1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq); 54 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 55 struct ath_txq *txq, struct list_head *bf_q, 56 struct ath_tx_status *ts, int txok); 57 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 58 struct list_head *head, bool internal); 59 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 60 struct ath_tx_status *ts, int nframes, int nbad, 61 int txok); 62 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 63 int seqno); 64 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 65 struct ath_txq *txq, 66 struct ath_atx_tid *tid, 67 struct sk_buff *skb); 68 69 enum { 70 MCS_HT20, 71 MCS_HT20_SGI, 72 MCS_HT40, 73 MCS_HT40_SGI, 74 }; 75 76 /*********************/ 77 /* Aggregation logic */ 78 /*********************/ 79 80 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq) 81 __acquires(&txq->axq_lock) 82 { 83 spin_lock_bh(&txq->axq_lock); 84 } 85 86 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq) 87 __releases(&txq->axq_lock) 88 { 89 spin_unlock_bh(&txq->axq_lock); 90 } 91 92 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 93 __releases(&txq->axq_lock) 94 { 95 struct sk_buff_head q; 96 struct sk_buff *skb; 97 98 __skb_queue_head_init(&q); 99 skb_queue_splice_init(&txq->complete_q, &q); 100 spin_unlock_bh(&txq->axq_lock); 101 102 while ((skb = __skb_dequeue(&q))) 103 ieee80211_tx_status(sc->hw, skb); 104 } 105 106 static void ath_tx_queue_tid(struct ath_softc *sc, struct ath_txq *txq, 107 struct ath_atx_tid *tid) 108 { 109 struct ath_atx_ac *ac = tid->ac; 110 struct list_head *list; 111 struct ath_vif *avp = (struct ath_vif *) tid->an->vif->drv_priv; 112 struct ath_chanctx *ctx = avp->chanctx; 113 114 if (!ctx) 115 return; 116 117 if (tid->sched) 118 return; 119 120 tid->sched = true; 121 list_add_tail(&tid->list, &ac->tid_q); 122 123 if (ac->sched) 124 return; 125 126 ac->sched = true; 127 128 list = &ctx->acq[TID_TO_WME_AC(tid->tidno)]; 129 list_add_tail(&ac->list, list); 130 } 131 132 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 133 { 134 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 135 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 136 sizeof(tx_info->rate_driver_data)); 137 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 138 } 139 140 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 141 { 142 if (!tid->an->sta) 143 return; 144 145 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 146 seqno << IEEE80211_SEQ_SEQ_SHIFT); 147 } 148 149 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 150 struct ath_buf *bf) 151 { 152 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 153 ARRAY_SIZE(bf->rates)); 154 } 155 156 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 157 struct sk_buff *skb) 158 { 159 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 160 struct ath_frame_info *fi = get_frame_info(skb); 161 int q = fi->txq; 162 163 if (q < 0) 164 return; 165 166 txq = sc->tx.txq_map[q]; 167 if (WARN_ON(--txq->pending_frames < 0)) 168 txq->pending_frames = 0; 169 170 if (txq->stopped && 171 txq->pending_frames < sc->tx.txq_max_pending[q]) { 172 if (ath9k_is_chanctx_enabled()) 173 ieee80211_wake_queue(sc->hw, info->hw_queue); 174 else 175 ieee80211_wake_queue(sc->hw, q); 176 txq->stopped = false; 177 } 178 } 179 180 static struct ath_atx_tid * 181 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 182 { 183 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 184 return ATH_AN_2_TID(an, tidno); 185 } 186 187 static bool ath_tid_has_buffered(struct ath_atx_tid *tid) 188 { 189 return !skb_queue_empty(&tid->buf_q) || !skb_queue_empty(&tid->retry_q); 190 } 191 192 static struct sk_buff *ath_tid_dequeue(struct ath_atx_tid *tid) 193 { 194 struct sk_buff *skb; 195 196 skb = __skb_dequeue(&tid->retry_q); 197 if (!skb) 198 skb = __skb_dequeue(&tid->buf_q); 199 200 return skb; 201 } 202 203 /* 204 * ath_tx_tid_change_state: 205 * - clears a-mpdu flag of previous session 206 * - force sequence number allocation to fix next BlockAck Window 207 */ 208 static void 209 ath_tx_tid_change_state(struct ath_softc *sc, struct ath_atx_tid *tid) 210 { 211 struct ath_txq *txq = tid->ac->txq; 212 struct ieee80211_tx_info *tx_info; 213 struct sk_buff *skb, *tskb; 214 struct ath_buf *bf; 215 struct ath_frame_info *fi; 216 217 skb_queue_walk_safe(&tid->buf_q, skb, tskb) { 218 fi = get_frame_info(skb); 219 bf = fi->bf; 220 221 tx_info = IEEE80211_SKB_CB(skb); 222 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 223 224 if (bf) 225 continue; 226 227 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 228 if (!bf) { 229 __skb_unlink(skb, &tid->buf_q); 230 ath_txq_skb_done(sc, txq, skb); 231 ieee80211_free_txskb(sc->hw, skb); 232 continue; 233 } 234 } 235 236 } 237 238 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 239 { 240 struct ath_txq *txq = tid->ac->txq; 241 struct sk_buff *skb; 242 struct ath_buf *bf; 243 struct list_head bf_head; 244 struct ath_tx_status ts; 245 struct ath_frame_info *fi; 246 bool sendbar = false; 247 248 INIT_LIST_HEAD(&bf_head); 249 250 memset(&ts, 0, sizeof(ts)); 251 252 while ((skb = __skb_dequeue(&tid->retry_q))) { 253 fi = get_frame_info(skb); 254 bf = fi->bf; 255 if (!bf) { 256 ath_txq_skb_done(sc, txq, skb); 257 ieee80211_free_txskb(sc->hw, skb); 258 continue; 259 } 260 261 if (fi->baw_tracked) { 262 ath_tx_update_baw(sc, tid, bf->bf_state.seqno); 263 sendbar = true; 264 } 265 266 list_add_tail(&bf->list, &bf_head); 267 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 268 } 269 270 if (sendbar) { 271 ath_txq_unlock(sc, txq); 272 ath_send_bar(tid, tid->seq_start); 273 ath_txq_lock(sc, txq); 274 } 275 } 276 277 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 278 int seqno) 279 { 280 int index, cindex; 281 282 index = ATH_BA_INDEX(tid->seq_start, seqno); 283 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 284 285 __clear_bit(cindex, tid->tx_buf); 286 287 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 288 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 289 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 290 if (tid->bar_index >= 0) 291 tid->bar_index--; 292 } 293 } 294 295 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 296 struct ath_buf *bf) 297 { 298 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 299 u16 seqno = bf->bf_state.seqno; 300 int index, cindex; 301 302 index = ATH_BA_INDEX(tid->seq_start, seqno); 303 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 304 __set_bit(cindex, tid->tx_buf); 305 fi->baw_tracked = 1; 306 307 if (index >= ((tid->baw_tail - tid->baw_head) & 308 (ATH_TID_MAX_BUFS - 1))) { 309 tid->baw_tail = cindex; 310 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 311 } 312 } 313 314 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 315 struct ath_atx_tid *tid) 316 317 { 318 struct sk_buff *skb; 319 struct ath_buf *bf; 320 struct list_head bf_head; 321 struct ath_tx_status ts; 322 struct ath_frame_info *fi; 323 324 memset(&ts, 0, sizeof(ts)); 325 INIT_LIST_HEAD(&bf_head); 326 327 while ((skb = ath_tid_dequeue(tid))) { 328 fi = get_frame_info(skb); 329 bf = fi->bf; 330 331 if (!bf) { 332 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq); 333 continue; 334 } 335 336 list_add_tail(&bf->list, &bf_head); 337 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 338 } 339 } 340 341 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 342 struct sk_buff *skb, int count) 343 { 344 struct ath_frame_info *fi = get_frame_info(skb); 345 struct ath_buf *bf = fi->bf; 346 struct ieee80211_hdr *hdr; 347 int prev = fi->retries; 348 349 TX_STAT_INC(txq->axq_qnum, a_retries); 350 fi->retries += count; 351 352 if (prev > 0) 353 return; 354 355 hdr = (struct ieee80211_hdr *)skb->data; 356 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 357 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 358 sizeof(*hdr), DMA_TO_DEVICE); 359 } 360 361 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 362 { 363 struct ath_buf *bf = NULL; 364 365 spin_lock_bh(&sc->tx.txbuflock); 366 367 if (unlikely(list_empty(&sc->tx.txbuf))) { 368 spin_unlock_bh(&sc->tx.txbuflock); 369 return NULL; 370 } 371 372 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 373 list_del(&bf->list); 374 375 spin_unlock_bh(&sc->tx.txbuflock); 376 377 return bf; 378 } 379 380 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 381 { 382 spin_lock_bh(&sc->tx.txbuflock); 383 list_add_tail(&bf->list, &sc->tx.txbuf); 384 spin_unlock_bh(&sc->tx.txbuflock); 385 } 386 387 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 388 { 389 struct ath_buf *tbf; 390 391 tbf = ath_tx_get_buffer(sc); 392 if (WARN_ON(!tbf)) 393 return NULL; 394 395 ATH_TXBUF_RESET(tbf); 396 397 tbf->bf_mpdu = bf->bf_mpdu; 398 tbf->bf_buf_addr = bf->bf_buf_addr; 399 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 400 tbf->bf_state = bf->bf_state; 401 tbf->bf_state.stale = false; 402 403 return tbf; 404 } 405 406 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 407 struct ath_tx_status *ts, int txok, 408 int *nframes, int *nbad) 409 { 410 struct ath_frame_info *fi; 411 u16 seq_st = 0; 412 u32 ba[WME_BA_BMP_SIZE >> 5]; 413 int ba_index; 414 int isaggr = 0; 415 416 *nbad = 0; 417 *nframes = 0; 418 419 isaggr = bf_isaggr(bf); 420 if (isaggr) { 421 seq_st = ts->ts_seqnum; 422 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 423 } 424 425 while (bf) { 426 fi = get_frame_info(bf->bf_mpdu); 427 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 428 429 (*nframes)++; 430 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 431 (*nbad)++; 432 433 bf = bf->bf_next; 434 } 435 } 436 437 438 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 439 struct ath_buf *bf, struct list_head *bf_q, 440 struct ath_tx_status *ts, int txok) 441 { 442 struct ath_node *an = NULL; 443 struct sk_buff *skb; 444 struct ieee80211_sta *sta; 445 struct