xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision 40346b66799b7d382e61bbb68a6b6bbdd20f320e)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "ath9k.h"
18 #include "ar9003_mac.h"
19 
20 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_buf **)__skb->cb))
21 
22 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
23 {
24 	return sc->ps_enabled &&
25 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
26 }
27 
28 static struct ieee80211_hw * ath_get_virt_hw(struct ath_softc *sc,
29 					     struct ieee80211_hdr *hdr)
30 {
31 	struct ieee80211_hw *hw = sc->pri_wiphy->hw;
32 	int i;
33 
34 	spin_lock_bh(&sc->wiphy_lock);
35 	for (i = 0; i < sc->num_sec_wiphy; i++) {
36 		struct ath_wiphy *aphy = sc->sec_wiphy[i];
37 		if (aphy == NULL)
38 			continue;
39 		if (compare_ether_addr(hdr->addr1, aphy->hw->wiphy->perm_addr)
40 		    == 0) {
41 			hw = aphy->hw;
42 			break;
43 		}
44 	}
45 	spin_unlock_bh(&sc->wiphy_lock);
46 	return hw;
47 }
48 
49 /*
50  * Setup and link descriptors.
51  *
52  * 11N: we can no longer afford to self link the last descriptor.
53  * MAC acknowledges BA status as long as it copies frames to host
54  * buffer (or rx fifo). This can incorrectly acknowledge packets
55  * to a sender if last desc is self-linked.
56  */
57 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
58 {
59 	struct ath_hw *ah = sc->sc_ah;
60 	struct ath_common *common = ath9k_hw_common(ah);
61 	struct ath_desc *ds;
62 	struct sk_buff *skb;
63 
64 	ATH_RXBUF_RESET(bf);
65 
66 	ds = bf->bf_desc;
67 	ds->ds_link = 0; /* link to null */
68 	ds->ds_data = bf->bf_buf_addr;
69 
70 	/* virtual addr of the beginning of the buffer. */
71 	skb = bf->bf_mpdu;
72 	BUG_ON(skb == NULL);
73 	ds->ds_vdata = skb->data;
74 
75 	/*
76 	 * setup rx descriptors. The rx_bufsize here tells the hardware
77 	 * how much data it can DMA to us and that we are prepared
78 	 * to process
79 	 */
80 	ath9k_hw_setuprxdesc(ah, ds,
81 			     common->rx_bufsize,
82 			     0);
83 
84 	if (sc->rx.rxlink == NULL)
85 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
86 	else
87 		*sc->rx.rxlink = bf->bf_daddr;
88 
89 	sc->rx.rxlink = &ds->ds_link;
90 	ath9k_hw_rxena(ah);
91 }
92 
93 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
94 {
95 	/* XXX block beacon interrupts */
96 	ath9k_hw_setantenna(sc->sc_ah, antenna);
97 	sc->rx.defant = antenna;
98 	sc->rx.rxotherant = 0;
99 }
100 
101 static void ath_opmode_init(struct ath_softc *sc)
102 {
103 	struct ath_hw *ah = sc->sc_ah;
104 	struct ath_common *common = ath9k_hw_common(ah);
105 
106 	u32 rfilt, mfilt[2];
107 
108 	/* configure rx filter */
109 	rfilt = ath_calcrxfilter(sc);
110 	ath9k_hw_setrxfilter(ah, rfilt);
111 
112 	/* configure bssid mask */
113 	if (ah->caps.hw_caps & ATH9K_HW_CAP_BSSIDMASK)
114 		ath_hw_setbssidmask(common);
115 
116 	/* configure operational mode */
117 	ath9k_hw_setopmode(ah);
118 
119 	/* Handle any link-level address change. */
120 	ath9k_hw_setmac(ah, common->macaddr);
121 
122 	/* calculate and install multicast filter */
123 	mfilt[0] = mfilt[1] = ~0;
124 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
125 }
126 
127 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
128 				 enum ath9k_rx_qtype qtype)
129 {
130 	struct ath_hw *ah = sc->sc_ah;
131 	struct ath_rx_edma *rx_edma;
132 	struct sk_buff *skb;
133 	struct ath_buf *bf;
134 
135 	rx_edma = &sc->rx.rx_edma[qtype];
136 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
137 		return false;
138 
139 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
140 	list_del_init(&bf->list);
141 
142 	skb = bf->bf_mpdu;
143 
144 	ATH_RXBUF_RESET(bf);
145 	memset(skb->data, 0, ah->caps.rx_status_len);
146 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
147 				ah->caps.rx_status_len, DMA_TO_DEVICE);
148 
149 	SKB_CB_ATHBUF(skb) = bf;
150 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
151 	skb_queue_tail(&rx_edma->rx_fifo, skb);
152 
153 	return true;
154 }
155 
156 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
157 				  enum ath9k_rx_qtype qtype, int size)
158 {
159 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
160 	u32 nbuf = 0;
161 
162 	if (list_empty(&sc->rx.rxbuf)) {
163 		ath_print(common, ATH_DBG_QUEUE, "No free rx buf available\n");
164 		return;
165 	}
166 
167 	while (!list_empty(&sc->rx.rxbuf)) {
168 		nbuf++;
169 
170 		if (!ath_rx_edma_buf_link(sc, qtype))
171 			break;
172 
173 		if (nbuf >= size)
174 			break;
175 	}
176 }
177 
178 static void ath_rx_remove_buffer(struct ath_softc *sc,
179 				 enum ath9k_rx_qtype qtype)
180 {
181 	struct ath_buf *bf;
182 	struct ath_rx_edma *rx_edma;
183 	struct sk_buff *skb;
184 
185 	rx_edma = &sc->rx.rx_edma[qtype];
186 
187 	while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
188 		bf = SKB_CB_ATHBUF(skb);
189 		BUG_ON(!bf);
190 		list_add_tail(&bf->list, &sc->rx.rxbuf);
