1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb)) 22 23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 24 { 25 return sc->ps_enabled && 26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 27 } 28 29 /* 30 * Setup and link descriptors. 31 * 32 * 11N: we can no longer afford to self link the last descriptor. 33 * MAC acknowledges BA status as long as it copies frames to host 34 * buffer (or rx fifo). This can incorrectly acknowledge packets 35 * to a sender if last desc is self-linked. 36 */ 37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf, 38 bool flush) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ds = bf->bf_desc; 46 ds->ds_link = 0; /* link to null */ 47 ds->ds_data = bf->bf_buf_addr; 48 49 /* virtual addr of the beginning of the buffer. */ 50 skb = bf->bf_mpdu; 51 BUG_ON(skb == NULL); 52 ds->ds_vdata = skb->data; 53 54 /* 55 * setup rx descriptors. The rx_bufsize here tells the hardware 56 * how much data it can DMA to us and that we are prepared 57 * to process 58 */ 59 ath9k_hw_setuprxdesc(ah, ds, 60 common->rx_bufsize, 61 0); 62 63 if (sc->rx.rxlink) 64 *sc->rx.rxlink = bf->bf_daddr; 65 else if (!flush) 66 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 67 68 sc->rx.rxlink = &ds->ds_link; 69 } 70 71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf, 72 bool flush) 73 { 74 if (sc->rx.buf_hold) 75 ath_rx_buf_link(sc, sc->rx.buf_hold, flush); 76 77 sc->rx.buf_hold = bf; 78 } 79 80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 81 { 82 /* XXX block beacon interrupts */ 83 ath9k_hw_setantenna(sc->sc_ah, antenna); 84 sc->rx.defant = antenna; 85 sc->rx.rxotherant = 0; 86 } 87 88 static void ath_opmode_init(struct ath_softc *sc) 89 { 90 struct ath_hw *ah = sc->sc_ah; 91 struct ath_common *common = ath9k_hw_common(ah); 92 93 u32 rfilt, mfilt[2]; 94 95 /* configure rx filter */ 96 rfilt = ath_calcrxfilter(sc); 97 ath9k_hw_setrxfilter(ah, rfilt); 98 99 /* configure bssid mask */ 100 ath_hw_setbssidmask(common); 101 102 /* configure operational mode */ 103 ath9k_hw_setopmode(ah); 104 105 /* calculate and install multicast filter */ 106 mfilt[0] = mfilt[1] = ~0; 107 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 108 } 109 110 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 111 enum ath9k_rx_qtype qtype) 112 { 113 struct ath_hw *ah = sc->sc_ah; 114 struct ath_rx_edma *rx_edma; 115 struct sk_buff *skb; 116 struct ath_rxbuf *bf; 117 118 rx_edma = &sc->rx.rx_edma[qtype]; 119 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 120 return false; 121 122 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 123 list_del_init(&bf->list); 124 125 skb = bf->bf_mpdu; 126 127 memset(skb->data, 0, ah->caps.rx_status_len); 128 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 129 ah->caps.rx_status_len, DMA_TO_DEVICE); 130 131 SKB_CB_ATHBUF(skb) = bf; 132 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 133 __skb_queue_tail(&rx_edma->rx_fifo, skb); 134 135 return true; 136 } 137 138 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 139 enum ath9k_rx_qtype qtype) 140 { 141 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 142 struct ath_rxbuf *bf, *tbf; 143 144 if (list_empty(&sc->rx.rxbuf)) { 145 ath_dbg(common, QUEUE, "No free rx buf available\n"); 146 return; 147 } 148 149 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 150 if (!ath_rx_edma_buf_link(sc, qtype)) 151 break; 152 153 } 154 155 static void ath_rx_remove_buffer(struct ath_softc *sc, 156 enum ath9k_rx_qtype qtype) 157 { 158 struct ath_rxbuf *bf; 159 struct ath_rx_edma *rx_edma; 160 struct sk_buff *skb; 161 162 rx_edma = &sc->rx.rx_edma[qtype]; 163 164 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 165 bf = SKB_CB_ATHBUF(skb); 166 BUG_ON(!bf); 167 list_add_tail(&bf->list, &sc->rx.rxbuf); 168 } 169 } 170 171 static void ath_rx_edma_cleanup(struct ath_softc *sc) 172 { 173 struct ath_hw *ah = sc->sc_ah; 174 struct ath_common *common = ath9k_hw_common(ah); 175 struct ath_rxbuf *bf; 176 