xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision 7fc00a3054b70b1794c2d64db703eb467ad0365c)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_buf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
38 {
39 	struct ath_hw *ah = sc->sc_ah;
40 	struct ath_common *common = ath9k_hw_common(ah);
41 	struct ath_desc *ds;
42 	struct sk_buff *skb;
43 
44 	ATH_RXBUF_RESET(bf);
45 
46 	ds = bf->bf_desc;
47 	ds->ds_link = 0; /* link to null */
48 	ds->ds_data = bf->bf_buf_addr;
49 
50 	/* virtual addr of the beginning of the buffer. */
51 	skb = bf->bf_mpdu;
52 	BUG_ON(skb == NULL);
53 	ds->ds_vdata = skb->data;
54 
55 	/*
56 	 * setup rx descriptors. The rx_bufsize here tells the hardware
57 	 * how much data it can DMA to us and that we are prepared
58 	 * to process
59 	 */
60 	ath9k_hw_setuprxdesc(ah, ds,
61 			     common->rx_bufsize,
62 			     0);
63 
64 	if (sc->rx.rxlink == NULL)
65 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
66 	else
67 		*sc->rx.rxlink = bf->bf_daddr;
68 
69 	sc->rx.rxlink = &ds->ds_link;
70 }
71 
72 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
73 {
74 	/* XXX block beacon interrupts */
75 	ath9k_hw_setantenna(sc->sc_ah, antenna);
76 	sc->rx.defant = antenna;
77 	sc->rx.rxotherant = 0;
78 }
79 
80 static void ath_opmode_init(struct ath_softc *sc)
81 {
82 	struct ath_hw *ah = sc->sc_ah;
83 	struct ath_common *common = ath9k_hw_common(ah);
84 
85 	u32 rfilt, mfilt[2];
86 
87 	/* configure rx filter */
88 	rfilt = ath_calcrxfilter(sc);
89 	ath9k_hw_setrxfilter(ah, rfilt);
90 
91 	/* configure bssid mask */
92 	ath_hw_setbssidmask(common);
93 
94 	/* configure operational mode */
95 	ath9k_hw_setopmode(ah);
96 
97 	/* calculate and install multicast filter */
98 	mfilt[0] = mfilt[1] = ~0;
99 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
100 }
101 
102 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
103 				 enum ath9k_rx_qtype qtype)
104 {
105 	struct ath_hw *ah = sc->sc_ah;
106 	struct ath_rx_edma *rx_edma;
107 	struct sk_buff *skb;
108 	struct ath_buf *bf;
109 
110 	rx_edma = &sc->rx.rx_edma[qtype];
111 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
112 		return false;
113 
114 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
115 	list_del_init(&bf->list);
116 
117 	skb = bf->bf_mpdu;
118 
119 	ATH_RXBUF_RESET(bf);
120 	memset(skb->data, 0, ah->caps.rx_status_len);
121 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
122 				ah->caps.rx_status_len, DMA_TO_DEVICE);
123 
124 	SKB_CB_ATHBUF(skb) = bf;
125 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
126 	skb_queue_tail(&rx_edma->rx_fifo, skb);
127 
128 	return true;
129 }
130 
131 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
132 				  enum ath9k_rx_qtype qtype, int size)
133 {
134 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
135 	struct ath_buf *bf, *tbf;
136 
137 	if (list_empty(&sc->rx.rxbuf)) {
138 		ath_dbg(common, QUEUE, "No free rx buf available\n");
139 		return;
140 	}
141 
142 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
143 		if (!ath_rx_edma_buf_link(sc, qtype))
144 			break;
145 
146 }
147 
148 static void ath_rx_remove_buffer(struct ath_softc *sc,
149 				 enum ath9k_rx_qtype qtype)
150 {
151 	struct ath_buf *bf;
152 	struct ath_rx_edma *rx_edma;
153 	struct sk_buff *skb;
154 
155 	rx_edma = &sc->rx.rx_edma[qtype];
156 
157 	while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
158 		bf = SKB_CB_ATHBUF(skb);
159 		BUG_ON(!bf);
160 		list_add_tail(&bf->list, &sc->rx.rxbuf);
161 	}
162 }
163 
164 static void ath_rx_edma_cleanup(struct ath_softc *sc)
165 {
166 	struct ath_hw *ah = sc->sc_ah;
167 	struct ath_common *common = ath9k_hw_common(ah);
168 	struct ath_buf *bf;
169 
170 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
171 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
172 
173 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
174 		if (bf->bf_mpdu) {
175 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
176 					common->rx_bufsize,
177 					DMA_BIDIRECTIONAL);
178 			dev_kfree_skb_any(bf->bf_mpdu);
179 			bf->bf_buf_addr = 0;
180 			bf->bf_mpdu = NULL;
181 		}
182 	}
183 
184 	INIT_LIST_HEAD(&sc->rx.rxbuf);
185 
186 	kfree(sc->rx.rx_bufptr);
187 	sc->rx.rx_bufptr = NULL;
188 }
189 
190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
191 {
192 	skb_queue_head_init(&rx_edma->rx_fifo);
193 	rx_edma->rx_fifo_hwsize = size;
194 }
195 
196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
197 {
198 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
199 	struct ath_hw *ah = sc->sc_ah;
200 	struct sk_buff *skb;
201 	struct ath_buf *bf;
202 	int error = 0, i;
203 	u32 size;
204 
205 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
206 				    ah->caps.rx_status_len);
207 
208 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
209 			       ah->caps.rx_lp_qdepth);
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
211 			       ah->caps.rx_hp_qdepth);
212 
213 	size = sizeof(struct ath_buf) * nbufs;
214 	bf = kzalloc(size, GFP_KERNEL);
215 	if (!bf)
216 		return -ENOMEM;
217 
218 	INIT_LIST_HEAD(&sc->rx.rxbuf);
219 	sc->rx.rx_bufptr = bf;
220 
221 	for (i = 0; i < nbufs; i++, bf++) {
222 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
