xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 990de2b2e48ac377fb40842a9b04fd940ba78e1b)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23 
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "rc.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "debug.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static int __init ath9k_init(void)
41 {
42 	return 0;
43 }
44 module_init(ath9k_init);
45 
46 static void __exit ath9k_exit(void)
47 {
48 	return;
49 }
50 module_exit(ath9k_exit);
51 
52 /* Private hardware callbacks */
53 
54 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
55 {
56 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
57 }
58 
59 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
60 					struct ath9k_channel *chan)
61 {
62 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
63 }
64 
65 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
66 {
67 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
68 		return;
69 
70 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
71 }
72 
73 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
74 {
75 	/* You will not have this callback if using the old ANI */
76 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
77 		return;
78 
79 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
80 }
81 
82 /********************/
83 /* Helper Functions */
84 /********************/
85 
86 #ifdef CONFIG_ATH9K_DEBUGFS
87 
88 #endif
89 
90 
91 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
92 {
93 	struct ath_common *common = ath9k_hw_common(ah);
94 	struct ath9k_channel *chan = ah->curchan;
95 	unsigned int clockrate;
96 
97 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
98 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
99 		clockrate = 117;
100 	else if (!chan) /* should really check for CCK instead */
101 		clockrate = ATH9K_CLOCK_RATE_CCK;
102 	else if (IS_CHAN_2GHZ(chan))
103 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
104 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
105 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
106 	else
107 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
108 
109 	if (chan) {
110 		if (IS_CHAN_HT40(chan))
111 			clockrate *= 2;
112 		if (IS_CHAN_HALF_RATE(chan))
113 			clockrate /= 2;
114 		if (IS_CHAN_QUARTER_RATE(chan))
115 			clockrate /= 4;
116 	}
117 
118 	common->clockrate = clockrate;
119 }
120 
121 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
122 {
123 	struct ath_common *common = ath9k_hw_common(ah);
124 
125 	return usecs * common->clockrate;
126 }
127 
128 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
129 {
130 	int i;
131 
132 	BUG_ON(timeout < AH_TIME_QUANTUM);
133 
134 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
135 		if ((REG_READ(ah, reg) & mask) == val)
136 			return true;
137 
138 		udelay(AH_TIME_QUANTUM);
139 	}
140 
141 	ath_dbg(ath9k_hw_common(ah), ANY,
142 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
143 		timeout, reg, REG_READ(ah, reg), mask, val);
144 
145 	return false;
146 }
147 EXPORT_SYMBOL(ath9k_hw_wait);
148 
149 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
150 			  int hw_delay)
151 {
152 	hw_delay /= 10;
153 
154 	if (IS_CHAN_HALF_RATE(chan))
155 		hw_delay *= 2;
156 	else if (IS_CHAN_QUARTER_RATE(chan))
157 		hw_delay *= 4;
158 
159 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
160 }
161 
162 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
163 			  int column, unsigned int *writecnt)
164 {
165 	int r;
166 
167 	ENABLE_REGWRITE_BUFFER(ah);
168 	for (r = 0; r < array->ia_rows; r++) {
169 		REG_WRITE(ah, INI_RA(array, r, 0),
170 			  INI_RA(array, r, column));
171 		DO_DELAY(*writecnt);
172 	}
173 	REGWRITE_BUFFER_FLUSH(ah);
174 }
175 
176 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
177 {
178 	u32 retval;
179 	int i;
180 
181 	for (i = 0, retval = 0; i < n; i++) {
182 		retval = (retval << 1) | (val & 1);
183 		val >>= 1;
184 	}
185 	return retval;
186 }
187 
188 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
189 			   u8 phy, int kbps,
190 			   u32 frameLen, u16 rateix,
191 			   bool shortPreamble)
192 {
193 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
194 
195 	if (kbps == 0)
196 		return 0;
197 
198 	switch (phy) {
199 	case WLAN_RC_PHY_CCK:
200 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
201 		if (shortPreamble)
202 			phyTime >>= 1;
203 		numBits = frameLen << 3;
204 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
205 		break;
206 	case WLAN_RC_PHY_OFDM:
207 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
208 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
209 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
210 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211 			txTime = OFDM_SIFS_TIME_QUARTER
212 				+ OFDM_PREAMBLE_TIME_QUARTER
213 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
214 		} else if (ah->curchan &&
215 			   IS_CHAN_HALF_RATE(ah->curchan)) {
216 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
217 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
218 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
219 			txTime = OFDM_SIFS_TIME_HALF +
220 				OFDM_PREAMBLE_TIME_HALF
221 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
222 		} else {
223 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
224 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
225 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
226 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
227 				+ (numSymbols * OFDM_SYMBOL_TIME);
228 		}
229 		break;
230 	default:
231 		ath_err(ath9k_hw_common(ah),
232 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
233 		txTime = 0;
234 		break;
235 	}
236 
237 	return txTime;
238 }
239 EXPORT_SYMBOL(ath9k_hw_computetxtime);
240 
241 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
242 				  struct ath9k_channel *chan,
243 				  struct chan_centers *centers)
244 {
245 	int8_t extoff;
246 
247 	if (!IS_CHAN_HT40(chan)) {
248 		centers->ctl_center = centers->ext_center =
249 			centers->synth_center = chan->channel;
250 		return;
251 	}
252 
253 	if (IS_CHAN_HT40PLUS(chan)) {
254 		centers->synth_center =
255 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
256 		extoff = 1;
257 	} else {
258 		centers->synth_center =
259 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
260 		extoff = -1;
261 	}
262 
263 	centers->ctl_center =
264 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
265 	/* 25 MHz spacing is supported by hw but not on upper layers */
266 	centers->ext_center =
267 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
268 }
269 
270 /******************/
271 /* Chip Revisions */
272 /******************/
273 
274 static void ath9k_hw_read_revisions(struct ath_hw *ah)
275 {
276 	u32 val;
277 
278 	switch (ah->hw_version.devid) {
279 	case AR5416_AR9100_DEVID:
280 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
281 		break;
282 	case AR9300_DEVID_AR9330:
283 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
284 		if (ah->get_mac_revision) {
285 			ah->hw_version.macRev = ah->get_mac_revision();
286 		} else {
287 			val = REG_READ(ah, AR_SREV);
288 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
289 		}
290 		return;
291 	case AR9300_DEVID_AR9340:
292 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
293 		val = REG_READ(ah, AR_SREV);
294 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
295 		return;
296 	case AR9300_DEVID_QCA955X:
297 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
298 		return;
299 	}
300 
301 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
302 
303 	if (val == 0xFF) {
304 		val = REG_READ(ah, AR_SREV);
305 		ah->hw_version.macVersion =
306 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
307 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
308 
309 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
310 			ah->is_pciexpress = true;
311 		else
312 			ah->is_pciexpress = (val &
313 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
314 	} else {
315 		if (!AR_SREV_9100(ah))
316 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
317 
318 		ah->hw_version.macRev = val & AR_SREV_REVISION;
319 
320 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
321 			ah->is_pciexpress = true;
322 	}
323 }
324 
325 /************************************/
326 /* HW Attach, Detach, Init Routines */
327 /************************************/
328 
329 static void ath9k_hw_disablepcie(struct ath_hw *ah)
330 {
331 	if (!AR_SREV_5416(ah))
332 		return;
333 
334 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
335 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
336 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
337 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
338 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
339 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
340 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
341 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
342 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
343 
344 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
345 }
346 
347 /* This should work for all families including legacy */
348 static bool ath9k_hw_chip_test(struct ath_hw *ah)
349 {
350 	struct ath_common *common = ath9k_hw_common(ah);
351 	u32 regAddr[2] = { AR_STA_ID0 };
352 	u32 regHold[2];
353 	static const u32 patternData[4] = {
354 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
355 	};
356 	int i, j, loop_max;
357 
358 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
359 		loop_max = 2;
360 		regAddr[1] = AR_PHY_BASE + (8 << 2);
361 	} else
362 		loop_max = 1;
363 
364 	for (i = 0; i < loop_max; i++) {
365 		u32 addr = regAddr[i];
366 		u32 wrData, rdData;
367 
368 		regHold[i] = REG_READ(ah, addr);
369 		for (j = 0; j < 0x100; j++) {
370 			wrData = (j << 16) | j;
371 			REG_WRITE(ah, addr, wrData);
372 			rdData = REG_READ(ah, addr);
373 			if (rdData != wrData) {
374 				ath_err(common,
375 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
376 					addr, wrData, rdData);
377 				return false;
378 			}
379 		}
380 		for (j = 0; j < 4; j++) {
381 			wrData = patternData[j];
382 			REG_WRITE(ah, addr, wrData);
383 			rdData = REG_READ(ah, addr);
384 			if (wrData != rdData) {
385 				ath_err(common,
386 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
387 					addr, wrData, rdData);
388 				return false;
389 			}
390 		}
391 		REG_WRITE(ah, regAddr[i], regHold[i]);
392 	}
393 	udelay(100);
394 
395 	return true;
396 }
397 
398 static void ath9k_hw_init_config(struct ath_hw *ah)
399 {
400 	ah->config.dma_beacon_response_time = 1;
401 	ah->config.sw_beacon_response_time = 6;
402 	ah->config.ack_6mb = 0x0;
403 	ah->config.cwm_ignore_extcca = 0;
404 	ah->config.analog_shiftreg = 1;
405 
406 	ah->config.rx_intr_mitigation = true;
407 
408 	/*
409 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
410 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
411 	 * This means we use it for all AR5416 devices, and the few
412 	 * minor PCI AR9280 devices out there.
413 	 *
414 	 * Serialization is required because these devices do not handle
415 	 * well the case of two concurrent reads/writes due to the latency
416 	 * involved. During one read/write another read/write can be issued
417 	 * on another CPU while the previous read/write may still be working
418 	 * on our hardware, if we hit this case the hardware poops in a loop.
419 	 * We prevent this by serializing reads and writes.
420 	 *
421 	 * This issue is not present on PCI-Express devices or pre-AR5416
422 	 * devices (legacy, 802.11abg).