191 	}
192 }
193 
194 static void ath_rx_edma_cleanup(struct ath_softc *sc)
195 {
196 	struct ath_buf *bf;
197 
198 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
199 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
200 
201 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
202 		if (bf->bf_mpdu)
203 			dev_kfree_skb_any(bf->bf_mpdu);
204 	}
205 
206 	INIT_LIST_HEAD(&sc->rx.rxbuf);
207 
208 	kfree(sc->rx.rx_bufptr);
209 	sc->rx.rx_bufptr = NULL;
210 }
211 
212 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
213 {
214 	skb_queue_head_init(&rx_edma->rx_fifo);
215 	skb_queue_head_init(&rx_edma->rx_buffers);
216 	rx_edma->rx_fifo_hwsize = size;
217 }
218 
219 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
220 {
221 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
222 	struct ath_hw *ah = sc->sc_ah;
223 	struct sk_buff *skb;
224 	struct ath_buf *bf;
225 	int error = 0, i;
226 	u32 size;
227 
228 
229 	common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN +
230 				     ah->caps.rx_status_len,
231 				     min(common->cachelsz, (u16)64));
232 
233 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
234 				    ah->caps.rx_status_len);
235 
236 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
237 			       ah->caps.rx_lp_qdepth);
238 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
239 			       ah->caps.rx_hp_qdepth);
240 
241 	size = sizeof(struct ath_buf) * nbufs;
242 	bf = kzalloc(size, GFP_KERNEL);
243 	if (!bf)
244 		return -ENOMEM;
245 
246 	INIT_LIST_HEAD(&sc->rx.rxbuf);
247 	sc->rx.rx_bufptr = bf;
248 
249 	for (i = 0; i < nbufs; i++, bf++) {
250 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
251 		if (!skb) {
252 			error = -ENOMEM;
253 			goto rx_init_fail;
254 		}
255 
256 		memset(skb->data, 0, common->rx_bufsize);
257 		bf->bf_mpdu = skb;
258 
259 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
260 						 common->rx_bufsize,
261 						 DMA_BIDIRECTIONAL);
262 		if (unlikely(dma_mapping_error(sc->dev,
263 						bf->bf_buf_addr))) {
264 				dev_kfree_skb_any(skb);
265 				bf->bf_mpdu = NULL;
266 				ath_print(common, ATH_DBG_FATAL,
267 					"dma_mapping_error() on RX init\n");
268 				error = -ENOMEM;
269 				goto rx_init_fail;
270 		}
271 
272 		list_add_tail(&bf->list, &sc->rx.rxbuf);
273 	}
274 
275 	return 0;
276 
277 rx_init_fail:
278 	ath_rx_edma_cleanup(sc);
279 	return error;
280 }
281 
282 static void ath_edma_start_recv(struct ath_softc *sc)
283 {
284 	spin_lock_bh(&sc->rx.rxbuflock);
285 
286 	ath9k_hw_rxena(sc->sc_ah);
287 
288 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
289 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
290 
291 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
292 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
293 
294 	spin_unlock_bh(&sc->rx.rxbuflock);
295 
296 	ath_opmode_init(sc);
297 
298 	ath9k_hw_startpcureceive(sc->sc_ah, (sc->sc_flags & SC_OP_SCANNING));
299 }
300 
301 static void ath_edma_stop_recv(struct ath_softc *sc)
302 {
303 	spin_lock_bh(&sc->rx.rxbuflock);
304 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
305 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
306 	spin_unlock_bh(&sc->rx.rxbuflock);
307 }
308 
309 int ath_rx_init(struct ath_softc *sc, int nbufs)
310 {
311 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
312 	struct sk_buff *skb;
313 	struct ath_buf *bf;
314 	int error = 0;
315 
316 	spin_lock_init(&sc->rx.rxflushlock);
317 	sc->sc_flags &= ~SC_OP_RXFLUSH;
318 	spin_lock_init(&sc->rx.rxbuflock);
319 
320 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
321 		return ath_rx_edma_init(sc, nbufs);
322 	} else {
323 		common->rx_bufsize = roundup(IEEE80211_MAX_MPDU_LEN,
324 				min(common->cachelsz, (u16)64));
325 
326 		ath_print(common, ATH_DBG_CONFIG, "cachelsz %u rxbufsize %u\n",
327 				common->cachelsz, common->rx_bufsize);
328 
329 		/* Initialize rx descriptors */
330 
331 		error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
332 				"rx", nbufs, 1, 0);
333 		if (error != 0) {
334 			ath_print(common, ATH_DBG_FATAL,
335 				  "failed to allocate rx descriptors: %d\n",
336 				  error);
337 			goto err;
338 		}
339 
340 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
341 			skb = ath_rxbuf_alloc(common, common->rx_bufsize,
342 					      GFP_KERNEL);
343 			if (skb == NULL) {
344 				error = -ENOMEM;
345 				goto err;
346 			}
347 
348 			bf->bf_mpdu = skb;
349 			bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
350 					common->rx_bufsize,
351 					DMA_FROM_DEVICE);
352 			if (unlikely(dma_mapping_error(sc->dev,
353 							bf->bf_buf_addr))) {
354 				dev_kfree_skb_any(skb);
355 				bf->bf_mpdu = NULL;
356 				ath_print(common, ATH_DBG_FATAL,
357 					  "dma_mapping_error() on RX init\n");
358 				error = -ENOMEM;
359 				goto err;
360 			}