223 		if (!skb) {
224 			error = -ENOMEM;
225 			goto rx_init_fail;
226 		}
227 
228 		memset(skb->data, 0, common->rx_bufsize);
229 		bf->bf_mpdu = skb;
230 
231 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
232 						 common->rx_bufsize,
233 						 DMA_BIDIRECTIONAL);
234 		if (unlikely(dma_mapping_error(sc->dev,
235 						bf->bf_buf_addr))) {
236 				dev_kfree_skb_any(skb);
237 				bf->bf_mpdu = NULL;
238 				bf->bf_buf_addr = 0;
239 				ath_err(common,
240 					"dma_mapping_error() on RX init\n");
241 				error = -ENOMEM;
242 				goto rx_init_fail;
243 		}
244 
245 		list_add_tail(&bf->list, &sc->rx.rxbuf);
246 	}
247 
248 	return 0;
249 
250 rx_init_fail:
251 	ath_rx_edma_cleanup(sc);
252 	return error;
253 }
254 
255 static void ath_edma_start_recv(struct ath_softc *sc)
256 {
257 	spin_lock_bh(&sc->rx.rxbuflock);
258 
259 	ath9k_hw_rxena(sc->sc_ah);
260 
261 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
262 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
263 
264 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
265 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
266 
267 	ath_opmode_init(sc);
268 
269 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
270 
271 	spin_unlock_bh(&sc->rx.rxbuflock);
272 }
273 
274 static void ath_edma_stop_recv(struct ath_softc *sc)
275 {
276 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
277 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
278 }
279 
280 int ath_rx_init(struct ath_softc *sc, int nbufs)
281 {
282 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
283 	struct sk_buff *skb;
284 	struct ath_buf *bf;
285 	int error = 0;
286 
287 	spin_lock_init(&sc->sc_pcu_lock);
288 	spin_lock_init(&sc->rx.rxbuflock);
289 
290 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
291 			     sc->sc_ah->caps.rx_status_len;
292 
293 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
294 		return ath_rx_edma_init(sc, nbufs);
295 	} else {
296 		ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
297 			common->cachelsz, common->rx_bufsize);
298 
299 		/* Initialize rx descriptors */
300 
301 		error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
302 				"rx", nbufs, 1, 0);
303 		if (error != 0) {
304 			ath_err(common,
305 				"failed to allocate rx descriptors: %d\n",
306 				error);
307 			goto err;
308 		}
309 
310 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
311 			skb = ath_rxbuf_alloc(common, common->rx_bufsize,
312 					      GFP_KERNEL);
313 			if (skb == NULL) {
314 				error = -ENOMEM;
315 				goto err;
316 			}
317 
318 			bf->bf_mpdu = skb;
319 			bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
320 					common->rx_bufsize,
321 					DMA_FROM_DEVICE);
322 			if (unlikely(dma_mapping_error(sc->dev,
323 							bf->bf_buf_addr))) {
324 				dev_kfree_skb_any(skb);
325 				bf->bf_mpdu = NULL;
326 				bf->bf_buf_addr = 0;
327 				ath_err(common,
328 					"dma_mapping_error() on RX init\n");
329 				error = -ENOMEM;
330 				goto err;
331 			}
332 		}
333 		sc->rx.rxlink = NULL;
334 	}
335 
336 err:
337 	if (error)
338 		ath_rx_cleanup(sc);
339 
340 	return error;
341 }
342 
343 void ath_rx_cleanup(struct ath_softc *sc)
344 {
345 	struct ath_hw *ah = sc->sc_ah;
346 	struct ath_common *common = ath9k_hw_common(ah);
347 	struct sk_buff *skb;
348 	struct ath_buf *bf;
349 
350 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
351 		ath_rx_edma_cleanup(sc);
352 		return;
353 	} else {
354 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
355 			skb = bf->bf_mpdu;
356 			if (skb) {
357 				dma_unmap_single(sc->dev, bf->bf_buf_addr,
358 						common->rx_bufsize,
359 						DMA_FROM_DEVICE);
360 				dev_kfree_skb(skb);
361 				bf->bf_buf_addr = 0;
362 				bf->bf_mpdu = NULL;
363 			}
364 		}
365 
366 		if (sc->rx.rxdma.dd_desc_len != 0)
367 			ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
368 	}
369 }
370 
371 /*
372  * Calculate the receive filter according to the
373  * operating mode and state:
374  *
375  * o always accept unicast, broadcast, and multicast traffic
376  * o maintain current state of phy error reception (the hal
377  *   may enable phy error frames for noise immunity work)
378  * o probe request frames are accepted only when operating in
379  *   hostap, adhoc, or monitor modes
380  * o enable promiscuous mode according to the interface state
381  * o accept beacons:
382  *   - when operating in adhoc mode so the 802.11 layer creates
383  *     node table entries for peers,
384  *   - when operating in station mode for collecting rssi data when
385  *     the station is otherwise quiet, or
386  *   - when operating as a repeater so we see repeater-sta beacons
387  *   - when scanning
388  */
389 
390 u32 ath_calcrxfilter(struct ath_softc *sc)
391 {
392 	u32 rfilt;
393 
394 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
395 		| ATH9K_RX_FILTER_MCAST;
396 
397 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
398 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
399 
400 	/*
401 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
402 	 * mode interface or when in monitor mode. AP mode does not need this
403 	 * since it receives all in-BSS frames anyway.