177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 178 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 179 180 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 181 if (bf->bf_mpdu) { 182 dma_unmap_single(sc->dev, bf->bf_buf_addr, 183 common->rx_bufsize, 184 DMA_BIDIRECTIONAL); 185 dev_kfree_skb_any(bf->bf_mpdu); 186 bf->bf_buf_addr = 0; 187 bf->bf_mpdu = NULL; 188 } 189 } 190 } 191 192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 193 { 194 __skb_queue_head_init(&rx_edma->rx_fifo); 195 rx_edma->rx_fifo_hwsize = size; 196 } 197 198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 199 { 200 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 201 struct ath_hw *ah = sc->sc_ah; 202 struct sk_buff *skb; 203 struct ath_rxbuf *bf; 204 int error = 0, i; 205 u32 size; 206 207 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 208 ah->caps.rx_status_len); 209 210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 211 ah->caps.rx_lp_qdepth); 212 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 213 ah->caps.rx_hp_qdepth); 214 215 size = sizeof(struct ath_rxbuf) * nbufs; 216 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 217 if (!bf) 218 return -ENOMEM; 219 220 INIT_LIST_HEAD(&sc->rx.rxbuf); 221 222 for (i = 0; i < nbufs; i++, bf++) { 223 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 224 if (!skb) { 225 error = -ENOMEM; 226 goto rx_init_fail; 227 } 228 229 memset(skb->data, 0, common->rx_bufsize); 230 bf->bf_mpdu = skb; 231 232 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 233 common->rx_bufsize, 234 DMA_BIDIRECTIONAL); 235 if (unlikely(dma_mapping_error(sc->dev, 236 bf->bf_buf_addr))) { 237 dev_kfree_skb_any(skb); 238 bf->bf_mpdu = NULL; 239 bf->bf_buf_addr = 0; 240 ath_err(common, 241 "dma_mapping_error() on RX init\n"); 242 error = -ENOMEM; 243 goto rx_init_fail; 244 } 245 246 list_add_tail(&bf->list, &sc->rx.rxbuf); 247 } 248 249 return 0; 250 251 rx_init_fail: 252 ath_rx_edma_cleanup(sc); 253 return error; 254 } 255 256 static void ath_edma_start_recv(struct ath_softc *sc) 257 { 258 ath9k_hw_rxena(sc->sc_ah); 259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 260 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 261 ath_opmode_init(sc); 262 ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel); 263 } 264 265 static void ath_edma_stop_recv(struct ath_softc *sc) 266 { 267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 269 } 270 271 int ath_rx_init(struct ath_softc *sc, int nbufs) 272 { 273 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 274 struct sk_buff *skb; 275 struct ath_rxbuf *bf; 276 int error = 0; 277 278 spin_lock_init(&sc->sc_pcu_lock); 279 280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 281 sc->sc_ah->caps.rx_status_len; 282 283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 284 return ath_rx_edma_init(sc, nbufs); 285 286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 287 common->cachelsz, common->rx_bufsize); 288 289 /* Initialize rx descriptors */ 290 291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 292 "rx", nbufs, 1, 0); 293 if (error != 0) { 294 ath_err(common, 295 "failed to allocate rx descriptors: %d\n", 296 error); 297 goto err; 298 } 299 300 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 301 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 302 GFP_KERNEL); 303 if (skb == NULL) { 304 error = -ENOMEM; 305 goto err; 306 } 307 308 bf->bf_mpdu = skb; 309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 310 common->rx_bufsize, 311 DMA_FROM_DEVICE); 312 if (unlikely(dma_mapping_error(sc->dev, 313 bf->bf_buf_addr))) { 314 dev_kfree_skb_any(skb); 315 bf->bf_mpdu = NULL; 316 bf->bf_buf_addr = 0; 317 ath_err(common, 318 "dma_mapping_error() on RX init\n"); 319 error = -ENOMEM; 320 goto err; 321 } 322 } 323 sc->rx.rxlink = NULL; 324 err: 325 if (error) 326 ath_rx_cleanup(sc); 327 328 return error; 329 } 330 331 void ath_rx_cleanup(struct ath_softc *sc) 332 { 333 struct ath_hw *ah = sc->sc_ah; 