361 			bf->bf_dmacontext = bf->bf_buf_addr;
362 		}
363 		sc->rx.rxlink = NULL;
364 	}
365 
366 err:
367 	if (error)
368 		ath_rx_cleanup(sc);
369 
370 	return error;
371 }
372 
373 void ath_rx_cleanup(struct ath_softc *sc)
374 {
375 	struct ath_hw *ah = sc->sc_ah;
376 	struct ath_common *common = ath9k_hw_common(ah);
377 	struct sk_buff *skb;
378 	struct ath_buf *bf;
379 
380 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
381 		ath_rx_edma_cleanup(sc);
382 		return;
383 	} else {
384 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
385 			skb = bf->bf_mpdu;
386 			if (skb) {
387 				dma_unmap_single(sc->dev, bf->bf_buf_addr,
388 						common->rx_bufsize,
389 						DMA_FROM_DEVICE);
390 				dev_kfree_skb(skb);
391 			}
392 		}
393 
394 		if (sc->rx.rxdma.dd_desc_len != 0)
395 			ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
396 	}
397 }
398 
399 /*
400  * Calculate the receive filter according to the
401  * operating mode and state:
402  *
403  * o always accept unicast, broadcast, and multicast traffic
404  * o maintain current state of phy error reception (the hal
405  *   may enable phy error frames for noise immunity work)
406  * o probe request frames are accepted only when operating in
407  *   hostap, adhoc, or monitor modes
408  * o enable promiscuous mode according to the interface state
409  * o accept beacons:
410  *   - when operating in adhoc mode so the 802.11 layer creates
411  *     node table entries for peers,
412  *   - when operating in station mode for collecting rssi data when
413  *     the station is otherwise quiet, or
414  *   - when operating as a repeater so we see repeater-sta beacons
415  *   - when scanning
416  */
417 
418 u32 ath_calcrxfilter(struct ath_softc *sc)
419 {
420 #define	RX_FILTER_PRESERVE (ATH9K_RX_FILTER_PHYERR | ATH9K_RX_FILTER_PHYRADAR)
421 
422 	u32 rfilt;
423 
424 	rfilt = (ath9k_hw_getrxfilter(sc->sc_ah) & RX_FILTER_PRESERVE)
425 		| ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
426 		| ATH9K_RX_FILTER_MCAST;
427 
428 	/* If not a STA, enable processing of Probe Requests */
429 	if (sc->sc_ah->opmode != NL80211_IFTYPE_STATION)
430 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
431 
432 	/*
433 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
434 	 * mode interface or when in monitor mode. AP mode does not need this
435 	 * since it receives all in-BSS frames anyway.
436 	 */
437 	if (((sc->sc_ah->opmode != NL80211_IFTYPE_AP) &&
438 	     (sc->rx.rxfilter & FIF_PROMISC_IN_BSS)) ||
439 	    (sc->sc_ah->opmode == NL80211_IFTYPE_MONITOR))
440 		rfilt |= ATH9K_RX_FILTER_PROM;
441 
442 	if (sc->rx.rxfilter & FIF_CONTROL)
443 		rfilt |= ATH9K_RX_FILTER_CONTROL;
444 
445 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
446 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
447 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
448 	else
449 		rfilt |= ATH9K_RX_FILTER_BEACON;
450 
451 	if ((AR_SREV_9280_10_OR_LATER(sc->sc_ah) ||
452 	    AR_SREV_9285_10_OR_LATER(sc->sc_ah)) &&
453 	    (sc->sc_ah->opmode == NL80211_IFTYPE_AP) &&
454 	    (sc->rx.rxfilter & FIF_PSPOLL))
455 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
456 
457 	if (conf_is_ht(&sc->hw->conf))
458 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
459 
460 	if (sc->sec_wiphy || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
461 		/* TODO: only needed if more than one BSSID is in use in
462 		 * station/adhoc mode */
463 		/* The following may also be needed for other older chips */
464 		if (sc->sc_ah->hw_version.macVersion == AR_SREV_VERSION_9160)
465 			rfilt |= ATH9K_RX_FILTER_PROM;
466 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
467 	}
468 
469 	return rfilt;
470 
471 #undef RX_FILTER_PRESERVE
472 }
473 
474 int ath_startrecv(struct ath_softc *sc)
475 {
476 	struct ath_hw *ah = sc->sc_ah;
477 	struct ath_buf *bf, *tbf;
478 
479 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
480 		ath_edma_start_recv(sc);
481 		return 0;
482 	}
483 
484 	spin_lock_bh(&sc->rx.rxbuflock);
485 	if (list_empty(&sc->rx.rxbuf))
486 		goto start_recv;
487 
488 	sc->rx.rxlink = NULL;
489 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
490 		ath_rx_buf_link(sc, bf);
491 	}
492 
493 	/* We could have deleted elements so the list may be empty now */
494 	if (list_empty(&sc->rx.rxbuf))
495 		goto start_recv;
496 
497 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
498 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
499 	ath9k_hw_rxena(ah);
500 
501 start_recv:
502 	spin_unlock_bh(&sc->rx.rxbuflock);
503 	ath_opmode_init(sc);
504 	ath9k_hw_startpcureceive(ah, (sc->sc_flags & SC_OP_SCANNING));
505 
506 	return 0;
507 }
508 
509 bool ath_stoprecv(struct ath_softc *sc)
510 {
511 	struct ath_hw *ah = sc->sc_ah;
512 	bool stopped;
513 
514 	ath9k_hw_stoppcurecv(ah);
515 	ath9k_hw_setrxfilter(ah, 0);