404 	 */
405 	if (sc->sc_ah->is_monitoring)
406 		rfilt |= ATH9K_RX_FILTER_PROM;
407 
408 	if (sc->rx.rxfilter & FIF_CONTROL)
409 		rfilt |= ATH9K_RX_FILTER_CONTROL;
410 
411 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
412 	    (sc->nvifs <= 1) &&
413 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
414 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
415 	else
416 		rfilt |= ATH9K_RX_FILTER_BEACON;
417 
418 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
419 	    (sc->rx.rxfilter & FIF_PSPOLL))
420 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
421 
422 	if (conf_is_ht(&sc->hw->conf))
423 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
424 
425 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
426 		/* This is needed for older chips */
427 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
428 			rfilt |= ATH9K_RX_FILTER_PROM;
429 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
430 	}
431 
432 	if (AR_SREV_9550(sc->sc_ah))
433 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
434 
435 	return rfilt;
436 
437 }
438 
439 int ath_startrecv(struct ath_softc *sc)
440 {
441 	struct ath_hw *ah = sc->sc_ah;
442 	struct ath_buf *bf, *tbf;
443 
444 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
445 		ath_edma_start_recv(sc);
446 		return 0;
447 	}
448 
449 	spin_lock_bh(&sc->rx.rxbuflock);
450 	if (list_empty(&sc->rx.rxbuf))
451 		goto start_recv;
452 
453 	sc->rx.rxlink = NULL;
454 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
455 		ath_rx_buf_link(sc, bf);
456 	}
457 
458 	/* We could have deleted elements so the list may be empty now */
459 	if (list_empty(&sc->rx.rxbuf))
460 		goto start_recv;
461 
462 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
463 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
464 	ath9k_hw_rxena(ah);
465 
466 start_recv:
467 	ath_opmode_init(sc);
468 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
469 
470 	spin_unlock_bh(&sc->rx.rxbuflock);
471 
472 	return 0;
473 }
474 
475 bool ath_stoprecv(struct ath_softc *sc)
476 {
477 	struct ath_hw *ah = sc->sc_ah;
478 	bool stopped, reset = false;
479 
480 	spin_lock_bh(&sc->rx.rxbuflock);
481 	ath9k_hw_abortpcurecv(ah);
482 	ath9k_hw_setrxfilter(ah, 0);
483 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
484 
485 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
486 		ath_edma_stop_recv(sc);
487 	else
488 		sc->rx.rxlink = NULL;
489 	spin_unlock_bh(&sc->rx.rxbuflock);
490 
491 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
492 	    unlikely(!stopped)) {
493 		ath_err(ath9k_hw_common(sc->sc_ah),
494 			"Could not stop RX, we could be "
495 			"confusing the DMA engine when we start RX up\n");
496 		ATH_DBG_WARN_ON_ONCE(!stopped);
497 	}
498 	return stopped && !reset;
499 }
500 
501 void ath_flushrecv(struct ath_softc *sc)
502 {
503 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
504 		ath_rx_tasklet(sc, 1, true);
505 	ath_rx_tasklet(sc, 1, false);
506 }
507 
508 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
509 {
510 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
511 	struct ieee80211_mgmt *mgmt;
512 	u8 *pos, *end, id, elen;
513 	struct ieee80211_tim_ie *tim;
514 
515 	mgmt = (struct ieee80211_mgmt *)skb->data;
516 	pos = mgmt->u.beacon.variable;
517 	end = skb->data + skb->len;
518 
519 	while (pos + 2 < end) {
520 		id = *pos++;
521 		elen = *pos++;
522 		if (pos + elen > end)
523 			break;
524 
525 		if (id == WLAN_EID_TIM) {
526 			if (elen < sizeof(*tim))
527 				break;
528 			tim = (struct ieee80211_tim_ie *) pos;
529 			if (tim->dtim_count != 0)
530 				break;
531 			return tim->bitmap_ctrl & 0x01;
532 		}
533 
534 		pos += elen;
535 	}
536 
537 	return false;
538 }
539 
540 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
541 {
542 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
543 
544 	if (skb->len < 24 + 8 + 2 + 2)
545 		return;
546 
547 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
548 
549 	if (sc->ps_flags & PS_BEACON_SYNC) {
550 		sc->ps_flags &= ~PS_BEACON_SYNC;
551 		ath_dbg(common, PS,
552 			"Reconfigure Beacon timers based on timestamp from the AP\n");
553 		ath9k_set_beacon(sc);
554 	}
555 
556 	if (ath_beacon_dtim_pending_cab(skb)) {
557 		/*
558 		 * Remain awake waiting for buffered broadcast/multicast
559 		 * frames. If the last broadcast/multicast frame is not
560 		 * received properly, the next beacon frame will work as
561 		 * a backup trigger for returning into NETWORK SLEEP state,
562 		 * so we are waiting for it as well.