ieee80211_hw *hw = sc->hw; 446 struct ieee80211_hdr *hdr; 447 struct ieee80211_tx_info *tx_info; 448 struct ath_atx_tid *tid = NULL; 449 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 450 struct list_head bf_head; 451 struct sk_buff_head bf_pending; 452 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 453 u32 ba[WME_BA_BMP_SIZE >> 5]; 454 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 455 bool rc_update = true, isba; 456 struct ieee80211_tx_rate rates[4]; 457 struct ath_frame_info *fi; 458 int nframes; 459 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 460 int i, retries; 461 int bar_index = -1; 462 463 skb = bf->bf_mpdu; 464 hdr = (struct ieee80211_hdr *)skb->data; 465 466 tx_info = IEEE80211_SKB_CB(skb); 467 468 memcpy(rates, bf->rates, sizeof(rates)); 469 470 retries = ts->ts_longretry + 1; 471 for (i = 0; i < ts->ts_rateindex; i++) 472 retries += rates[i].count; 473 474 rcu_read_lock(); 475 476 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 477 if (!sta) { 478 rcu_read_unlock(); 479 480 INIT_LIST_HEAD(&bf_head); 481 while (bf) { 482 bf_next = bf->bf_next; 483 484 if (!bf->bf_state.stale || bf_next != NULL) 485 list_move_tail(&bf->list, &bf_head); 486 487 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0); 488 489 bf = bf_next; 490 } 491 return; 492 } 493 494 an = (struct ath_node *)sta->drv_priv; 495 tid = ath_get_skb_tid(sc, an, skb); 496 seq_first = tid->seq_start; 497 isba = ts->ts_flags & ATH9K_TX_BA; 498 499 /* 500 * The hardware occasionally sends a tx status for the wrong TID. 501 * In this case, the BA status cannot be considered valid and all 502 * subframes need to be retransmitted 503 * 504 * Only BlockAcks have a TID and therefore normal Acks cannot be 505 * checked 506 */ 507 if (isba && tid->tidno != ts->tid) 508 txok = false; 509 510 isaggr = bf_isaggr(bf); 511 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 512 513 if (isaggr && txok) { 514 if (ts->ts_flags & ATH9K_TX_BA) { 515 seq_st = ts->ts_seqnum; 516 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 517 } else { 518 /* 519 * AR5416 can become deaf/mute when BA 520 * issue happens. Chip needs to be reset. 521 * But AP code may have sychronization issues 522 * when perform internal reset in this routine. 523 * Only enable reset in STA mode for now. 524 */ 525 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 526 needreset = 1; 527 } 528 } 529 530 __skb_queue_head_init(&bf_pending); 531 532 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 533 while (bf) { 534 u16 seqno = bf->bf_state.seqno; 535 536 txfail = txpending = sendbar = 0; 537 bf_next = bf->bf_next; 538 539 skb = bf->bf_mpdu; 540 tx_info = IEEE80211_SKB_CB(skb); 541 fi = get_frame_info(skb); 542 543 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 544 !tid->active) { 545 /* 546 * Outside of the current BlockAck window, 547 * maybe part of a previous session 548 */ 549 txfail = 1; 550 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 551 /* transmit completion, subframe is 552 * acked by block ack */ 553 acked_cnt++; 554 } else if (!isaggr && txok) { 555 /* transmit completion */ 556 acked_cnt++; 557 } else if (flush) { 558 txpending = 1; 559 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 560 if (txok || !an->sleeping) 561 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 562 retries); 563 564 txpending = 1; 565 } else { 566 txfail = 1; 567 txfail_cnt++; 568 bar_index = max_t(int, bar_index, 569 ATH_BA_INDEX(seq_first, seqno)); 570 } 571 572 /* 573 * Make sure the last desc is reclaimed if it 574 * not a holding desc. 575 */ 576 INIT_LIST_HEAD(&bf_head); 577 if (bf_next != NULL || !bf_last->bf_state.stale) 578 list_move_tail(&bf->list, &bf_head); 579 580 if (!txpending) { 581 /* 582 * complete the acked-ones/xretried ones; update 583 * block-ack window 584 */ 585 ath_tx_update_baw(sc, tid, seqno); 586 587 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 588 memcpy(tx_info->control.rates, rates, sizeof(rates)); 589 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 590 rc_update = false; 591 if (bf == bf->bf_lastbf) 592 ath_dynack_sample_tx_ts(sc->sc_ah, 593 bf->bf_mpdu, 594 ts); 595 } 596 597 ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 598 !txfail); 599 } else { 600 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 601 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 602 ieee80211_sta_eosp(sta); 603 } 604 /* retry the un-acked ones */ 605 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 606 struct ath_buf *tbf; 607 608 tbf = ath_clone_txbuf(sc, bf_last); 609 /* 610 * Update tx baw and complete the 611 * frame with failed status if we 612 * run out of tx buf. 613 */ 614 if (!tbf) { 615 ath_tx_update_baw(sc, tid, seqno); 616 617 ath_tx_complete_buf(sc, bf, txq, 618 &bf_head, ts, 0); 619 bar_index = max_t(int, bar_index, 620 ATH_BA_INDEX(seq_first, seqno)); 621 break; 622 } 623 624 fi->bf = tbf; 625 } 626 627 /* 628 * Put this buffer to the temporary pending 629 * queue to retain ordering 630 */ 631 __skb_queue_tail(&bf_pending, skb); 632 } 633 634 bf = bf_next; 635 } 636 637 /* prepend un-acked frames to the beginning of the pending frame queue */ 638 if (!skb_queue_empty(&bf_pending)) { 639 if (an->sleeping) 640 ieee80211_sta_set_buffered(sta, tid->tidno, true); 641 642 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 643 if (!an->sleeping) { 644 ath_tx_queue_tid(sc, txq, tid); 645 646 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 647 tid->ac->clear_ps_filter = true; 648 } 649 } 650 651 if (bar_index >= 0) { 652 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 653 654 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 655 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 656 657 ath_txq_unlock(sc, txq); 658 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 659 ath_txq_lock(sc, txq); 660 } 661 662 rcu_read_unlock(); 663 664 if (needreset) 665 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 666 } 667 668 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 669 { 670 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 671 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 672 } 673 674 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 675 struct ath_tx_status *ts, struct ath_buf *bf, 676 struct list_head *bf_head) 677 { 678 struct ieee80211_tx_info *info; 679 bool txok, flush; 680 681 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 682 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 683 txq->axq_tx_inprogress = false; 684 685 txq->axq_depth--; 686 if (bf_is_ampdu_not_probing(bf)) 687 txq->axq_ampdu_depth--; 688 689 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 690 ts->ts_rateindex); 691 if (!bf_isampdu(bf)) { 692 if (!flush) { 693 info = IEEE80211_SKB_CB(bf->bf_mpdu); 694 memcpy(info->control.rates, bf->rates, 695 sizeof(info->control.rates)); 696 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 697 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts); 698 } 699 ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok); 700 } else 701 ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok); 702 703 if (!flush) 704 ath_txq_schedule(sc, txq); 705 } 706 707 static bool ath_lookup_legacy(struct ath_buf *bf) 708 { 709 struct sk_buff *skb; 710 struct ieee80211_tx_info *tx_info; 711 struct ieee80211_tx_rate *rates; 712 int i; 713 714 skb = bf->bf_mpdu; 715 tx_info = IEEE80211_SKB_CB(skb); 716 rates = tx_info->control.rates; 717 718 for (i = 0; i < 4; i++) { 719 if (!rates[i].count || rates[i].idx < 0) 720 break; 721 722 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 723 return true; 724 } 725 726 return false; 727 } 728 729 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 730 struct ath_atx_tid *tid) 731 { 732 struct sk_buff *skb; 733 struct ieee80211_tx_info *tx_info; 734 struct ieee80211_tx_rate *rates; 735 u32 max_4ms_framelen, frmlen; 736 u16 aggr_limit, bt_aggr_limit, legacy = 0; 737 int q = tid->ac->txq->mac80211_qnum; 738 int i; 739 740 skb = bf->bf_mpdu; 741 tx_info = IEEE80211_SKB_CB(skb); 742 rates = bf->rates; 743 744 /* 745 * Find the lowest frame length among the rate series that will have a 746 * 4ms (or TXOP limited) transmit duration. 747 */ 748 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 749 750 for (i = 0; i < 4; i++) { 751 int modeidx; 752 753 if (!rates[i].count) 754 continue; 755 756 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 757 legacy = 1; 758 break; 759 } 760 761 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 762 modeidx = MCS_HT40; 763 else 764 modeidx = MCS_HT20; 765 766 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 767 modeidx++; 768 769 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 770 max_4ms_framelen = min(max_4ms_framelen, frmlen); 771 } 772 773 /* 774 * limit aggregate size by the minimum rate if rate selected is 775 * not a probe rate, if rate selected is a probe rate then 776 * avoid aggregation of this packet. 777 */ 778 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 779 return 0; 780 781 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 782 783 /* 784 * Override the default aggregation limit for BTCOEX. 785 */ 786 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 787 if (bt_aggr_limit) 788 aggr_limit = bt_aggr_limit; 789 790 if (tid->an->maxampdu) 791 aggr_limit = min(aggr_limit, tid->an->maxampdu); 792 793 return aggr_limit; 794 } 795 796 /* 797 * Returns the number of delimiters to be added to 798 * meet the minimum required mpdudensity. 799 */ 800 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 801 struct ath_buf *bf, u16 frmlen, 802 bool first_subfrm) 803 { 804 #define FIRST_DESC_NDELIMS 60 805 u32 nsymbits, nsymbols; 806 u16 minlen; 807 u8 flags, rix; 808 int width, streams, half_gi, ndelim, mindelim; 809 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 810 811 /* Select standard number of delimiters based on frame length alone */ 812 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 813 814 /* 815 * If encryption enabled, hardware requires some more padding between 816 * subframes. 