516 	stopped = ath9k_hw_stopdmarecv(ah);
517 
518 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
519 		ath_edma_stop_recv(sc);
520 	else
521 		sc->rx.rxlink = NULL;
522 
523 	return stopped;
524 }
525 
526 void ath_flushrecv(struct ath_softc *sc)
527 {
528 	spin_lock_bh(&sc->rx.rxflushlock);
529 	sc->sc_flags |= SC_OP_RXFLUSH;
530 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
531 		ath_rx_tasklet(sc, 1, true);
532 	ath_rx_tasklet(sc, 1, false);
533 	sc->sc_flags &= ~SC_OP_RXFLUSH;
534 	spin_unlock_bh(&sc->rx.rxflushlock);
535 }
536 
537 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
538 {
539 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
540 	struct ieee80211_mgmt *mgmt;
541 	u8 *pos, *end, id, elen;
542 	struct ieee80211_tim_ie *tim;
543 
544 	mgmt = (struct ieee80211_mgmt *)skb->data;
545 	pos = mgmt->u.beacon.variable;
546 	end = skb->data + skb->len;
547 
548 	while (pos + 2 < end) {
549 		id = *pos++;
550 		elen = *pos++;
551 		if (pos + elen > end)
552 			break;
553 
554 		if (id == WLAN_EID_TIM) {
555 			if (elen < sizeof(*tim))
556 				break;
557 			tim = (struct ieee80211_tim_ie *) pos;
558 			if (tim->dtim_count != 0)
559 				break;
560 			return tim->bitmap_ctrl & 0x01;
561 		}
562 
563 		pos += elen;
564 	}
565 
566 	return false;
567 }
568 
569 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
570 {
571 	struct ieee80211_mgmt *mgmt;
572 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
573 
574 	if (skb->len < 24 + 8 + 2 + 2)
575 		return;
576 
577 	mgmt = (struct ieee80211_mgmt *)skb->data;
578 	if (memcmp(common->curbssid, mgmt->bssid, ETH_ALEN) != 0)
579 		return; /* not from our current AP */
580 
581 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
582 
583 	if (sc->ps_flags & PS_BEACON_SYNC) {
584 		sc->ps_flags &= ~PS_BEACON_SYNC;
585 		ath_print(common, ATH_DBG_PS,
586 			  "Reconfigure Beacon timers based on "
587 			  "timestamp from the AP\n");
588 		ath_beacon_config(sc, NULL);
589 	}
590 
591 	if (ath_beacon_dtim_pending_cab(skb)) {
592 		/*
593 		 * Remain awake waiting for buffered broadcast/multicast
594 		 * frames. If the last broadcast/multicast frame is not
595 		 * received properly, the next beacon frame will work as
596 		 * a backup trigger for returning into NETWORK SLEEP state,
597 		 * so we are waiting for it as well.
598 		 */
599 		ath_print(common, ATH_DBG_PS, "Received DTIM beacon indicating "
600 			  "buffered broadcast/multicast frame(s)\n");
601 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
602 		return;
603 	}
604 
605 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
606 		/*
607 		 * This can happen if a broadcast frame is dropped or the AP
608 		 * fails to send a frame indicating that all CAB frames have
609 		 * been delivered.
610 		 */
611 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
612 		ath_print(common, ATH_DBG_PS,
613 			  "PS wait for CAB frames timed out\n");
614 	}
615 }
616 
617 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb)
618 {
619 	struct ieee80211_hdr *hdr;
620 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
621 
622 	hdr = (struct ieee80211_hdr *)skb->data;
623 
624 	/* Process Beacon and CAB receive in PS state */
625 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
626 	    && ieee80211_is_beacon(hdr->frame_control))
627 		ath_rx_ps_beacon(sc, skb);
628 	else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
629 		 (ieee80211_is_data(hdr->frame_control) ||
630 		  ieee80211_is_action(hdr->frame_control)) &&
631 		 is_multicast_ether_addr(hdr->addr1) &&
632 		 !ieee80211_has_moredata(hdr->frame_control)) {
633 		/*
634 		 * No more broadcast/multicast frames to be received at this
635 		 * point.
636 		 */
637 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
638 		ath_print(common, ATH_DBG_PS,
639 			  "All PS CAB frames received, back to sleep\n");
640 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
641 		   !is_multicast_ether_addr(hdr->addr1) &&
642 		   !ieee80211_has_morefrags(hdr->frame_control)) {
643 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
644 		ath_print(common, ATH_DBG_PS,
645 			  "Going back to sleep after having received "
646 			  "PS-Poll data (0x%lx)\n",
647 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
648 					PS_WAIT_FOR_CAB |
649 					PS_WAIT_FOR_PSPOLL_DATA |
650 					PS_WAIT_FOR_TX_ACK));
651 	}
652 }
653 
654 static void ath_rx_send_to_mac80211(struct ieee80211_hw *hw,
655 				    struct ath_softc *sc, struct sk_buff *skb,
656 				    struct ieee80211_rx_status *rxs)
657 {
658 	struct ieee80211_hdr *hdr;
659 
660 	hdr = (struct ieee80211_hdr *)skb->data;
661 
662 	/* Send the frame to mac80211 */
663 	if (is_multicast_ether_addr(hdr->addr1)) {
664 		int i;
665 		/*
666 		 * Deliver broadcast/multicast frames to all suitable
667 		 * virtual wiphys.