334 struct ath_common *common = ath9k_hw_common(ah); 335 struct sk_buff *skb; 336 struct ath_rxbuf *bf; 337 338 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 339 ath_rx_edma_cleanup(sc); 340 return; 341 } 342 343 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 344 skb = bf->bf_mpdu; 345 if (skb) { 346 dma_unmap_single(sc->dev, bf->bf_buf_addr, 347 common->rx_bufsize, 348 DMA_FROM_DEVICE); 349 dev_kfree_skb(skb); 350 bf->bf_buf_addr = 0; 351 bf->bf_mpdu = NULL; 352 } 353 } 354 } 355 356 /* 357 * Calculate the receive filter according to the 358 * operating mode and state: 359 * 360 * o always accept unicast, broadcast, and multicast traffic 361 * o maintain current state of phy error reception (the hal 362 * may enable phy error frames for noise immunity work) 363 * o probe request frames are accepted only when operating in 364 * hostap, adhoc, or monitor modes 365 * o enable promiscuous mode according to the interface state 366 * o accept beacons: 367 * - when operating in adhoc mode so the 802.11 layer creates 368 * node table entries for peers, 369 * - when operating in station mode for collecting rssi data when 370 * the station is otherwise quiet, or 371 * - when operating as a repeater so we see repeater-sta beacons 372 * - when scanning 373 */ 374 375 u32 ath_calcrxfilter(struct ath_softc *sc) 376 { 377 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 378 u32 rfilt; 379 380 if (config_enabled(CONFIG_ATH9K_TX99)) 381 return 0; 382 383 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 384 | ATH9K_RX_FILTER_MCAST; 385 386 /* if operating on a DFS channel, enable radar pulse detection */ 387 if (sc->hw->conf.radar_enabled) 388 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 389 390 spin_lock_bh(&sc->chan_lock); 391 392 if (sc->cur_chan->rxfilter & FIF_PROBE_REQ) 393 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 394 395 /* 396 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 397 * mode interface or when in monitor mode. AP mode does not need this 398 * since it receives all in-BSS frames anyway. 399 */ 400 if (sc->sc_ah->is_monitoring) 401 rfilt |= ATH9K_RX_FILTER_PROM; 402 403 if ((sc->cur_chan->rxfilter & FIF_CONTROL) || 404 sc->sc_ah->dynack.enabled) 405 rfilt |= ATH9K_RX_FILTER_CONTROL; 406 407 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 408 (sc->cur_chan->nvifs <= 1) && 409 !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC)) 410 rfilt |= ATH9K_RX_FILTER_MYBEACON; 411 else 412 rfilt |= ATH9K_RX_FILTER_BEACON; 413 414 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 415 (sc->cur_chan->rxfilter & FIF_PSPOLL)) 416 rfilt |= ATH9K_RX_FILTER_PSPOLL; 417 418 if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT) 419 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 420 421 if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) { 422 /* This is needed for older chips */ 423 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 424 rfilt |= ATH9K_RX_FILTER_PROM; 425 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 426 } 427 428 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah)) 429 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 430 431 if (ath9k_is_chanctx_enabled() && 432 test_bit(ATH_OP_SCANNING, &common->op_flags)) 433 rfilt |= ATH9K_RX_FILTER_BEACON; 434 435 spin_unlock_bh(&sc->chan_lock); 436 437 return rfilt; 438 439 } 440 441 void ath_startrecv(struct ath_softc *sc) 442 { 443 struct ath_hw *ah = sc->sc_ah; 444 struct ath_rxbuf *bf, *tbf; 445 446 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 447 ath_edma_start_recv(sc); 448 return; 449 } 450 451 if (list_empty(&sc->rx.rxbuf)) 452 goto start_recv; 453 454 sc->rx.buf_hold = NULL; 455 sc->rx.rxlink = NULL; 456 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 457 ath_rx_buf_link(sc, bf, false); 458 } 459 460 /* We could have deleted elements so the list may be empty now */ 461 if (list_empty(&sc->rx.rxbuf)) 462 goto start_recv; 463 464 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 