xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 8fbff4b838c53945d6baeafe609c627000f85cd6)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19 
20 #include "ath9k.h"
21 #include "initvals.h"
22 
23 static int btcoex_enable;
24 module_param(btcoex_enable, bool, 0);
25 MODULE_PARM_DESC(btcoex_enable, "Enable Bluetooth coexistence support");
26 
27 #define ATH9K_CLOCK_RATE_CCK		22
28 #define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
29 #define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
33 			      enum ath9k_ht_macmode macmode);
34 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
35 			      struct ar5416_eeprom_def *pEepData,
36 			      u32 reg, u32 value);
37 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
38 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan);
39 
40 /********************/
41 /* Helper Functions */
42 /********************/
43 
44 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
45 {
46 	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
47 
48 	if (!ah->curchan) /* should really check for CCK instead */
49 		return clks / ATH9K_CLOCK_RATE_CCK;
50 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
51 		return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 
53 	return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
54 }
55 
56 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
57 {
58 	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
59 
60 	if (conf_is_ht40(conf))
61 		return ath9k_hw_mac_usec(ah, clks) / 2;
62 	else
63 		return ath9k_hw_mac_usec(ah, clks);
64 }
65 
66 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
67 {
68 	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
69 
70 	if (!ah->curchan) /* should really check for CCK instead */
71 		return usecs *ATH9K_CLOCK_RATE_CCK;
72 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
73 		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
74 	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
75 }
76 
77 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
78 {
79 	struct ieee80211_conf *conf = &ah->ah_sc->hw->conf;
80 
81 	if (conf_is_ht40(conf))
82 		return ath9k_hw_mac_clks(ah, usecs) * 2;
83 	else
84 		return ath9k_hw_mac_clks(ah, usecs);
85 }
86 
87 /*
88  * Read and write, they both share the same lock. We do this to serialize
89  * reads and writes on Atheros 802.11n PCI devices only. This is required
90  * as the FIFO on these devices can only accept sanely 2 requests. After
91  * that the device goes bananas. Serializing the reads/writes prevents this
92  * from happening.
93  */
94 
95 void ath9k_iowrite32(struct ath_hw *ah, u32 reg_offset, u32 val)
96 {
97 	if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
98 		unsigned long flags;
99 		spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
100 		iowrite32(val, ah->ah_sc->mem + reg_offset);
101 		spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
102 	} else
103 		iowrite32(val, ah->ah_sc->mem + reg_offset);
104 }
105 
106 unsigned int ath9k_ioread32(struct ath_hw *ah, u32 reg_offset)
107 {
108 	u32 val;
109 	if (ah->config.serialize_regmode == SER_REG_MODE_ON) {
110 		unsigned long flags;
111 		spin_lock_irqsave(&ah->ah_sc->sc_serial_rw, flags);
112 		val = ioread32(ah->ah_sc->mem + reg_offset);
113 		spin_unlock_irqrestore(&ah->ah_sc->sc_serial_rw, flags);
114 	} else
115 		val = ioread32(ah->ah_sc->mem + reg_offset);
116 	return val;
117 }
118 
119 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
120 {
121 	int i;
122 
123 	BUG_ON(timeout < AH_TIME_QUANTUM);
124 
125 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
126 		if ((REG_READ(ah, reg) & mask) == val)
127 			return true;
128 
129 		udelay(AH_TIME_QUANTUM);
130 	}
131 
132 	DPRINTF(ah->ah_sc, ATH_DBG_ANY,
133 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
134 		timeout, reg, REG_READ(ah, reg), mask, val);
135 
136 	return false;
137 }
138 
139 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
140 {
141 	u32 retval;
142 	int i;
143 
144 	for (i = 0, retval = 0; i < n; i++) {
145 		retval = (retval << 1) | (val & 1);
146 		val >>= 1;
147 	}
148 	return retval;
149 }
150 
151 bool ath9k_get_channel_edges(struct ath_hw *ah,
152 			     u16 flags, u16 *low,
153 			     u16 *high)
154 {
155 	struct ath9k_hw_capabilities *pCap = &ah->caps;
156 
157 	if (flags & CHANNEL_5GHZ) {
158 		*low = pCap->low_5ghz_chan;
159 		*high = pCap->high_5ghz_chan;
160 		return true;
161 	}
162 	if ((flags & CHANNEL_2GHZ)) {
163 		*low = pCap->low_2ghz_chan;
164 		*high = pCap->high_2ghz_chan;
165 		return true;
166 	}
167 	return false;
168 }
169 
170 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
171 			   const struct ath_rate_table *rates,
172 			   u32 frameLen, u16 rateix,
173 			   bool shortPreamble)
174 {
175 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
176 	u32 kbps;
177 
178 	kbps = rates->info[rateix].ratekbps;
179 
180 	if (kbps == 0)
181 		return 0;
182 
183 	switch (rates->info[rateix].phy) {
184 	case WLAN_RC_PHY_CCK:
185 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
186 		if (shortPreamble && rates->info[rateix].short_preamble)
187 			phyTime >>= 1;
188 		numBits = frameLen << 3;
189 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
190 		break;
191 	case WLAN_RC_PHY_OFDM:
192 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
193 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
194 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
195 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
196 			txTime = OFDM_SIFS_TIME_QUARTER
197 				+ OFDM_PREAMBLE_TIME_QUARTER
198 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
199 		} else if (ah->curchan &&
200 			   IS_CHAN_HALF_RATE(ah->curchan)) {
201 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
202 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
203 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
204 			txTime = OFDM_SIFS_TIME_HALF +
