum required mpdudensity. 664 */ 665 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 666 struct ath_buf *bf, u16 frmlen, 667 bool first_subfrm) 668 { 669 #define FIRST_DESC_NDELIMS 60 670 struct sk_buff *skb = bf->bf_mpdu; 671 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 672 u32 nsymbits, nsymbols; 673 u16 minlen; 674 u8 flags, rix; 675 int width, streams, half_gi, ndelim, mindelim; 676 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 677 678 /* Select standard number of delimiters based on frame length alone */ 679 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 680 681 /* 682 * If encryption enabled, hardware requires some more padding between 683 * subframes. 684 * TODO - this could be improved to be dependent on the rate. 685 * The hardware can keep up at lower rates, but not higher rates 686 */ 687 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 688 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 689 ndelim += ATH_AGGR_ENCRYPTDELIM; 690 691 /* 692 * Add delimiter when using RTS/CTS with aggregation 693 * and non enterprise AR9003 card 694 */ 695 if (first_subfrm) 696 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 697 698 /* 699 * Convert desired mpdu density from microeconds to bytes based 700 * on highest rate in rate series (i.e. first rate) to determine 701 * required minimum length for subframe. Take into account 702 * whether high rate is 20 or 40Mhz and half or full GI. 703 * 704 * If there is no mpdu density restriction, no further calculation 705 * is needed. 706 */ 707 708 if (tid->an->mpdudensity == 0) 709 return ndelim; 710 711 rix = tx_info->control.rates[0].idx; 712 flags = tx_info->control.rates[0].flags; 713 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 714 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 715 716 if (half_gi) 717 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 718 else 719 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 720 721 if (nsymbols == 0) 722 nsymbols = 1; 723 724 streams = HT_RC_2_STREAMS(rix); 725 nsymbits = bits_per_symbol[rix % 8][width] * streams; 726 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 727 728 if (frmlen < minlen) { 729 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 730 ndelim = max(mindelim, ndelim); 731 } 732 733 return ndelim; 734 } 735 736 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc, 737 struct ath_txq *txq, 738 struct ath_atx_tid *tid, 739 struct list_head *bf_q, 740 int *aggr_len) 741 { 742 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 743 struct ath_buf *bf, *bf_first, *bf_prev = NULL; 744 int rl = 0, nframes = 0, ndelim, prev_al = 0; 745 u16 aggr_limit = 0, al = 0, bpad = 0, 746 al_delta, h_baw = tid->baw_size / 2; 747 enum ATH_AGGR_STATUS status = ATH_AGGR_DONE; 748 struct ieee80211_tx_info *tx_info; 749 struct ath_frame_info *fi; 750 751 bf_first = list_first_entry(&tid->buf_q, struct ath_buf, list); 752 753 do { 754 bf = list_first_entry(&tid->buf_q, struct ath_buf, list); 755 fi = get_frame_info(bf->bf_mpdu); 756 757 /* do not step over block-ack window */ 758 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno)) { 759 status = ATH_AGGR_BAW_CLOSED; 760 break; 761 } 762 763 if (!rl) { 764 aggr_limit = ath_lookup_rate(sc, bf, tid); 765 rl = 1; 766 } 767 768 /* do not exceed aggregation limit */ 769 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 770 771 if (nframes && 772 ((aggr_limit < (al + bpad + al_delta + prev_al)) || 773 ath_lookup_legacy(bf))) { 774 status = ATH_AGGR_LIMITED; 775 break; 776 } 777 778 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 779 if (nframes && ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 780 !(tx_info->control.rates[0].flags & IEEE80211_TX_RC_MCS))) 781 break; 782 783 /* do not exceed subframe limit */ 784 if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) { 785 status = ATH_AGGR_LIMITED; 786 break; 787 } 788 789 /* add padding for previous frame to aggregation length */ 790 al += bpad + al_delta; 791 792 /* 793 * Get the delimiters needed to meet the MPDU 794 * density for this node. 795 */ 796 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 797 !nframes); 798 bpad = PADBYTES(al_delta) + (ndelim << 2); 799 800 nframes++; 801 bf->bf_next = NULL; 802 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, 0); 803 804 /* link buffers of this frame to the aggregate */ 805 if (!fi->retries) 806 ath_tx_addto_baw(sc, tid, fi->seqno); 807 ath9k_hw_set11n_aggr_middle(sc->sc_ah, bf->bf_desc, ndelim); 808 list_move_tail(&bf->list, bf_q); 809 if (bf_prev) { 810 bf_prev->bf_next = bf; 811 ath9k_hw_set_desc_link(sc->sc_ah, bf_prev->bf_desc, 812 bf->bf_daddr); 813 } 814 bf_prev = bf; 815 816 } while (!list_empty(&tid->buf_q)); 817 818 *aggr_len = al; 819 820 return status; 821 #undef PADBYTES 822 } 823 824 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 825 struct ath_atx_tid *tid) 826 { 827 struct ath_buf *bf; 828 enum ATH_AGGR_STATUS status; 829 struct ath_frame_info *fi; 830 struct list_head bf_q; 831 int aggr_len; 832 833 do { 834 if (list_empty(&tid->buf_q)) 835 return; 836 837 INIT_LIST_HEAD(&bf_q); 838 839 status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len); 840 841 /* 842 * no frames picked up to be aggregated; 843 * block-ack window is not open. 844 */ 845 if (list_empty(&bf_q)) 846 break; 847 848 bf = list_first_entry(&bf_q, struct ath_buf, list); 849 bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list); 850 851 if (tid->ac->clear_ps_filter) { 852 tid->ac->clear_ps_filter = false; 853 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true); 854 } 855 856 /* if only one frame, send as non-aggregate */ 857 if (bf == bf->bf_lastbf) { 858 fi = get_frame_info(bf->bf_mpdu); 859 860 bf->bf_state.bf_type &= ~BUF_AGGR; 861 ath9k_hw_clr11n_aggr(sc->sc_ah, bf->bf_desc); 862 ath_buf_set_rate(sc, bf, fi->framelen); 863 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 864 continue; 865 } 866 867 /* setup first desc of aggregate */ 868 bf->bf_state.bf_type |= BUF_AGGR; 869 ath_buf_set_rate(sc, bf, aggr_len); 870 ath9k_hw_set11n_aggr_first(sc->sc_ah, bf->bf_desc, aggr_len); 871 872 /* anchor last desc of aggregate */ 873 ath9k_hw_set11n_aggr_last(sc->sc_ah, bf->bf_lastbf->bf_desc); 874 875 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 876 TX_STAT_INC(txq->axq_qnum, a_aggr); 877 878 } while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH && 879 status != ATH_AGGR_BAW_CLOSED); 880 } 881 882 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 883 u16 tid, u16 *ssn) 884 { 885 struct ath_atx_tid *txtid; 886 struct ath_node *an; 887 888 an = (struct ath_node *)sta->drv_priv; 889 txtid = ATH_AN_2_TID(an, tid); 890 891 if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE)) 892 return -EAGAIN; 893 894 txtid->state |= AGGR_ADDBA_PROGRESS; 895 txtid->paused = true; 896 *ssn = txtid->seq_start = txtid->seq_next; 897 898 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 899 txtid->baw_head = txtid->baw_tail = 0; 900 901 return 0; 902 } 903 904 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 905 { 906 struct ath_node *an = (struct ath_node *)sta->drv_priv; 907 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 908 struct ath_txq *txq = txtid->ac->txq; 909 910 if (txtid->state & AGGR_CLEANUP) 911 return; 912 913 if (!