668 		 */
669 		/* TODO: filter based on channel configuration */
670 		for (i = 0; i < sc->num_sec_wiphy; i++) {
671 			struct ath_wiphy *aphy = sc->sec_wiphy[i];
672 			struct sk_buff *nskb;
673 			if (aphy == NULL)
674 				continue;
675 			nskb = skb_copy(skb, GFP_ATOMIC);
676 			if (!nskb)
677 				continue;
678 			ieee80211_rx(aphy->hw, nskb);
679 		}
680 		ieee80211_rx(sc->hw, skb);
681 	} else
682 		/* Deliver unicast frames based on receiver address */
683 		ieee80211_rx(hw, skb);
684 }
685 
686 static bool ath_edma_get_buffers(struct ath_softc *sc,
687 				 enum ath9k_rx_qtype qtype)
688 {
689 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
690 	struct ath_hw *ah = sc->sc_ah;
691 	struct ath_common *common = ath9k_hw_common(ah);
692 	struct sk_buff *skb;
693 	struct ath_buf *bf;
694 	int ret;
695 
696 	skb = skb_peek(&rx_edma->rx_fifo);
697 	if (!skb)
698 		return false;
699 
700 	bf = SKB_CB_ATHBUF(skb);
701 	BUG_ON(!bf);
702 
703 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
704 				common->rx_bufsize, DMA_FROM_DEVICE);
705 
706 	ret = ath9k_hw_process_rxdesc_edma(ah, NULL, skb->data);
707 	if (ret == -EINPROGRESS) {
708 		/*let device gain the buffer again*/
709 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
710 				common->rx_bufsize, DMA_FROM_DEVICE);
711 		return false;
712 	}
713 
714 	__skb_unlink(skb, &rx_edma->rx_fifo);
715 	if (ret == -EINVAL) {
716 		/* corrupt descriptor, skip this one and the following one */
717 		list_add_tail(&bf->list, &sc->rx.rxbuf);
718 		ath_rx_edma_buf_link(sc, qtype);
719 		skb = skb_peek(&rx_edma->rx_fifo);
720 		if (!skb)
721 			return true;
722 
723 		bf = SKB_CB_ATHBUF(skb);
724 		BUG_ON(!bf);
725 
726 		__skb_unlink(skb, &rx_edma->rx_fifo);
727 		list_add_tail(&bf->list, &sc->rx.rxbuf);
728 		ath_rx_edma_buf_link(sc, qtype);
729 		return true;
730 	}
731 	skb_queue_tail(&rx_edma->rx_buffers, skb);
732 
733 	return true;
734 }
735 
736 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
737 						struct ath_rx_status *rs,
738 						enum ath9k_rx_qtype qtype)
739 {
740 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
741 	struct sk_buff *skb;
742 	struct ath_buf *bf;
743 
744 	while (ath_edma_get_buffers(sc, qtype));
745 	skb = __skb_dequeue(&rx_edma->rx_buffers);
746 	if (!skb)
747 		return NULL;
748 
749 	bf = SKB_CB_ATHBUF(skb);
750 	ath9k_hw_process_rxdesc_edma(sc->sc_ah, rs, skb->data);
751 	return bf;
752 }
753 
754 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
755 					   struct ath_rx_status *rs)
756 {
757 	struct ath_hw *ah = sc->sc_ah;
758 	struct ath_common *common = ath9k_hw_common(ah);
759 	struct ath_desc *ds;
760 	struct ath_buf *bf;
761 	int ret;
762 
763 	if (list_empty(&sc->rx.rxbuf)) {
764 		sc->rx.rxlink = NULL;
765 		return NULL;
766 	}
767 
768 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
769 	ds = bf->bf_desc;
770 
771 	/*
772 	 * Must provide the virtual address of the current
773 	 * descriptor, the physical address, and the virtual
774 	 * address of the next descriptor in the h/w chain.
775 	 * This allows the HAL to look ahead to see if the
776 	 * hardware is done with a descriptor by checking the
777 	 * done bit in the following descriptor and the address
778 	 * of the current descriptor the DMA engine is working
779 	 * on.  All this is necessary because of our use of
780 	 * a self-linked list to avoid rx overruns.
781 	 */
782 	ret = ath9k_hw_rxprocdesc(ah, ds, rs, 0);
783 	if (ret == -EINPROGRESS) {
784 		struct ath_rx_status trs;
785 		struct ath_buf *tbf;
786 		struct ath_desc *tds;
787 
788 		memset(&trs, 0, sizeof(trs));
789 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
790 			sc->rx.rxlink = NULL;
791 			return NULL;
792 		}
793 
794 		tbf = list_entry(bf->list.next, struct ath_buf, list);
795 
796 		/*
797 		 * On some hardware the descriptor status words could
798 		 * get corrupted, including the done bit. Because of
799 		 * this, check if the next descriptor's done bit is
800 		 * set or not.