423 	 */
424 	if (num_possible_cpus() > 1)
425 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
426 }
427 
428 static void ath9k_hw_init_defaults(struct ath_hw *ah)
429 {
430 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
431 
432 	regulatory->country_code = CTRY_DEFAULT;
433 	regulatory->power_limit = MAX_RATE_POWER;
434 
435 	ah->hw_version.magic = AR5416_MAGIC;
436 	ah->hw_version.subvendorid = 0;
437 
438 	ah->sta_id1_defaults =
439 		AR_STA_ID1_CRPT_MIC_ENABLE |
440 		AR_STA_ID1_MCAST_KSRCH;
441 	if (AR_SREV_9100(ah))
442 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
443 	ah->slottime = ATH9K_SLOT_TIME_9;
444 	ah->globaltxtimeout = (u32) -1;
445 	ah->power_mode = ATH9K_PM_UNDEFINED;
446 	ah->htc_reset_init = true;
447 }
448 
449 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
450 {
451 	struct ath_common *common = ath9k_hw_common(ah);
452 	u32 sum;
453 	int i;
454 	u16 eeval;
455 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
456 
457 	sum = 0;
458 	for (i = 0; i < 3; i++) {
459 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
460 		sum += eeval;
461 		common->macaddr[2 * i] = eeval >> 8;
462 		common->macaddr[2 * i + 1] = eeval & 0xff;
463 	}
464 	if (sum == 0 || sum == 0xffff * 3)
465 		return -EADDRNOTAVAIL;
466 
467 	return 0;
468 }
469 
470 static int ath9k_hw_post_init(struct ath_hw *ah)
471 {
472 	struct ath_common *common = ath9k_hw_common(ah);
473 	int ecode;
474 
475 	if (common->bus_ops->ath_bus_type != ATH_USB) {
476 		if (!ath9k_hw_chip_test(ah))
477 			return -ENODEV;
478 	}
479 
480 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
481 		ecode = ar9002_hw_rf_claim(ah);
482 		if (ecode != 0)
483 			return ecode;
484 	}
485 
486 	ecode = ath9k_hw_eeprom_init(ah);
487 	if (ecode != 0)
488 		return ecode;
489 
490 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
491 		ah->eep_ops->get_eeprom_ver(ah),
492 		ah->eep_ops->get_eeprom_rev(ah));
493 
494 	ath9k_hw_ani_init(ah);
495 
496 	/*
497 	 * EEPROM needs to be initialized before we do this.
498 	 * This is required for regulatory compliance.
499 	 */
500 	if (AR_SREV_9300_20_OR_LATER(ah)) {
501 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
502 		if ((regdmn & 0xF0) == CTL_FCC) {
503 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
504 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
505 		}
506 	}
507 
508 	return 0;
509 }
510 
511 static int ath9k_hw_attach_ops(struct ath_hw *ah)
512 {
513 	if (!AR_SREV_9300_20_OR_LATER(ah))
514 		return ar9002_hw_attach_ops(ah);
515 
516 	ar9003_hw_attach_ops(ah);
517 	return 0;
518 }
519 
520 /* Called for all hardware families */
521 static int __ath9k_hw_init(struct ath_hw *ah)
522 {
523 	struct ath_common *common = ath9k_hw_common(ah);
524 	int r = 0;
525 
526 	ath9k_hw_read_revisions(ah);
527 
528 	/*
529 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
530 	 * We need to do this to avoid RMW of this register. We cannot
531 	 * read the reg when chip is asleep.
532 	 */
533 	if (AR_SREV_9300_20_OR_LATER(ah)) {
534 		ah->WARegVal = REG_READ(ah, AR_WA);
535 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
536 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
537 	}
538 
539 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
540 		ath_err(common, "Couldn't reset chip\n");
541 		return -EIO;
542 	}
543 
544 	if (AR_SREV_9565(ah)) {
545 		ah->WARegVal |= AR_WA_BIT22;
546 		REG_WRITE(ah, AR_WA, ah->WARegVal);
547 	}
548 
549 	ath9k_hw_init_defaults(ah);
550 	ath9k_hw_init_config(ah);
551 
552 	r = ath9k_hw_attach_ops(ah);
553 	if (r)
554 		return r;
555 
556 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
557 		ath_err(common, "Couldn't wakeup chip\n");
558 		return -EIO;
559 	}
560 
561 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
562 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
563 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
564 		     !ah->is_pciexpress)) {
565 			ah->config.serialize_regmode =
566 				SER_REG_MODE_ON;
567 		} else {
568 			ah->config.serialize_regmode =
569 				SER_REG_MODE_OFF;
570 		}
571 	}
572 
573 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
574 		ah->config.serialize_regmode);
575 
576 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
577 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
578 	else
579 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
580 
581 	switch (ah->hw_version.macVersion) {
582 	case AR_SREV_VERSION_5416_PCI:
583 	case AR_SREV_VERSION_5416_PCIE:
584 	case AR_SREV_VERSION_9160:
585 	case AR_SREV_VERSION_9100:
586 	case AR_SREV_VERSION_9280:
587 	case AR_SREV_VERSION_9285:
588 	case AR_SREV_VERSION_9287:
589 	case AR_SREV_VERSION_9271:
590 	case AR_SREV_VERSION_9300:
591 	case AR_SREV_VERSION_9330:
592 	case AR_SREV_VERSION_9485:
593 	case AR_SREV_VERSION_9340:
594 	case AR_SREV_VERSION_9462:
595 	case AR_SREV_VERSION_9550:
596 	case AR_SREV_VERSION_9565:
597 		break;
598 	default:
599 		ath_err(common,
600 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
601 			ah->hw_version.macVersion, ah->hw_version.macRev);
602 		return -EOPNOTSUPP;
603 	}
604 
605 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
606 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
607 		ah->is_pciexpress = false;
608 
609 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
610 	ath9k_hw_init_cal_settings(ah);
611 
612 	ah->ani_function = ATH9K_ANI_ALL;
613 	if (!AR_SREV_9300_20_OR_LATER(ah))
614 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
615 
616 	if (!ah->is_pciexpress)
617 		ath9k_hw_disablepcie(ah);
618 
619 	r = ath9k_hw_post_init(ah);
620 	if (r)
621 		return r;
622 
623 	ath9k_hw_init_mode_gain_regs(ah);
624 	r = ath9k_hw_fill_cap_info(ah);
625 	if (r)
626 		return r;
627 
628 	r = ath9k_hw_init_macaddr(ah);
629 	if (r) {
630 		ath_err(common, "Failed to initialize MAC address\n");
631 		return r;
632 	}
633 
634 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
635 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
636 	else
637 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
638 
639 	ath9k_hw_init_hang_checks(ah);
640 
641 	common->state = ATH_HW_INITIALIZED;
642 
643 	return 0;
644 }
645 
646 int ath9k_hw_init(struct ath_hw *ah)
647 {
648 	int ret;
649 	struct ath_common *common = ath9k_hw_common(ah);
650 
651 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
652 	switch (ah->hw_version.devid) {
653 	case AR5416_DEVID_PCI:
654 	case AR5416_DEVID_PCIE:
655 	case AR5416_AR9100_DEVID:
656 	case AR9160_DEVID_PCI:
657 	case AR9280_DEVID_PCI:
658 	case AR9280_DEVID_PCIE:
659 	case AR9285_DEVID_PCIE:
660 	case AR9287_DEVID_PCI:
661 	case AR9287_DEVID_PCIE:
662 	case AR2427_DEVID_PCIE:
663 	case AR9300_DEVID_PCIE:
664 	case AR9300_DEVID_AR9485_PCIE:
665 	case AR9300_DEVID_AR9330:
666 	case AR9300_DEVID_AR9340:
667 	case AR9300_DEVID_QCA955X:
668 	case AR9300_DEVID_AR9580:
669 	case AR9300_DEVID_AR9462:
670 	case AR9485_DEVID_AR1111:
671 	case AR9300_DEVID_AR9565:
672 		break;
673 	default:
674 		if (common->bus_ops->ath_bus_type == ATH_USB)
675 			break;
676 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
677 			ah->hw_version.devid);
678 		return -EOPNOTSUPP;
679 	}
680 
681 	ret = __ath9k_hw_init(ah);
682 	if (ret) {
683 		ath_err(common,
684 			"Unable to initialize hardware; initialization status: %d\n",
685 			ret);
686 		return ret;
687 	}
688 
689 	return 0;
690 }
691 EXPORT_SYMBOL(ath9k_hw_init);
692 
693 static void ath9k_hw_init_qos(struct ath_hw *ah)
694 {
695 	ENABLE_REGWRITE_BUFFER(ah);
696 
697 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
698 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
699 
700 	REG_WRITE(ah, AR_QOS_NO_ACK,
701 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
702 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
703 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
704 
705 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
706 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
707 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
708 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
709 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
710 
711 	REGWRITE_BUFFER_FLUSH(ah);
712 }
713 
714 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
715 {
716 	struct ath_common *common = ath9k_hw_common(ah);
717 	int i = 0;
718 
719 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
720 	udelay(100);
721 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
722 
723 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
724 
725 		udelay(100);
726 
727 		if (WARN_ON_ONCE(i >= 100)) {
728 			ath_err(common, "PLL4 meaurement not done\n");
729 			break;
730 		}
731 
732 		i++;
733 	}
734 
735 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
736 }
737 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
738 
739 static void ath9k_hw_init_pll(struct ath_hw *ah,
740 			      struct ath9k_channel *chan)
741 {
742 	u32 pll;
743 
744 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
745 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
746 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
747 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
748 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
749 			      AR_CH0_DPLL2_KD, 0x40);
750 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
751 			      AR_CH0_DPLL2_KI, 0x4);
752 
753 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
754 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
755 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
756 			      AR_CH0_BB_DPLL1_NINI, 0x58);
757 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
758 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
759 
760 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
761 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
763 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
764 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
765 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
766 
767 		/* program BB PLL phase_shift to 0x6 */
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
769 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
770 
771 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
772 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
773 		udelay(1000);
774 	} else if (AR_SREV_9330(ah)) {
775 		u32 ddr_dpll2, pll_control2, kd;
776 
777 		if (ah->is_clk_25mhz) {
778 			ddr_dpll2 = 0x18e82f01;
779 			pll_control2 = 0xe04a3d;
780 			kd = 0x1d;
781 		} else {
782 			ddr_dpll2 = 0x19e82f01;
783 			pll_control2 = 0x886666;
784 			kd = 0x3d;
785 		}
786 
787 		/* program DDR PLL ki and kd value */
788 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
789 
790 		/* program DDR PLL phase_shift */
791 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
792 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
793 
794 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
795 		udelay(1000);
796 
797 		/* program refdiv, nint, frac to RTC register */
798 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
799 
800 		/* program BB PLL kd and ki value */
801 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
802 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
803 
804 		/* program BB PLL phase_shift */
805 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
806 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
807 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
808 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
809 
810 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
811 		udelay(1000);
812 
813 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
814 		udelay(100);
815 
816 		if (ah->is_clk_25mhz) {
817 			pll2_divint = 0x54;
818 			pll2_divfrac = 0x1eb85;
819 			refdiv = 3;
820 		} else {
821 			if (AR_SREV_9340(ah)) {
822 				pll2_divint = 88;
823 				pll2_divfrac = 0;
824 				refdiv = 5;
825 			} else {
826 				pll2_divint = 0x11;
827 				pll2_divfrac = 0x26666;
828 				refdiv = 1;
829 			}
830 		}
831 
832 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
833 		regval |= (0x1 << 16);
834 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