(txtid->state & AGGR_ADDBA_COMPLETE)) { 914 txtid->state &= ~AGGR_ADDBA_PROGRESS; 915 return; 916 } 917 918 spin_lock_bh(&txq->axq_lock); 919 txtid->paused = true; 920 921 /* 922 * If frames are still being transmitted for this TID, they will be 923 * cleaned up during tx completion. To prevent race conditions, this 924 * TID can only be reused after all in-progress subframes have been 925 * completed. 926 */ 927 if (txtid->baw_head != txtid->baw_tail) 928 txtid->state |= AGGR_CLEANUP; 929 else 930 txtid->state &= ~AGGR_ADDBA_COMPLETE; 931 spin_unlock_bh(&txq->axq_lock); 932 933 ath_tx_flush_tid(sc, txtid); 934 } 935 936 bool ath_tx_aggr_sleep(struct ath_softc *sc, struct ath_node *an) 937 { 938 struct ath_atx_tid *tid; 939 struct ath_atx_ac *ac; 940 struct ath_txq *txq; 941 bool buffered = false; 942 int tidno; 943 944 for (tidno = 0, tid = &an->tid[tidno]; 945 tidno < WME_NUM_TID; tidno++, tid++) { 946 947 if (!tid->sched) 948 continue; 949 950 ac = tid->ac; 951 txq = ac->txq; 952 953 spin_lock_bh(&txq->axq_lock); 954 955 if (!list_empty(&tid->buf_q)) 956 buffered = true; 957 958 tid->sched = false; 959 list_del(&tid->list); 960 961 if (ac->sched) { 962 ac->sched = false; 963 list_del(&ac->list); 964 } 965 966 spin_unlock_bh(&txq->axq_lock); 967 } 968 969 return buffered; 970 } 971 972 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 973 { 974 struct ath_atx_tid *tid; 975 struct ath_atx_ac *ac; 976 struct ath_txq *txq; 977 int tidno; 978 979 for (tidno = 0, tid = &an->tid[tidno]; 980 tidno < WME_NUM_TID; tidno++, tid++) { 981 982 ac = tid->ac; 983 txq = ac->txq; 984 985 spin_lock_bh(&txq->axq_lock); 986 ac->clear_ps_filter = true; 987 988 if (!list_empty(&tid->buf_q) && !tid->paused) { 989 ath_tx_queue_tid(txq, tid); 990 ath_txq_schedule(sc, txq); 991 } 992 993 spin_unlock_bh(&txq->axq_lock); 994 } 995 } 996 997 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 998 { 999 struct ath_atx_tid *txtid; 1000 struct ath_node *an; 1001 1002 an = (struct ath_node *)sta->drv_priv; 1003 1004 if (sc->sc_flags & SC_OP_TXAGGR) { 1005 txtid = ATH_AN_2_TID(an, tid); 1006 txtid->baw_size = 1007 IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1008 txtid->state |= AGGR_ADDBA_COMPLETE; 1009 txtid->state &= ~AGGR_ADDBA_PROGRESS; 1010 ath_tx_resume_tid(sc, txtid); 1011 } 1012 } 1013 1014 /********************/ 1015 /* Queue Management */ 1016 /********************/ 1017 1018 static void ath_txq_drain_pending_buffers(struct ath_softc *sc, 1019 struct ath_txq *txq) 1020 { 1021 struct ath_atx_ac *ac, *ac_tmp; 1022 struct ath_atx_tid *tid, *tid_tmp; 1023 1024 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { 1025 list_del(&ac->list); 1026 ac->sched = false; 1027 list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) { 1028 list_del(&tid->list); 1029 tid->sched = false; 1030 ath_tid_drain(sc, txq, tid); 1031 } 1032 } 1033 } 1034 1035 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1036 { 1037 struct ath_hw *ah = sc->sc_ah; 1038 struct ath_common *common = ath9k_hw_common(ah); 1039 struct ath9k_tx_queue_info qi; 1040 static const int subtype_txq_to_hwq[] = { 1041 [WME_AC_BE] = ATH_TXQ_AC_BE, 1042 [WME_AC_BK] = ATH_TXQ_AC_BK, 1043 [WME_AC_VI] = ATH_TXQ_AC_VI, 1044 [WME_AC_VO] = ATH_TXQ_AC_VO, 1045 }; 1046 int axq_qnum, i; 1047 1048 memset(&qi, 0, sizeof(qi)); 1049 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1050 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1051 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1052 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1053 qi.tqi_physCompBuf = 0; 1054 1055 /* 1056 * Enable interrupts only for EOL and DESC conditions. 1057 * We mark tx descriptors to receive a DESC interrupt 1058 * when a tx queue gets deep; otherwise waiting for the 1059 * EOL to reap descriptors. Note that this is done to 1060 * reduce interrupt load and this only defers reaping 1061 * descriptors, never transmitting frames. Aside from 1062 * reducing interrupts this also permits more concurrency. 1063 * The only potential downside is if the tx queue backs 1064 * up in which case the top half of the kernel may backup 1065 * due to a lack of tx descriptors. 1066 * 1067 * The UAPSD queue is an exception, since we take a desc- 1068 * based intr on the EOSP frames. 1069 */ 1070 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1071 qi.tqi_qflags = TXQ_FLAG_TXOKINT_ENABLE | 1072 TXQ_FLAG_TXERRINT_ENABLE; 1073 } else { 1074 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1075 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1076 else 1077 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1078 TXQ_FLAG_TXDESCINT_ENABLE; 1079 } 1080 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1081 if (axq_qnum == -1) { 1082 /* 1083 * NB: don't print a message, this happens 1084 * normally on parts with too few tx queues 1085 */ 1086 return NULL; 1087 } 1088 if (axq_qnum >= ARRAY_SIZE(sc->tx.txq)) { 1089 ath_err(common, "qnum %u out of range, max %zu!\n", 1090 axq_qnum, ARRAY_SIZE(sc->tx.txq)); 1091 ath9k_hw_releasetxqueue(ah, axq_qnum); 1092 return NULL; 1093 } 1094 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1095 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1096 1097 txq->axq_qnum = axq_qnum; 1098 txq->mac80211_qnum = -1; 1099 txq->axq_link = NULL; 1100 INIT_LIST_HEAD(&txq->axq_q); 1101 INIT_LIST_HEAD(&txq->axq_acq); 1102 spin_lock_init(&txq->axq_lock); 1103 txq->axq_depth = 0; 1104 txq->axq_ampdu_depth = 0; 1105 txq->axq_tx_inprogress = false; 1106 sc->tx.txqsetup |= 1<<axq_qnum; 1107 1108 txq->txq_headidx = txq->txq_tailidx = 0; 1109 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1110 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1111 } 1112 return &sc->tx.txq[axq_qnum]; 1113 } 1114 1115 int ath_txq_update(struct ath_softc *sc, int qnum, 1116 struct ath9k_tx_queue_info *qinfo) 1117 { 1118 struct ath_hw *ah = sc->sc_ah; 1119 int error = 0; 1120 struct ath9k_tx_queue_info qi; 1121 1122 if (qnum == sc->beacon.beaconq) { 1123 /* 1124 * XXX: for beacon queue, we just save the parameter. 