465 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 466 ath9k_hw_rxena(ah); 467 468 start_recv: 469 ath_opmode_init(sc); 470 ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel); 471 } 472 473 static void ath_flushrecv(struct ath_softc *sc) 474 { 475 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 476 ath_rx_tasklet(sc, 1, true); 477 ath_rx_tasklet(sc, 1, false); 478 } 479 480 bool ath_stoprecv(struct ath_softc *sc) 481 { 482 struct ath_hw *ah = sc->sc_ah; 483 bool stopped, reset = false; 484 485 ath9k_hw_abortpcurecv(ah); 486 ath9k_hw_setrxfilter(ah, 0); 487 stopped = ath9k_hw_stopdmarecv(ah, &reset); 488 489 ath_flushrecv(sc); 490 491 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 492 ath_edma_stop_recv(sc); 493 else 494 sc->rx.rxlink = NULL; 495 496 if (!(ah->ah_flags & AH_UNPLUGGED) && 497 unlikely(!stopped)) { 498 ath_err(ath9k_hw_common(sc->sc_ah), 499 "Could not stop RX, we could be " 500 "confusing the DMA engine when we start RX up\n"); 501 ATH_DBG_WARN_ON_ONCE(!stopped); 502 } 503 return stopped && !reset; 504 } 505 506 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 507 { 508 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 509 struct ieee80211_mgmt *mgmt; 510 u8 *pos, *end, id, elen; 511 struct ieee80211_tim_ie *tim; 512 513 mgmt = (struct ieee80211_mgmt *)skb->data; 514 pos = mgmt->u.beacon.variable; 515 end = skb->data + skb->len; 516 517 while (pos + 2 < end) { 518 id = *pos++; 519 elen = *pos++; 520 if (pos + elen > end) 521 break; 522 523 if (id == WLAN_EID_TIM) { 524 if (elen < sizeof(*tim)) 525 break; 526 tim = (struct ieee80211_tim_ie *) pos; 527 if (tim->dtim_count != 0) 528 break; 529 return tim->bitmap_ctrl & 0x01; 530 } 531 532 pos += elen; 533 } 534 535 return false; 536 } 537 538 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 539 { 540 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 541 bool skip_beacon = false; 542 543 if (skb->len < 24 + 8 + 2 + 2) 544 return; 545 546 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 547 548 if (sc->ps_flags & PS_BEACON_SYNC) { 549 sc->ps_flags &= ~PS_BEACON_SYNC; 550 ath_dbg(common, PS, 551 "Reconfigure beacon timers based on synchronized timestamp\n"); 552 553 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT 554 if (ath9k_is_chanctx_enabled()) { 555 if (sc->cur_chan == &sc->offchannel.chan) 556 skip_beacon = true; 557 } 558 #endif 559 560 if (!skip_beacon && 561 !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0))) 562 ath9k_set_beacon(sc); 563 564 ath9k_p2p_beacon_sync(sc); 565 } 566 567 if (ath_beacon_dtim_pending_cab(skb)) { 568 /* 569 * Remain awake waiting for buffered broadcast/multicast 570 * frames. If the last broadcast/multicast frame is not 571 * received properly, the next beacon frame will work as 572 * a backup trigger for returning into NETWORK SLEEP state, 573 * so we are waiting for it as well. 574 */ 575 ath_dbg(common, PS, 576 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 577 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 578 return; 579 } 580 581 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 582 /* 583 * This can happen if a broadcast frame is dropped or the AP 584 * fails to send a frame indicating that all CAB frames have 585 * been delivered. 586 */ 587 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 588 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 589 } 590 } 591 592 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 593 { 594 struct ieee80211_hdr *hdr; 595 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 596 597 hdr = (struct ieee80211_hdr *)skb->data; 598 599 /* Process Beacon and CAB receive in PS state */ 600 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 601 && mybeacon) { 602 ath_rx_ps_beacon(sc, skb); 603 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 604 (ieee80211_is_data(hdr->frame_control) || 605 ieee80211_is_action(hdr->frame_control)) && 606 is_multicast_ether_addr(hdr->addr1) && 607 !ieee80211_has_moredata(hdr->frame_control)) { 608 /* 609 * No more broadcast/multicast frames to be received at this 610 * point. 