817 * TODO - this could be improved to be dependent on the rate. 818 * The hardware can keep up at lower rates, but not higher rates 819 */ 820 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 821 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 822 ndelim += ATH_AGGR_ENCRYPTDELIM; 823 824 /* 825 * Add delimiter when using RTS/CTS with aggregation 826 * and non enterprise AR9003 card 827 */ 828 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 829 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 830 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 831 832 /* 833 * Convert desired mpdu density from microeconds to bytes based 834 * on highest rate in rate series (i.e. first rate) to determine 835 * required minimum length for subframe. Take into account 836 * whether high rate is 20 or 40Mhz and half or full GI. 837 * 838 * If there is no mpdu density restriction, no further calculation 839 * is needed. 840 */ 841 842 if (tid->an->mpdudensity == 0) 843 return ndelim; 844 845 rix = bf->rates[0].idx; 846 flags = bf->rates[0].flags; 847 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 848 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 849 850 if (half_gi) 851 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 852 else 853 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 854 855 if (nsymbols == 0) 856 nsymbols = 1; 857 858 streams = HT_RC_2_STREAMS(rix); 859 nsymbits = bits_per_symbol[rix % 8][width] * streams; 860 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 861 862 if (frmlen < minlen) { 863 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 864 ndelim = max(mindelim, ndelim); 865 } 866 867 return ndelim; 868 } 869 870 static struct ath_buf * 871 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 872 struct ath_atx_tid *tid, struct sk_buff_head **q) 873 { 874 struct ieee80211_tx_info *tx_info; 875 struct ath_frame_info *fi; 876 struct sk_buff *skb; 877 struct ath_buf *bf; 878 u16 seqno; 879 880 while (1) { 881 *q = &tid->retry_q; 882 if (skb_queue_empty(*q)) 883 *q = &tid->buf_q; 884 885 skb = skb_peek(*q); 886 if (!skb) 887 break; 888 889 fi = get_frame_info(skb); 890 bf = fi->bf; 891 if (!fi->bf) 892 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 893 else 894 bf->bf_state.stale = false; 895 896 if (!bf) { 897 __skb_unlink(skb, *q); 898 ath_txq_skb_done(sc, txq, skb); 899 ieee80211_free_txskb(sc->hw, skb); 900 continue; 901 } 902 903 bf->bf_next = NULL; 904 bf->bf_lastbf = bf; 905 906 tx_info = IEEE80211_SKB_CB(skb); 907 tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT; 908 909 /* 910 * No aggregation session is running, but there may be frames 911 * from a previous session or a failed attempt in the queue. 912 * Send them out as normal data frames 913 */ 914 if (!tid->active) 915 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 916 917 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 918 bf->bf_state.bf_type = 0; 919 return bf; 920 } 921 922 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 923 seqno = bf->bf_state.seqno; 924 925 /* do not step over block-ack window */ 926 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) 927 break; 928 929 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 930 struct ath_tx_status ts = {}; 931 struct list_head bf_head; 932 933 INIT_LIST_HEAD(&bf_head); 934 list_add(&bf->list, &bf_head); 935 __skb_unlink(skb, *q); 936 ath_tx_update_baw(sc, tid, seqno); 937 ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0); 938 continue; 939 } 940 941 return bf; 942 } 943 944 return NULL; 945 } 946 947 static bool 948 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 949 struct ath_atx_tid *tid, struct list_head *bf_q, 950 struct ath_buf *bf_first, struct sk_buff_head *tid_q, 951 int *aggr_len) 952 { 953 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 954 struct ath_buf *bf = bf_first, *bf_prev = NULL; 955 int nframes = 0, ndelim; 956 u16 aggr_limit = 0, al = 0, bpad = 0, 957 al_delta, h_baw = tid->baw_size / 2; 958 struct ieee80211_tx_info *tx_info; 959 struct ath_frame_info *fi; 960 struct sk_buff *skb; 961 bool closed = false; 962 963 bf = bf_first; 964 aggr_limit = ath_lookup_rate(sc, bf, tid); 965 966 do { 967 skb = bf->bf_mpdu; 968 fi = get_frame_info(skb); 969 970 /* do not exceed aggregation limit */ 971 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 972 if (nframes) { 973 if (aggr_limit < al + bpad + al_delta || 974 ath_lookup_legacy(bf) || nframes >= h_baw) 975 break; 976 977 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 978 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 979 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 980 break; 981 } 982 983 /* add padding for previous frame to aggregation length */ 984 al += bpad + al_delta; 985 986 /* 987 * Get the delimiters needed to meet the MPDU 988 * density for this node. 989 */ 990 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 991 !nframes); 992 bpad = PADBYTES(al_delta) + (ndelim << 2); 993 994 nframes++; 995 bf->bf_next = NULL; 996 997 /* link buffers of this frame to the aggregate */ 998 if (!fi->baw_tracked) 999 ath_tx_addto_baw(sc, tid, bf); 1000 bf->bf_state.ndelim = ndelim; 1001 1002 __skb_unlink(skb, tid_q); 1003 list_add_tail(&bf->list, bf_q); 1004 if (bf_prev) 1005 bf_prev->bf_next = bf; 1006 1007 bf_prev = bf; 1008 1009 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1010 if (!bf) { 1011 closed = true; 1012 break; 1013 } 1014 } while (ath_tid_has_buffered(tid)); 1015 1016 bf = bf_first; 1017 bf->bf_lastbf = bf_prev; 1018 1019 if (bf == bf_prev) { 1020 al = get_frame_info(bf->bf_mpdu)->framelen; 1021 bf->bf_state.bf_type = BUF_AMPDU; 1022 } else { 1023 TX_STAT_INC(txq->axq_qnum, a_aggr); 1024 } 1025 1026 *aggr_len = al; 1027 1028 return closed; 1029 #undef PADBYTES 1030 } 1031 1032 /* 1033 * rix - rate index 1034 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1035 * width - 0 for 20 MHz, 1 for 40 MHz 1036 * half_gi - to use 4us v/s 3.6 us for symbol time 1037 */ 1038 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1039 int width, int half_gi, bool shortPreamble) 1040 { 1041 u32 nbits, nsymbits, duration, nsymbols; 1042 int streams; 1043 1044 /* find number of symbols: PLCP + data */ 1045 streams = HT_RC_2_STREAMS(rix); 1046 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1047 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1048 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1049 1050 if (!half_gi) 1051 duration = SYMBOL_TIME(nsymbols); 1052 else 1053 duration = SYMBOL_TIME_HALFGI(nsymbols); 1054 1055 /* addup duration for legacy/ht training and signal fields */ 1056 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1057 1058 return duration; 1059 } 1060 1061 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1062 { 1063 int streams = HT_RC_2_STREAMS(mcs); 1064 int symbols, bits; 1065 int bytes = 0; 1066 1067 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1068 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1069 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1070 bits -= OFDM_PLCP_BITS; 1071 bytes = bits / 8; 1072 if (bytes > 65532) 1073 bytes = 65532; 1074 1075 return bytes; 1076 } 1077 1078 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1079 { 1080 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1081 int mcs; 1082 1083 /* 4ms is the default (and maximum) duration */ 1084 if (!txop || txop > 4096) 1085 txop = 4096; 1086 1087 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1088 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1089 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1090 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1091 for (mcs = 0; mcs < 32; mcs++) { 1092 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1093 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1094 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1095 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1096 } 1097 } 1098 1099 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1100 struct ath_tx_info *info, int len, bool rts) 1101 { 1102 struct ath_hw *ah = sc->sc_ah; 1103 struct ath_common *common = ath9k_hw_common(ah); 1104 struct sk_buff *skb; 1105 struct ieee80211_tx_info *tx_info; 1106 struct ieee80211_tx_rate *rates; 1107 const struct ieee80211_rate *rate; 1108 struct ieee80211_hdr *hdr; 1109 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1110 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1111 int i; 1112 u8 rix = 0; 1113 1114 skb = bf->bf_mpdu; 1115 tx_info = IEEE80211_SKB_CB(skb); 1116 rates = bf->rates; 1117 hdr = (struct ieee80211_hdr *)skb->data; 1118 1119 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1120 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1121 info->rtscts_rate = fi->rtscts_rate; 1122 1123 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1124 bool is_40, is_sgi, is_sp; 1125 int phy; 1126 1127 if (!rates[i].count || (rates[i].idx < 0)) 1128 continue; 1129 1130 rix = rates[i].idx; 1131 info->rates[i].Tries = rates[i].count; 1132 1133 /* 1134 * Handle RTS threshold for unaggregated HT frames. 