563 		 */
564 		ath_dbg(common, PS,
565 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
566 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
567 		return;
568 	}
569 
570 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
571 		/*
572 		 * This can happen if a broadcast frame is dropped or the AP
573 		 * fails to send a frame indicating that all CAB frames have
574 		 * been delivered.
575 		 */
576 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
577 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
578 	}
579 }
580 
581 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
582 {
583 	struct ieee80211_hdr *hdr;
584 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
585 
586 	hdr = (struct ieee80211_hdr *)skb->data;
587 
588 	/* Process Beacon and CAB receive in PS state */
589 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
590 	    && mybeacon) {
591 		ath_rx_ps_beacon(sc, skb);
592 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
593 		   (ieee80211_is_data(hdr->frame_control) ||
594 		    ieee80211_is_action(hdr->frame_control)) &&
595 		   is_multicast_ether_addr(hdr->addr1) &&
596 		   !ieee80211_has_moredata(hdr->frame_control)) {
597 		/*
598 		 * No more broadcast/multicast frames to be received at this
599 		 * point.
600 		 */
601 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
602 		ath_dbg(common, PS,
603 			"All PS CAB frames received, back to sleep\n");
604 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
605 		   !is_multicast_ether_addr(hdr->addr1) &&
606 		   !ieee80211_has_morefrags(hdr->frame_control)) {
607 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
608 		ath_dbg(common, PS,
609 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
610 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
611 					PS_WAIT_FOR_CAB |
612 					PS_WAIT_FOR_PSPOLL_DATA |
613 					PS_WAIT_FOR_TX_ACK));
614 	}
615 }
616 
617 static bool ath_edma_get_buffers(struct ath_softc *sc,
618 				 enum ath9k_rx_qtype qtype,
619 				 struct ath_rx_status *rs,
620 				 struct ath_buf **dest)
621 {
622 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
623 	struct ath_hw *ah = sc->sc_ah;
624 	struct ath_common *common = ath9k_hw_common(ah);
625 	struct sk_buff *skb;
626 	struct ath_buf *bf;
627 	int ret;
628 
629 	skb = skb_peek(&rx_edma->rx_fifo);
630 	if (!skb)
631 		return false;
632 
633 	bf = SKB_CB_ATHBUF(skb);
634 	BUG_ON(!bf);
635 
636 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
637 				common->rx_bufsize, DMA_FROM_DEVICE);
638 
639 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
640 	if (ret == -EINPROGRESS) {
641 		/*let device gain the buffer again*/
642 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
643 				common->rx_bufsize, DMA_FROM_DEVICE);
644 		return false;
645 	}
646 
647 	__skb_unlink(skb, &rx_edma->rx_fifo);
648 	if (ret == -EINVAL) {
649 		/* corrupt descriptor, skip this one and the following one */
650 		list_add_tail(&bf->list, &sc->rx.rxbuf);
651 		ath_rx_edma_buf_link(sc, qtype);
652 
653 		skb = skb_peek(&rx_edma->rx_fifo);
654 		if (skb) {
655 			bf = SKB_CB_ATHBUF(skb);
656 			BUG_ON(!bf);
657 
658 			__skb_unlink(skb, &rx_edma->rx_fifo);
659 			list_add_tail(&bf->list, &sc->rx.rxbuf);
660 			ath_rx_edma_buf_link(sc, qtype);
661 		}
662 
663 		bf = NULL;
664 	}
665 
666 	*dest = bf;
667 	return true;
668 }
669 
670 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
671 						struct ath_rx_status *rs,
672 						enum ath9k_rx_qtype qtype)
673 {
674 	struct ath_buf *bf = NULL;
675 
676 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
677 		if (!bf)
678 			continue;
679 
680 		return bf;
681 	}
682 	return NULL;
683 }
684 
685 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
686 					   struct ath_rx_status *rs)
687 {
688 	struct ath_hw *ah = sc->sc_ah;
689 	struct ath_common *common = ath9k_hw_common(ah);
690 	struct ath_desc *ds;
691 	struct ath_buf *bf;
692 	int ret;
693 
694 	if (list_empty(&sc->rx.rxbuf)) {
695 		sc->rx.rxlink = NULL;
696 		return NULL;
697 	}
698 
699 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
700 	ds = bf->bf_desc;
701 
702 	/*
703 	 * Must provide the virtual address of the current
704 	 * descriptor, the physical address, and the virtual
705 	 * address of the next descriptor in the h/w chain.