1125 * It will be picked up by ath_beaconq_config when 1126 * it's necessary. 1127 */ 1128 sc->beacon.beacon_qi = *qinfo; 1129 return 0; 1130 } 1131 1132 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1133 1134 ath9k_hw_get_txq_props(ah, qnum, &qi); 1135 qi.tqi_aifs = qinfo->tqi_aifs; 1136 qi.tqi_cwmin = qinfo->tqi_cwmin; 1137 qi.tqi_cwmax = qinfo->tqi_cwmax; 1138 qi.tqi_burstTime = qinfo->tqi_burstTime; 1139 qi.tqi_readyTime = qinfo->tqi_readyTime; 1140 1141 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1142 ath_err(ath9k_hw_common(sc->sc_ah), 1143 "Unable to update hardware queue %u!\n", qnum); 1144 error = -EIO; 1145 } else { 1146 ath9k_hw_resettxqueue(ah, qnum); 1147 } 1148 1149 return error; 1150 } 1151 1152 int ath_cabq_update(struct ath_softc *sc) 1153 { 1154 struct ath9k_tx_queue_info qi; 1155 struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf; 1156 int qnum = sc->beacon.cabq->axq_qnum; 1157 1158 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1159 /* 1160 * Ensure the readytime % is within the bounds. 1161 */ 1162 if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND) 1163 sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND; 1164 else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND) 1165 sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND; 1166 1167 qi.tqi_readyTime = (cur_conf->beacon_interval * 1168 sc->config.cabqReadytime) / 100; 1169 ath_txq_update(sc, qnum, &qi); 1170 1171 return 0; 1172 } 1173 1174 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 1175 { 1176 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 1177 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 1178 } 1179 1180 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1181 struct list_head *list, bool retry_tx) 1182 __releases(txq->axq_lock) 1183 __acquires(txq->axq_lock) 1184 { 1185 struct ath_buf *bf, *lastbf; 1186 struct list_head bf_head; 1187 struct ath_tx_status ts; 1188 1189 memset(&ts, 0, sizeof(ts)); 1190 INIT_LIST_HEAD(&bf_head); 1191 1192 while (!list_empty(list)) { 1193 bf = list_first_entry(list, struct ath_buf, list); 1194 1195 if (bf->bf_stale) { 1196 list_del(&bf->list); 1197 1198 ath_tx_return_buffer(sc, bf); 1199 continue; 1200 } 1201 1202 lastbf = bf->bf_lastbf; 1203 list_cut_position(&bf_head, list, &lastbf->list); 1204 1205 txq->axq_depth--; 1206 if (bf_is_ampdu_not_probing(bf)) 1207 txq->axq_ampdu_depth--; 1208 1209 spin_unlock_bh(&txq->axq_lock); 1210 if (bf_isampdu(bf)) 1211 ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0, 1212 retry_tx); 1213 else 1214 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0, 0); 1215 spin_lock_bh(&txq->axq_lock); 1216 } 1217 } 1218 1219 /* 1220 * Drain a given TX queue (could be Beacon or Data) 1221 * 1222 * This assumes output has been stopped and 1223 * we do not need to block ath_tx_tasklet. 1224 */ 1225 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx) 1226 { 1227 spin_lock_bh(&txq->axq_lock); 1228 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1229 int idx = txq->txq_tailidx; 1230 1231 while (!list_empty(&txq->txq_fifo[idx])) { 1232 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx], 1233 retry_tx); 1234 1235 INCR(idx, ATH_TXFIFO_DEPTH); 1236 } 1237 txq->txq_tailidx = idx; 1238 } 1239 1240 txq->axq_link = NULL; 1241 txq->axq_tx_inprogress = false; 1242 ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx); 1243 1244 /* flush any pending frames if aggregation is enabled */ 1245 if ((sc->sc_flags & SC_OP_TXAGGR) && !retry_tx) 1246 ath_txq_drain_pending_buffers(sc, txq); 1247 1248 spin_unlock_bh(&txq->axq_lock); 1249 } 1250 1251 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx) 1252 { 1253 struct ath_hw *ah = sc->sc_ah; 1254 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1255 struct ath_txq *txq; 1256 int i, npend = 0; 1257 1258 if (sc->sc_flags & SC_OP_INVALID) 1259 return true; 1260 1261 ath9k_hw_abort_tx_dma(ah); 1262 1263 /* Check if any queue remains active */ 1264 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1265 if (!ATH_TXQ_SETUP(sc, i)) 1266 continue; 1267 1268 npend += ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum); 1269 } 1270 1271 if (npend) 1272 ath_err(common, "Failed to stop TX DMA!\n"); 1273 1274 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1275 if (!ATH_TXQ_SETUP(sc, i)) 1276 continue; 1277 1278 /* 1279 * The caller will resume queues with ieee80211_wake_queues. 1280 * Mark the queue as not stopped to prevent ath_tx_complete 1281 * from waking the queue too early. 1282 */ 1283 txq = &sc->tx.txq[i]; 1284 txq->stopped = false; 1285 ath_draintxq(sc, txq, retry_tx); 1286 } 1287 1288 return !npend; 1289 } 1290 1291 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1292 { 1293 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1294 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1295 } 1296 1297 /* For each axq_acq entry, for each tid, try to schedule packets 1298 * for transmit until ampdu_depth has reached min Q depth. 1299 */ 1300 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1301 { 1302 struct ath_atx_ac *ac, *ac_tmp, *last_ac; 1303 struct ath_atx_tid *tid, *last_tid; 1304 1305 if (list_empty(&txq->axq_acq) || 1306 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1307 return; 1308 1309 ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list); 1310 last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list); 1311 1312 list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) { 1313 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1314 list_del(&ac->list); 1315 ac->sched = false; 1316 1317 while (!list_empty(&ac->tid_q)) { 1318 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1319 list); 1320 list_del(&tid->list); 1321 tid->sched = false; 1322 1323 if (tid->paused) 1324 continue; 1325 1326 ath_tx_sched_aggr(sc, txq, tid); 1327 1328 /* 1329 * add tid to round-robin queue if more frames 1330 * are pending for the tid 1331 */ 1332 if (!list_empty(&tid->buf_q)) 1333 ath_tx_queue_tid(txq, tid); 1334 1335 if (tid == last_tid || 1336 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1337 break; 1338 } 1339 1340 if (!list_empty(&ac->tid_q)) { 1341 if (!ac->sched) { 1342 ac->sched = true; 1343 list_add_tail(&ac->list, &txq->axq_acq); 1344 } 1345 } 1346 1347 if (ac == last_ac || 1348 txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) 1349 return; 1350 } 1351 } 1352 1353 /***********/ 1354 /* TX, DMA */ 1355 /***********/ 1356 1357 /* 1358 * Insert a chain of ath_buf (descriptors) on a txq and 1359 * assume the descriptors are already chained together by caller. 