1135 */ 1136 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1137 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1138 unlikely(rts_thresh != (u32) -1)) { 1139 if (!rts_thresh || (len > rts_thresh)) 1140 rts = true; 1141 } 1142 1143 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1144 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1145 info->flags |= ATH9K_TXDESC_RTSENA; 1146 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1147 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1148 info->flags |= ATH9K_TXDESC_CTSENA; 1149 } 1150 1151 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1152 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1153 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1154 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1155 1156 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1157 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1158 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1159 1160 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1161 /* MCS rates */ 1162 info->rates[i].Rate = rix | 0x80; 1163 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1164 ah->txchainmask, info->rates[i].Rate); 1165 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1166 is_40, is_sgi, is_sp); 1167 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1168 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1169 continue; 1170 } 1171 1172 /* legacy rates */ 1173 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1174 if ((tx_info->band == IEEE80211_BAND_2GHZ) && 1175 !(rate->flags & IEEE80211_RATE_ERP_G)) 1176 phy = WLAN_RC_PHY_CCK; 1177 else 1178 phy = WLAN_RC_PHY_OFDM; 1179 1180 info->rates[i].Rate = rate->hw_value; 1181 if (rate->hw_value_short) { 1182 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1183 info->rates[i].Rate |= rate->hw_value_short; 1184 } else { 1185 is_sp = false; 1186 } 1187 1188 if (bf->bf_state.bfs_paprd) 1189 info->rates[i].ChSel = ah->txchainmask; 1190 else 1191 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1192 ah->txchainmask, info->rates[i].Rate); 1193 1194 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1195 phy, rate->bitrate * 100, len, rix, is_sp); 1196 } 1197 1198 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1199 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1200 info->flags &= ~ATH9K_TXDESC_RTSENA; 1201 1202 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1203 if (info->flags & ATH9K_TXDESC_RTSENA) 1204 info->flags &= ~ATH9K_TXDESC_CTSENA; 1205 } 1206 1207 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1208 { 1209 struct ieee80211_hdr *hdr; 1210 enum ath9k_pkt_type htype; 1211 __le16 fc; 1212 1213 hdr = (struct ieee80211_hdr *)skb->data; 1214 fc = hdr->frame_control; 1215 1216 if (ieee80211_is_beacon(fc)) 1217 htype = ATH9K_PKT_TYPE_BEACON; 1218 else if (ieee80211_is_probe_resp(fc)) 1219 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1220 else if (ieee80211_is_atim(fc)) 1221 htype = ATH9K_PKT_TYPE_ATIM; 1222 else if (ieee80211_is_pspoll(fc)) 1223 htype = ATH9K_PKT_TYPE_PSPOLL; 1224 else 1225 htype = ATH9K_PKT_TYPE_NORMAL; 1226 1227 return htype; 1228 } 1229 1230 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1231 struct ath_txq *txq, int len) 1232 { 1233 struct ath_hw *ah = sc->sc_ah; 1234 struct ath_buf *bf_first = NULL; 1235 struct ath_tx_info info; 1236 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1237 bool rts = false; 1238 1239 memset(&info, 0, sizeof(info)); 1240 info.is_first = true; 1241 info.is_last = true; 1242 info.txpower = MAX_RATE_POWER; 1243 info.qcu = txq->axq_qnum; 1244 1245 while (bf) { 1246 struct sk_buff *skb = bf->bf_mpdu; 1247 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1248 struct ath_frame_info *fi = get_frame_info(skb); 1249 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1250 1251 info.type = get_hw_packet_type(skb); 1252 if (bf->bf_next) 1253 info.link = bf->bf_next->bf_daddr; 1254 else 1255 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1256 1257 if (!bf_first) { 1258 bf_first = bf; 1259 1260 if (!sc->tx99_state) 1261 info.flags = ATH9K_TXDESC_INTREQ; 1262 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1263 txq == sc->tx.uapsdq) 1264 info.flags |= ATH9K_TXDESC_CLRDMASK; 1265 1266 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1267 info.flags |= ATH9K_TXDESC_NOACK; 1268 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1269 info.flags |= ATH9K_TXDESC_LDPC; 1270 1271 if (bf->bf_state.bfs_paprd) 1272 info.flags |= (u32) bf->bf_state.bfs_paprd << 1273 ATH9K_TXDESC_PAPRD_S; 1274 1275 /* 1276 * mac80211 doesn't handle RTS threshold for HT because 1277 * the decision has to be taken based on AMPDU length 1278 * and aggregation is done entirely inside ath9k. 1279 * Set the RTS/CTS flag for the first subframe based 1280 * on the threshold. 1281 */ 1282 if (aggr && (bf == bf_first) && 1283 unlikely(rts_thresh != (u32) -1)) { 1284 /* 1285 * "len" is the size of the entire AMPDU. 1286 */ 1287 if (!rts_thresh || (len > rts_thresh)) 1288 rts = true; 1289 } 1290 1291 if (!aggr) 1292 len = fi->framelen; 1293 1294 ath_buf_set_rate(sc, bf, &info, len, rts); 1295 } 1296 1297 info.buf_addr[0] = bf->bf_buf_addr; 1298 info.buf_len[0] = skb->len; 1299 info.pkt_len = fi->framelen; 1300 info.keyix = fi->keyix; 1301 info.keytype = fi->keytype; 1302 1303 if (aggr) { 1304 if (bf == bf_first) 1305 info.aggr = AGGR_BUF_FIRST; 1306 else if (bf == bf_first->bf_lastbf) 1307 info.aggr = AGGR_BUF_LAST; 1308 else 1309 info.aggr = AGGR_BUF_MIDDLE; 1310 1311 info.ndelim = bf->bf_state.ndelim; 1312 info.aggr_len = len; 1313 } 1314 1315 if (bf == bf_first->bf_lastbf) 1316 bf_first = NULL; 1317 1318 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1319 bf = bf->bf_next; 1320 } 1321 } 1322 1323 static void 1324 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1325 struct ath_atx_tid *tid, struct list_head *bf_q, 1326 struct ath_buf *bf_first, struct sk_buff_head *tid_q) 1327 { 1328 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1329 struct sk_buff *skb; 1330 int nframes = 0; 1331 1332 do { 1333 struct ieee80211_tx_info *tx_info; 1334 skb = bf->bf_mpdu; 1335 1336 nframes++; 1337 __skb_unlink(skb, tid_q); 1338 list_add_tail(&bf->list, bf_q); 1339 if (bf_prev) 1340 bf_prev->bf_next = bf; 1341 bf_prev = bf; 1342 1343 if (nframes >= 2) 1344 break; 1345 1346 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1347 if (!bf) 1348 break; 1349 1350 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1351 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) 1352 break; 1353 1354 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1355 } while (1); 1356 } 1357 1358 static bool ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1359 struct ath_atx_tid *tid, bool *stop) 1360 { 1361 struct ath_buf *bf; 1362 struct ieee80211_tx_info *tx_info; 1363 struct sk_buff_head *tid_q; 1364 struct list_head bf_q; 1365 int aggr_len = 0; 1366 bool aggr, last = true; 1367 1368 if (!ath_tid_has_buffered(tid)) 1369 return false; 1370 1371 INIT_LIST_HEAD(&bf_q); 1372 1373 bf = ath_tx_get_tid_subframe(sc, txq, tid, &tid_q); 1374 if (!bf) 1375 return false; 1376 1377 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1378 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1379 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1380 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1381 *stop = true; 1382 return false; 1383 } 1384 1385 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1386 if (aggr) 1387 last = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf, 1388 tid_q, &aggr_len); 1389 else 1390 ath_tx_form_burst(sc, txq, tid, &bf_q, bf, tid_q); 1391 1392 if (list_empty(&bf_q)) 1393 return false; 1394 1395 if (tid->ac->clear_ps_filter || tid->an->no_ps_filter) { 1396 tid->ac->clear_ps_filter = false; 1397 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1398 } 1399 1400 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1401 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1402 return true; 1403 } 1404 1405 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1406 u16 tid, u16 *ssn) 1407 { 1408 struct ath_atx_tid *txtid; 1409 struct ath_txq *txq; 1410 struct ath_node *an; 1411 u8 density; 1412 1413 an = (struct ath_node *)sta->drv_priv; 1414 txtid = ATH_AN_2_TID(an, tid); 1415 txq = txtid->ac->txq; 1416 1417 ath_txq_lock(sc, txq); 1418 1419 /* update ampdu factor/density, they may have changed. This may happen 1420 * in HT IBSS when a beacon with HT-info is received after the station 1421 * has already been added. 1422 */ 1423 if (sta->ht_cap.ht_supported) { 1424 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1425 sta->ht_cap.ampdu_factor)) - 1; 1426 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1427 an->mpdudensity = density; 1428 } 1429 1430 /* force sequence number allocation for pending frames */ 1431 ath_tx_tid_change_state(sc, txtid); 1432 1433 txtid->active = true; 1434 *ssn = txtid->seq_start = txtid->seq_next; 1435 txtid->bar_index = -1; 1436 1437 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1438 txtid->baw_head = txtid->baw_tail = 0; 1439 1440 ath_txq_unlock_complete(sc, txq); 1441 1442 return 0; 1443 } 1444 1445 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1446 { 1447 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1448 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1449 struct ath_txq *txq = txtid->ac->txq; 1450 1451 ath_txq_lock(sc, txq); 1452 txtid->active = false; 1453 ath_tx_flush_tid(sc, txtid); 1454 ath_tx_tid_change_state(sc, txtid); 1455 ath_txq_unlock_complete(sc, txq); 1456 } 1457 1458 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1459 struct ath_node *an) 1460 { 1461 struct ath_atx_tid *tid; 1462 struct ath_atx_ac *ac; 1463 struct ath_txq *txq; 1464 bool buffered; 1465 int tidno; 1466 1467 for (tidno = 0, tid = &an->tid[tidno]; 1468 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1469 1470 ac = tid->ac; 1471 txq = ac->txq; 1472 1473 ath_txq_lock(sc, txq); 1474 1475 if (!tid->sched) { 1476 ath_txq_unlock(sc, txq); 1477 continue; 1478 } 1479 1480 buffered = ath_tid_has_buffered(tid); 1481 1482 tid->sched = false; 1483 list_del(&tid->list); 1484 1485 if (ac->sched) { 1486 ac->sched = false; 1487 list_del(&ac->list); 1488 } 1489 1490 ath_txq_unlock(sc, txq); 1491 1492 ieee80211_sta_set_buffered(sta, tidno, buffered); 1493 } 1494 } 1495 1496 