706 	 * This allows the HAL to look ahead to see if the
707 	 * hardware is done with a descriptor by checking the
708 	 * done bit in the following descriptor and the address
709 	 * of the current descriptor the DMA engine is working
710 	 * on.  All this is necessary because of our use of
711 	 * a self-linked list to avoid rx overruns.
712 	 */
713 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
714 	if (ret == -EINPROGRESS) {
715 		struct ath_rx_status trs;
716 		struct ath_buf *tbf;
717 		struct ath_desc *tds;
718 
719 		memset(&trs, 0, sizeof(trs));
720 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
721 			sc->rx.rxlink = NULL;
722 			return NULL;
723 		}
724 
725 		tbf = list_entry(bf->list.next, struct ath_buf, list);
726 
727 		/*
728 		 * On some hardware the descriptor status words could
729 		 * get corrupted, including the done bit. Because of
730 		 * this, check if the next descriptor's done bit is
731 		 * set or not.
732 		 *
733 		 * If the next descriptor's done bit is set, the current
734 		 * descriptor has been corrupted. Force s/w to discard
735 		 * this descriptor and continue...
736 		 */
737 
738 		tds = tbf->bf_desc;
739 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
740 		if (ret == -EINPROGRESS)
741 			return NULL;
742 	}
743 
744 	list_del(&bf->list);
745 	if (!bf->bf_mpdu)
746 		return bf;
747 
748 	/*
749 	 * Synchronize the DMA transfer with CPU before
750 	 * 1. accessing the frame
751 	 * 2. requeueing the same buffer to h/w
752 	 */
753 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
754 			common->rx_bufsize,
755 			DMA_FROM_DEVICE);
756 
757 	return bf;
758 }
759 
760 /* Assumes you've already done the endian to CPU conversion */
761 static bool ath9k_rx_accept(struct ath_common *common,
762 			    struct ieee80211_hdr *hdr,
763 			    struct ieee80211_rx_status *rxs,
764 			    struct ath_rx_status *rx_stats,
765 			    bool *decrypt_error)
766 {
767 	struct ath_softc *sc = (struct ath_softc *) common->priv;
768 	bool is_mc, is_valid_tkip, strip_mic, mic_error;
769 	struct ath_hw *ah = common->ah;
770 	__le16 fc;
771 	u8 rx_status_len = ah->caps.rx_status_len;
772 
773 	fc = hdr->frame_control;
774 
775 	is_mc = !!is_multicast_ether_addr(hdr->addr1);
776 	is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
777 		test_bit(rx_stats->rs_keyix, common->tkip_keymap);
778 	strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
779 		ieee80211_has_protected(fc) &&
780 		!(rx_stats->rs_status &
781 		(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
782 		 ATH9K_RXERR_KEYMISS));
783 
784 	/*
785 	 * Key miss events are only relevant for pairwise keys where the
786 	 * descriptor does contain a valid key index. This has been observed
787 	 * mostly with CCMP encryption.
788 	 */
789 	if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
790 	    !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
791 		rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
792 
793 	if (!rx_stats->rs_datalen) {
794 		RX_STAT_INC(rx_len_err);
795 		return false;
796 	}
797 
798         /*
799          * rs_status follows rs_datalen so if rs_datalen is too large
800          * we can take a hint that hardware corrupted it, so ignore
801          * those frames.
802          */
803 	if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
804 		RX_STAT_INC(rx_len_err);
805 		return false;
806 	}
807 
808 	/* Only use error bits from the last fragment */
809 	if (rx_stats->rs_more)
810 		return true;
811 
812 	mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
813 		!ieee80211_has_morefrags(fc) &&
814 		!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
815 		(rx_stats->rs_status & ATH9K_RXERR_MIC);
816 
817 	/*
818 	 * The rx_stats->rs_status will not be set until the end of the
819 	 * chained descriptors so it can be ignored if rs_more is set. The
820 	 * rs_more will be false at the last element of the chained
821 	 * descriptors.
822 	 */
823 	if (rx_stats->rs_status != 0) {
824 		u8 status_mask;
825 
826 		if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
827 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
828 			mic_error = false;
829 		}
830 		if (rx_stats->rs_status & ATH9K_RXERR_PHY)
831 			return false;
832 
833 		if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
834 		    (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
835 			*decrypt_error = true;
836 			mic_error = false;
837 		}
838 
839 		/*
840 		 * Reject error frames with the exception of
841 		 * decryption and MIC failures. For monitor mode,
842 		 * we also ignore the CRC error.