611 */ 612 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 613 ath_dbg(common, PS, 614 "All PS CAB frames received, back to sleep\n"); 615 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 616 !is_multicast_ether_addr(hdr->addr1) && 617 !ieee80211_has_morefrags(hdr->frame_control)) { 618 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 619 ath_dbg(common, PS, 620 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 621 sc->ps_flags & (PS_WAIT_FOR_BEACON | 622 PS_WAIT_FOR_CAB | 623 PS_WAIT_FOR_PSPOLL_DATA | 624 PS_WAIT_FOR_TX_ACK)); 625 } 626 } 627 628 static bool ath_edma_get_buffers(struct ath_softc *sc, 629 enum ath9k_rx_qtype qtype, 630 struct ath_rx_status *rs, 631 struct ath_rxbuf **dest) 632 { 633 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 634 struct ath_hw *ah = sc->sc_ah; 635 struct ath_common *common = ath9k_hw_common(ah); 636 struct sk_buff *skb; 637 struct ath_rxbuf *bf; 638 int ret; 639 640 skb = skb_peek(&rx_edma->rx_fifo); 641 if (!skb) 642 return false; 643 644 bf = SKB_CB_ATHBUF(skb); 645 BUG_ON(!bf); 646 647 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 648 common->rx_bufsize, DMA_FROM_DEVICE); 649 650 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 651 if (ret == -EINPROGRESS) { 652 /*let device gain the buffer again*/ 653 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 654 common->rx_bufsize, DMA_FROM_DEVICE); 655 return false; 656 } 657 658 __skb_unlink(skb, &rx_edma->rx_fifo); 659 if (ret == -EINVAL) { 660 /* corrupt descriptor, skip this one and the following one */ 661 list_add_tail(&bf->list, &sc->rx.rxbuf); 662 ath_rx_edma_buf_link(sc, qtype); 663 664 skb = skb_peek(&rx_edma->rx_fifo); 665 if (skb) { 666 bf = SKB_CB_ATHBUF(skb); 667 BUG_ON(!bf); 668 669 __skb_unlink(skb, &rx_edma->rx_fifo); 670 list_add_tail(&bf->list, &sc->rx.rxbuf); 671 ath_rx_edma_buf_link(sc, qtype); 672 } 673 674 bf = NULL; 675 } 676 677 *dest = bf; 678 return true; 679 } 680 681 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 682 struct ath_rx_status *rs, 683 enum ath9k_rx_qtype qtype) 684 { 685 struct ath_rxbuf *bf = NULL; 686 687 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 688 if (!bf) 689 continue; 690 691 return bf; 692 } 693 return NULL; 694 } 695 696 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc, 697 struct ath_rx_status *rs) 698 { 699 struct ath_hw *ah = sc->sc_ah; 700 struct ath_common *common = ath9k_hw_common(ah); 701 struct ath_desc *ds; 702 struct ath_rxbuf *bf; 703 int ret; 704 705 if (list_empty(&sc->rx.rxbuf)) { 706 sc->rx.rxlink = NULL; 707 return NULL; 708 } 709 710 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 711 if (bf == sc->rx.buf_hold) 712 return NULL; 713 714 ds = bf->bf_desc; 715 716 /* 717 * Must provide the virtual address of the current 718 * descriptor, the physical address, and the virtual 719 * address of the next descriptor in the h/w chain. 720 * This allows the HAL to look ahead to see if the 721 * hardware is done with a descriptor by checking the 722 * done bit in the following descriptor and the address 723 * of the current descriptor the DMA engine is working 724 * on. All this is necessary because of our use of 725 * a self-linked list to avoid rx overruns. 726 */ 727 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 728 if (ret == -EINPROGRESS) { 729 struct ath_rx_status trs; 730 struct ath_rxbuf *tbf; 731 struct ath_desc *tds; 732 733 memset(&trs, 0, sizeof(trs)); 734 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 735 sc->rx.rxlink = NULL; 736 return NULL; 737 } 738 739 tbf = list_entry(bf->list.next, struct ath_rxbuf, list); 740 741 /* 742 * On some hardware the descriptor status words could 743 * get corrupted, including the done bit. Because of 744 * this, check if the next descriptor's done bit is 745 * set or not. 746 * 747 * If the next descriptor's done bit is set, the current 748 * descriptor has been corrupted. Force s/w to discard 749 * this descriptor and continue... 