801 		 *
802 		 * If the next descriptor's done bit is set, the current
803 		 * descriptor has been corrupted. Force s/w to discard
804 		 * this descriptor and continue...
805 		 */
806 
807 		tds = tbf->bf_desc;
808 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs, 0);
809 		if (ret == -EINPROGRESS)
810 			return NULL;
811 	}
812 
813 	if (!bf->bf_mpdu)
814 		return bf;
815 
816 	/*
817 	 * Synchronize the DMA transfer with CPU before
818 	 * 1. accessing the frame
819 	 * 2. requeueing the same buffer to h/w
820 	 */
821 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
822 			common->rx_bufsize,
823 			DMA_FROM_DEVICE);
824 
825 	return bf;
826 }
827 
828 /* Assumes you've already done the endian to CPU conversion */
829 static bool ath9k_rx_accept(struct ath_common *common,
830 			    struct ieee80211_hdr *hdr,
831 			    struct ieee80211_rx_status *rxs,
832 			    struct ath_rx_status *rx_stats,
833 			    bool *decrypt_error)
834 {
835 	struct ath_hw *ah = common->ah;
836 	__le16 fc;
837 	u8 rx_status_len = ah->caps.rx_status_len;
838 
839 	fc = hdr->frame_control;
840 
841 	if (!rx_stats->rs_datalen)
842 		return false;
843         /*
844          * rs_status follows rs_datalen so if rs_datalen is too large
845          * we can take a hint that hardware corrupted it, so ignore
846          * those frames.
847          */
848 	if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len))
849 		return false;
850 
851 	/*
852 	 * rs_more indicates chained descriptors which can be used
853 	 * to link buffers together for a sort of scatter-gather
854 	 * operation.
855 	 * reject the frame, we don't support scatter-gather yet and
856 	 * the frame is probably corrupt anyway
857 	 */
858 	if (rx_stats->rs_more)
859 		return false;
860 
861 	/*
862 	 * The rx_stats->rs_status will not be set until the end of the
863 	 * chained descriptors so it can be ignored if rs_more is set. The
864 	 * rs_more will be false at the last element of the chained
865 	 * descriptors.
866 	 */
867 	if (rx_stats->rs_status != 0) {
868 		if (rx_stats->rs_status & ATH9K_RXERR_CRC)
869 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
870 		if (rx_stats->rs_status & ATH9K_RXERR_PHY)
871 			return false;
872 
873 		if (rx_stats->rs_status & ATH9K_RXERR_DECRYPT) {
874 			*decrypt_error = true;
875 		} else if (rx_stats->rs_status & ATH9K_RXERR_MIC) {
876 			if (ieee80211_is_ctl(fc))
877 				/*
878 				 * Sometimes, we get invalid
879 				 * MIC failures on valid control frames.
880 				 * Remove these mic errors.
881 				 */
882 				rx_stats->rs_status &= ~ATH9K_RXERR_MIC;
883 			else
884 				rxs->flag |= RX_FLAG_MMIC_ERROR;
885 		}
886 		/*
887 		 * Reject error frames with the exception of
888 		 * decryption and MIC failures. For monitor mode,
889 		 * we also ignore the CRC error.
890 		 */
891 		if (ah->opmode == NL80211_IFTYPE_MONITOR) {
892 			if (rx_stats->rs_status &
893 			    ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
894 			      ATH9K_RXERR_CRC))
895 				return false;
896 		} else {
897 			if (rx_stats->rs_status &
898 			    ~(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC)) {
899 				return false;
900 			}
901 		}
902 	}
903 	return true;
904 }
905 
906 static int ath9k_process_rate(struct ath_common *common,
907 			      struct ieee80211_hw *hw,
908 			      struct ath_rx_status *rx_stats,
909 			      struct ieee80211_rx_status *rxs)
910 {
911 	struct ieee80211_supported_band *sband;
912 	enum ieee80211_band band;
913 	unsigned int i = 0;
914 
915 	band = hw->conf.channel->band;
916 	sband = hw->wiphy->bands[band];
917 
918 	if (rx_stats->rs_rate & 0x80) {
919 		/* HT rate */
920 		rxs->flag |= RX_FLAG_HT;
921 		if (rx_stats->rs_flags & ATH9K_RX_2040)
922 			rxs->flag |= RX_FLAG_40MHZ;
923 		if (rx_stats->rs_flags & ATH9K_RX_GI)
924 			rxs->flag |= RX_FLAG_SHORT_GI;
925 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
926 		return 0;
927 	}
928 
929 	for (i = 0; i < sband->n_bitrates; i++) {
930 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
931 			rxs->rate_idx = i;
932 			return 0;
933 		}
934 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
935 			rxs->flag |= RX_FLAG_SHORTPRE;
936 			rxs->rate_idx = i;
937 			return 0;
938 		}
939 	}
940 
941 	/*
942 	 * No valid hardware bitrate found -- we should not get here
943 	 * because hardware has already validated this frame as OK.