843 		 */
844 		status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
845 			      ATH9K_RXERR_KEYMISS;
846 
847 		if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
848 			status_mask |= ATH9K_RXERR_CRC;
849 
850 		if (rx_stats->rs_status & ~status_mask)
851 			return false;
852 	}
853 
854 	/*
855 	 * For unicast frames the MIC error bit can have false positives,
856 	 * so all MIC error reports need to be validated in software.
857 	 * False negatives are not common, so skip software verification
858 	 * if the hardware considers the MIC valid.
859 	 */
860 	if (strip_mic)
861 		rxs->flag |= RX_FLAG_MMIC_STRIPPED;
862 	else if (is_mc && mic_error)
863 		rxs->flag |= RX_FLAG_MMIC_ERROR;
864 
865 	return true;
866 }
867 
868 static int ath9k_process_rate(struct ath_common *common,
869 			      struct ieee80211_hw *hw,
870 			      struct ath_rx_status *rx_stats,
871 			      struct ieee80211_rx_status *rxs)
872 {
873 	struct ieee80211_supported_band *sband;
874 	enum ieee80211_band band;
875 	unsigned int i = 0;
876 	struct ath_softc __maybe_unused *sc = common->priv;
877 
878 	band = hw->conf.channel->band;
879 	sband = hw->wiphy->bands[band];
880 
881 	if (rx_stats->rs_rate & 0x80) {
882 		/* HT rate */
883 		rxs->flag |= RX_FLAG_HT;
884 		if (rx_stats->rs_flags & ATH9K_RX_2040)
885 			rxs->flag |= RX_FLAG_40MHZ;
886 		if (rx_stats->rs_flags & ATH9K_RX_GI)
887 			rxs->flag |= RX_FLAG_SHORT_GI;
888 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
889 		return 0;
890 	}
891 
892 	for (i = 0; i < sband->n_bitrates; i++) {
893 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
894 			rxs->rate_idx = i;
895 			return 0;
896 		}
897 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
898 			rxs->flag |= RX_FLAG_SHORTPRE;
899 			rxs->rate_idx = i;
900 			return 0;
901 		}
902 	}
903 
904 	/*
905 	 * No valid hardware bitrate found -- we should not get here
906 	 * because hardware has already validated this frame as OK.
907 	 */
908 	ath_dbg(common, ANY,
909 		"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
910 		rx_stats->rs_rate);
911 	RX_STAT_INC(rx_rate_err);
912 	return -EINVAL;
913 }
914 
915 static void ath9k_process_rssi(struct ath_common *common,
916 			       struct ieee80211_hw *hw,
917 			       struct ieee80211_hdr *hdr,
918 			       struct ath_rx_status *rx_stats)
919 {
920 	struct ath_softc *sc = hw->priv;
921 	struct ath_hw *ah = common->ah;
922 	int last_rssi;
923 	int rssi = rx_stats->rs_rssi;
924 
925 	if (!rx_stats->is_mybeacon ||
926 	    ((ah->opmode != NL80211_IFTYPE_STATION) &&
927 	     (ah->opmode != NL80211_IFTYPE_ADHOC)))
928 		return;
929 
930 	if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
931 		ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
932 
933 	last_rssi = sc->last_rssi;
934 	if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
935 		rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
936 	if (rssi < 0)
937 		rssi = 0;
938 
939 	/* Update Beacon RSSI, this is used by ANI. */
940 	ah->stats.avgbrssi = rssi;
941 }
942 
943 /*
944  * For Decrypt or Demic errors, we only mark packet status here and always push
945  * up the frame up to let mac80211 handle the actual error case, be it no
946  * decryption key or real decryption error. This let us keep statistics there.
947  */
948 static int ath9k_rx_skb_preprocess(struct ath_common *common,
949 				   struct ieee80211_hw *hw,
950 				   struct ieee80211_hdr *hdr,
951 				   struct ath_rx_status *rx_stats,
952 				   struct ieee80211_rx_status *rx_status,
953 				   bool *decrypt_error)
954 {
955 	struct ath_hw *ah = common->ah;
956 
957 	/*
958 	 * everything but the rate is checked here, the rate check is done
959 	 * separately to avoid doing two lookups for a rate for each frame.