835 		udelay(100);
836 
837 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
838 			  (pll2_divint << 18) | pll2_divfrac);
839 		udelay(100);
840 
841 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
842 		if (AR_SREV_9340(ah))
843 			regval = (regval & 0x80071fff) | (0x1 << 30) |
844 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
845 		else
846 			regval = (regval & 0x80071fff) | (0x3 << 30) |
847 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
848 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
849 		REG_WRITE(ah, AR_PHY_PLL_MODE,
850 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
851 		udelay(1000);
852 	}
853 
854 	pll = ath9k_hw_compute_pll_control(ah, chan);
855 	if (AR_SREV_9565(ah))
856 		pll |= 0x40000;
857 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
858 
859 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
860 	    AR_SREV_9550(ah))
861 		udelay(1000);
862 
863 	/* Switch the core clock for ar9271 to 117Mhz */
864 	if (AR_SREV_9271(ah)) {
865 		udelay(500);
866 		REG_WRITE(ah, 0x50040, 0x304);
867 	}
868 
869 	udelay(RTC_PLL_SETTLE_DELAY);
870 
871 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
872 
873 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
874 		if (ah->is_clk_25mhz) {
875 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
876 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
877 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
878 		} else {
879 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
880 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
881 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
882 		}
883 		udelay(100);
884 	}
885 }
886 
887 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
888 					  enum nl80211_iftype opmode)
889 {
890 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
891 	u32 imr_reg = AR_IMR_TXERR |
892 		AR_IMR_TXURN |
893 		AR_IMR_RXERR |
894 		AR_IMR_RXORN |
895 		AR_IMR_BCNMISC;
896 
897 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
898 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
899 
900 	if (AR_SREV_9300_20_OR_LATER(ah)) {
901 		imr_reg |= AR_IMR_RXOK_HP;
902 		if (ah->config.rx_intr_mitigation)
903 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
904 		else
905 			imr_reg |= AR_IMR_RXOK_LP;
906 
907 	} else {
908 		if (ah->config.rx_intr_mitigation)
909 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
910 		else
911 			imr_reg |= AR_IMR_RXOK;
912 	}
913 
914 	if (ah->config.tx_intr_mitigation)
915 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
916 	else
917 		imr_reg |= AR_IMR_TXOK;
918 
919 	ENABLE_REGWRITE_BUFFER(ah);
920 
921 	REG_WRITE(ah, AR_IMR, imr_reg);
922 	ah->imrs2_reg |= AR_IMR_S2_GTT;
923 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
924 
925 	if (!AR_SREV_9100(ah)) {
926 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
927 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
928 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
929 	}
930 
931 	REGWRITE_BUFFER_FLUSH(ah);
932 
933 	if (AR_SREV_9300_20_OR_LATER(ah)) {
934 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
935 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
936 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
937 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
938 	}
939 }
940 
941 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
942 {
943 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
944 	val = min(val, (u32) 0xFFFF);
945 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
946 }
947 
948 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
949 {
950 	u32 val = ath9k_hw_mac_to_clks(ah, us);
951 	val = min(val, (u32) 0xFFFF);
952 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
953 }
954 
955 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
956 {
957 	u32 val = ath9k_hw_mac_to_clks(ah, us);
958 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
959 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
960 }
961 
962 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
963 {
964 	u32 val = ath9k_hw_mac_to_clks(ah, us);
965 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
966 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
967 }
968 
969 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
970 {
971 	if (tu > 0xFFFF) {
972 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
973 			tu);
974 		ah->globaltxtimeout = (u32) -1;
975 		return false;
976 	} else {
977 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
978 		ah->globaltxtimeout = tu;
979 		return true;
980 	}
981 }
982 
983 void ath9k_hw_init_global_settings(struct ath_hw *ah)
984 {
985 	struct ath_common *common = ath9k_hw_common(ah);
986 	const struct ath9k_channel *chan = ah->curchan;
987 	int acktimeout, ctstimeout, ack_offset = 0;
988 	int slottime;
989 	int sifstime;
990 	int rx_lat = 0, tx_lat = 0, eifs = 0;
991 	u32 reg;
992 
993 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
994 		ah->misc_mode);
995 
996 	if (!chan)
997 		return;
998 
999 	if (ah->misc_mode != 0)
1000 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1001 
1002 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1003 		rx_lat = 41;
1004 	else
1005 		rx_lat = 37;
1006 	tx_lat = 54;
1007 
1008 	if (IS_CHAN_5GHZ(chan))
1009 		sifstime = 16;
1010 	else
1011 		sifstime = 10;
1012 
1013 	if (IS_CHAN_HALF_RATE(chan)) {
1014 		eifs = 175;
1015 		rx_lat *= 2;
1016 		tx_lat *= 2;
1017 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1018 		    tx_lat += 11;
1019 
1020 		sifstime = 32;
1021 		ack_offset = 16;
1022 		slottime = 13;
1023 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1024 		eifs = 340;
1025 		rx_lat = (rx_lat * 4) - 1;
1026 		tx_lat *= 4;
1027 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1028 		    tx_lat += 22;
1029 
1030 		sifstime = 64;
1031 		ack_offset = 32;
1032 		slottime = 21;
1033 	} else {
1034 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1035 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1036 			reg = AR_USEC_ASYNC_FIFO;
1037 		} else {
1038 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1039 				common->clockrate;
1040 			reg = REG_READ(ah, AR_USEC);
1041 		}
1042 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1043 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1044 
1045 		slottime = ah->slottime;
1046 	}
1047 
1048 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1049 	slottime += 3 * ah->coverage_class;
1050 	acktimeout = slottime + sifstime + ack_offset;
1051 	ctstimeout = acktimeout;
1052 
1053 	/*
1054 	 * Workaround for early ACK timeouts, add an offset to match the
1055 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1056 	 * This was initially only meant to work around an issue with delayed
1057 	 * BA frames in some implementations, but it has been found to fix ACK
1058 	 * timeout issues in other cases as well.
1059 	 */
1060 	if (IS_CHAN_2GHZ(chan) &&
1061 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1062 		acktimeout += 64 - sifstime - ah->slottime;
1063 		ctstimeout += 48 - sifstime - ah->slottime;
1064 	}
1065 
1066 	ath9k_hw_set_sifs_time(ah, sifstime);
1067 	ath9k_hw_setslottime(ah, slottime);
1068 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1069 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1070 	if (ah->globaltxtimeout != (u32) -1)
1071 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1072 
1073 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1074 	REG_RMW(ah, AR_USEC,
1075 		(common->clockrate - 1) |
1076 		SM(rx_lat, AR_USEC_RX_LAT) |
1077 		SM(tx_lat, AR_USEC_TX_LAT),
1078 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1079 
1080 }
1081 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1082 
1083 void ath9k_hw_deinit(struct ath_hw *ah)
1084 {
1085 	struct ath_common *common = ath9k_hw_common(ah);
1086 
1087 	if (common->state < ATH_HW_INITIALIZED)
1088 		return;
1089 
1090 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1091 }
1092 EXPORT_SYMBOL(ath9k_hw_deinit);
1093 
1094 /*******/
1095 /* INI */
1096 /*******/
1097 
1098 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1099 {
1100 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1101 
1102 	if (IS_CHAN_2GHZ(chan))
1103 		ctl |= CTL_11G;
1104 	else
1105 		ctl |= CTL_11A;
1106 
1107 	return ctl;
1108 }
1109 
1110 /****************************************/
1111 /* Reset and Channel Switching Routines */
1112 /****************************************/
1113 
1114 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1115 {
1116 	struct ath_common *common = ath9k_hw_common(ah);
1117 	int txbuf_size;
1118 
1119 	ENABLE_REGWRITE_BUFFER(ah);
1120 
1121 	/*
1122 	 * set AHB_MODE not to do cacheline prefetches
1123 	*/
1124 	if (!AR_SREV_9300_20_OR_LATER(ah))
1125 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1126 
1127 	/*
1128 	 * let mac dma reads be in 128 byte chunks
1129 	 */
1130 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1131 
1132 	REGWRITE_BUFFER_FLUSH(ah);
1133 
1134 	/*
1135 	 * Restore TX Trigger Level to its pre-reset value.
1136 	 * The initial value depends on whether aggregation is enabled, and is
1137 	 * adjusted whenever underruns are detected.
1138 	 */
1139 	if (!AR_SREV_9300_20_OR_LATER(ah))
1140 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1141 
1142 	ENABLE_REGWRITE_BUFFER(ah);
1143 
1144 	/*
1145 	 * let mac dma writes be in 128 byte chunks
1146 	 */
1147 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1148 
1149 	/*
1150 	 * Setup receive FIFO threshold to hold off TX activities
1151 	 */
1152 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1153 
1154 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1155 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1156 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1157 
1158 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1159 			ah->caps.rx_status_len);
1160 	}
1161 
1162 	/*
1163 	 * reduce the number of usable entries in PCU TXBUF to avoid
1164 	 * wrap around issues.
1165 	 */
1166 	if (AR_SREV_9285(ah)) {
1167 		/* For AR9285 the number of Fifos are reduced to half.
1168 		 * So set the usable tx buf size also to half to
1169 		 * avoid data/delimiter underruns
1170 		 */
1171 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1172 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1173 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1174 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1175 	} else {
1176 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1177 	}
1178 
1179 	if (!AR_SREV_9271(ah))
1180 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1181 
1182 	REGWRITE_BUFFER_FLUSH(ah);
1183 
1184 	if (AR_SREV_9300_20_OR_LATER(ah))
1185 		ath9k_hw_reset_txstatus_ring(ah);
1186 }
1187 
1188 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1189 {
1190 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1191 	u32 set = AR_STA_ID1_KSRCH_MODE;
1192 
1193 	switch (opmode) {
1194 	case NL80211_IFTYPE_ADHOC:
1195 		set |= AR_STA_ID1_ADHOC;
1196 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1197 		break;
1198 	case NL80211_IFTYPE_MESH_POINT:
1199 	case NL80211_IFTYPE_AP:
1200 		set |= AR_STA_ID1_STA_AP;
1201 		/* fall through */
1202 	case NL80211_IFTYPE_STATION:
1203 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1204 		break;
1205 	default:
1206 		if (!ah->is_monitoring)
1207 			set = 0;
1208 		break;
1209 	}
1210 	REG_RMW(ah, AR_STA_ID1, set, mask);
1211 }
1212 
1213 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1214 				   u32 *coef_mantissa, u32 *coef_exponent)
1215 {
1216 	u32 coef_exp, coef_man;
1217 
1218 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1219 		if ((coef_scaled >> coef_exp) & 0x1)
1220 			break;
1221 
1222 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1223 
1224 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1225 
1226 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1227 	*coef_exponent = coef_exp - 16;
1228 }
1229 
1230 /* AR9330 WAR:
1231  * call external reset function to reset WMAC if:
1232  * - doing a cold reset
1233  * - we have pending frames in the TX queues.