1360 */ 1361 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1362 struct list_head *head, bool internal) 1363 { 1364 struct ath_hw *ah = sc->sc_ah; 1365 struct ath_common *common = ath9k_hw_common(ah); 1366 struct ath_buf *bf, *bf_last; 1367 bool puttxbuf = false; 1368 bool edma; 1369 1370 /* 1371 * Insert the frame on the outbound list and 1372 * pass it on to the hardware. 1373 */ 1374 1375 if (list_empty(head)) 1376 return; 1377 1378 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1379 bf = list_first_entry(head, struct ath_buf, list); 1380 bf_last = list_entry(head->prev, struct ath_buf, list); 1381 1382 ath_dbg(common, ATH_DBG_QUEUE, 1383 "qnum: %d, txq depth: %d\n", txq->axq_qnum, txq->axq_depth); 1384 1385 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1386 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1387 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1388 puttxbuf = true; 1389 } else { 1390 list_splice_tail_init(head, &txq->axq_q); 1391 1392 if (txq->axq_link) { 1393 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1394 ath_dbg(common, ATH_DBG_XMIT, 1395 "link[%u] (%p)=%llx (%p)\n", 1396 txq->axq_qnum, txq->axq_link, 1397 ito64(bf->bf_daddr), bf->bf_desc); 1398 } else if (!edma) 1399 puttxbuf = true; 1400 1401 txq->axq_link = bf_last->bf_desc; 1402 } 1403 1404 if (puttxbuf) { 1405 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1406 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1407 ath_dbg(common, ATH_DBG_XMIT, "TXDP[%u] = %llx (%p)\n", 1408 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1409 } 1410 1411 if (!edma) { 1412 TX_STAT_INC(txq->axq_qnum, txstart); 1413 ath9k_hw_txstart(ah, txq->axq_qnum); 1414 } 1415 1416 if (!internal) { 1417 txq->axq_depth++; 1418 if (bf_is_ampdu_not_probing(bf)) 1419 txq->axq_ampdu_depth++; 1420 } 1421 } 1422 1423 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid, 1424 struct ath_buf *bf, struct ath_tx_control *txctl) 1425 { 1426 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1427 struct list_head bf_head; 1428 1429 bf->bf_state.bf_type |= BUF_AMPDU; 1430 1431 /* 1432 * Do not queue to h/w when any of the following conditions is true: 1433 * - there are pending frames in software queue 1434 * - the TID is currently paused for ADDBA/BAR request 1435 * - seqno is not within block-ack window 1436 * - h/w queue depth exceeds low water mark 1437 */ 1438 if (!list_empty(&tid->buf_q) || tid->paused || 1439 !BAW_WITHIN(tid->seq_start, tid->baw_size, fi->seqno) || 1440 txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) { 1441 /* 1442 * Add this frame to software queue for scheduling later 1443 * for aggregation. 1444 */ 1445 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw); 1446 list_add_tail(&bf->list, &tid->buf_q); 1447 if (!txctl->an || !txctl->an->sleeping) 1448 ath_tx_queue_tid(txctl->txq, tid); 1449 return; 1450 } 1451 1452 INIT_LIST_HEAD(&bf_head); 1453 list_add(&bf->list, &bf_head); 1454 1455 /* Add sub-frame to BAW */ 1456 if (!fi->retries) 1457 ath_tx_addto_baw(sc, tid, fi->seqno); 1458 1459 /* Queue to h/w without aggregation */ 1460 TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw); 1461 bf->bf_lastbf = bf; 1462 ath_buf_set_rate(sc, bf, fi->framelen); 1463 ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false); 1464 } 1465 1466 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 1467 struct ath_atx_tid *tid, 1468 struct list_head *bf_head) 1469 { 1470 struct ath_frame_info *fi; 1471 struct ath_buf *bf; 1472 1473 bf = list_first_entry(bf_head, struct ath_buf, list); 1474 bf->bf_state.bf_type &= ~BUF_AMPDU; 1475 1476 /* update starting sequence number for subsequent ADDBA request */ 1477 if (tid) 1478 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 1479 1480 bf->bf_lastbf = bf; 1481 fi = get_frame_info(bf->bf_mpdu); 1482 ath_buf_set_rate(sc, bf, fi->framelen); 1483 ath_tx_txqaddbuf(sc, txq, bf_head, false); 1484 TX_STAT_INC(txq->axq_qnum, queued); 1485 } 1486 1487 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1488 { 1489 struct ieee80211_hdr *hdr; 1490 enum ath9k_pkt_type htype; 1491 __le16 fc; 1492 1493 hdr = (struct ieee80211_hdr *)skb->data; 1494 fc = hdr->frame_control; 1495 1496 if (ieee80211_is_beacon(fc)) 1497 htype = ATH9K_PKT_TYPE_BEACON; 1498 else if (ieee80211_is_probe_resp(fc)) 1499 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1500 else if (ieee80211_is_atim(fc)) 1501 htype = ATH9K_PKT_TYPE_ATIM; 1502 else if (ieee80211_is_pspoll(fc)) 1503 htype = ATH9K_PKT_TYPE_PSPOLL; 1504 else 1505 htype = ATH9K_PKT_TYPE_NORMAL; 1506 1507 return htype; 1508 } 1509 1510 static void setup_frame_info(struct ieee80211_hw *hw, struct sk_buff *skb, 1511 int framelen) 1512 { 1513 struct ath_softc *sc = hw->priv; 1514 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1515 struct ieee80211_sta *sta = tx_info->control.sta; 1516 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 1517 struct ieee80211_hdr *hdr; 1518 struct ath_frame_info *fi = get_frame_info(skb); 1519 struct ath_node *an = NULL; 1520 struct ath_atx_tid *tid; 1521 enum ath9k_key_type keytype; 1522 u16 seqno = 0; 1523 u8 tidno; 1524 1525 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 1526 1527 if (sta) 1528 an = (struct ath_node *) sta->drv_priv; 1529 1530 hdr = (struct ieee80211_hdr *)skb->data; 1531 if (an && ieee80211_is_data_qos(hdr->frame_control) && 1532 conf_is_ht(&hw->conf) && (sc->sc_flags & SC_OP_TXAGGR)) { 1533 1534 tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK; 1535 1536 /* 1537 * Override seqno set by upper layer with the one 1538 * in tx aggregation state. 