205 				OFDM_PREAMBLE_TIME_HALF
206 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
207 		} else {
208 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
209 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
210 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
211 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
212 				+ (numSymbols * OFDM_SYMBOL_TIME);
213 		}
214 		break;
215 	default:
216 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
217 			"Unknown phy %u (rate ix %u)\n",
218 			rates->info[rateix].phy, rateix);
219 		txTime = 0;
220 		break;
221 	}
222 
223 	return txTime;
224 }
225 
226 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
227 				  struct ath9k_channel *chan,
228 				  struct chan_centers *centers)
229 {
230 	int8_t extoff;
231 
232 	if (!IS_CHAN_HT40(chan)) {
233 		centers->ctl_center = centers->ext_center =
234 			centers->synth_center = chan->channel;
235 		return;
236 	}
237 
238 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
239 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
240 		centers->synth_center =
241 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
242 		extoff = 1;
243 	} else {
244 		centers->synth_center =
245 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
246 		extoff = -1;
247 	}
248 
249 	centers->ctl_center =
250 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
251 	centers->ext_center =
252 		centers->synth_center + (extoff *
253 			 ((ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_20) ?
254 			  HT40_CHANNEL_CENTER_SHIFT : 15));
255 }
256 
257 /******************/
258 /* Chip Revisions */
259 /******************/
260 
261 static void ath9k_hw_read_revisions(struct ath_hw *ah)
262 {
263 	u32 val;
264 
265 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
266 
267 	if (val == 0xFF) {
268 		val = REG_READ(ah, AR_SREV);
269 		ah->hw_version.macVersion =
270 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
271 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
272 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
273 	} else {
274 		if (!AR_SREV_9100(ah))
275 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
276 
277 		ah->hw_version.macRev = val & AR_SREV_REVISION;
278 
279 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
280 			ah->is_pciexpress = true;
281 	}
282 }
283 
284 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
285 {
286 	u32 val;
287 	int i;
288 
289 	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
290 
291 	for (i = 0; i < 8; i++)
292 		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
293 	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
294 	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
295 
296 	return ath9k_hw_reverse_bits(val, 8);
297 }
298 
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302 
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305 	if (AR_SREV_9100(ah))
306 		return;
307 
308 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320 
321 static bool ath9k_hw_chip_test(struct ath_hw *ah)
322 {
323 	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
324 	u32 regHold[2];
325 	u32 patternData[4] = { 0x55555555,
326 			       0xaaaaaaaa,
327 			       0x66666666,
328 			       0x99999999 };
329 	int i, j;
330 
331 	for (i = 0; i < 2; i++) {
332 		u32 addr = regAddr[i];
333 		u32 wrData, rdData;
334 
335 		regHold[i] = REG_READ(ah, addr);
336 		for (j = 0; j < 0x100; j++) {
337 			wrData = (j << 16) | j;
338 			REG_WRITE(ah, addr, wrData);
339 			rdData = REG_READ(ah, addr);
340 			if (rdData != wrData) {
341 				DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
342 					"address test failed "
343 					"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
344 					addr, wrData, rdData);
345 				return false;
346 			}
347 		}
348 		for (j = 0; j < 4; j++) {
349 			wrData = patternData[j];
350 			REG_WRITE(ah, addr, wrData);
351 			rdData = REG_READ(ah, addr);
352 			if (wrData != rdData) {
353 				DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
354 					"address test failed "
355 					"addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
356 					addr, wrData, rdData);
357 				return false;
358 			}
359 		}
360 		REG_WRITE(ah, regAddr[i], regHold[i]);
361 	}
362 	udelay(100);
363 
364 	return true;
365 }
366 
367 static const char *ath9k_hw_devname(u16 devid)
368 {
369 	switch (devid) {
370 	case AR5416_DEVID_PCI:
371 		return "Atheros 5416";
372 	case AR5416_DEVID_PCIE:
373 		return "Atheros 5418";
374 	case AR9160_DEVID_PCI:
375 		return "Atheros 9160";
376 	case AR5416_AR9100_DEVID:
377 		return "Atheros 9100";
378 	case AR9280_DEVID_PCI:
379 	case AR9280_DEVID_PCIE:
380 		return "Atheros 9280";
381 	case AR9285_DEVID_PCIE:
382 		return "Atheros 9285";
383 	}
384 
385 	return NULL;
386 }
387 
388 static void ath9k_hw_set_defaults(struct ath_hw *ah)
389 {
390 	int i;
391 
392 	ah->config.dma_beacon_response_time = 2;
393 	ah->config.sw_beacon_response_time = 10;
394 	ah->config.additional_swba_backoff = 0;
395 	ah->config.ack_6mb = 0x0;
396 	ah->config.cwm_ignore_extcca = 0;
397 	ah->config.pcie_powersave_enable = 0;
398 	ah->config.pcie_clock_req = 0;
399 	ah->config.pcie_waen = 0;
400 	ah->config.analog_shiftreg = 1;
401 	ah->config.ht_enable = 1;
402 	ah->config.ofdm_trig_low = 200;
403 	ah->config.ofdm_trig_high = 500;
404 	ah->config.cck_trig_high = 200;
405 	ah->config.cck_trig_low = 100;
406 	ah->config.enable_ani = 1;
407 	ah->config.diversity_control = 0;
408 	ah->config.antenna_switch_swap = 0;
409 
410 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
411 		ah->config.spurchans[i][0] = AR_NO_SPUR;
412 		ah->config.spurchans[i][1] = AR_NO_SPUR;
413 	}
414 
415 	ah->config.intr_mitigation = true;
416 
417 	/*
418 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
419 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
420 	 * This means we use it for all AR5416 devices, and the few
421 	 * minor PCI AR9280 devices out there.