1234  */
1235 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1236 {
1237 	int i, npend = 0;
1238 
1239 	for (i = 0; i < AR_NUM_QCU; i++) {
1240 		npend = ath9k_hw_numtxpending(ah, i);
1241 		if (npend)
1242 			break;
1243 	}
1244 
1245 	if (ah->external_reset &&
1246 	    (npend || type == ATH9K_RESET_COLD)) {
1247 		int reset_err = 0;
1248 
1249 		ath_dbg(ath9k_hw_common(ah), RESET,
1250 			"reset MAC via external reset\n");
1251 
1252 		reset_err = ah->external_reset();
1253 		if (reset_err) {
1254 			ath_err(ath9k_hw_common(ah),
1255 				"External reset failed, err=%d\n",
1256 				reset_err);
1257 			return false;
1258 		}
1259 
1260 		REG_WRITE(ah, AR_RTC_RESET, 1);
1261 	}
1262 
1263 	return true;
1264 }
1265 
1266 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1267 {
1268 	u32 rst_flags;
1269 	u32 tmpReg;
1270 
1271 	if (AR_SREV_9100(ah)) {
1272 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1273 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1274 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1275 	}
1276 
1277 	ENABLE_REGWRITE_BUFFER(ah);
1278 
1279 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1280 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1281 		udelay(10);
1282 	}
1283 
1284 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1285 		  AR_RTC_FORCE_WAKE_ON_INT);
1286 
1287 	if (AR_SREV_9100(ah)) {
1288 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1289 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1290 	} else {
1291 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1292 		if (AR_SREV_9340(ah))
1293 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1294 		else
1295 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1296 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1297 
1298 		if (tmpReg) {
1299 			u32 val;
1300 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1301 
1302 			val = AR_RC_HOSTIF;
1303 			if (!AR_SREV_9300_20_OR_LATER(ah))
1304 				val |= AR_RC_AHB;
1305 			REG_WRITE(ah, AR_RC, val);
1306 
1307 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1308 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1309 
1310 		rst_flags = AR_RTC_RC_MAC_WARM;
1311 		if (type == ATH9K_RESET_COLD)
1312 			rst_flags |= AR_RTC_RC_MAC_COLD;
1313 	}
1314 
1315 	if (AR_SREV_9330(ah)) {
1316 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1317 			return false;
1318 	}
1319 
1320 	if (ath9k_hw_mci_is_enabled(ah))
1321 		ar9003_mci_check_gpm_offset(ah);
1322 
1323 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1324 
1325 	REGWRITE_BUFFER_FLUSH(ah);
1326 
1327 	if (AR_SREV_9300_20_OR_LATER(ah))
1328 		udelay(50);
1329 	else if (AR_SREV_9100(ah))
1330 		udelay(10000);
1331 	else
1332 		udelay(100);
1333 
1334 	REG_WRITE(ah, AR_RTC_RC, 0);
1335 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1336 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1337 		return false;
1338 	}
1339 
1340 	if (!AR_SREV_9100(ah))
1341 		REG_WRITE(ah, AR_RC, 0);
1342 
1343 	if (AR_SREV_9100(ah))
1344 		udelay(50);
1345 
1346 	return true;
1347 }
1348 
1349 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1350 {
1351 	ENABLE_REGWRITE_BUFFER(ah);
1352 
1353 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1354 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1355 		udelay(10);
1356 	}
1357 
1358 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1359 		  AR_RTC_FORCE_WAKE_ON_INT);
1360 
1361 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1362 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1363 
1364 	REG_WRITE(ah, AR_RTC_RESET, 0);
1365 
1366 	REGWRITE_BUFFER_FLUSH(ah);
1367 
1368 	udelay(2);
1369 
1370 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1371 		REG_WRITE(ah, AR_RC, 0);
1372 
1373 	REG_WRITE(ah, AR_RTC_RESET, 1);
1374 
1375 	if (!ath9k_hw_wait(ah,
1376 			   AR_RTC_STATUS,
1377 			   AR_RTC_STATUS_M,
1378 			   AR_RTC_STATUS_ON,
1379 			   AH_WAIT_TIMEOUT)) {
1380 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1381 		return false;
1382 	}
1383 
1384 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1385 }
1386 
1387 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1388 {
1389 	bool ret = false;
1390 
1391 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1392 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1393 		udelay(10);
1394 	}
1395 
1396 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1397 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1398 
1399 	if (!ah->reset_power_on)
1400 		type = ATH9K_RESET_POWER_ON;
1401 
1402 	switch (type) {
1403 	case ATH9K_RESET_POWER_ON:
1404 		ret = ath9k_hw_set_reset_power_on(ah);
1405 		if (ret)
1406 			ah->reset_power_on = true;
1407 		break;
1408 	case ATH9K_RESET_WARM:
1409 	case ATH9K_RESET_COLD:
1410 		ret = ath9k_hw_set_reset(ah, type);
1411 		break;
1412 	default:
1413 		break;
1414 	}
1415 
1416 	return ret;
1417 }
1418 
1419 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1420 				struct ath9k_channel *chan)
1421 {
1422 	int reset_type = ATH9K_RESET_WARM;
1423 
1424 	if (AR_SREV_9280(ah)) {
1425 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1426 			reset_type = ATH9K_RESET_POWER_ON;
1427 		else
1428 			reset_type = ATH9K_RESET_COLD;
1429 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1430 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1431 		reset_type = ATH9K_RESET_COLD;
1432 
1433 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1434 		return false;
1435 
1436 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1437 		return false;
1438 
1439 	ah->chip_fullsleep = false;
1440 
1441 	if (AR_SREV_9330(ah))
1442 		ar9003_hw_internal_regulator_apply(ah);
1443 	ath9k_hw_init_pll(ah, chan);
1444 
1445 	return true;
1446 }
1447 
1448 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1449 				    struct ath9k_channel *chan)
1450 {
1451 	struct ath_common *common = ath9k_hw_common(ah);
1452 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1453 	bool band_switch = false, mode_diff = false;
1454 	u8 ini_reloaded = 0;
1455 	u32 qnum;
1456 	int r;
1457 
1458 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1459 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1460 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1461 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1462 	}
1463 
1464 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1465 		if (ath9k_hw_numtxpending(ah, qnum)) {
1466 			ath_dbg(common, QUEUE,
1467 				"Transmit frames pending on queue %d\n", qnum);
1468 			return false;
1469 		}
1470 	}
1471 
1472 	if (!ath9k_hw_rfbus_req(ah)) {
1473 		ath_err(common, "Could not kill baseband RX\n");
1474 		return false;
1475 	}
1476 
1477 	if (band_switch || mode_diff) {
1478 		ath9k_hw_mark_phy_inactive(ah);
1479 		udelay(5);
1480 
1481 		if (band_switch)
1482 			ath9k_hw_init_pll(ah, chan);
1483 
1484 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1485 			ath_err(common, "Failed to do fast channel change\n");
1486 			return false;
1487 		}
1488 	}
1489 
1490 	ath9k_hw_set_channel_regs(ah, chan);
1491 
1492 	r = ath9k_hw_rf_set_freq(ah, chan);
1493 	if (r) {
1494 		ath_err(common, "Failed to set channel\n");
1495 		return false;
1496 	}
1497 	ath9k_hw_set_clockrate(ah);
1498 	ath9k_hw_apply_txpower(ah, chan, false);
1499 
1500 	ath9k_hw_set_delta_slope(ah, chan);
1501 	ath9k_hw_spur_mitigate_freq(ah, chan);
1502 
1503 	if (band_switch || ini_reloaded)
1504 		ah->eep_ops->set_board_values(ah, chan);
1505 
1506 	ath9k_hw_init_bb(ah, chan);
1507 	ath9k_hw_rfbus_done(ah);
1508 
1509 	if (band_switch || ini_reloaded) {
1510 		ah->ah_flags |= AH_FASTCC;
1511 		ath9k_hw_init_cal(ah, chan);
1512 		ah->ah_flags &= ~AH_FASTCC;
1513 	}
1514 
1515 	return true;
1516 }
1517 
1518 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1519 {
1520 	u32 gpio_mask = ah->gpio_mask;
1521 	int i;
1522 
1523 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1524 		if (!(gpio_mask & 1))
1525 			continue;
1526 
1527 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1528 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1529 	}
1530 }
1531 
1532 void ath9k_hw_check_nav(struct ath_hw *ah)
1533 {
1534 	struct ath_common *common = ath9k_hw_common(ah);
1535 	u32 val;
1536 
1537 	val = REG_READ(ah, AR_NAV);
1538 	if (val != 0xdeadbeef && val > 0x7fff) {
1539 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1540 		REG_WRITE(ah, AR_NAV, 0);
1541 	}
1542 }
1543 EXPORT_SYMBOL(ath9k_hw_check_nav);
1544 
1545 bool ath9k_hw_check_alive(struct ath_hw *ah)
1546 {
1547 	int count = 50;
1548 	u32 reg;
1549 
1550 	if (AR_SREV_9300(ah))
1551 		return !ath9k_hw_detect_mac_hang(ah);
1552 
1553 	if (AR_SREV_9285_12_OR_LATER(ah))
1554 		return true;
1555 
1556 	do {
1557 		reg = REG_READ(ah, AR_OBS_BUS_1);
1558 
1559 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1560 			continue;
1561 
1562 		switch (reg & 0x7E000B00) {
1563 		case 0x1E000000:
1564 		case 0x52000B00:
1565 		case 0x18000B00:
1566 			continue;
1567 		default:
1568 			return true;
1569 		}
1570 	} while (count-- > 0);
1571 
1572 	return false;
1573 }
1574 EXPORT_SYMBOL(ath9k_hw_check_alive);
1575 
1576 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1577 {
1578 	/* Setup MFP options for CCMP */
1579 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1580 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1581 		 * frames when constructing CCMP AAD. */
1582 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1583 			      0xc7ff);
1584 		ah->sw_mgmt_crypto = false;
1585 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1586 		/* Disable hardware crypto for management frames */
1587 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1588 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1589 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1590 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1591 		ah->sw_mgmt_crypto = true;
1592 	} else {
1593 		ah->sw_mgmt_crypto = true;
1594 	}
1595 }
1596 
1597 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1598 				  u32 macStaId1, u32 saveDefAntenna)
1599 {
1600 	struct ath_common *common = ath9k_hw_common(ah);
1601 
1602 	ENABLE_REGWRITE_BUFFER(ah);
1603 
1604 	REG_RMW(ah, AR_STA_ID1, macStaId1
1605 		  | AR_STA_ID1_RTS_USE_DEF
1606 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1607 		  | ah->sta_id1_defaults,
1608 		  ~AR_STA_ID1_SADH_MASK);