1539 */ 1540 tid = ATH_AN_2_TID(an, tidno); 1541 seqno = tid->seq_next; 1542 hdr->seq_ctrl = cpu_to_le16(seqno << IEEE80211_SEQ_SEQ_SHIFT); 1543 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 1544 } 1545 1546 memset(fi, 0, sizeof(*fi)); 1547 if (hw_key) 1548 fi->keyix = hw_key->hw_key_idx; 1549 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 1550 fi->keyix = an->ps_key; 1551 else 1552 fi->keyix = ATH9K_TXKEYIX_INVALID; 1553 fi->keytype = keytype; 1554 fi->framelen = framelen; 1555 fi->seqno = seqno; 1556 } 1557 1558 static int setup_tx_flags(struct sk_buff *skb) 1559 { 1560 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1561 int flags = 0; 1562 1563 flags |= ATH9K_TXDESC_INTREQ; 1564 1565 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1566 flags |= ATH9K_TXDESC_NOACK; 1567 1568 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1569 flags |= ATH9K_TXDESC_LDPC; 1570 1571 return flags; 1572 } 1573 1574 /* 1575 * rix - rate index 1576 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1577 * width - 0 for 20 MHz, 1 for 40 MHz 1578 * half_gi - to use 4us v/s 3.6 us for symbol time 1579 */ 1580 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1581 int width, int half_gi, bool shortPreamble) 1582 { 1583 u32 nbits, nsymbits, duration, nsymbols; 1584 int streams; 1585 1586 /* find number of symbols: PLCP + data */ 1587 streams = HT_RC_2_STREAMS(rix); 1588 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1589 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1590 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1591 1592 if (!half_gi) 1593 duration = SYMBOL_TIME(nsymbols); 1594 else 1595 duration = SYMBOL_TIME_HALFGI(nsymbols); 1596 1597 /* addup duration for legacy/ht training and signal fields */ 1598 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1599 1600 return duration; 1601 } 1602 1603 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 1604 { 1605 struct ath_hw *ah = sc->sc_ah; 1606 struct ath9k_channel *curchan = ah->curchan; 1607 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && 1608 (curchan->channelFlags & CHANNEL_5GHZ) && 1609 (chainmask == 0x7) && (rate < 0x90)) 1610 return 0x3; 1611 else 1612 return chainmask; 1613 } 1614 1615 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, int len) 1616 { 1617 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1618 struct ath9k_11n_rate_series series[4]; 1619 struct sk_buff *skb; 1620 struct ieee80211_tx_info *tx_info; 1621 struct ieee80211_tx_rate *rates; 1622 const struct ieee80211_rate *rate; 1623 struct ieee80211_hdr *hdr; 1624 int i, flags = 0; 1625 u8 rix = 0, ctsrate = 0; 1626 bool is_pspoll; 1627 1628 memset(series, 0, sizeof(struct ath9k_11n_rate_series) * 4); 1629 1630 skb = bf->bf_mpdu; 1631 tx_info = IEEE80211_SKB_CB(skb); 1632 rates = tx_info->control.rates; 1633 hdr = (struct ieee80211_hdr *)skb->data; 1634 is_pspoll = ieee80211_is_pspoll(hdr->frame_control); 1635 1636 /* 1637 * We check if Short Preamble is needed for the CTS rate by 1638 * checking the BSS's global flag. 1639 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 1640 */ 1641 rate = ieee80211_get_rts_cts_rate(sc->hw, tx_info); 1642 ctsrate = rate->hw_value; 1643 if (sc->sc_flags & SC_OP_PREAMBLE_SHORT) 1644 ctsrate |= rate->hw_value_short; 1645 1646 for (i = 0; i < 4; i++) { 1647 bool is_40, is_sgi, is_sp; 1648 int phy; 1649 1650 if (!rates[i].count || (rates[i].idx < 0)) 1651 continue; 1652 1653 rix = rates[i].idx; 1654 series[i].Tries = rates[i].count; 1655 1656 if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1657 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1658 flags |= ATH9K_TXDESC_RTSENA; 1659 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1660 series[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1661 flags |= ATH9K_TXDESC_CTSENA; 1662 } 1663 1664 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1665 series[i].RateFlags |= ATH9K_RATESERIES_2040; 1666 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1667 series[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1668 1669 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1670 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1671 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1672 1673 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1674 /* MCS rates */ 1675 series[i].Rate = rix | 0x80; 1676 series[i].ChSel = ath_txchainmask_reduction(sc, 1677 common->tx_chainmask, series[i].Rate); 1678 series[i].PktDuration = ath_pkt_duration(sc, rix, len, 1679 is_40, is_sgi, is_sp); 1680 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1681 series[i].RateFlags |= ATH9K_RATESERIES_STBC; 1682 continue; 1683 } 1684 1685 /* legacy rates */ 1686 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1687 !(rate->flags & IEEE80211_RATE_ERP_G)) 1688 phy = WLAN_RC_PHY_CCK; 1689 else 1690 phy = WLAN_RC_PHY_OFDM; 1691 1692 rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx]; 1693 series[i].Rate = rate->hw_value; 1694 if (rate->hw_value_short) { 1695 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1696 series[i].Rate |= rate->hw_value_short; 1697 } else { 1698 is_sp = false; 1699 } 1700 1701 if (bf->bf_state.bfs_paprd) 1702 series[i].ChSel = common->tx_chainmask; 1703 else 1704 series[i].ChSel = ath_txchainmask_reduction(sc, 1705 common->tx_chainmask, series[i].Rate); 1706 1707 series[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1708 phy, rate->bitrate * 100, len, rix, is_sp); 1709 } 1710 1711 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1712 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1713 flags &= ~ATH9K_TXDESC_RTSENA; 1714 1715 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1716 if (flags & ATH9K_TXDESC_RTSENA) 1717 flags &= ~ATH9K_TXDESC_CTSENA; 1718 1719 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1720 ath9k_hw_set11n_ratescenario(sc->sc_ah, bf->bf_desc, 1721 bf->bf_lastbf->bf_desc, 1722 !is_pspoll, ctsrate, 1723 0, series, 4, flags); 1724 1725 } 1726 1727 static struct ath_buf *ath_tx_setup_buffer(struct ieee80211_hw *hw, 1728 struct ath_txq *txq, 1729 struct sk_buff *skb) 1730 { 1731 struct ath_softc *sc = hw->priv; 1732 struct ath_hw *ah = sc->sc_ah; 1733 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1734 struct ath_frame_info *fi = get_frame_info(skb); 1735 struct ath_buf *bf; 1736 struct ath_desc *ds; 1737 int frm_type; 1738 1739 bf = ath_tx_get_buffer(sc); 1740 if (!bf) { 1741 ath_dbg(common, ATH_DBG_XMIT, "TX buffers are full\n"); 1742 return NULL; 1743 } 1744 1745 ATH_TXBUF_RESET(bf); 1746 1747 bf->bf_flags = setup_tx_flags(skb); 1748 bf->bf_mpdu = skb; 1749 1750 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 1751 skb->len, DMA_TO_DEVICE); 1752 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 1753 bf->bf_mpdu = NULL; 1754 bf->bf_buf_addr = 0; 1755 ath_err(ath9k_hw_common(sc->sc_ah), 1756 "dma_mapping_error() on TX\n"); 1757 ath_tx_return_buffer(sc, bf); 1758 return NULL; 1759 } 1760 1761 frm_type = get_hw_packet_type(skb); 1762 1763 ds = bf->bf_desc; 1764 ath9k_hw_set_desc_link(ah, ds, 0); 1765 1766 