960 	 */
961 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
962 		return -EINVAL;
963 
964 	/* Only use status info from the last fragment */
965 	if (rx_stats->rs_more)
966 		return 0;
967 
968 	ath9k_process_rssi(common, hw, hdr, rx_stats);
969 
970 	if (ath9k_process_rate(common, hw, rx_stats, rx_status))
971 		return -EINVAL;
972 
973 	rx_status->band = hw->conf.channel->band;
974 	rx_status->freq = hw->conf.channel->center_freq;
975 	rx_status->signal = ah->noise + rx_stats->rs_rssi;
976 	rx_status->antenna = rx_stats->rs_antenna;
977 	rx_status->flag |= RX_FLAG_MACTIME_END;
978 	if (rx_stats->rs_moreaggr)
979 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
980 
981 	return 0;
982 }
983 
984 static void ath9k_rx_skb_postprocess(struct ath_common *common,
985 				     struct sk_buff *skb,
986 				     struct ath_rx_status *rx_stats,
987 				     struct ieee80211_rx_status *rxs,
988 				     bool decrypt_error)
989 {
990 	struct ath_hw *ah = common->ah;
991 	struct ieee80211_hdr *hdr;
992 	int hdrlen, padpos, padsize;
993 	u8 keyix;
994 	__le16 fc;
995 
996 	/* see if any padding is done by the hw and remove it */
997 	hdr = (struct ieee80211_hdr *) skb->data;
998 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
999 	fc = hdr->frame_control;
1000 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1001 
1002 	/* The MAC header is padded to have 32-bit boundary if the
1003 	 * packet payload is non-zero. The general calculation for
1004 	 * padsize would take into account odd header lengths:
1005 	 * padsize = (4 - padpos % 4) % 4; However, since only
1006 	 * even-length headers are used, padding can only be 0 or 2
1007 	 * bytes and we can optimize this a bit. In addition, we must
1008 	 * not try to remove padding from short control frames that do
1009 	 * not have payload. */
1010 	padsize = padpos & 3;
1011 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1012 		memmove(skb->data + padsize, skb->data, padpos);
1013 		skb_pull(skb, padsize);
1014 	}
1015 
1016 	keyix = rx_stats->rs_keyix;
1017 
1018 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1019 	    ieee80211_has_protected(fc)) {
1020 		rxs->flag |= RX_FLAG_DECRYPTED;
1021 	} else if (ieee80211_has_protected(fc)
1022 		   && !decrypt_error && skb->len >= hdrlen + 4) {
1023 		keyix = skb->data[hdrlen + 3] >> 6;
1024 
1025 		if (test_bit(keyix, common->keymap))
1026 			rxs->flag |= RX_FLAG_DECRYPTED;
1027 	}
1028 	if (ah->sw_mgmt_crypto &&
1029 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
1030 	    ieee80211_is_mgmt(fc))
1031 		/* Use software decrypt for management frames. */
1032 		rxs->flag &= ~RX_FLAG_DECRYPTED;
1033 }
1034 
1035 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1036 {
1037 	struct ath_buf *bf;
1038 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1039 	struct ieee80211_rx_status *rxs;
1040 	struct ath_hw *ah = sc->sc_ah;
1041 	struct ath_common *common = ath9k_hw_common(ah);
1042 	struct ieee80211_hw *hw = sc->hw;
1043 	struct ieee80211_hdr *hdr;
1044 	int retval;
1045 	struct ath_rx_status rs;
1046 	enum ath9k_rx_qtype qtype;
1047 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1048 	int dma_type;
1049 	u8 rx_status_len = ah->caps.rx_status_len;
1050 	u64 tsf = 0;
1051 	u32 tsf_lower = 0;
1052 	unsigned long flags;
1053 
1054 	if (edma)
1055 		dma_type = DMA_BIDIRECTIONAL;
1056 	else
1057 		dma_type = DMA_FROM_DEVICE;
1058 
1059 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1060 	spin_lock_bh(&sc->rx.rxbuflock);
1061 
1062 	tsf = ath9k_hw_gettsf64(ah);
1063 	tsf_lower = tsf & 0xffffffff;
1064 
1065 	do {
1066 		bool decrypt_error = false;
1067 
1068 		memset(&rs, 0, sizeof(rs));
1069 		if (edma)
1070 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1071 		else
1072 			bf = ath_get_next_rx_buf(sc, &rs);
1073 
1074 		if (!bf)
1075 			break;
1076 
1077 		skb = bf->bf_mpdu;
1078 		if (!skb)
1079 			continue;
1080 
1081 		/*
1082 		 * Take frame header from the first fragment and RX status from
1083 		 * the last one.