1609 	ath_hw_setbssidmask(common);
1610 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1611 	ath9k_hw_write_associd(ah);
1612 	REG_WRITE(ah, AR_ISR, ~0);
1613 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1614 
1615 	REGWRITE_BUFFER_FLUSH(ah);
1616 
1617 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1618 }
1619 
1620 static void ath9k_hw_init_queues(struct ath_hw *ah)
1621 {
1622 	int i;
1623 
1624 	ENABLE_REGWRITE_BUFFER(ah);
1625 
1626 	for (i = 0; i < AR_NUM_DCU; i++)
1627 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1628 
1629 	REGWRITE_BUFFER_FLUSH(ah);
1630 
1631 	ah->intr_txqs = 0;
1632 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1633 		ath9k_hw_resettxqueue(ah, i);
1634 }
1635 
1636 /*
1637  * For big endian systems turn on swapping for descriptors
1638  */
1639 static void ath9k_hw_init_desc(struct ath_hw *ah)
1640 {
1641 	struct ath_common *common = ath9k_hw_common(ah);
1642 
1643 	if (AR_SREV_9100(ah)) {
1644 		u32 mask;
1645 		mask = REG_READ(ah, AR_CFG);
1646 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1647 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1648 				mask);
1649 		} else {
1650 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1651 			REG_WRITE(ah, AR_CFG, mask);
1652 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1653 				REG_READ(ah, AR_CFG));
1654 		}
1655 	} else {
1656 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1657 			/* Configure AR9271 target WLAN */
1658 			if (AR_SREV_9271(ah))
1659 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1660 			else
1661 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1662 		}
1663 #ifdef __BIG_ENDIAN
1664 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1665 			 AR_SREV_9550(ah))
1666 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1667 		else
1668 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1669 #endif
1670 	}
1671 }
1672 
1673 /*
1674  * Fast channel change:
1675  * (Change synthesizer based on channel freq without resetting chip)
1676  */
1677 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1678 {
1679 	struct ath_common *common = ath9k_hw_common(ah);
1680 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1681 	int ret;
1682 
1683 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1684 		goto fail;
1685 
1686 	if (ah->chip_fullsleep)
1687 		goto fail;
1688 
1689 	if (!ah->curchan)
1690 		goto fail;
1691 
1692 	if (chan->channel == ah->curchan->channel)
1693 		goto fail;
1694 
1695 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1696 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1697 		goto fail;
1698 
1699 	/*
1700 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1701 	 */
1702 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1703 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1704 		goto fail;
1705 
1706 	if (!ath9k_hw_check_alive(ah))
1707 		goto fail;
1708 
1709 	/*
1710 	 * For AR9462, make sure that calibration data for
1711 	 * re-using are present.
1712 	 */
1713 	if (AR_SREV_9462(ah) && (ah->caldata &&
1714 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1715 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1716 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1717 		goto fail;
1718 
1719 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1720 		ah->curchan->channel, chan->channel);
1721 
1722 	ret = ath9k_hw_channel_change(ah, chan);
1723 	if (!ret)
1724 		goto fail;
1725 
1726 	if (ath9k_hw_mci_is_enabled(ah))
1727 		ar9003_mci_2g5g_switch(ah, false);
1728 
1729 	ath9k_hw_loadnf(ah, ah->curchan);
1730 	ath9k_hw_start_nfcal(ah, true);
1731 
1732 	if (AR_SREV_9271(ah))
1733 		ar9002_hw_load_ani_reg(ah, chan);
1734 
1735 	return 0;
1736 fail:
1737 	return -EINVAL;
1738 }
1739 
1740 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1741 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1742 {
1743 	struct ath_common *common = ath9k_hw_common(ah);
1744 	struct timespec ts;
1745 	u32 saveLedState;
1746 	u32 saveDefAntenna;
1747 	u32 macStaId1;
1748 	u64 tsf = 0;
1749 	s64 usec = 0;
1750 	int r;
1751 	bool start_mci_reset = false;
1752 	bool save_fullsleep = ah->chip_fullsleep;
1753 
1754 	if (ath9k_hw_mci_is_enabled(ah)) {
1755 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1756 		if (start_mci_reset)
1757 			return 0;
1758 	}
1759 
1760 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1761 		return -EIO;
1762 
1763 	if (ah->curchan && !ah->chip_fullsleep)
1764 		ath9k_hw_getnf(ah, ah->curchan);
1765 
1766 	ah->caldata = caldata;
1767 	if (caldata && (chan->channel != caldata->channel ||
1768 			chan->channelFlags != caldata->channelFlags)) {
1769 		/* Operating channel changed, reset channel calibration data */
1770 		memset(caldata, 0, sizeof(*caldata));
1771 		ath9k_init_nfcal_hist_buffer(ah, chan);
1772 	} else if (caldata) {
1773 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1774 	}
1775 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1776 
1777 	if (fastcc) {
1778 		r = ath9k_hw_do_fastcc(ah, chan);
1779 		if (!r)
1780 			return r;
1781 	}
1782 
1783 	if (ath9k_hw_mci_is_enabled(ah))
1784 		ar9003_mci_stop_bt(ah, save_fullsleep);
1785 
1786 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1787 	if (saveDefAntenna == 0)
1788 		saveDefAntenna = 1;
1789 
1790 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1791 
1792 	/* Save TSF before chip reset, a cold reset clears it */
1793 	tsf = ath9k_hw_gettsf64(ah);
1794 	getrawmonotonic(&ts);
1795 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1796 
1797 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1798 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1799 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1800 
1801 	ath9k_hw_mark_phy_inactive(ah);
1802 
1803 	ah->paprd_table_write_done = false;
1804 
1805 	/* Only required on the first reset */
1806 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1807 		REG_WRITE(ah,
1808 			  AR9271_RESET_POWER_DOWN_CONTROL,
1809 			  AR9271_RADIO_RF_RST);
1810 		udelay(50);
1811 	}
1812 
1813 	if (!ath9k_hw_chip_reset(ah, chan)) {
1814 		ath_err(common, "Chip reset failed\n");
1815 		return -EINVAL;
1816 	}
1817 
1818 	/* Only required on the first reset */
1819 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1820 		ah->htc_reset_init = false;
1821 		REG_WRITE(ah,
1822 			  AR9271_RESET_POWER_DOWN_CONTROL,
1823 			  AR9271_GATE_MAC_CTL);
1824 		udelay(50);
1825 	}
1826 
1827 	/* Restore TSF */
1828 	getrawmonotonic(&ts);
1829 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1830 	ath9k_hw_settsf64(ah, tsf + usec);
1831 
1832 	if (AR_SREV_9280_20_OR_LATER(ah))
1833 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1834 
1835 	if (!AR_SREV_9300_20_OR_LATER(ah))
1836 		ar9002_hw_enable_async_fifo(ah);
1837 
1838 	r = ath9k_hw_process_ini(ah, chan);
1839 	if (r)
1840 		return r;
1841 
1842 	ath9k_hw_set_rfmode(ah, chan);
1843 
1844 	if (ath9k_hw_mci_is_enabled(ah))
1845 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1846 
1847 	/*
1848 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1849 	 * right after the chip reset. When that happens, write a new
1850 	 * value after the initvals have been applied, with an offset
1851 	 * based on measured time difference
1852 	 */
1853 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1854 		tsf += 1500;
1855 		ath9k_hw_settsf64(ah, tsf);
1856 	}
1857 
1858 	ath9k_hw_init_mfp(ah);
1859 
1860 	ath9k_hw_set_delta_slope(ah, chan);
1861 	ath9k_hw_spur_mitigate_freq(ah, chan);
1862 	ah->eep_ops->set_board_values(ah, chan);
1863 
1864 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1865 
1866 	r = ath9k_hw_rf_set_freq(ah, chan);
1867 	if (r)
1868 		return r;
1869 
1870 	ath9k_hw_set_clockrate(ah);
1871 
1872 	ath9k_hw_init_queues(ah);
1873 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1874 	ath9k_hw_ani_cache_ini_regs(ah);
1875 	ath9k_hw_init_qos(ah);
1876 
1877 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1878 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1879 
1880 	ath9k_hw_init_global_settings(ah);
1881 
1882 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1883 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1884 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1885 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1886 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1887 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1888 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1889 	}
1890 
1891 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1892 
1893 	ath9k_hw_set_dma(ah);
1894 
1895 	if (!ath9k_hw_mci_is_enabled(ah))
1896 		REG_WRITE(ah, AR_OBS, 8);
1897 
1898 	if (ah->config.rx_intr_mitigation) {
1899 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1900 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1901 	}
1902 
1903 	if (ah->config.tx_intr_mitigation) {
1904 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1905 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1906 	}
1907 
1908 	ath9k_hw_init_bb(ah, chan);
1909 
1910 	if (caldata) {
1911 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1912 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1913 	}
1914 	if (!ath9k_hw_init_cal(ah, chan))
1915 		return -EIO;
1916 
1917 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1918 		return -EIO;
1919 
1920 	ENABLE_REGWRITE_BUFFER(ah);
1921 
1922 	ath9k_hw_restore_chainmask(ah);
1923 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1924 
1925 	REGWRITE_BUFFER_FLUSH(ah);
1926 
1927 	ath9k_hw_init_desc(ah);
1928 
1929 	if (ath9k_hw_btcoex_is_enabled(ah))
1930 		ath9k_hw_btcoex_enable(ah);
1931 
1932 	if (ath9k_hw_mci_is_enabled(ah))
1933 		ar9003_mci_check_bt(ah);
1934 
1935 	ath9k_hw_loadnf(ah, chan);
1936 	ath9k_hw_start_nfcal(ah, true);
1937 
1938 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1939 		ar9003_hw_bb_watchdog_config(ah);
1940 		ar9003_hw_disable_phy_restart(ah);
1941 	}
1942 
1943 	ath9k_hw_apply_gpio_override(ah);
1944 
1945 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1946 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1947 
1948 	return 0;
1949 }
1950 EXPORT_SYMBOL(ath9k_hw_reset);
1951 
1952 /******************************/
1953 /* Power Management (Chipset) */
1954 /******************************/
1955 
1956 /*
1957  * Notify Power Mgt is disabled in self-generated frames.