ath9k_hw_set11n_txdesc(ah, ds, fi->framelen, frm_type, MAX_RATE_POWER, 1767 fi->keyix, fi->keytype, bf->bf_flags); 1768 1769 ath9k_hw_filltxdesc(ah, ds, 1770 skb->len, /* segment length */ 1771 true, /* first segment */ 1772 true, /* last segment */ 1773 ds, /* first descriptor */ 1774 bf->bf_buf_addr, 1775 txq->axq_qnum); 1776 1777 1778 return bf; 1779 } 1780 1781 /* FIXME: tx power */ 1782 static void ath_tx_start_dma(struct ath_softc *sc, struct ath_buf *bf, 1783 struct ath_tx_control *txctl) 1784 { 1785 struct sk_buff *skb = bf->bf_mpdu; 1786 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1787 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 1788 struct list_head bf_head; 1789 struct ath_atx_tid *tid = NULL; 1790 u8 tidno; 1791 1792 spin_lock_bh(&txctl->txq->axq_lock); 1793 if ((sc->sc_flags & SC_OP_TXAGGR) && txctl->an && 1794 ieee80211_is_data_qos(hdr->frame_control)) { 1795 tidno = ieee80211_get_qos_ctl(hdr)[0] & 1796 IEEE80211_QOS_CTL_TID_MASK; 1797 tid = ATH_AN_2_TID(txctl->an, tidno); 1798 1799 WARN_ON(tid->ac->txq != txctl->txq); 1800 } 1801 1802 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) { 1803 /* 1804 * Try aggregation if it's a unicast data frame 1805 * and the destination is HT capable. 1806 */ 1807 ath_tx_send_ampdu(sc, tid, bf, txctl); 1808 } else { 1809 INIT_LIST_HEAD(&bf_head); 1810 list_add_tail(&bf->list, &bf_head); 1811 1812 bf->bf_state.bfs_paprd = txctl->paprd; 1813 1814 if (bf->bf_state.bfs_paprd) 1815 ar9003_hw_set_paprd_txdesc(sc->sc_ah, bf->bf_desc, 1816 bf->bf_state.bfs_paprd); 1817 1818 if (txctl->paprd) 1819 bf->bf_state.bfs_paprd_timestamp = jiffies; 1820 1821 if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 1822 ath9k_hw_set_clrdmask(sc->sc_ah, bf->bf_desc, true); 1823 1824 ath_tx_send_normal(sc, txctl->txq, tid, &bf_head); 1825 } 1826 1827 spin_unlock_bh(&txctl->txq->axq_lock); 1828 } 1829 1830 /* Upon failure caller should free skb */ 1831 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 1832 struct ath_tx_control *txctl) 1833 { 1834 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1835 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 1836 struct ieee80211_sta *sta = info->control.sta; 1837 struct ieee80211_vif *vif = info->control.vif; 1838 struct ath_softc *sc = hw->priv; 1839 struct ath_txq *txq = txctl->txq; 1840 struct ath_buf *bf; 1841 int padpos, padsize; 1842 int frmlen = skb->len + FCS_LEN; 1843 int q; 1844 1845 /* NOTE: sta can be NULL according to net/mac80211.h */ 1846 if (sta) 1847 txctl->an = (struct ath_node *)sta->drv_priv; 1848 1849 if (info->control.hw_key) 1850 frmlen += info->control.hw_key->icv_len; 1851 1852 /* 1853 * As a temporary workaround, assign seq# here; this will likely need 1854 * to be cleaned up to work better with Beacon transmission and virtual 1855 * BSSes. 1856 */ 1857 if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) { 1858 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 1859 sc->tx.seq_no += 0x10; 1860 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 1861 hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no); 1862 } 1863 1864 /* Add the padding after the header if this is not already done */ 1865 padpos = ath9k_cmn_padpos(hdr->frame_control); 1866 padsize = padpos & 3; 1867 if (padsize && skb->len > padpos) { 1868 if (skb_headroom(skb) < padsize) 1869 return -ENOMEM; 1870 1871 skb_push(skb, padsize); 1872 memmove(skb->data, skb->data + padsize, padpos); 1873 } 1874 1875 if ((vif && vif->type != NL80211_IFTYPE_AP && 1876 vif->type != NL80211_IFTYPE_AP_VLAN) || 1877 !ieee80211_is_data(hdr->frame_control)) 1878 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1879 1880 setup_frame_info(hw, skb, frmlen); 1881 1882 /* 1883 * At this point, the vif, hw_key and sta pointers in the tx control 1884 * info are no longer valid (overwritten by the ath_frame_info data. 1885 */ 1886 1887 bf = ath_tx_setup_buffer(hw, txctl->txq, skb); 1888 if (unlikely(!bf)) 1889 return -ENOMEM; 1890 1891 q = skb_get_queue_mapping(skb); 1892 spin_lock_bh(&txq->axq_lock); 1893 if (txq == sc->tx.txq_map[q] && 1894 ++txq->pending_frames > ATH_MAX_QDEPTH && !txq->stopped) { 1895 ieee80211_stop_queue(sc->hw, q); 1896 txq->stopped = 1; 1897 } 1898 spin_unlock_bh(&txq->axq_lock); 1899 1900 ath_tx_start_dma(sc, bf, txctl); 1901 1902 return 0; 1903 } 1904 1905 /*****************/ 1906 /* TX Completion */ 1907 /*****************/ 1908 1909 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 1910 int tx_flags, struct ath_txq *txq) 1911 { 1912 struct ieee80211_hw *hw = sc->hw; 1913 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1914 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1915 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 1916 int q, padpos, padsize; 1917 1918 ath_dbg(common, ATH_DBG_XMIT, "TX complete: skb: %p\n", skb); 1919 1920 if (tx_flags & ATH_TX_BAR) 1921 tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK; 1922 1923 if (!(tx_flags & (ATH_TX_ERROR | ATH_TX_XRETRY))) { 1924 /* Frame was ACKed */ 1925 tx_info->flags |= IEEE80211_TX_STAT_ACK; 1926 } 1927 1928 padpos = ath9k_cmn_padpos(hdr->frame_control); 1929 padsize = padpos & 3; 1930 if (padsize && skb->len>padpos+padsize) { 1931 /* 1932 * Remove MAC header padding before giving the frame back to 1933 * mac80211. 1934 */ 1935 memmove(skb->data + padsize, skb->data, padpos); 1936 skb_pull(skb, padsize); 1937 } 1938 1939 if (sc->ps_flags & PS_WAIT_FOR_TX_ACK) { 1940 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 1941 ath_dbg(common, ATH_DBG_PS, 1942 "Going back to sleep after having received TX status (0x%lx)\n", 1943 sc->ps_flags & (PS_WAIT_FOR_BEACON | 1944 PS_WAIT_FOR_CAB | 1945 PS_WAIT_FOR_PSPOLL_DATA | 1946 PS_WAIT_FOR_TX_ACK)); 1947 } 1948 1949 q = skb_get_queue_mapping(skb); 1950 if (txq == sc->tx.txq_map[q]) { 1951 spin_lock_bh(&txq->axq_lock); 1952 if (WARN_ON(--txq->pending_frames < 0)) 1953 txq->pending_frames = 0; 1954 1955 if (txq->stopped && txq->pending_frames < ATH_MAX_QDEPTH) { 1956 ieee80211_wake_queue(sc->hw, q); 1957 txq->stopped = 0; 1958 } 1959 spin_unlock_bh(&txq->axq_lock); 1960 } 1961 1962 ieee80211_tx_status(hw, skb); 1963 } 1964 1965 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 1966 struct ath_txq *txq, struct list_head *bf_q, 1967 struct ath_tx_status *ts, int txok, int sendbar) 1968 { 1969 struct sk_buff *skb = bf->bf_mpdu; 1970 unsigned long flags; 1971 int tx_flags = 0; 1972 1973 if (sendbar) 1974 tx_flags = ATH_TX_BAR; 1975 1976 if (!txok) { 1977 tx_flags |= ATH_TX_ERROR; 1978 1979 if (bf_isxretried(bf)) 1980 tx_flags |= ATH_TX_XRETRY; 1981 } 1982 1983 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 1984 bf->bf_buf_addr = 0; 1985 1986 if (bf->bf_state.bfs_paprd) { 1987 if (time_after(jiffies, 1988 bf->bf_state.bfs_paprd_timestamp + 1989 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 1990 dev_kfree_skb_any(skb); 1991 else 1992 complete(&sc->paprd_complete); 1993 } else { 1994 ath_debug_stat_tx(sc, bf, ts, txq); 1995 ath_tx_complete(sc, skb, tx_flags, txq); 1996 } 1997 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 1998 * accidentally reference it later. 