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1497 { 1498 struct ath_atx_tid *tid; 1499 struct ath_atx_ac *ac; 1500 struct ath_txq *txq; 1501 int tidno; 1502 1503 for (tidno = 0, tid = &an->tid[tidno]; 1504 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 1505 1506 ac = tid->ac; 1507 txq = ac->txq; 1508 1509 ath_txq_lock(sc, txq); 1510 ac->clear_ps_filter = true; 1511 1512 if (ath_tid_has_buffered(tid)) { 1513 ath_tx_queue_tid(sc, txq, tid); 1514 ath_txq_schedule(sc, txq); 1515 } 1516 1517 ath_txq_unlock_complete(sc, txq); 1518 } 1519 } 1520 1521 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, 1522 u16 tidno) 1523 { 1524 struct ath_atx_tid *tid; 1525 struct ath_node *an; 1526 struct ath_txq *txq; 1527 1528 an = (struct ath_node *)sta->drv_priv; 1529 tid = ATH_AN_2_TID(an, tidno); 1530 txq = tid->ac->txq; 1531 1532 ath_txq_lock(sc, txq); 1533 1534 tid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor; 1535 1536 if (ath_tid_has_buffered(tid)) { 1537 ath_tx_queue_tid(sc, txq, tid); 1538 ath_txq_schedule(sc, txq); 1539 } 1540 1541 ath_txq_unlock_complete(sc, txq); 1542 } 1543 1544 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1545 struct ieee80211_sta *sta, 1546 u16 tids, int nframes, 1547 enum ieee80211_frame_release_type reason, 1548 bool more_data) 1549 { 1550 struct ath_softc *sc = hw->priv; 1551 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1552 struct ath_txq *txq = sc->tx.uapsdq; 1553 struct ieee80211_tx_info *info; 1554 struct list_head bf_q; 1555 struct ath_buf *bf_tail = NULL, *bf; 1556 struct sk_buff_head *tid_q; 1557 int sent = 0; 1558 int i; 1559 1560 INIT_LIST_HEAD(&bf_q); 1561 for (i = 0; tids && nframes; i++, tids >>= 1) { 1562 struct ath_atx_tid *tid; 1563 1564 if (!(tids & 1)) 1565 continue; 1566 1567 tid = ATH_AN_2_TID(an, i); 1568 1569 ath_txq_lock(sc, tid->ac->txq); 1570 while (nframes > 0) { 1571 bf = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, tid, &tid_q); 1572 if (!bf) 1573 break; 1574 1575 __skb_unlink(bf->bf_mpdu, tid_q); 1576 list_add_tail(&bf->list, &bf_q); 1577 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1578 if (bf_isampdu(bf)) { 1579 ath_tx_addto_baw(sc, tid, bf); 1580 bf->bf_state.bf_type &= ~BUF_AGGR; 1581 } 1582 if (bf_tail) 1583 bf_tail->bf_next = bf; 1584 1585 bf_tail = bf; 1586 nframes--; 1587 sent++; 1588 TX_STAT_INC(txq->axq_qnum, a_queued_hw); 1589 1590 if (an->sta && !ath_tid_has_buffered(tid)) 1591 ieee80211_sta_set_buffered(an->sta, i, false); 1592 } 1593 ath_txq_unlock_complete(sc, tid->ac->txq); 1594 } 1595 1596 if (list_empty(&bf_q)) 1597 return; 1598 1599 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1600 info->flags |= IEEE80211_TX_STATUS_EOSP; 1601 1602 bf = list_first_entry(&bf_q, struct ath_buf, list); 1603 ath_txq_lock(sc, txq); 1604 ath_tx_fill_desc(sc, bf, txq, 0); 1605 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1606 ath_txq_unlock(sc, txq); 1607 } 1608 1609 /********************/ 1610 /* Queue Management */ 1611 /********************/ 1612 1613 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1614 { 1615 struct ath_hw *ah = sc->sc_ah; 1616 struct ath9k_tx_queue_info qi; 1617 static const int subtype_txq_to_hwq[] = { 1618 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1619 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1620 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1621 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1622 }; 1623 int axq_qnum, i; 1624 1625 memset(&qi, 0, sizeof(qi)); 1626 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1627 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1628 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1629 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1630 qi.tqi_physCompBuf = 0; 1631 1632 /* 1633 * Enable interrupts only for EOL and DESC conditions. 1634 * We mark tx descriptors to receive a DESC interrupt 1635 * when a tx queue gets deep; otherwise waiting for the 1636 * EOL to reap descriptors. Note that this is done to 1637 * reduce interrupt load and this only defers reaping 1638 * descriptors, never transmitting frames. Aside from 1639 * reducing interrupts this also permits more concurrency. 1640 * The only potential downside is if the tx queue backs 1641 * up in which case the top half of the kernel may backup 1642 * due to a lack of tx descriptors. 1643 * 1644 * The UAPSD queue is an exception, since we take a desc- 1645 * based intr on the EOSP frames. 1646 */ 1647 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1648 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1649 } else { 1650 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1651 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1652 else 1653 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1654 TXQ_FLAG_TXDESCINT_ENABLE; 1655 } 1656 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1657 if (axq_qnum == -1) { 1658 /* 1659 * NB: don't print a message, this happens 1660 * normally on parts with too few tx queues 1661 */ 1662 return NULL; 1663 } 1664 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1665 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1666 1667 txq->axq_qnum = axq_qnum; 1668 txq->mac80211_qnum = -1; 1669 txq->axq_link = NULL; 1670 __skb_queue_head_init(&txq->complete_q); 1671 INIT_LIST_HEAD(&txq->axq_q); 1672 spin_lock_init(&txq->axq_lock); 1673 txq->axq_depth = 0; 1674 txq->axq_ampdu_depth = 0; 1675 txq->axq_tx_inprogress = false; 1676 sc->tx.txqsetup |= 1<<axq_qnum; 1677 1678 txq->txq_headidx = txq->txq_tailidx = 0; 1679 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1680 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1681 } 1682 return &sc->tx.txq[axq_qnum]; 1683 } 1684 1685 int ath_txq_update(struct ath_softc *sc, int qnum, 1686 struct ath9k_tx_queue_info *qinfo) 1687 { 1688 struct ath_hw *ah = sc->sc_ah; 1689 int error = 0; 1690 struct ath9k_tx_queue_info qi; 1691 1692 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1693 1694 ath9k_hw_get_txq_props(ah, qnum, &qi); 1695 qi.tqi_aifs = qinfo->tqi_aifs; 1696 qi.tqi_cwmin = qinfo->tqi_cwmin; 1697 qi.tqi_cwmax = qinfo->tqi_cwmax; 1698 qi.tqi_burstTime = qinfo->tqi_burstTime; 1699 qi.tqi_readyTime = qinfo->tqi_readyTime; 1700 1701 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1702 ath_err(ath9k_hw_common(sc->sc_ah), 1703 "Unable to update hardware queue %u!\n", qnum); 1704 error = -EIO; 1705 } else { 1706 ath9k_hw_resettxqueue(ah, qnum); 1707 } 1708 1709 return error; 1710 } 1711 1712 int ath_cabq_update(struct ath_softc *sc) 1713 { 1714 struct ath9k_tx_queue_info qi; 1715 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1716 int qnum = sc->beacon.cabq->axq_qnum; 1717 1718 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1719 1720 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1721 ATH_CABQ_READY_TIME) / 100; 1722 ath_txq_update(sc, qnum, &qi); 1723 1724 return 0; 1725 } 1726 1727 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1728 struct list_head *list) 1729 { 1730 struct ath_buf *bf, *lastbf; 1731 struct list_head bf_head; 1732 struct ath_tx_status ts; 1733 1734 memset(&ts, 0, sizeof(ts)); 1735 ts.ts_status = ATH9K_TX_FLUSH; 1736 INIT_LIST_HEAD(&bf_head); 1737 1738 while (!list_empty(list)) { 1739 bf = list_first_entry(list, struct ath_buf, list); 1740 1741 if (bf->bf_state.stale) { 1742 list_del(&bf->list); 1743 1744 ath_tx_return_buffer(sc, bf); 1745 continue; 1746 } 1747 1748 lastbf = bf->bf_lastbf; 1749 list_cut_position(&bf_head, list, &lastbf->list); 1750 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1751 } 1752 } 1753 1754 /* 1755 * Drain a given TX queue (could be Beacon or Data) 1756 * 1757 * This assumes output has been stopped and 1758 * we do not need to block ath_tx_tasklet. 1759 */ 1760 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1761 { 1762 ath_txq_lock(sc, txq); 1763 1764 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1765 int idx = txq->txq_tailidx; 1766 1767 while (!list_empty(&txq->txq_fifo[idx])) { 1768 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1769 1770 INCR(idx, ATH_TXFIFO_DEPTH); 1771 } 1772 txq->txq_tailidx = idx; 1773 } 1774 1775 txq->axq_link = NULL; 1776 txq->axq_tx_inprogress = false; 1777 ath_drain_txq_list(sc, txq, &txq->axq_q); 1778 1779 ath_txq_unlock_complete(sc, txq); 1780 } 1781 1782 bool ath_drain_all_txq(struct ath_softc *sc) 1783 { 1784 struct ath_hw *ah = sc->sc_ah; 1785 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1786 struct ath_txq *txq; 1787 int i; 1788 u32 npend = 0; 1789 1790 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1791 return true; 1792 1793 ath9k_hw_abort_tx_dma(ah); 1794 1795 /* Check if any queue remains active */ 1796 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1797 if (!ATH_TXQ_SETUP(sc, i)) 1798 continue; 1799 1800 if (!sc->tx.txq[i].axq_depth) 1801 continue; 1802 1803 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1804 npend |= BIT(i); 1805 } 1806 1807 if (npend) 1808 ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1809 1810 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1811 if (!ATH_TXQ_SETUP(sc, i)) 1812 continue; 1813 1814 /* 1815 * The caller will resume queues with ieee80211_wake_queues. 1816 * Mark the queue as not stopped to prevent ath_tx_complete 1817 * from waking the queue too early. 1818 */ 1819 txq = &sc->tx.txq[i]; 1820 txq->stopped = false; 1821 ath_draintxq(sc, txq); 1822 } 1823 1824 return !npend; 1825 } 1826 1827 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1828 { 1829 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1830 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1831 } 1832 1833 /* For each acq entry, for each tid, try to schedule packets 1834 * for transmit until ampdu_depth has reached min Q depth. 