1958  * If requested, force chip to sleep.
1959  */
1960 static void ath9k_set_power_sleep(struct ath_hw *ah)
1961 {
1962 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1963 
1964 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1965 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1966 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1967 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1968 		/* xxx Required for WLAN only case ? */
1969 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1970 		udelay(100);
1971 	}
1972 
1973 	/*
1974 	 * Clear the RTC force wake bit to allow the
1975 	 * mac to go to sleep.
1976 	 */
1977 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1978 
1979 	if (ath9k_hw_mci_is_enabled(ah))
1980 		udelay(100);
1981 
1982 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1983 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1984 
1985 	/* Shutdown chip. Active low */
1986 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1987 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1988 		udelay(2);
1989 	}
1990 
1991 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1992 	if (AR_SREV_9300_20_OR_LATER(ah))
1993 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1994 }
1995 
1996 /*
1997  * Notify Power Management is enabled in self-generating
1998  * frames. If request, set power mode of chip to
1999  * auto/normal.  Duration in units of 128us (1/8 TU).
2000  */
2001 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2002 {
2003 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2004 
2005 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2006 
2007 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2008 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2009 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2010 			  AR_RTC_FORCE_WAKE_ON_INT);
2011 	} else {
2012 
2013 		/* When chip goes into network sleep, it could be waken
2014 		 * up by MCI_INT interrupt caused by BT's HW messages
2015 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2016 		 * rate (~100us). This will cause chip to leave and
2017 		 * re-enter network sleep mode frequently, which in
2018 		 * consequence will have WLAN MCI HW to generate lots of
2019 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2020 		 * BT CPU to busy to process.
2021 		 */
2022 		if (ath9k_hw_mci_is_enabled(ah))
2023 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2024 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2025 		/*
2026 		 * Clear the RTC force wake bit to allow the
2027 		 * mac to go to sleep.
2028 		 */
2029 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2030 
2031 		if (ath9k_hw_mci_is_enabled(ah))
2032 			udelay(30);
2033 	}
2034 
2035 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2036 	if (AR_SREV_9300_20_OR_LATER(ah))
2037 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2038 }
2039 
2040 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2041 {
2042 	u32 val;
2043 	int i;
2044 
2045 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2046 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2047 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2048 		udelay(10);
2049 	}
2050 
2051 	if ((REG_READ(ah, AR_RTC_STATUS) &
2052 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2053 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2054 			return false;
2055 		}
2056 		if (!AR_SREV_9300_20_OR_LATER(ah))
2057 			ath9k_hw_init_pll(ah, NULL);
2058 	}
2059 	if (AR_SREV_9100(ah))
2060 		REG_SET_BIT(ah, AR_RTC_RESET,
2061 			    AR_RTC_RESET_EN);
2062 
2063 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2064 		    AR_RTC_FORCE_WAKE_EN);
2065 	udelay(50);
2066 
2067 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2068 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2069 		if (val == AR_RTC_STATUS_ON)
2070 			break;
2071 		udelay(50);
2072 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2073 			    AR_RTC_FORCE_WAKE_EN);
2074 	}
2075 	if (i == 0) {
2076 		ath_err(ath9k_hw_common(ah),
2077 			"Failed to wakeup in %uus\n",
2078 			POWER_UP_TIME / 20);
2079 		return false;
2080 	}
2081 
2082 	if (ath9k_hw_mci_is_enabled(ah))
2083 		ar9003_mci_set_power_awake(ah);
2084 
2085 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2086 
2087 	return true;
2088 }
2089 
2090 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2091 {
2092 	struct ath_common *common = ath9k_hw_common(ah);
2093 	int status = true;
2094 	static const char *modes[] = {
2095 		"AWAKE",
2096 		"FULL-SLEEP",
2097 		"NETWORK SLEEP",
2098 		"UNDEFINED"
2099 	};
2100 
2101 	if (ah->power_mode == mode)
2102 		return status;
2103 
2104 	ath_dbg(common, RESET, "%s -> %s\n",
2105 		modes[ah->power_mode], modes[mode]);
2106 
2107 	switch (mode) {
2108 	case ATH9K_PM_AWAKE:
2109 		status = ath9k_hw_set_power_awake(ah);
2110 		break;
2111 	case ATH9K_PM_FULL_SLEEP:
2112 		if (ath9k_hw_mci_is_enabled(ah))
2113 			ar9003_mci_set_full_sleep(ah);
2114 
2115 		ath9k_set_power_sleep(ah);
2116 		ah->chip_fullsleep = true;
2117 		break;
2118 	case ATH9K_PM_NETWORK_SLEEP:
2119 		ath9k_set_power_network_sleep(ah);
2120 		break;
2121 	default:
2122 		ath_err(common, "Unknown power mode %u\n", mode);
2123 		return false;
2124 	}
2125 	ah->power_mode = mode;
2126 
2127 	/*
2128 	 * XXX: If this warning never comes up after a while then
2129 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2130 	 * ath9k_hw_setpower() return type void.
2131 	 */
2132 
2133 	if (!(ah->ah_flags & AH_UNPLUGGED))
2134 		ATH_DBG_WARN_ON_ONCE(!status);
2135 
2136 	return status;
2137 }
2138 EXPORT_SYMBOL(ath9k_hw_setpower);
2139 
2140 /*******************/
2141 /* Beacon Handling */
2142 /*******************/
2143 
2144 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2145 {
2146 	int flags = 0;
2147 
2148 	ENABLE_REGWRITE_BUFFER(ah);
2149 
2150 	switch (ah->opmode) {
2151 	case NL80211_IFTYPE_ADHOC:
2152 		REG_SET_BIT(ah, AR_TXCFG,
2153 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2154 	case NL80211_IFTYPE_MESH_POINT:
2155 	case NL80211_IFTYPE_AP:
2156 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2157 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2158 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2159 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2160 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2161 		flags |=
2162 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2163 		break;
2164 	default:
2165 		ath_dbg(ath9k_hw_common(ah), BEACON,
2166 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2167 		return;
2168 		break;
2169 	}
2170 
2171 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2172 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2173 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2174 
2175 	REGWRITE_BUFFER_FLUSH(ah);
2176 
2177 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2178 }
2179 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2180 
2181 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2182 				    const struct ath9k_beacon_state *bs)
2183 {
2184 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2185 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2186 	struct ath_common *common = ath9k_hw_common(ah);
2187 
2188 	ENABLE_REGWRITE_BUFFER(ah);
2189 
2190 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2191 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2192 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2193 
2194 	REGWRITE_BUFFER_FLUSH(ah);
2195 
2196 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2197 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2198 
2199 	beaconintval = bs->bs_intval;
2200 
2201 	if (bs->bs_sleepduration > beaconintval)
2202 		beaconintval = bs->bs_sleepduration;
2203 
2204 	dtimperiod = bs->bs_dtimperiod;
2205 	if (bs->bs_sleepduration > dtimperiod)
2206 		dtimperiod = bs->bs_sleepduration;
2207 
2208 	if (beaconintval == dtimperiod)
2209 		nextTbtt = bs->bs_nextdtim;
2210 	else
2211 		nextTbtt = bs->bs_nexttbtt;
2212 
2213 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2214 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2215 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2216 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2217 
2218 	ENABLE_REGWRITE_BUFFER(ah);
2219 
2220 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2221 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2222 
2223 	REG_WRITE(ah, AR_SLEEP1,
2224 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2225 		  | AR_SLEEP1_ASSUME_DTIM);
2226 
2227 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2228 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2229 	else
2230 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2231 
2232 	REG_WRITE(ah, AR_SLEEP2,
2233 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2234 
2235 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2236 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2237 
2238 	REGWRITE_BUFFER_FLUSH(ah);
2239 
2240 	REG_SET_BIT(ah, AR_TIMER_MODE,
2241 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2242 		    AR_DTIM_TIMER_EN);
2243 
2244 	/* TSF Out of Range Threshold */
2245 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2246 }
2247 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2248 
2249 /*******************/
2250 /* HW Capabilities */
2251 /*******************/
2252 
2253 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2254 {
2255 	eeprom_chainmask &= chip_chainmask;
2256 	if (eeprom_chainmask)
2257 		return eeprom_chainmask;
2258 	else
2259 		return chip_chainmask;
2260 }
2261 
2262 /**
2263  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2264  * @ah: the atheros hardware data structure
2265  *
2266  * We enable DFS support upstream on chipsets which have passed a series
2267  * of tests. The testing requirements are going to be documented. Desired
2268  * test requirements are documented at:
2269  *
2270  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2271  *
2272  * Once a new chipset gets properly tested an individual commit can be used
2273  * to document the testing for DFS for that chipset.
2274  */
2275 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2276 {
2277 
2278 	switch (ah->hw_version.macVersion) {
2279 	/* for temporary testing DFS with 9280 */
2280 	case AR_SREV_VERSION_9280:
2281 	/* AR9580 will likely be our first target to get testing on */
2282 	case AR_SREV_VERSION_9580:
2283 		return true;
2284 	default:
2285 		return false;
2286 	}
2287 }
2288 
2289 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2290 {
2291 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2292 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2293 	struct ath_common *common = ath9k_hw_common(ah);
2294 	unsigned int chip_chainmask;
2295 
2296 	u16 eeval;
2297 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2298 
2299 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2300 	regulatory->current_rd = eeval;
2301 
2302 	if (ah->opmode != NL80211_IFTYPE_AP &&
2303 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2304 		if (regulatory->current_rd == 0x64 ||
2305 		    regulatory->current_rd == 0x65)
2306 			regulatory->current_rd += 5;
2307 		else if (regulatory->current_rd == 0x41)
2308 			regulatory->current_rd = 0x43;
2309 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2310 			regulatory->current_rd);
2311 	}
2312 
2313 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2314 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2315 		ath_err(common,
2316 			"no band has been marked as supported in EEPROM\n");
2317 		return -EINVAL;
2318 	}
2319 
2320 	if (eeval & AR5416_OPFLAGS_11A)
2321 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2322 
2323 	if (eeval & AR5416_OPFLAGS_11G)
2324 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2325 
2326 	if (AR_SREV_9485(ah) ||
2327 	    AR_SREV_9285(ah) ||
2328 	    AR_SREV_9330(ah) ||
2329 	    AR_SREV_9565(ah))
2330 		chip_chainmask = 1;
2331 	else if (AR_SREV_9462(ah))
2332 		chip_chainmask = 3;
2333 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2334 		chip_chainmask = 7;
2335 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2336 		chip_chainmask = 3;
2337 	else
2338 		chip_chainmask = 7;
2339 
2340 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2341 	/*
2342 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2343 	 * the EEPROM.