944 	 */
945 	ath_print(common, ATH_DBG_XMIT, "unsupported hw bitrate detected "
946 		  "0x%02x using 1 Mbit\n", rx_stats->rs_rate);
947 
948 	return -EINVAL;
949 }
950 
951 static void ath9k_process_rssi(struct ath_common *common,
952 			       struct ieee80211_hw *hw,
953 			       struct ieee80211_hdr *hdr,
954 			       struct ath_rx_status *rx_stats)
955 {
956 	struct ath_hw *ah = common->ah;
957 	struct ieee80211_sta *sta;
958 	struct ath_node *an;
959 	int last_rssi = ATH_RSSI_DUMMY_MARKER;
960 	__le16 fc;
961 
962 	fc = hdr->frame_control;
963 
964 	rcu_read_lock();
965 	/*
966 	 * XXX: use ieee80211_find_sta! This requires quite a bit of work
967 	 * under the current ath9k virtual wiphy implementation as we have
968 	 * no way of tying a vif to wiphy. Typically vifs are attached to
969 	 * at least one sdata of a wiphy on mac80211 but with ath9k virtual
970 	 * wiphy you'd have to iterate over every wiphy and each sdata.
971 	 */
972 	sta = ieee80211_find_sta_by_hw(hw, hdr->addr2);
973 	if (sta) {
974 		an = (struct ath_node *) sta->drv_priv;
975 		if (rx_stats->rs_rssi != ATH9K_RSSI_BAD &&
976 		   !rx_stats->rs_moreaggr)
977 			ATH_RSSI_LPF(an->last_rssi, rx_stats->rs_rssi);
978 		last_rssi = an->last_rssi;
979 	}
980 	rcu_read_unlock();
981 
982 	if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
983 		rx_stats->rs_rssi = ATH_EP_RND(last_rssi,
984 					      ATH_RSSI_EP_MULTIPLIER);
985 	if (rx_stats->rs_rssi < 0)
986 		rx_stats->rs_rssi = 0;
987 
988 	/* Update Beacon RSSI, this is used by ANI. */
989 	if (ieee80211_is_beacon(fc))
990 		ah->stats.avgbrssi = rx_stats->rs_rssi;
991 }
992 
993 /*
994  * For Decrypt or Demic errors, we only mark packet status here and always push
995  * up the frame up to let mac80211 handle the actual error case, be it no
996  * decryption key or real decryption error. This let us keep statistics there.
997  */
998 static int ath9k_rx_skb_preprocess(struct ath_common *common,
999 				   struct ieee80211_hw *hw,
1000 				   struct ieee80211_hdr *hdr,
1001 				   struct ath_rx_status *rx_stats,
1002 				   struct ieee80211_rx_status *rx_status,
1003 				   bool *decrypt_error)
1004 {
1005 	struct ath_hw *ah = common->ah;
1006 
1007 	memset(rx_status, 0, sizeof(struct ieee80211_rx_status));
1008 
1009 	/*
1010 	 * everything but the rate is checked here, the rate check is done
1011 	 * separately to avoid doing two lookups for a rate for each frame.
1012 	 */
1013 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
1014 		return -EINVAL;
1015 
1016 	ath9k_process_rssi(common, hw, hdr, rx_stats);
1017 
1018 	if (ath9k_process_rate(common, hw, rx_stats, rx_status))
1019 		return -EINVAL;
1020 
1021 	rx_status->mactime = ath9k_hw_extend_tsf(ah, rx_stats->rs_tstamp);
1022 	rx_status->band = hw->conf.channel->band;
1023 	rx_status->freq = hw->conf.channel->center_freq;
1024 	rx_status->signal = ATH_DEFAULT_NOISE_FLOOR + rx_stats->rs_rssi;
1025 	rx_status->antenna = rx_stats->rs_antenna;
1026 	rx_status->flag |= RX_FLAG_TSFT;
1027 
1028 	return 0;
1029 }
1030 
1031 static void ath9k_rx_skb_postprocess(struct ath_common *common,
1032 				     struct sk_buff *skb,
1033 				     struct ath_rx_status *rx_stats,
1034 				     struct ieee80211_rx_status *rxs,
1035 				     bool decrypt_error)
1036 {
1037 	struct ath_hw *ah = common->ah;
1038 	struct ieee80211_hdr *hdr;
1039 	int hdrlen, padpos, padsize;
1040 	u8 keyix;
1041 	__le16 fc;
1042 
1043 	/* see if any padding is done by the hw and remove it */
1044 	hdr = (struct ieee80211_hdr *) skb->data;
1045 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1046 	fc = hdr->frame_control;
1047 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1048 
1049 	/* The MAC header is padded to have 32-bit boundary if the
1050 	 * packet payload is non-zero. The general calculation for
1051 	 * padsize would take into account odd header lengths:
1052 	 * padsize = (4 - padpos % 4) % 4; However, since only
1053 	 * even-length headers are used, padding can only be 0 or 2
1054 	 * bytes and we can optimize this a bit. In addition, we must
1055 	 * not try to remove padding from short control frames that do
1056 	 * not have payload. */
1057 	padsize = padpos & 3;
1058 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1059 		memmove(skb->data + padsize, skb->data, padpos);
1060 		skb_pull(skb, padsize);
1061 	}
1062 
1063 	keyix = rx_stats->rs_keyix;
1064 
1065 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1066 	    ieee80211_has_protected(fc)) {
1067 		rxs->flag |= RX_FLAG_DECRYPTED;
1068 	} else if (ieee80211_has_protected(fc)
1069 		   && !decrypt_error && skb->len >= hdrlen + 4) {
1070 		keyix = skb->data[hdrlen + 3] >> 6;
1071 
1072 		if (test_bit(keyix, common->keymap))
1073 			rxs->flag |= RX_FLAG_DECRYPTED;
1074 	}
1075 	if (ah->sw_mgmt_crypto &&
1076 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
1077 	    ieee80211_is_mgmt(fc))
1078 		/* Use software decrypt for management frames. */
1079 		rxs->flag &= ~RX_FLAG_DECRYPTED;
1080 }
1081 
1082 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1083 {
1084 	struct ath_buf *bf;
1085 	struct sk_buff *skb = NULL, *requeue_skb;
1086 	struct ieee80211_rx_status *rxs;
1087 	struct ath_hw *ah = sc->sc_ah;
1088 	struct ath_common *common = ath9k_hw_common(ah);
1089 	/*
1090 	 * The hw can techncically differ from common->hw when using ath9k
1091 	 * virtual wiphy so to account for that we iterate over the active
1092 	 * wiphys and find the appropriate wiphy and therefore hw.