750 */ 751 752 tds = tbf->bf_desc; 753 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 754 if (ret == -EINPROGRESS) 755 return NULL; 756 757 /* 758 * Re-check previous descriptor, in case it has been filled 759 * in the mean time. 760 */ 761 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 762 if (ret == -EINPROGRESS) { 763 /* 764 * mark descriptor as zero-length and set the 'more' 765 * flag to ensure that both buffers get discarded 766 */ 767 rs->rs_datalen = 0; 768 rs->rs_more = true; 769 } 770 } 771 772 list_del(&bf->list); 773 if (!bf->bf_mpdu) 774 return bf; 775 776 /* 777 * Synchronize the DMA transfer with CPU before 778 * 1. accessing the frame 779 * 2. requeueing the same buffer to h/w 780 */ 781 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 782 common->rx_bufsize, 783 DMA_FROM_DEVICE); 784 785 return bf; 786 } 787 788 static void ath9k_process_tsf(struct ath_rx_status *rs, 789 struct ieee80211_rx_status *rxs, 790 u64 tsf) 791 { 792 u32 tsf_lower = tsf & 0xffffffff; 793 794 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp; 795 if (rs->rs_tstamp > tsf_lower && 796 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000)) 797 rxs->mactime -= 0x100000000ULL; 798 799 if (rs->rs_tstamp < tsf_lower && 800 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000)) 801 rxs->mactime += 0x100000000ULL; 802 } 803 804 /* 805 * For Decrypt or Demic errors, we only mark packet status here and always push 806 * up the frame up to let mac80211 handle the actual error case, be it no 807 * decryption key or real decryption error. This let us keep statistics there. 808 */ 809 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 810 struct sk_buff *skb, 811 struct ath_rx_status *rx_stats, 812 struct ieee80211_rx_status *rx_status, 813 bool *decrypt_error, u64 tsf) 814 { 815 struct ieee80211_hw *hw = sc->hw; 816 struct ath_hw *ah = sc->sc_ah; 817 struct ath_common *common = ath9k_hw_common(ah); 818 struct ieee80211_hdr *hdr; 819 bool discard_current = sc->rx.discard_next; 820 821 /* 822 * Discard corrupt descriptors which are marked in 823 * ath_get_next_rx_buf(). 824 */ 825 if (discard_current) 826 goto corrupt; 827 828 sc->rx.discard_next = false; 829 830 /* 831 * Discard zero-length packets. 832 */ 833 if (!rx_stats->rs_datalen) { 834 RX_STAT_INC(rx_len_err); 835 goto corrupt; 836 } 837 838 /* 839 * rs_status follows rs_datalen so if rs_datalen is too large 840 * we can take a hint that hardware corrupted it, so ignore 841 * those frames. 842 */ 843 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) { 844 RX_STAT_INC(rx_len_err); 845 goto corrupt; 846 } 847 848 /* Only use status info from the last fragment */ 849 if (rx_stats->rs_more) 850 return 0; 851 852 /* 853 * Return immediately if the RX descriptor has been marked 854 * as corrupt based on the various error bits. 855 * 856 * This is different from the other corrupt descriptor 857 * condition handled above. 858 */ 859 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) 860 goto corrupt; 861 862 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len); 863 864 ath9k_process_tsf(rx_stats, rx_status, tsf); 865 ath_debug_stat_rx(sc, rx_stats); 866 867 /* 868 * Process PHY errors and return so that the packet 869 * can be dropped. 870 */ 871 if (rx_stats->rs_status & ATH9K_RXERR_PHY) { 872 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime); 873 if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime)) 874 RX_STAT_INC(rx_spectral); 875 876 return -EINVAL; 877 } 878 879 /* 880 * everything but the rate is checked here, the rate check is done 881 * separately to avoid doing two lookups for a rate for each frame. 