2344 	 */
2345 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2346 	    !(eeval & AR5416_OPFLAGS_11A) &&
2347 	    !(AR_SREV_9271(ah)))
2348 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2349 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2350 	else if (AR_SREV_9100(ah))
2351 		pCap->rx_chainmask = 0x7;
2352 	else
2353 		/* Use rx_chainmask from EEPROM. */
2354 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2355 
2356 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2357 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2358 	ah->txchainmask = pCap->tx_chainmask;
2359 	ah->rxchainmask = pCap->rx_chainmask;
2360 
2361 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2362 
2363 	/* enable key search for every frame in an aggregate */
2364 	if (AR_SREV_9300_20_OR_LATER(ah))
2365 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2366 
2367 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2368 
2369 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2370 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2371 	else
2372 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2373 
2374 	if (AR_SREV_9271(ah))
2375 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2376 	else if (AR_DEVID_7010(ah))
2377 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2378 	else if (AR_SREV_9300_20_OR_LATER(ah))
2379 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2380 	else if (AR_SREV_9287_11_OR_LATER(ah))
2381 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2382 	else if (AR_SREV_9285_12_OR_LATER(ah))
2383 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2384 	else if (AR_SREV_9280_20_OR_LATER(ah))
2385 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2386 	else
2387 		pCap->num_gpio_pins = AR_NUM_GPIO;
2388 
2389 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2390 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2391 	else
2392 		pCap->rts_aggr_limit = (8 * 1024);
2393 
2394 #ifdef CONFIG_ATH9K_RFKILL
2395 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2396 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2397 		ah->rfkill_gpio =
2398 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2399 		ah->rfkill_polarity =
2400 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2401 
2402 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2403 	}
2404 #endif
2405 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2406 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2407 	else
2408 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2409 
2410 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2411 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2412 	else
2413 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2414 
2415 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2416 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2417 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2418 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2419 
2420 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2421 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2422 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2423 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2424 		pCap->txs_len = sizeof(struct ar9003_txs);
2425 	} else {
2426 		pCap->tx_desc_len = sizeof(struct ath_desc);
2427 		if (AR_SREV_9280_20(ah))
2428 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2429 	}
2430 
2431 	if (AR_SREV_9300_20_OR_LATER(ah))
2432 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2433 
2434 	if (AR_SREV_9300_20_OR_LATER(ah))
2435 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2436 
2437 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2438 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2439 
2440 	if (AR_SREV_9285(ah)) {
2441 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2442 			ant_div_ctl1 =
2443 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2444 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2445 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2446 				ath_info(common, "Enable LNA combining\n");
2447 			}
2448 		}
2449 	}
2450 
2451 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2452 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2453 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2454 	}
2455 
2456 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2457 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2458 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2459 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2460 			ath_info(common, "Enable LNA combining\n");
2461 		}
2462 	}
2463 
2464 	if (ath9k_hw_dfs_tested(ah))
2465 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2466 
2467 	tx_chainmask = pCap->tx_chainmask;
2468 	rx_chainmask = pCap->rx_chainmask;
2469 	while (tx_chainmask || rx_chainmask) {
2470 		if (tx_chainmask & BIT(0))
2471 			pCap->max_txchains++;
2472 		if (rx_chainmask & BIT(0))
2473 			pCap->max_rxchains++;
2474 
2475 		tx_chainmask >>= 1;
2476 		rx_chainmask >>= 1;
2477 	}
2478 
2479 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2480 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2481 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2482 
2483 		if (AR_SREV_9462_20_OR_LATER(ah))
2484 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2485 	}
2486 
2487 	if (AR_SREV_9462(ah))
2488 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2489 
2490 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2491 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2492 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2493 
2494 	/*
2495 	 * Fast channel change across bands is available
2496 	 * only for AR9462 and AR9565.
2497 	 */
2498 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2499 		pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
2500 
2501 	return 0;
2502 }
2503 
2504 /****************************/
2505 /* GPIO / RFKILL / Antennae */
2506 /****************************/
2507 
2508 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2509 					 u32 gpio, u32 type)
2510 {
2511 	int addr;
2512 	u32 gpio_shift, tmp;
2513 
2514 	if (gpio > 11)
2515 		addr = AR_GPIO_OUTPUT_MUX3;
2516 	else if (gpio > 5)
2517 		addr = AR_GPIO_OUTPUT_MUX2;
2518 	else
2519 		addr = AR_GPIO_OUTPUT_MUX1;
2520 
2521 	gpio_shift = (gpio % 6) * 5;
2522 
2523 	if (AR_SREV_9280_20_OR_LATER(ah)
2524 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2525 		REG_RMW(ah, addr, (type << gpio_shift),
2526 			(0x1f << gpio_shift));
2527 	} else {
2528 		tmp = REG_READ(ah, addr);
2529 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2530 		tmp &= ~(0x1f << gpio_shift);
2531 		tmp |= (type << gpio_shift);
2532 		REG_WRITE(ah, addr, tmp);
2533 	}
2534 }
2535 
2536 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2537 {
2538 	u32 gpio_shift;
2539 
2540 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2541 
2542 	if (AR_DEVID_7010(ah)) {
2543 		gpio_shift = gpio;
2544 		REG_RMW(ah, AR7010_GPIO_OE,
2545 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2546 			(AR7010_GPIO_OE_MASK << gpio_shift));
2547 		return;
2548 	}
2549 
2550 	gpio_shift = gpio << 1;
2551 	REG_RMW(ah,
2552 		AR_GPIO_OE_OUT,
2553 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2554 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2555 }
2556 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2557 
2558 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2559 {
2560 #define MS_REG_READ(x, y) \
2561 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2562 
2563 	if (gpio >= ah->caps.num_gpio_pins)
2564 		return 0xffffffff;
2565 
2566 	if (AR_DEVID_7010(ah)) {
2567 		u32 val;
2568 		val = REG_READ(ah, AR7010_GPIO_IN);
2569 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2570 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2571 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2572 			AR_GPIO_BIT(gpio)) != 0;
2573 	else if (AR_SREV_9271(ah))
2574 		return MS_REG_READ(AR9271, gpio) != 0;
2575 	else if (AR_SREV_9287_11_OR_LATER(ah))
2576 		return MS_REG_READ(AR9287, gpio) != 0;
2577 	else if (AR_SREV_9285_12_OR_LATER(ah))
2578 		return MS_REG_READ(AR9285, gpio) != 0;
2579 	else if (AR_SREV_9280_20_OR_LATER(ah))
2580 		return MS_REG_READ(AR928X, gpio) != 0;
2581 	else
2582 		return MS_REG_READ(AR, gpio) != 0;
2583 }
2584 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2585 
2586 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2587 			 u32 ah_signal_type)
2588 {
2589 	u32 gpio_shift;
2590 
2591 	if (AR_DEVID_7010(ah)) {
2592 		gpio_shift = gpio;
2593 		REG_RMW(ah, AR7010_GPIO_OE,
2594 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2595 			(AR7010_GPIO_OE_MASK << gpio_shift));
2596 		return;
2597 	}
2598 
2599 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2600 	gpio_shift = 2 * gpio;
2601 	REG_RMW(ah,
2602 		AR_GPIO_OE_OUT,
2603 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2604 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2605 }
2606 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2607 
2608 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2609 {
2610 	if (AR_DEVID_7010(ah)) {
2611 		val = val ? 0 : 1;
2612 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2613 			AR_GPIO_BIT(gpio));
2614 		return;
2615 	}
2616 
2617 	if (AR_SREV_9271(ah))
2618 		val = ~val;
2619 
2620 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2621 		AR_GPIO_BIT(gpio));
2622 }
2623 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2624 
2625 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2626 {
2627 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2628 }
2629 EXPORT_SYMBOL(ath9k_hw_setantenna);
2630 
2631 /*********************/
2632 /* General Operation */
2633 /*********************/
2634 
2635 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2636 {
2637 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2638 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2639 
2640 	if (phybits & AR_PHY_ERR_RADAR)
2641 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2642 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2643 		bits |= ATH9K_RX_FILTER_PHYERR;
2644 
2645 	return bits;
2646 }
2647 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2648 
2649 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2650 {
2651 	u32 phybits;
2652 
2653 	ENABLE_REGWRITE_BUFFER(ah);
2654 
2655 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2656 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2657 
2658 	REG_WRITE(ah, AR_RX_FILTER, bits);
2659 
2660 	phybits = 0;
2661 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2662 		phybits |= AR_PHY_ERR_RADAR;
2663 	if (bits & ATH9K_RX_FILTER_PHYERR)
2664 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2665 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2666 
2667 	if (phybits)
2668 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2669 	else
2670 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2671 
2672 	REGWRITE_BUFFER_FLUSH(ah);
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2675 
2676 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2677 {
2678 	if (ath9k_hw_mci_is_enabled(ah))
2679 		ar9003_mci_bt_gain_ctrl(ah);
2680 
2681 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2682 		return false;
2683 
2684 	ath9k_hw_init_pll(ah, NULL);
2685 	ah->htc_reset_init = true;
2686 	return true;
2687 }
2688 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2689 
2690 bool ath9k_hw_disable(struct ath_hw *ah)
2691 {
2692 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2693 		return false;
2694 
2695 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2696 		return false;
2697 
2698 	ath9k_hw_init_pll(ah, NULL);
2699 	return true;
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_disable);
2702 
2703 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2704 {
2705 	enum eeprom_param gain_param;
2706 
2707 	if (IS_CHAN_2GHZ(chan))
2708 		gain_param = EEP_ANTENNA_GAIN_2G;
2709 	else
2710 		gain_param = EEP_ANTENNA_GAIN_5G;
2711 
2712 	return ah->eep_ops->get_eeprom(ah, gain_param);
2713 }
2714 
2715 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2716 			    bool test)
2717 {
2718 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2719 	struct ieee80211_channel *channel;
2720 	int chan_pwr, new_pwr, max_gain;
2721 	int ant_gain, ant_reduction = 0;
2722 
2723 	if (!chan)
2724 		return;
2725 
2726 	channel = chan->chan;
2727 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2728 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2729 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2730 
2731 	ant_gain = get_antenna_gain(ah, chan);
2732 	if (ant_gain > max_gain)
2733 		ant_reduction = ant_gain - max_gain;