1084 		 */
1085 		if (sc->rx.frag)
1086 			hdr_skb = sc->rx.frag;
1087 		else
1088 			hdr_skb = skb;
1089 
1090 		hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1091 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1092 		if (ieee80211_is_beacon(hdr->frame_control)) {
1093 			RX_STAT_INC(rx_beacons);
1094 			if (!is_zero_ether_addr(common->curbssid) &&
1095 			    ether_addr_equal(hdr->addr3, common->curbssid))
1096 				rs.is_mybeacon = true;
1097 			else
1098 				rs.is_mybeacon = false;
1099 		}
1100 		else
1101 			rs.is_mybeacon = false;
1102 
1103 		if (ieee80211_is_data_present(hdr->frame_control) &&
1104 		    !ieee80211_is_qos_nullfunc(hdr->frame_control))
1105 			sc->rx.num_pkts++;
1106 
1107 		ath_debug_stat_rx(sc, &rs);
1108 
1109 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1110 
1111 		rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1112 		if (rs.rs_tstamp > tsf_lower &&
1113 		    unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1114 			rxs->mactime -= 0x100000000ULL;
1115 
1116 		if (rs.rs_tstamp < tsf_lower &&
1117 		    unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1118 			rxs->mactime += 0x100000000ULL;
1119 
1120 		retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1121 						 rxs, &decrypt_error);
1122 		if (retval)
1123 			goto requeue_drop_frag;
1124 
1125 		if (rs.is_mybeacon) {
1126 			sc->hw_busy_count = 0;
1127 			ath_start_rx_poll(sc, 3);
1128 		}
1129 		/* Ensure we always have an skb to requeue once we are done
1130 		 * processing the current buffer's skb */
1131 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1132 
1133 		/* If there is no memory we ignore the current RX'd frame,
1134 		 * tell hardware it can give us a new frame using the old
1135 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1136 		 * processing. */
1137 		if (!requeue_skb) {
1138 			RX_STAT_INC(rx_oom_err);
1139 			goto requeue_drop_frag;
1140 		}
1141 
1142 		/* Unmap the frame */
1143 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1144 				 common->rx_bufsize,
1145 				 dma_type);
1146 
1147 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1148 		if (ah->caps.rx_status_len)
1149 			skb_pull(skb, ah->caps.rx_status_len);
1150 
1151 		if (!rs.rs_more)
1152 			ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1153 						 rxs, decrypt_error);
1154 
1155 		/* We will now give hardware our shiny new allocated skb */
1156 		bf->bf_mpdu = requeue_skb;
1157 		bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1158 						 common->rx_bufsize,
1159 						 dma_type);
1160 		if (unlikely(dma_mapping_error(sc->dev,
1161 			  bf->bf_buf_addr))) {
1162 			dev_kfree_skb_any(requeue_skb);
1163 			bf->bf_mpdu = NULL;
1164 			bf->bf_buf_addr = 0;
1165 			ath_err(common, "dma_mapping_error() on RX\n");
1166 			ieee80211_rx(hw, skb);
1167 			break;
1168 		}
1169 
1170 		if (rs.rs_more) {
1171 			RX_STAT_INC(rx_frags);
1172 			/*
1173 			 * rs_more indicates chained descriptors which can be
1174 			 * used to link buffers together for a sort of
1175 			 * scatter-gather operation.
1176 			 */
1177 			if (sc->rx.frag) {
1178 				/* too many fragments - cannot handle frame */
1179 				dev_kfree_skb_any(sc->rx.frag);
1180 				dev_kfree_skb_any(skb);
1181 				RX_STAT_INC(rx_too_many_frags_err);
1182 				skb = NULL;
1183 			}
1184 			sc->rx.frag = skb;
1185 			goto requeue;
1186 		}
1187 
1188 		if (sc->rx.frag) {
1189 			int space = skb->len - skb_tailroom(hdr_skb);
1190 
1191 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1192 				dev_kfree_skb(skb);
1193 				RX_STAT_INC(rx_oom_err);
1194 				goto requeue_drop_frag;
1195 			}
1196 
1197 			sc->rx.frag = NULL;
1198 
1199 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1200 						  skb->len);
1201 			dev_kfree_skb_any(skb);
1202 			skb = hdr_skb;
1203 		}
1204 
1205 
1206 		if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1207 
1208 			/*
1209 			 * change the default rx antenna if rx diversity
1210 			 * chooses the other antenna 3 times in a row.
1211 			 */
1212 			if (sc->rx.defant != rs.rs_antenna) {
1213 				if (++sc->rx.rxotherant >= 3)
1214 					ath_setdefantenna(sc, rs.rs_antenna);
1215 			} else {
1216 				sc->rx.rxotherant = 0;
1217 			}
1218 
1219 		}
1220 
1221 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1222 			skb_trim(skb, skb->len - 8);
1223 
1224 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1225 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1226 				     PS_WAIT_FOR_CAB |
1227 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1228 		    ath9k_check_auto_sleep(sc))
1229 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1230 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1231 
1232 		if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1233 			ath_ant_comb_scan(sc, &rs);
1234 
1235 		ieee80211_rx(hw, skb);
1236 
1237 requeue_drop_frag:
1238 		if (sc->rx.frag) {
1239 			dev_kfree_skb_any(sc->rx.frag);
1240 			sc->rx.frag = NULL;
1241 		}
1242 requeue:
1243 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1244 		if (flush)
1245 			continue;
1246 
1247 		if (edma) {
1248 			ath_rx_edma_buf_link(sc, qtype);
1249 		} else {
1250 			ath_rx_buf_link(sc, bf);
1251 			ath9k_hw_rxena(ah);
1252 		}
1253 	} while (1);
1254 
1255 	spin_unlock_bh(&sc->rx.rxbuflock);
1256 
1257 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1258 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1259 		ath9k_hw_set_interrupts(ah);
1260 	}
1261 
1262 	return 0;
1263 }
1264