1835 */ 1836 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1837 { 1838 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1839 struct ath_atx_ac *ac, *last_ac; 1840 struct ath_atx_tid *tid, *last_tid; 1841 struct list_head *ac_list; 1842 bool sent = false; 1843 1844 if (txq->mac80211_qnum < 0) 1845 return; 1846 1847 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1848 return; 1849 1850 spin_lock_bh(&sc->chan_lock); 1851 ac_list = &sc->cur_chan->acq[txq->mac80211_qnum]; 1852 1853 if (list_empty(ac_list)) { 1854 spin_unlock_bh(&sc->chan_lock); 1855 return; 1856 } 1857 1858 rcu_read_lock(); 1859 1860 last_ac = list_entry(ac_list->prev, struct ath_atx_ac, list); 1861 while (!list_empty(ac_list)) { 1862 bool stop = false; 1863 1864 if (sc->cur_chan->stopped) 1865 break; 1866 1867 ac = list_first_entry(ac_list, struct ath_atx_ac, list); 1868 last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list); 1869 list_del(&ac->list); 1870 ac->sched = false; 1871 1872 while (!list_empty(&ac->tid_q)) { 1873 1874 tid = list_first_entry(&ac->tid_q, struct ath_atx_tid, 1875 list); 1876 list_del(&tid->list); 1877 tid->sched = false; 1878 1879 if (ath_tx_sched_aggr(sc, txq, tid, &stop)) 1880 sent = true; 1881 1882 /* 1883 * add tid to round-robin queue if more frames 1884 * are pending for the tid 1885 */ 1886 if (ath_tid_has_buffered(tid)) 1887 ath_tx_queue_tid(sc, txq, tid); 1888 1889 if (stop || tid == last_tid) 1890 break; 1891 } 1892 1893 if (!list_empty(&ac->tid_q) && !ac->sched) { 1894 ac->sched = true; 1895 list_add_tail(&ac->list, ac_list); 1896 } 1897 1898 if (stop) 1899 break; 1900 1901 if (ac == last_ac) { 1902 if (!sent) 1903 break; 1904 1905 sent = false; 1906 last_ac = list_entry(ac_list->prev, 1907 struct ath_atx_ac, list); 1908 } 1909 } 1910 1911 rcu_read_unlock(); 1912 spin_unlock_bh(&sc->chan_lock); 1913 } 1914 1915 void ath_txq_schedule_all(struct ath_softc *sc) 1916 { 1917 struct ath_txq *txq; 1918 int i; 1919 1920 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 1921 txq = sc->tx.txq_map[i]; 1922 1923 spin_lock_bh(&txq->axq_lock); 1924 ath_txq_schedule(sc, txq); 1925 spin_unlock_bh(&txq->axq_lock); 1926 } 1927 } 1928 1929 /***********/ 1930 /* TX, DMA */ 1931 /***********/ 1932 1933 /* 1934 * Insert a chain of ath_buf (descriptors) on a txq and 1935 * assume the descriptors are already chained together by caller. 1936 */ 1937 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1938 struct list_head *head, bool internal) 1939 { 1940 struct ath_hw *ah = sc->sc_ah; 1941 struct ath_common *common = ath9k_hw_common(ah); 1942 struct ath_buf *bf, *bf_last; 1943 bool puttxbuf = false; 1944 bool edma; 1945 1946 /* 1947 * Insert the frame on the outbound list and 1948 * pass it on to the hardware. 1949 */ 1950 1951 if (list_empty(head)) 1952 return; 1953 1954 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1955 bf = list_first_entry(head, struct ath_buf, list); 1956 bf_last = list_entry(head->prev, struct ath_buf, list); 1957 1958 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1959 txq->axq_qnum, txq->axq_depth); 1960 1961 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 1962 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 1963 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 1964 puttxbuf = true; 1965 } else { 1966 list_splice_tail_init(head, &txq->axq_q); 1967 1968 if (txq->axq_link) { 1969 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 1970 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 1971 txq->axq_qnum, txq->axq_link, 1972 ito64(bf->bf_daddr), bf->bf_desc); 1973 } else if (!edma) 1974 puttxbuf = true; 1975 1976 txq->axq_link = bf_last->bf_desc; 1977 } 1978 1979 if (puttxbuf) { 1980 TX_STAT_INC(txq->axq_qnum, puttxbuf); 1981 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 1982 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 1983 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 1984 } 1985 1986 if (!edma || sc->tx99_state) { 1987 TX_STAT_INC(txq->axq_qnum, txstart); 1988 ath9k_hw_txstart(ah, txq->axq_qnum); 1989 } 1990 1991 if (!internal) { 1992 while (bf) { 1993 txq->axq_depth++; 1994 if (bf_is_ampdu_not_probing(bf)) 1995 txq->axq_ampdu_depth++; 1996 1997 bf_last = bf->bf_lastbf; 1998 bf = bf_last->bf_next; 1999 bf_last->bf_next = NULL; 2000 } 2001 } 2002 } 2003 2004 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2005 struct ath_atx_tid *tid, struct sk_buff *skb) 2006 { 2007 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2008 struct ath_frame_info *fi = get_frame_info(skb); 2009 struct list_head bf_head; 2010 struct ath_buf *bf = fi->bf; 2011 2012 INIT_LIST_HEAD(&bf_head); 2013 list_add_tail(&bf->list, &bf_head); 2014 bf->bf_state.bf_type = 0; 2015 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2016 bf->bf_state.bf_type = BUF_AMPDU; 2017 ath_tx_addto_baw(sc, tid, bf); 2018 } 2019 2020 bf->bf_next = NULL; 2021 bf->bf_lastbf = bf; 2022 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2023 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2024 TX_STAT_INC(txq->axq_qnum, queued); 2025 } 2026 2027 static void setup_frame_info(struct ieee80211_hw *hw, 2028 struct ieee80211_sta *sta, 2029 struct sk_buff *skb, 2030 int framelen) 2031 { 2032 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2033 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2034 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2035 const struct ieee80211_rate *rate; 2036 struct ath_frame_info *fi = get_frame_info(skb); 2037 struct ath_node *an = NULL; 2038 enum ath9k_key_type keytype; 2039 bool short_preamble = false; 2040 2041 /* 2042 * We check if Short Preamble is needed for the CTS rate by 2043 * checking the BSS's global flag. 2044 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2045 */ 2046 if (tx_info->control.vif && 2047 tx_info->control.vif->bss_conf.use_short_preamble) 2048 short_preamble = true; 2049 2050 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2051 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2052 2053 if (sta) 2054 an = (struct ath_node *) sta->drv_priv; 2055 2056 memset(fi, 0, sizeof(*fi)); 2057 fi->txq = -1; 2058 if (hw_key) 2059 fi->keyix = hw_key->hw_key_idx; 2060 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2061 fi->keyix = an->ps_key; 2062 else 2063 fi->keyix = ATH9K_TXKEYIX_INVALID; 2064 fi->keytype = keytype; 2065 fi->framelen = framelen; 2066 2067 if (!rate) 2068 return; 2069 fi->rtscts_rate = rate->hw_value; 2070 if (short_preamble) 2071 fi->rtscts_rate |= rate->hw_value_short; 2072 } 2073 2074 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2075 { 2076 struct ath_hw *ah = sc->sc_ah; 2077 struct ath9k_channel *curchan = ah->curchan; 2078 2079 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2080 (chainmask == 0x7) && (rate < 0x90)) 2081 return 0x3; 2082 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2083 IS_CCK_RATE(rate)) 2084 return 0x2; 2085 else 2086 return chainmask; 2087 } 2088 2089 /* 2090 * Assign a descriptor (and sequence number if necessary, 2091 * and map buffer for DMA. Frees skb on error 2092 */ 2093 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2094 struct ath_txq *txq, 2095 struct ath_atx_tid *tid, 2096 struct sk_buff *skb) 2097 { 2098 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2099 struct ath_frame_info *fi = get_frame_info(skb); 2100 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2101 struct ath_buf *bf; 2102 int fragno; 2103 u16 seqno; 2104 2105 bf = ath_tx_get_buffer(sc); 2106 if (!bf) { 2107 ath_dbg(common, XMIT, "TX buffers are full\n"); 2108 return NULL; 2109 } 2110 2111 ATH_TXBUF_RESET(bf); 2112 2113 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2114 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2115 seqno = tid->seq_next; 2116 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2117 2118 if (fragno) 2119 hdr->seq_ctrl |= cpu_to_le16(fragno); 2120 2121 if (!ieee80211_has_morefrags(hdr->frame_control)) 2122 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2123 2124 bf->bf_state.seqno = seqno; 2125 } 2126 2127 bf->bf_mpdu = skb; 2128 2129 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2130 skb->len, DMA_TO_DEVICE); 2131 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2132 bf->bf_mpdu = NULL; 2133 bf->bf_buf_addr = 0; 2134 ath_err(ath9k_hw_common(sc->sc_ah), 2135 "dma_mapping_error() on TX\n"); 2136 ath_tx_return_buffer(sc, bf); 2137 return NULL; 2138 } 2139 2140 fi->bf = bf; 2141 2142 return bf; 2143 } 2144 2145 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2146 { 2147 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2148 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2149 struct ieee80211_vif *vif = info->control.vif; 2150 struct ath_vif *avp; 2151 2152 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2153 return; 2154 2155 if (!vif) 2156 return; 2157 2158 avp = (struct ath_vif *)vif->drv_priv; 2159 2160 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2161 avp->seq_no += 0x10; 2162 2163 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2164 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2165 } 2166 2167 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2168 struct ath_tx_control *txctl) 2169 { 2170 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2171 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2172 struct ieee80211_sta *sta = txctl->sta; 2173 struct ieee80211_vif *vif = info->control.vif; 2174 struct ath_vif *avp; 2175 struct ath_softc *sc = hw->priv; 2176 int frmlen = skb->len + FCS_LEN; 2177 int padpos, padsize; 2178 2179 /* NOTE: sta can be NULL according to net/mac80211.h */ 2180 if (sta) 2181 txctl->an = (struct ath_node *)sta->drv_priv; 2182 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2183 avp = (void *)vif->drv_priv; 2184 txctl->an = &avp->mcast_node; 2185 } 2186 2187 if (info->control.hw_key) 2188 frmlen += info->control.hw_key->icv_len; 2189 2190 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2191 2192 if ((vif && vif->type != NL80211_IFTYPE_AP && 2193 vif->type != NL80211_IFTYPE_AP_VLAN) || 2194 !ieee80211_is_data(hdr->frame_control)) 2195 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2196 2197 /* Add the padding after the header if this is not already done */ 2198 padpos = ieee80211_hdrlen(hdr->frame_control); 2199 padsize = padpos & 3; 2200 if (padsize && skb->len > padpos) { 2201 if (skb_headroom(skb) < padsize) 2202 return -ENOMEM; 2203 2204 skb_push(skb, padsize); 2205 memmove(skb->data, skb->data + padsize, padpos); 2206 } 2207 2208 setup_frame_info(hw, sta, skb, frmlen); 2209 return 0; 2210 } 2211 2212 2213 /* Upon failure caller should free skb */ 2214 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2215 struct ath_tx_control *txctl) 2216 { 2217 struct ieee80211_hdr *hdr; 2218 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2219 struct ieee80211_sta *sta = txctl->sta; 2220 struct ieee80211_vif *vif = info->control.vif; 2221 struct ath_frame_info *fi = get_frame_info(skb); 2222 struct ath_vif *avp = NULL; 2223 struct ath_softc *sc = hw->priv; 2224 struct ath_txq *txq = txctl->txq; 2225 struct ath_atx_tid *tid = NULL; 2226 struct ath_buf *bf; 2227 bool queue, skip_uapsd = false; 2228 int q, ret; 2229 2230 if (vif) 2231 avp = (void *)vif->drv_priv; 2232 2233 if (info->flags & IEEE80211_TX_CTL_TX_OFFCHAN) 2234 txctl->force_channel = true; 2235 2236 ret = ath_tx_prepare(hw, skb, txctl); 2237 if (ret) 2238 return ret; 2239 2240 hdr = (struct ieee80211_hdr *) skb->data; 2241 /* 2242 * At this point, the vif, hw_key and sta pointers in the tx control 2243 * info are no longer valid (overwritten by the ath_frame_info data. 2244 */ 2245 2246 q = skb_get_queue_mapping(skb); 2247 2248 ath_txq_lock(sc, txq); 2249 if (txq == sc->tx.txq_map[q]) { 2250 fi->txq = q; 2251 if (++txq->pending_frames > sc->tx.txq_max_pending[q] && 2252 !txq->stopped) { 2253 if (ath9k_is_chanctx_enabled()) 2254 ieee80211_stop_queue(sc->hw, info->hw_queue); 2255 else 2256 ieee80211_stop_queue(sc->hw, q); 2257 txq->stopped = true; 2258 } 2259 } 2260 2261 queue = ieee80211_is_data_present(hdr->frame_control); 2262 2263 /* Force queueing of all frames that belong to a virtual interface on 2264 * a different channel context, to ensure that they are sent on the 2265 * correct channel. 2266 */ 2267 if (((avp && avp->chanctx != sc->cur_chan) || 2268 sc->cur_chan->stopped) && !txctl->force_channel) { 2269 if (!txctl->an) 2270 txctl->an = &avp->mcast_node; 2271 queue = true; 2272 skip_uapsd = true; 2273 } 2274 2275 if (txctl->an && queue) 2276 tid = ath_get_skb_tid(sc, txctl->an, skb); 2277 2278 if (!skip_uapsd && (info->flags & IEEE80211_TX_CTL_PS_RESPONSE)) { 2279 ath_txq_unlock(sc, txq); 2280 txq = sc->tx.uapsdq; 2281 ath_txq_lock(sc, txq); 2282 } else if (txctl->an && queue) { 2283 WARN_ON(tid->ac->txq != txctl->txq); 2284 2285 if (info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) 2286 tid->ac->clear_ps_filter = true; 2287 2288 /* 2289 * Add this frame to software queue for scheduling later 2290 * for aggregation. 2291 */ 2292 TX_STAT_INC(txq->axq_qnum, a_queued_sw); 2293 __skb_queue_tail(&tid->buf_q, skb); 2294 if (!txctl->an->sleeping) 2295 ath_tx_queue_tid(sc, txq, tid); 2296 2297 ath_txq_schedule(sc, txq); 2298 goto out; 2299 } 2300 2301 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2302 if (!bf) { 2303 ath_txq_skb_done(sc, txq, skb); 2304 if (txctl->paprd) 2305 dev_kfree_skb_any(skb); 2306 else 2307 ieee80211_free_txskb(sc->hw, skb); 2308 goto out; 2309 } 2310 2311 bf->bf_state.bfs_paprd = txctl->paprd; 2312 2313 if (txctl->paprd) 2314 bf->bf_state.bfs_paprd_timestamp = jiffies; 2315 2316 ath_set_rates(vif, sta, bf); 2317 ath_tx_send_normal(sc, txq, tid, skb); 2318 2319 out: 2320 ath_txq_unlock(sc, txq); 2321 2322 return 0; 2323 } 2324 2325 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2326 struct sk_buff *skb) 2327 { 2328 struct ath_softc *sc = hw->priv; 2329 struct ath_tx_control txctl = { 2330 .txq = sc->beacon.cabq 2331 }; 2332 struct ath_tx_info info = {}; 2333 struct ieee80211_hdr *hdr; 2334 struct ath_buf *bf_tail = NULL; 2335 struct ath_buf *bf; 2336 LIST_HEAD(bf_q); 2337 int duration = 0; 2338 int max_duration; 2339 2340 max_duration = 2341 sc->cur_chan->beacon.beacon_interval * 1000 * 2342 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2343 2344 do { 2345 struct ath_frame_info *fi = get_frame_info(skb); 2346 2347 if (ath_tx_prepare(hw, skb, &txctl)) 2348 break; 2349 2350 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2351 if (!bf) 2352 break; 2353 2354 bf->bf_lastbf = bf; 2355 ath_set_rates(vif, NULL, bf); 2356 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2357 duration += info.rates[0].PktDuration; 2358 if (bf_tail) 2359 bf_tail->bf_next = bf; 2360 2361 list_add_tail(&bf->list, &bf_q); 2362 bf_tail = bf; 2363 skb = NULL; 2364 2365 if (duration > max_duration) 2366 break; 2367 2368 skb = ieee80211_get_buffered_bc(hw, vif); 2369 } while(skb); 2370 2371 if (skb) 2372 ieee80211_free_txskb(hw, skb); 2373 2374 if (list_empty(&bf_q)) 2375 return; 2376 2377 bf = list_first_entry(&bf_q, struct ath_buf, list); 2378 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 2379 2380 if (hdr->frame_control & IEEE80211_FCTL_MOREDATA) { 2381 hdr->frame_control &= ~IEEE80211_FCTL_MOREDATA; 2382 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 2383 sizeof(*hdr), DMA_TO_DEVICE); 2384 } 2385 2386 ath_txq_lock(sc, txctl.txq); 2387 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2388 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2389 TX_STAT_INC(txctl.txq->axq_qnum, queued); 2390 ath_txq_unlock(sc, txctl.txq); 2391 } 2392 2393 /*****************/ 2394 /* TX Completion */ 2395 /*****************/ 2396 2397 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2398 int tx_flags, struct ath_txq *txq) 2399 { 2400 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2401 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2402 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2403 int padpos, padsize; 2404 unsigned long flags; 2405 2406 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2407 2408 if (sc->sc_ah->caldata) 2409 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2410 2411 if (!(tx_flags & ATH_TX_ERROR)) 2412 /* Frame was ACKed */ 2413 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2414 2415 padpos = ieee80211_hdrlen(hdr->frame_control); 2416 padsize = padpos & 3; 2417 if (padsize && skb->len>padpos+padsize) { 2418 /* 2419 * Remove MAC header padding before giving the frame back to 2420 * mac80211. 2421 */ 2422 memmove(skb->data + padsize, skb->data, padpos); 2423 skb_pull(skb, padsize); 2424 } 2425 2426 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2427 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2428 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2429 ath_dbg(common, PS, 2430 "Going back to sleep after having received TX status (0x%lx)\n", 2431 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2432 PS_WAIT_FOR_CAB | 2433 PS_WAIT_FOR_PSPOLL_DATA | 2434 PS_WAIT_FOR_TX_ACK)); 2435 } 2436 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2437 2438 __skb_queue_tail(&txq->complete_q, skb); 2439 ath_txq_skb_done(sc, txq, skb); 2440 } 2441 2442 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2443 struct ath_txq *txq, struct list_head *bf_q, 2444 struct ath_tx_status *ts, int txok) 2445 { 2446 struct sk_buff *skb = bf->bf_mpdu; 2447 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2448 unsigned long flags; 2449 int tx_flags = 0; 2450 2451 if (!txok) 2452 tx_flags |= ATH_TX_ERROR; 2453 2454 if (ts->ts_status & ATH9K_TXERR_FILT) 2455 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2456 2457 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2458 bf->bf_buf_addr = 0; 2459 if (sc->tx99_state) 2460 goto skip_tx_complete; 2461 2462 if (bf->bf_state.bfs_paprd) { 2463 if (time_after(jiffies, 2464 bf->bf_state.bfs_paprd_timestamp + 2465 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2466 dev_kfree_skb_any(skb); 2467 else 2468 complete(&sc->paprd_complete); 2469 } else { 2470 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2471 ath_tx_complete(sc, skb, tx_flags, txq); 2472 } 2473 skip_tx_complete: 2474 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2475 * accidentally reference it later. 2476 */ 2477 bf->bf_mpdu = NULL; 2478 2479 /* 2480 * Return the list of ath_buf of this mpdu to free queue 2481 */ 2482 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2483 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2484 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2485 } 2486 2487 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2488 struct ath_tx_status *ts, int nframes, int nbad, 2489 int txok) 2490 { 2491 struct sk_buff *skb = bf->bf_mpdu; 2492 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2493 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2494 struct ieee80211_hw *hw = sc->hw; 2495 struct ath_hw *ah = sc->sc_ah; 2496 u8 i, tx_rateindex; 2497 2498 if (txok) 2499 tx_info->status.ack_signal = ts->ts_rssi; 2500 2501 tx_rateindex = ts->ts_rateindex; 2502 WARN_ON(tx_rateindex >= hw->max_rates); 2503 2504 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2505 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2506 2507 BUG_ON(nbad > nframes); 2508 } 2509 tx_info->status.ampdu_len = nframes; 2510 tx_info->status.ampdu_ack_len = nframes - nbad; 2511 2512 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2513 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2514 /* 2515 * If an underrun error is seen assume it as an excessive 2516 * retry only if max frame trigger level has been reached 2517 * (2 KB for single stream, and 4 KB for dual stream). 