1999 */ 2000 bf->bf_mpdu = NULL; 2001 2002 /* 2003 * Return the list of ath_buf of this mpdu to free queue 2004 */ 2005 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2006 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2007 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2008 } 2009 2010 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2011 struct ath_tx_status *ts, int nframes, int nbad, 2012 int txok, bool update_rc) 2013 { 2014 struct sk_buff *skb = bf->bf_mpdu; 2015 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2016 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2017 struct ieee80211_hw *hw = sc->hw; 2018 struct ath_hw *ah = sc->sc_ah; 2019 u8 i, tx_rateindex; 2020 2021 if (txok) 2022 tx_info->status.ack_signal = ts->ts_rssi; 2023 2024 tx_rateindex = ts->ts_rateindex; 2025 WARN_ON(tx_rateindex >= hw->max_rates); 2026 2027 if (ts->ts_status & ATH9K_TXERR_FILT) 2028 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2029 if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && update_rc) { 2030 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2031 2032 BUG_ON(nbad > nframes); 2033 2034 tx_info->status.ampdu_len = nframes; 2035 tx_info->status.ampdu_ack_len = nframes - nbad; 2036 } 2037 2038 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2039 (bf->bf_flags & ATH9K_TXDESC_NOACK) == 0 && update_rc) { 2040 /* 2041 * If an underrun error is seen assume it as an excessive 2042 * retry only if max frame trigger level has been reached 2043 * (2 KB for single stream, and 4 KB for dual stream). 2044 * Adjust the long retry as if the frame was tried 2045 * hw->max_rate_tries times to affect how rate control updates 2046 * PER for the failed rate. 2047 * In case of congestion on the bus penalizing this type of 2048 * underruns should help hardware actually transmit new frames 2049 * successfully by eventually preferring slower rates. 2050 * This itself should also alleviate congestion on the bus. 2051 */ 2052 if (ieee80211_is_data(hdr->frame_control) && 2053 (ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2054 ATH9K_TX_DELIM_UNDERRUN)) && 2055 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2056 tx_info->status.rates[tx_rateindex].count = 2057 hw->max_rate_tries; 2058 } 2059 2060 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2061 tx_info->status.rates[i].count = 0; 2062 tx_info->status.rates[i].idx = -1; 2063 } 2064 2065 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2066 } 2067 2068 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 2069 struct ath_tx_status *ts, struct ath_buf *bf, 2070 struct list_head *bf_head) 2071 __releases(txq->axq_lock) 2072 __acquires(txq->axq_lock) 2073 { 2074 int txok; 2075 2076 txq->axq_depth--; 2077 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 2078 txq->axq_tx_inprogress = false; 2079 if (bf_is_ampdu_not_probing(bf)) 2080 txq->axq_ampdu_depth--; 2081 2082 spin_unlock_bh(&txq->axq_lock); 2083 2084 if (!bf_isampdu(bf)) { 2085 /* 2086 * This frame is sent out as a single frame. 2087 * Use hardware retry status for this frame. 2088 */ 2089 if (ts->ts_status & ATH9K_TXERR_XRETRY) 2090 bf->bf_state.bf_type |= BUF_XRETRY; 2091 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok, true); 2092 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok, 0); 2093 } else 2094 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true); 2095 2096 spin_lock_bh(&txq->axq_lock); 2097 2098 if (sc->sc_flags & SC_OP_TXAGGR) 2099 ath_txq_schedule(sc, txq); 2100 } 2101 2102 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2103 { 2104 struct ath_hw *ah = sc->sc_ah; 2105 struct ath_common *common = ath9k_hw_common(ah); 2106 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2107 struct list_head bf_head; 2108 struct ath_desc *ds; 2109 struct ath_tx_status ts; 2110 int status; 2111 2112 ath_dbg(common, ATH_DBG_QUEUE, "tx queue %d (%x), link %p\n", 2113 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2114 txq->axq_link); 2115 2116 spin_lock_bh(&txq->axq_lock); 2117 for (;;) { 2118 if (list_empty(&txq->axq_q)) { 2119 txq->axq_link = NULL; 2120 if (sc->sc_flags & SC_OP_TXAGGR) 2121 ath_txq_schedule(sc, txq); 2122 break; 2123 } 2124 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2125 2126 /* 2127 * There is a race condition that a BH gets scheduled 2128 * after sw writes TxE and before hw re-load the last 2129 * descriptor to get the newly chained one. 2130 * Software must keep the last DONE descriptor as a 2131 * holding descriptor - software does so by marking 2132 * it with the STALE flag. 2133 */ 2134 bf_held = NULL; 2135 if (bf->bf_stale) { 2136 bf_held = bf; 2137 if (list_is_last(&bf_held->list, &txq->axq_q)) 2138 break; 2139 2140 bf = list_entry(bf_held->list.next, struct ath_buf, 2141 list); 2142 } 2143 2144 lastbf = bf->bf_lastbf; 2145 ds = lastbf->bf_desc; 2146 2147 memset(&ts, 0, sizeof(ts)); 2148 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2149 if (status == -EINPROGRESS) 2150 break; 2151 2152 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2153 2154 /* 2155 * Remove ath_buf's of the same transmit unit from txq, 2156 * however leave the last descriptor back as the holding 2157 * descriptor for hw. 2158 */ 2159 lastbf->bf_stale = true; 2160 INIT_LIST_HEAD(&bf_head); 2161 if (!list_is_singular(&lastbf->list)) 2162 list_cut_position(&bf_head, 2163 &txq->axq_q, lastbf->list.prev); 2164 2165 if (bf_held) { 2166 list_del(&bf_held->list); 2167 ath_tx_return_buffer(sc, bf_held); 2168 } 2169 2170 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2171 } 2172 spin_unlock_bh(&txq->axq_lock); 2173 } 2174 2175 static void ath_tx_complete_poll_work(struct work_struct *work) 2176 { 2177 struct ath_softc *sc = container_of(work, struct ath_softc, 2178 tx_complete_work.work); 2179 struct ath_txq *txq; 2180 int i; 2181 bool needreset = false; 2182 #ifdef CONFIG_ATH9K_DEBUGFS 2183 sc->tx_complete_poll_work_seen++; 2184 #endif 2185 2186 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 2187 if (ATH_TXQ_SETUP(sc, i)) { 2188 txq = &sc->tx.txq[i]; 2189 spin_lock_bh(&txq->axq_lock); 2190 if (txq->axq_depth) { 2191 if (txq->axq_tx_inprogress) { 2192 needreset = true; 2193 spin_unlock_bh(&txq->axq_lock); 2194 break; 2195 } else { 2196 txq->axq_tx_inprogress = true; 2197 } 2198 } 2199 spin_unlock_bh(&txq->axq_lock); 2200 } 2201 2202 if (needreset) { 2203 ath_dbg(ath9k_hw_common(sc->sc_ah), ATH_DBG_RESET, 2204 "tx hung, resetting the chip\n"); 2205 spin_lock_bh(&sc->sc_pcu_lock); 2206 ath_reset(sc, true); 2207 spin_unlock_bh(&sc->sc_pcu_lock); 2208 } 2209 2210 ieee80211_queue_delayed_work(sc->hw, &sc->tx_complete_work, 2211 msecs_to_jiffies(ATH_TX_COMPLETE_POLL_INT)); 2212 } 2213 2214 2215 2216 void ath_tx_tasklet(struct ath_softc *sc) 2217 { 2218 int i; 2219 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1); 2220 2221 ath9k_hw_gettxintrtxqs(sc->sc_ah, &qcumask); 2222 2223 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2224 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2225 ath_tx_processq(sc, &sc->tx.txq[i]); 2226 } 2227 } 2228 2229 void ath_tx_edma_tasklet(struct ath_softc *sc) 2230 { 2231 struct ath_tx_status ts; 2232 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2233 struct ath_hw *ah = sc->sc_ah; 2234 struct ath_txq *txq; 2235 struct ath_buf *bf, *lastbf; 2236 struct list_head bf_head; 2237 int status; 2238 2239 for (;;) { 2240 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2241 if (status == -EINPROGRESS) 2242 break; 2243 if (status == -EIO) { 2244 ath_dbg(common, ATH_DBG_XMIT, 2245 "Error processing tx status\n"); 2246 break; 2247 } 2248 2249 /* Skip beacon completions */ 2250 if (ts.qid == sc->beacon.beaconq) 2251 continue; 2252 2253 txq = &sc->tx.txq[ts.qid]; 2254 2255 spin_lock_bh(&txq->axq_lock); 2256 2257 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { 2258 spin_unlock_bh(&txq->axq_lock); 2259 return; 2260 } 2261 2262 bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx], 2263 struct ath_buf, list); 2264 lastbf = bf->bf_lastbf; 2265 2266 INIT_LIST_HEAD(&bf_head); 2267 list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx], 2268 &lastbf->list); 2269 2270 if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) { 2271 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2272 2273 if (!list_empty(&txq->axq_q)) { 2274 struct list_head bf_q; 2275 2276 INIT_LIST_HEAD(&bf_q); 2277 txq->axq_link = NULL; 2278 list_splice_tail_init(&txq->axq_q, &bf_q); 2279 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2280 } 2281 } 2282 2283 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2284 spin_unlock_bh(&txq->axq_lock); 2285 } 2286 } 2287 2288 /*****************/ 2289 /* Init, Cleanup */ 2290 /*****************/ 2291 2292 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2293 { 2294 struct ath_descdma *dd = &sc->txsdma; 2295 u8 txs_len = sc->sc_ah->caps.txs_len; 2296 2297 dd->dd_desc_len = size * txs_len; 2298 dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len, 2299 &dd->dd_desc_paddr, GFP_KERNEL); 2300 if (!dd->dd_desc) 2301 return -ENOMEM; 2302 2303 return 0; 2304 } 2305 2306 static int ath_tx_edma_init(struct ath_softc *sc) 2307 { 2308 int err; 2309 2310 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2311 if (!err) 2312 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2313 sc->txsdma.dd_desc_paddr, 2314 ATH_TXSTATUS_RING_SIZE); 2315 2316 return err; 2317 } 2318 2319 static void ath_tx_edma_cleanup(struct ath_softc *sc) 2320 { 2321 struct ath_descdma *dd = &sc->txsdma; 2322 2323 dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc, 2324 dd->dd_desc_paddr); 2325 } 2326 2327 int ath_tx_init(struct ath_softc *sc, int nbufs) 2328 { 2329 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2330 int error = 0; 2331 2332 spin_lock_init(&sc->tx.txbuflock); 2333 2334 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2335 "tx", nbufs, 1, 1); 2336 if (error != 0) { 2337 ath_err(common, 2338 "Failed to allocate tx descriptors: %d\n", error); 2339 goto err; 2340 } 2341 2342 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2343 "beacon", ATH_BCBUF, 1, 1); 2344 if (error != 0) { 2345 ath_err(common, 2346 "Failed to allocate beacon descriptors: %d\n", error); 2347 goto err; 2348 } 2349 2350 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2351 2352 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 2353 error = ath_tx_edma_init(sc); 2354 if (error) 2355 goto err; 2356 } 2357 2358 err: 2359 if (error != 0) 2360 ath_tx_cleanup(sc); 2361 2362 return error; 2363 } 2364 2365 void ath_tx_cleanup(struct ath_softc *sc) 2366 { 2367 if (sc->beacon.bdma.dd_desc_len != 0) 2368 ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf); 2369 2370 if (sc->tx.txdma.dd_desc_len != 0) 2371 ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf); 2372 2373 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2374 ath_tx_edma_cleanup(sc); 2375 } 2376 2377 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2378 { 2379 struct ath_atx_tid *tid; 2380 struct ath_atx_ac *ac; 2381 int tidno, acno; 2382 2383 for (tidno = 0, tid = &an->tid[tidno]; 2384 tidno < WME_NUM_TID; 2385 tidno++, tid++) { 2386 tid->an = an; 2387 tid->tidno = tidno; 2388 tid->seq_start = tid->seq_next = 0; 2389 tid->baw_size = WME_MAX_BA; 2390 tid->baw_head = tid->baw_tail = 0; 2391 tid->sched = false; 2392 tid->paused = false; 2393 tid->state &= ~AGGR_CLEANUP; 2394 INIT_LIST_HEAD(&tid->buf_q); 2395 acno = TID_TO_WME_AC(tidno); 2396 tid->ac = &an->ac[acno]; 2397 tid->state &= ~AGGR_ADDBA_COMPLETE; 2398 tid->state &= ~AGGR_ADDBA_PROGRESS; 2399 } 2400 2401 for (acno = 0, ac = &an->ac[acno]; 2402 acno < WME_NUM_AC; acno++, ac++) { 2403 ac->sched = false; 2404 ac->txq = sc->tx.txq_map[acno]; 2405 INIT_LIST_HEAD(&ac->tid_q); 2406 } 2407 } 2408 2409 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2410 { 2411 struct ath_atx_ac *ac; 2412 struct ath_atx_tid *tid; 2413 struct ath_txq *txq; 2414 int tidno; 2415 2416 for (tidno = 0, tid = &an->tid[tidno]; 2417 tidno < WME_NUM_TID; tidno++, tid++) { 2418 2419 ac = tid->ac; 2420 txq = ac->txq; 2421 2422 spin_lock_bh(&txq->axq_lock); 2423 2424 if (tid->sched) { 2425 list_del(&tid->list); 2426 tid->sched = false; 2427 } 2428 2429 if (ac->sched) { 2430 list_del(&ac->list); 2431 tid->ac->sched = false; 2432 } 2433 2434 ath_tid_drain(sc, txq, tid); 2435 tid->state &= ~AGGR_ADDBA_COMPLETE; 2436 tid->state &= ~AGGR_CLEANUP; 2437 2438 spin_unlock_bh(&txq->axq_lock); 2439 } 2440 } 2441