2734 
2735 	ah->eep_ops->set_txpower(ah, chan,
2736 				 ath9k_regd_get_ctl(reg, chan),
2737 				 ant_reduction, new_pwr, test);
2738 }
2739 
2740 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2741 {
2742 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2743 	struct ath9k_channel *chan = ah->curchan;
2744 	struct ieee80211_channel *channel = chan->chan;
2745 
2746 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2747 	if (test)
2748 		channel->max_power = MAX_RATE_POWER / 2;
2749 
2750 	ath9k_hw_apply_txpower(ah, chan, test);
2751 
2752 	if (test)
2753 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2754 }
2755 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2756 
2757 void ath9k_hw_setopmode(struct ath_hw *ah)
2758 {
2759 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2760 }
2761 EXPORT_SYMBOL(ath9k_hw_setopmode);
2762 
2763 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2764 {
2765 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2766 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2767 }
2768 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2769 
2770 void ath9k_hw_write_associd(struct ath_hw *ah)
2771 {
2772 	struct ath_common *common = ath9k_hw_common(ah);
2773 
2774 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2775 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2776 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2777 }
2778 EXPORT_SYMBOL(ath9k_hw_write_associd);
2779 
2780 #define ATH9K_MAX_TSF_READ 10
2781 
2782 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2783 {
2784 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2785 	int i;
2786 
2787 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2788 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2789 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2790 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2791 		if (tsf_upper2 == tsf_upper1)
2792 			break;
2793 		tsf_upper1 = tsf_upper2;
2794 	}
2795 
2796 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2797 
2798 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2799 }
2800 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2801 
2802 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2803 {
2804 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2805 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2806 }
2807 EXPORT_SYMBOL(ath9k_hw_settsf64);
2808 
2809 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2810 {
2811 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2812 			   AH_TSF_WRITE_TIMEOUT))
2813 		ath_dbg(ath9k_hw_common(ah), RESET,
2814 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2815 
2816 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2819 
2820 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2821 {
2822 	if (set)
2823 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2824 	else
2825 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2826 }
2827 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2828 
2829 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2830 {
2831 	u32 macmode;
2832 
2833 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2834 		macmode = AR_2040_JOINED_RX_CLEAR;
2835 	else
2836 		macmode = 0;
2837 
2838 	REG_WRITE(ah, AR_2040_MODE, macmode);
2839 }
2840 
2841 /* HW Generic timers configuration */
2842 
2843 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2844 {
2845 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2846 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2847 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2848 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2849 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2850 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2851 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2852 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2853 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2854 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2855 				AR_NDP2_TIMER_MODE, 0x0002},
2856 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2857 				AR_NDP2_TIMER_MODE, 0x0004},
2858 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2859 				AR_NDP2_TIMER_MODE, 0x0008},
2860 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2861 				AR_NDP2_TIMER_MODE, 0x0010},
2862 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2863 				AR_NDP2_TIMER_MODE, 0x0020},
2864 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2865 				AR_NDP2_TIMER_MODE, 0x0040},
2866 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2867 				AR_NDP2_TIMER_MODE, 0x0080}
2868 };
2869 
2870 /* HW generic timer primitives */
2871 
2872 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2873 {
2874 	return REG_READ(ah, AR_TSF_L32);
2875 }
2876 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2877 
2878 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2879 					  void (*trigger)(void *),
2880 					  void (*overflow)(void *),
2881 					  void *arg,
2882 					  u8 timer_index)
2883 {
2884 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2885 	struct ath_gen_timer *timer;
2886 
2887 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2888 		(timer_index >= ATH_MAX_GEN_TIMER))
2889 		return NULL;
2890 
2891 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2892 	if (timer == NULL)
2893 		return NULL;
2894 
2895 	/* allocate a hardware generic timer slot */
2896 	timer_table->timers[timer_index] = timer;
2897 	timer->index = timer_index;
2898 	timer->trigger = trigger;
2899 	timer->overflow = overflow;
2900 	timer->arg = arg;
2901 
2902 	return timer;
2903 }
2904 EXPORT_SYMBOL(ath_gen_timer_alloc);
2905 
2906 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2907 			      struct ath_gen_timer *timer,
2908 			      u32 timer_next,
2909 			      u32 timer_period)
2910 {
2911 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2912 	u32 mask = 0;
2913 
2914 	timer_table->timer_mask |= BIT(timer->index);
2915 
2916 	/*
2917 	 * Program generic timer registers
2918 	 */
2919 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2920 		 timer_next);
2921 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2922 		  timer_period);
2923 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2924 		    gen_tmr_configuration[timer->index].mode_mask);
2925 
2926 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2927 		/*
2928 		 * Starting from AR9462, each generic timer can select which tsf
2929 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2930 		 * 8 - 15  use tsf2.
2931 		 */
2932 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2933 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2934 				       (1 << timer->index));
2935 		else
2936 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2937 				       (1 << timer->index));
2938 	}
2939 
2940 	if (timer->trigger)
2941 		mask |= SM(AR_GENTMR_BIT(timer->index),
2942 			   AR_IMR_S5_GENTIMER_TRIG);
2943 	if (timer->overflow)
2944 		mask |= SM(AR_GENTMR_BIT(timer->index),
2945 			   AR_IMR_S5_GENTIMER_THRESH);
2946 
2947 	REG_SET_BIT(ah, AR_IMR_S5, mask);
2948 
2949 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2950 		ah->imask |= ATH9K_INT_GENTIMER;
2951 		ath9k_hw_set_interrupts(ah);
2952 	}
2953 }
2954 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2955 
2956 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2957 {
2958 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2959 
2960 	/* Clear generic timer enable bits. */
2961 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2962 			gen_tmr_configuration[timer->index].mode_mask);
2963 
2964 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2965 		/*
2966 		 * Need to switch back to TSF if it was using TSF2.
2967 		 */
2968 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2969 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2970 				    (1 << timer->index));
2971 		}
2972 	}
2973 
2974 	/* Disable both trigger and thresh interrupt masks */
2975 	REG_CLR_BIT(ah, AR_IMR_S5,
2976 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2977 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2978 
2979 	timer_table->timer_mask &= ~BIT(timer->index);
2980 
2981 	if (timer_table->timer_mask == 0) {
2982 		ah->imask &= ~ATH9K_INT_GENTIMER;
2983 		ath9k_hw_set_interrupts(ah);
2984 	}
2985 }
2986 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2987 
2988 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2989 {
2990 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2991 
2992 	/* free the hardware generic timer slot */
2993 	timer_table->timers[timer->index] = NULL;
2994 	kfree(timer);
2995 }
2996 EXPORT_SYMBOL(ath_gen_timer_free);
2997 
2998 /*
2999  * Generic Timer Interrupts handling
3000  */
3001 void ath_gen_timer_isr(struct ath_hw *ah)
3002 {
3003 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3004 	struct ath_gen_timer *timer;
3005 	unsigned long trigger_mask, thresh_mask;
3006 	unsigned int index;
3007 
3008 	/* get hardware generic timer interrupt status */
3009 	trigger_mask = ah->intr_gen_timer_trigger;
3010 	thresh_mask = ah->intr_gen_timer_thresh;
3011 	trigger_mask &= timer_table->timer_mask;
3012 	thresh_mask &= timer_table->timer_mask;
3013 
3014 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3015 		timer = timer_table->timers[index];
3016 		if (!timer)
3017 		    continue;
3018 		if (!timer->overflow)
3019 		    continue;
3020 
3021 		trigger_mask &= ~BIT(index);
3022 		timer->overflow(timer->arg);
3023 	}
3024 
3025 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3026 		timer = timer_table->timers[index];
3027 		if (!timer)
3028 		    continue;
3029 		if (!timer->trigger)
3030 		    continue;
3031 		timer->trigger(timer->arg);
3032 	}
3033 }
3034 EXPORT_SYMBOL(ath_gen_timer_isr);
3035 
3036 /********/
3037 /* HTC  */
3038 /********/
3039 
3040 static struct {
3041 	u32 version;
3042 	const char * name;
3043 } ath_mac_bb_names[] = {
3044 	/* Devices with external radios */
3045 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3046 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3047 	{ AR_SREV_VERSION_9100,		"9100" },
3048 	{ AR_SREV_VERSION_9160,		"9160" },
3049 	/* Single-chip solutions */
3050 	{ AR_SREV_VERSION_9280,		"9280" },
3051 	{ AR_SREV_VERSION_9285,		"9285" },
3052 	{ AR_SREV_VERSION_9287,         "9287" },
3053 	{ AR_SREV_VERSION_9271,         "9271" },
3054 	{ AR_SREV_VERSION_9300,         "9300" },
3055 	{ AR_SREV_VERSION_9330,         "9330" },
3056 	{ AR_SREV_VERSION_9340,		"9340" },
3057 	{ AR_SREV_VERSION_9485,         "9485" },
3058 	{ AR_SREV_VERSION_9462,         "9462" },
3059 	{ AR_SREV_VERSION_9550,         "9550" },
3060 	{ AR_SREV_VERSION_9565,         "9565" },
3061 };
3062 
3063 /* For devices with external radios */
3064 static struct {
3065 	u16 version;
3066 	const char * name;
3067 } ath_rf_names[] = {
3068 	{ 0,				"5133" },
3069 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3070 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3071 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3072 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3073 };
3074 
3075 /*
3076  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3077  */
3078 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3079 {
3080 	int i;
3081 
3082 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3083 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3084 			return ath_mac_bb_names[i].name;
3085 		}
3086 	}
3087 
3088 	return "????";
3089 }
3090 
3091 /*
3092  * Return the RF name. "????" is returned if the RF is unknown.
3093  * Used for devices with external radios.
3094  */
3095 static const char *ath9k_hw_rf_name(u16 rf_version)
3096 {
3097 	int i;
3098 
3099 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3100 		if (ath_rf_names[i].version == rf_version) {
3101 			return ath_rf_names[i].name;
3102 		}
3103 	}
3104 
3105 	return "????";
3106 }
3107 
3108 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3109 {
3110 	int used;
3111 
3112 	/* chipsets >= AR9280 are single-chip */
3113 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3114 		used = scnprintf(hw_name, len,
3115 				 "Atheros AR%s Rev:%x",
3116 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3117 				 ah->hw_version.macRev);
3118 	}
3119 	else {
3120 		used = scnprintf(hw_name, len,
3121 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3122 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3123 				 ah->hw_version.macRev,
3124 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3125 						  & AR_RADIO_SREV_MAJOR)),
3126 				 ah->hw_version.phyRev);
3127 	}
3128 
3129 	hw_name[used] = '\0';
3130 }
3131 EXPORT_SYMBOL(ath9k_hw_name);
3132