882 */ 883 spin_lock_bh(&sc->chan_lock); 884 if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error, 885 sc->cur_chan->rxfilter)) { 886 spin_unlock_bh(&sc->chan_lock); 887 return -EINVAL; 888 } 889 spin_unlock_bh(&sc->chan_lock); 890 891 if (ath_is_mybeacon(common, hdr)) { 892 RX_STAT_INC(rx_beacons); 893 rx_stats->is_mybeacon = true; 894 } 895 896 /* 897 * This shouldn't happen, but have a safety check anyway. 898 */ 899 if (WARN_ON(!ah->curchan)) 900 return -EINVAL; 901 902 if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) { 903 /* 904 * No valid hardware bitrate found -- we should not get here 905 * because hardware has already validated this frame as OK. 906 */ 907 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 908 rx_stats->rs_rate); 909 RX_STAT_INC(rx_rate_err); 910 return -EINVAL; 911 } 912 913 if (ath9k_is_chanctx_enabled()) { 914 if (rx_stats->is_mybeacon) 915 ath_chanctx_beacon_recv_ev(sc, 916 ATH_CHANCTX_EVENT_BEACON_RECEIVED); 917 } 918 919 ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status); 920 921 rx_status->band = ah->curchan->chan->band; 922 rx_status->freq = ah->curchan->chan->center_freq; 923 rx_status->antenna = rx_stats->rs_antenna; 924 rx_status->flag |= RX_FLAG_MACTIME_END; 925 926 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 927 if (ieee80211_is_data_present(hdr->frame_control) && 928 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 929 sc->rx.num_pkts++; 930 #endif 931 932 return 0; 933 934 corrupt: 935 sc->rx.discard_next = rx_stats->rs_more; 936 return -EINVAL; 937 } 938 939 /* 940 * Run the LNA combining algorithm only in these cases: 941 * 942 * Standalone WLAN cards with both LNA/Antenna diversity 943 * enabled in the EEPROM. 944 * 945 * WLAN+BT cards which are in the supported card list 946 * in ath_pci_id_table and the user has loaded the 947 * driver with "bt_ant_diversity" set to true. 948 */ 949 static void ath9k_antenna_check(struct ath_softc *sc, 950 struct ath_rx_status *rs) 951 { 952 struct ath_hw *ah = sc->sc_ah; 953 struct ath9k_hw_capabilities *pCap = &ah->caps; 954 struct ath_common *common = ath9k_hw_common(ah); 955 956 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)) 957 return; 958 959 /* 960 * Change the default rx antenna if rx diversity 961 * chooses the other antenna 3 times in a row. 962 */ 963 if (sc->rx.defant != rs->rs_antenna) { 964 if (++sc->rx.rxotherant >= 3) 965 ath_setdefantenna(sc, rs->rs_antenna); 966 } else { 967 sc->rx.rxotherant = 0; 968 } 969 970 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) { 971 if (common->bt_ant_diversity) 972 ath_ant_comb_scan(sc, rs); 973 } else { 974 ath_ant_comb_scan(sc, rs); 975 } 976 } 977 978 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 979 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 980 { 981 if (rs->rs_isaggr) { 982 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 983 984 rxs->ampdu_reference = sc->rx.ampdu_ref; 985 986 if (!rs->rs_moreaggr) { 987 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 988 sc->rx.ampdu_ref++; 989 } 990 991 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 992 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 993 } 994 } 995 996 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 997 { 998 struct ath_rxbuf *bf; 999 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1000 struct ieee80211_rx_status *rxs; 1001 struct ath_hw *ah = sc->sc_ah; 1002 struct ath_common *common = ath9k_hw_common(ah); 1003 struct ieee80211_hw *hw = sc->hw; 1004 int retval; 1005 struct ath_rx_status rs; 1006 enum ath9k_rx_qtype qtype; 1007 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1008 int dma_type; 1009 u64 tsf = 0; 1010 unsigned long flags; 1011 dma_addr_t new_buf_addr; 1012 unsigned int budget = 512; 1013 struct ieee80211_hdr *hdr; 1014 1015 if (edma) 1016 dma_type = DMA_BIDIRECTIONAL; 1017 else 1018 dma_type = DMA_FROM_DEVICE; 1019 1020 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1021 1022 tsf = ath9k_hw_gettsf64(ah); 1023 1024 do { 1025 bool decrypt_error = false; 1026 1027 memset(&rs, 0, sizeof(rs)); 1028 if (edma) 1029 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1030 else 1031 bf = ath_get_next_rx_buf(sc, &rs); 1032 1033 if (!bf) 1034 break; 1035 1036 skb = bf->bf_mpdu; 1037 if (!skb) 1038 continue; 1039 1040 /* 1041 * Take frame header from the first fragment and RX status from 1042 * the last one. 1043 */ 1044 if (sc->rx.frag) 1045 hdr_skb = sc->rx.frag; 1046 else 1047 hdr_skb = skb; 1048 1049 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1050 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1051 1052 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs, 1053 &decrypt_error, tsf); 1054 if (retval) 1055 goto requeue_drop_frag; 1056 1057 /* Ensure we always have an skb to requeue once we are done 1058 * processing the current buffer's skb */ 1059 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1060 1061 /* If there is no memory we ignore the current RX'd frame, 1062 * tell hardware it can give us a new frame using the old 1063 * skb and put it at the tail of the sc->rx.rxbuf list for 1064 * processing. */ 1065 if (!requeue_skb) { 1066 RX_STAT_INC(rx_oom_err); 1067 goto requeue_drop_frag; 1068 } 1069 1070 /* We will now give hardware our shiny new allocated skb */ 1071 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1072 common->rx_bufsize, dma_type); 1073 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1074 dev_kfree_skb_any(requeue_skb); 1075 goto requeue_drop_frag; 1076 } 1077 1078 /* Unmap the frame */ 1079 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1080 common->rx_bufsize, dma_type); 1081 1082 bf->bf_mpdu = requeue_skb; 1083 bf->bf_buf_addr = new_buf_addr; 1084 1085 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1086 if (ah->caps.rx_status_len) 1087 skb_pull(skb, ah->caps.rx_status_len); 1088 1089 if (!rs.rs_more) 1090 ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs, 1091 rxs, decrypt_error); 1092 1093 if (rs.rs_more) { 1094 RX_STAT_INC(rx_frags); 1095 /* 1096 * rs_more indicates chained descriptors which can be 1097 * used to link buffers together for a sort of 1098 * scatter-gather operation. 1099 */ 1100 if (sc->rx.frag) { 1101 /* too many fragments - cannot handle frame */ 1102 dev_kfree_skb_any(sc->rx.frag); 1103 dev_kfree_skb_any(skb); 1104 RX_STAT_INC(rx_too_many_frags_err); 1105 skb = NULL; 1106 } 1107 sc->rx.frag = skb; 1108 goto requeue; 1109 } 1110 1111 if (sc->rx.frag) { 1112 int space = skb->len - skb_tailroom(hdr_skb); 1113 1114 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1115 dev_kfree_skb(skb); 1116 RX_STAT_INC(rx_oom_err); 1117 goto requeue_drop_frag; 1118 } 1119 1120 sc->rx.frag = NULL; 1121 1122 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1123 skb->len); 1124 dev_kfree_skb_any(skb); 1125 skb = hdr_skb; 1126 } 1127 1128 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1129 skb_trim(skb, skb->len - 8); 1130 1131 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1132 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1133 PS_WAIT_FOR_CAB | 1134 PS_WAIT_FOR_PSPOLL_DATA)) || 1135 ath9k_check_auto_sleep(sc)) 1136 ath_rx_ps(sc, skb, rs.is_mybeacon); 1137 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1138 1139 ath9k_antenna_check(sc, &rs); 1140 ath9k_apply_ampdu_details(sc, &rs, rxs); 1141 ath_debug_rate_stats(sc, &rs, skb); 1142 1143 hdr = (struct ieee80211_hdr *)skb->data; 1144 if (ieee80211_is_ack(hdr->frame_control)) 1145 ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp); 1146 1147 ieee80211_rx(hw, skb); 1148 1149 requeue_drop_frag: 1150 if (sc->rx.frag) { 1151 dev_kfree_skb_any(sc->rx.frag); 1152 sc->rx.frag = NULL; 1153 } 1154 requeue: 1155 list_add_tail(&bf->list, &sc->rx.rxbuf); 1156 1157 if (!edma) { 1158 ath_rx_buf_relink(sc, bf, flush); 1159 if (!flush) 1160 ath9k_hw_rxena(ah); 1161 } else if (!flush) { 1162 ath_rx_edma_buf_link(sc, qtype); 1163 } 1164 1165 if (!budget--) 1166 break; 1167 } while (1); 1168 1169 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1170 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1171 ath9k_hw_set_interrupts(ah); 1172 } 1173 1174 return 0; 1175 } 1176