2518 * Adjust the long retry as if the frame was tried 2519 * hw->max_rate_tries times to affect how rate control updates 2520 * PER for the failed rate. 2521 * In case of congestion on the bus penalizing this type of 2522 * underruns should help hardware actually transmit new frames 2523 * successfully by eventually preferring slower rates. 2524 * This itself should also alleviate congestion on the bus. 2525 */ 2526 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2527 ATH9K_TX_DELIM_UNDERRUN)) && 2528 ieee80211_is_data(hdr->frame_control) && 2529 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2530 tx_info->status.rates[tx_rateindex].count = 2531 hw->max_rate_tries; 2532 } 2533 2534 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2535 tx_info->status.rates[i].count = 0; 2536 tx_info->status.rates[i].idx = -1; 2537 } 2538 2539 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2540 } 2541 2542 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2543 { 2544 struct ath_hw *ah = sc->sc_ah; 2545 struct ath_common *common = ath9k_hw_common(ah); 2546 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2547 struct list_head bf_head; 2548 struct ath_desc *ds; 2549 struct ath_tx_status ts; 2550 int status; 2551 2552 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2553 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2554 txq->axq_link); 2555 2556 ath_txq_lock(sc, txq); 2557 for (;;) { 2558 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2559 break; 2560 2561 if (list_empty(&txq->axq_q)) { 2562 txq->axq_link = NULL; 2563 ath_txq_schedule(sc, txq); 2564 break; 2565 } 2566 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2567 2568 /* 2569 * There is a race condition that a BH gets scheduled 2570 * after sw writes TxE and before hw re-load the last 2571 * descriptor to get the newly chained one. 2572 * Software must keep the last DONE descriptor as a 2573 * holding descriptor - software does so by marking 2574 * it with the STALE flag. 2575 */ 2576 bf_held = NULL; 2577 if (bf->bf_state.stale) { 2578 bf_held = bf; 2579 if (list_is_last(&bf_held->list, &txq->axq_q)) 2580 break; 2581 2582 bf = list_entry(bf_held->list.next, struct ath_buf, 2583 list); 2584 } 2585 2586 lastbf = bf->bf_lastbf; 2587 ds = lastbf->bf_desc; 2588 2589 memset(&ts, 0, sizeof(ts)); 2590 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2591 if (status == -EINPROGRESS) 2592 break; 2593 2594 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2595 2596 /* 2597 * Remove ath_buf's of the same transmit unit from txq, 2598 * however leave the last descriptor back as the holding 2599 * descriptor for hw. 2600 */ 2601 lastbf->bf_state.stale = true; 2602 INIT_LIST_HEAD(&bf_head); 2603 if (!list_is_singular(&lastbf->list)) 2604 list_cut_position(&bf_head, 2605 &txq->axq_q, lastbf->list.prev); 2606 2607 if (bf_held) { 2608 list_del(&bf_held->list); 2609 ath_tx_return_buffer(sc, bf_held); 2610 } 2611 2612 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2613 } 2614 ath_txq_unlock_complete(sc, txq); 2615 } 2616 2617 void ath_tx_tasklet(struct ath_softc *sc) 2618 { 2619 struct ath_hw *ah = sc->sc_ah; 2620 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2621 int i; 2622 2623 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2624 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2625 ath_tx_processq(sc, &sc->tx.txq[i]); 2626 } 2627 } 2628 2629 void ath_tx_edma_tasklet(struct ath_softc *sc) 2630 { 2631 struct ath_tx_status ts; 2632 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2633 struct ath_hw *ah = sc->sc_ah; 2634 struct ath_txq *txq; 2635 struct ath_buf *bf, *lastbf; 2636 struct list_head bf_head; 2637 struct list_head *fifo_list; 2638 int status; 2639 2640 for (;;) { 2641 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2642 break; 2643 2644 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2645 if (status == -EINPROGRESS) 2646 break; 2647 if (status == -EIO) { 2648 ath_dbg(common, XMIT, "Error processing tx status\n"); 2649 break; 2650 } 2651 2652 /* Process beacon completions separately */ 2653 if (ts.qid == sc->beacon.beaconq) { 2654 sc->beacon.tx_processed = true; 2655 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2656 2657 if (ath9k_is_chanctx_enabled()) { 2658 ath_chanctx_event(sc, NULL, 2659 ATH_CHANCTX_EVENT_BEACON_SENT); 2660 } 2661 2662 ath9k_csa_update(sc); 2663 continue; 2664 } 2665 2666 txq = &sc->tx.txq[ts.qid]; 2667 2668 ath_txq_lock(sc, txq); 2669 2670 TX_STAT_INC(txq->axq_qnum, txprocdesc); 2671 2672 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2673 if (list_empty(fifo_list)) { 2674 ath_txq_unlock(sc, txq); 2675 return; 2676 } 2677 2678 bf = list_first_entry(fifo_list, struct ath_buf, list); 2679 if (bf->bf_state.stale) { 2680 list_del(&bf->list); 2681 ath_tx_return_buffer(sc, bf); 2682 bf = list_first_entry(fifo_list, struct ath_buf, list); 2683 } 2684 2685 lastbf = bf->bf_lastbf; 2686 2687 INIT_LIST_HEAD(&bf_head); 2688 if (list_is_last(&lastbf->list, fifo_list)) { 2689 list_splice_tail_init(fifo_list, &bf_head); 2690 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2691 2692 if (!list_empty(&txq->axq_q)) { 2693 struct list_head bf_q; 2694 2695 INIT_LIST_HEAD(&bf_q); 2696 txq->axq_link = NULL; 2697 list_splice_tail_init(&txq->axq_q, &bf_q); 2698 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2699 } 2700 } else { 2701 lastbf->bf_state.stale = true; 2702 if (bf != lastbf) 2703 list_cut_position(&bf_head, fifo_list, 2704 lastbf->list.prev); 2705 } 2706 2707 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2708 ath_txq_unlock_complete(sc, txq); 2709 } 2710 } 2711 2712 /*****************/ 2713 /* Init, Cleanup */ 2714 /*****************/ 2715 2716 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2717 { 2718 struct ath_descdma *dd = &sc->txsdma; 2719 u8 txs_len = sc->sc_ah->caps.txs_len; 2720 2721 dd->dd_desc_len = size * txs_len; 2722 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2723 &dd->dd_desc_paddr, GFP_KERNEL); 2724 if (!dd->dd_desc) 2725 return -ENOMEM; 2726 2727 return 0; 2728 } 2729 2730 static int ath_tx_edma_init(struct ath_softc *sc) 2731 { 2732 int err; 2733 2734 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2735 if (!err) 2736 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2737 sc->txsdma.dd_desc_paddr, 2738 ATH_TXSTATUS_RING_SIZE); 2739 2740 return err; 2741 } 2742 2743 int ath_tx_init(struct ath_softc *sc, int nbufs) 2744 { 2745 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2746 int error = 0; 2747 2748 spin_lock_init(&sc->tx.txbuflock); 2749 2750 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2751 "tx", nbufs, 1, 1); 2752 if (error != 0) { 2753 ath_err(common, 2754 "Failed to allocate tx descriptors: %d\n", error); 2755 return error; 2756 } 2757 2758 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2759 "beacon", ATH_BCBUF, 1, 1); 2760 if (error != 0) { 2761 ath_err(common, 2762 "Failed to allocate beacon descriptors: %d\n", error); 2763 return error; 2764 } 2765 2766 INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work); 2767 2768 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2769 error = ath_tx_edma_init(sc); 2770 2771 return error; 2772 } 2773 2774 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2775 { 2776 struct ath_atx_tid *tid; 2777 struct ath_atx_ac *ac; 2778 int tidno, acno; 2779 2780 for (tidno = 0, tid = &an->tid[tidno]; 2781 tidno < IEEE80211_NUM_TIDS; 2782 tidno++, tid++) { 2783 tid->an = an; 2784 tid->tidno = tidno; 2785 tid->seq_start = tid->seq_next = 0; 2786 tid->baw_size = WME_MAX_BA; 2787 tid->baw_head = tid->baw_tail = 0; 2788 tid->sched = false; 2789 tid->active = false; 2790 __skb_queue_head_init(&tid->buf_q); 2791 __skb_queue_head_init(&tid->retry_q); 2792 acno = TID_TO_WME_AC(tidno); 2793 tid->ac = &an->ac[acno]; 2794 } 2795 2796 for (acno = 0, ac = &an->ac[acno]; 2797 acno < IEEE80211_NUM_ACS; acno++, ac++) { 2798 ac->sched = false; 2799 ac->clear_ps_filter = true; 2800 ac->txq = sc->tx.txq_map[acno]; 2801 INIT_LIST_HEAD(&ac->tid_q); 2802 } 2803 } 2804 2805 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2806 { 2807 struct ath_atx_ac *ac; 2808 struct ath_atx_tid *tid; 2809 struct ath_txq *txq; 2810 int tidno; 2811 2812 for (tidno = 0, tid = &an->tid[tidno]; 2813 tidno < IEEE80211_NUM_TIDS; tidno++, tid++) { 2814 2815 ac = tid->ac; 2816 txq = ac->txq; 2817 2818 ath_txq_lock(sc, txq); 2819 2820 if (tid->sched) { 2821 list_del(&tid->list); 2822 tid->sched = false; 2823 } 2824 2825 if (ac->sched) { 2826 list_del(&ac->list); 2827 tid->ac->sched = false; 2828 } 2829 2830 ath_tid_drain(sc, txq, tid); 2831 tid->active = false; 2832 2833 ath_txq_unlock(sc, txq); 2834 } 2835 } 2836 2837 #ifdef CONFIG_ATH9K_TX99 2838 2839 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2840 struct ath_tx_control *txctl) 2841 { 2842 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2843 struct ath_frame_info *fi = get_frame_info(skb); 2844 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2845 struct ath_buf *bf; 2846 int padpos, padsize; 2847 2848 padpos = ieee80211_hdrlen(hdr->frame_control); 2849 padsize = padpos & 3; 2850 2851 if (padsize && skb->len > padpos) { 2852 if (skb_headroom(skb) < padsize) { 2853 ath_dbg(common, XMIT, 2854 "tx99 padding failed\n"); 2855 return -EINVAL; 2856 } 2857 2858 skb_push(skb, padsize); 2859 memmove(skb->data, skb->data + padsize, padpos); 2860 } 2861 2862 fi->keyix = ATH9K_TXKEYIX_INVALID; 2863 fi->framelen = skb->len + FCS_LEN; 2864 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2865 2866 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2867 if (!bf) { 2868 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2869 return -EINVAL; 2870 } 2871 2872 ath_set_rates(sc->tx99_vif, NULL, bf); 2873 2874 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2875 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2876 2877 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2878 2879 return 0; 2880 } 2881 2882 #endif /* CONFIG_ATH9K_TX99 */ 2883