1093 	 */
1094 	struct ieee80211_hw *hw = NULL;
1095 	struct ieee80211_hdr *hdr;
1096 	int retval;
1097 	bool decrypt_error = false;
1098 	struct ath_rx_status rs;
1099 	enum ath9k_rx_qtype qtype;
1100 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1101 	int dma_type;
1102 	u8 rx_status_len = ah->caps.rx_status_len;
1103 
1104 	if (edma)
1105 		dma_type = DMA_BIDIRECTIONAL;
1106 	else
1107 		dma_type = DMA_FROM_DEVICE;
1108 
1109 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1110 	spin_lock_bh(&sc->rx.rxbuflock);
1111 
1112 	do {
1113 		/* If handling rx interrupt and flush is in progress => exit */
1114 		if ((sc->sc_flags & SC_OP_RXFLUSH) && (flush == 0))
1115 			break;
1116 
1117 		memset(&rs, 0, sizeof(rs));
1118 		if (edma)
1119 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1120 		else
1121 			bf = ath_get_next_rx_buf(sc, &rs);
1122 
1123 		if (!bf)
1124 			break;
1125 
1126 		skb = bf->bf_mpdu;
1127 		if (!skb)
1128 			continue;
1129 
1130 		hdr = (struct ieee80211_hdr *) (skb->data + rx_status_len);
1131 		rxs =  IEEE80211_SKB_RXCB(skb);
1132 
1133 		hw = ath_get_virt_hw(sc, hdr);
1134 
1135 		ath_debug_stat_rx(sc, &rs);
1136 
1137 		/*
1138 		 * If we're asked to flush receive queue, directly
1139 		 * chain it back at the queue without processing it.
1140 		 */
1141 		if (flush)
1142 			goto requeue;
1143 
1144 		retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1145 						 rxs, &decrypt_error);
1146 		if (retval)
1147 			goto requeue;
1148 
1149 		/* Ensure we always have an skb to requeue once we are done
1150 		 * processing the current buffer's skb */
1151 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1152 
1153 		/* If there is no memory we ignore the current RX'd frame,
1154 		 * tell hardware it can give us a new frame using the old
1155 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1156 		 * processing. */
1157 		if (!requeue_skb)
1158 			goto requeue;
1159 
1160 		/* Unmap the frame */
1161 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1162 				 common->rx_bufsize,
1163 				 dma_type);
1164 
1165 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1166 		if (ah->caps.rx_status_len)
1167 			skb_pull(skb, ah->caps.rx_status_len);
1168 
1169 		ath9k_rx_skb_postprocess(common, skb, &rs,
1170 					 rxs, decrypt_error);
1171 
1172 		/* We will now give hardware our shiny new allocated skb */
1173 		bf->bf_mpdu = requeue_skb;
1174 		bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1175 						 common->rx_bufsize,
1176 						 dma_type);
1177 		if (unlikely(dma_mapping_error(sc->dev,
1178 			  bf->bf_buf_addr))) {
1179 			dev_kfree_skb_any(requeue_skb);
1180 			bf->bf_mpdu = NULL;
1181 			ath_print(common, ATH_DBG_FATAL,
1182 				  "dma_mapping_error() on RX\n");
1183 			ath_rx_send_to_mac80211(hw, sc, skb, rxs);
1184 			break;
1185 		}
1186 		bf->bf_dmacontext = bf->bf_buf_addr;
1187 
1188 		/*
1189 		 * change the default rx antenna if rx diversity chooses the
1190 		 * other antenna 3 times in a row.
1191 		 */
1192 		if (sc->rx.defant != rs.rs_antenna) {
1193 			if (++sc->rx.rxotherant >= 3)
1194 				ath_setdefantenna(sc, rs.rs_antenna);
1195 		} else {
1196 			sc->rx.rxotherant = 0;
1197 		}
1198 
1199 		if (unlikely(ath9k_check_auto_sleep(sc) ||
1200 			     (sc->ps_flags & (PS_WAIT_FOR_BEACON |
1201 					      PS_WAIT_FOR_CAB |
1202 					      PS_WAIT_FOR_PSPOLL_DATA))))
1203 			ath_rx_ps(sc, skb);
1204 
1205 		ath_rx_send_to_mac80211(hw, sc, skb, rxs);
1206 
1207 requeue:
1208 		if (edma) {
1209 			list_add_tail(&bf->list, &sc->rx.rxbuf);
1210 			ath_rx_edma_buf_link(sc, qtype);
1211 		} else {
1212 			list_move_tail(&bf->list, &sc->rx.rxbuf);
1213 			ath_rx_buf_link(sc, bf);
1214 		}
1215 	} while (1);
1216 
1217 	spin_unlock_bh(&sc->rx.rxbuflock);
1218 
1219 	return 0;
1220 }
1221