422 	 *
423 	 * Serialization is required because these devices do not handle
424 	 * well the case of two concurrent reads/writes due to the latency
425 	 * involved. During one read/write another read/write can be issued
426 	 * on another CPU while the previous read/write may still be working
427 	 * on our hardware, if we hit this case the hardware poops in a loop.
428 	 * We prevent this by serializing reads and writes.
429 	 *
430 	 * This issue is not present on PCI-Express devices or pre-AR5416
431 	 * devices (legacy, 802.11abg).
432 	 */
433 	if (num_possible_cpus() > 1)
434 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
435 }
436 
437 static struct ath_hw *ath9k_hw_newstate(u16 devid, struct ath_softc *sc,
438 					int *status)
439 {
440 	struct ath_hw *ah;
441 
442 	ah = kzalloc(sizeof(struct ath_hw), GFP_KERNEL);
443 	if (ah == NULL) {
444 		DPRINTF(sc, ATH_DBG_FATAL,
445 			"Cannot allocate memory for state block\n");
446 		*status = -ENOMEM;
447 		return NULL;
448 	}
449 
450 	ah->ah_sc = sc;
451 	ah->hw_version.magic = AR5416_MAGIC;
452 	ah->regulatory.country_code = CTRY_DEFAULT;
453 	ah->hw_version.devid = devid;
454 	ah->hw_version.subvendorid = 0;
455 
456 	ah->ah_flags = 0;
457 	if ((devid == AR5416_AR9100_DEVID))
458 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
459 	if (!AR_SREV_9100(ah))
460 		ah->ah_flags = AH_USE_EEPROM;
461 
462 	ah->regulatory.power_limit = MAX_RATE_POWER;
463 	ah->regulatory.tp_scale = ATH9K_TP_SCALE_MAX;
464 	ah->atim_window = 0;
465 	ah->diversity_control = ah->config.diversity_control;
466 	ah->antenna_switch_swap =
467 		ah->config.antenna_switch_swap;
468 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
469 	ah->beacon_interval = 100;
470 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
471 	ah->slottime = (u32) -1;
472 	ah->acktimeout = (u32) -1;
473 	ah->ctstimeout = (u32) -1;
474 	ah->globaltxtimeout = (u32) -1;
475 
476 	ah->gbeacon_rate = 0;
477 
478 	return ah;
479 }
480 
481 static int ath9k_hw_rfattach(struct ath_hw *ah)
482 {
483 	bool rfStatus = false;
484 	int ecode = 0;
485 
486 	rfStatus = ath9k_hw_init_rf(ah, &ecode);
487 	if (!rfStatus) {
488 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
489 			"RF setup failed, status: %u\n", ecode);
490 		return ecode;
491 	}
492 
493 	return 0;
494 }
495 
496 static int ath9k_hw_rf_claim(struct ath_hw *ah)
497 {
498 	u32 val;
499 
500 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
501 
502 	val = ath9k_hw_get_radiorev(ah);
503 	switch (val & AR_RADIO_SREV_MAJOR) {
504 	case 0:
505 		val = AR_RAD5133_SREV_MAJOR;
506 		break;
507 	case AR_RAD5133_SREV_MAJOR:
508 	case AR_RAD5122_SREV_MAJOR:
509 	case AR_RAD2133_SREV_MAJOR:
510 	case AR_RAD2122_SREV_MAJOR:
511 		break;
512 	default:
513 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
514 			"Radio Chip Rev 0x%02X not supported\n",
515 			val & AR_RADIO_SREV_MAJOR);
516 		return -EOPNOTSUPP;
517 	}
518 
519 	ah->hw_version.analog5GhzRev = val;
520 
521 	return 0;
522 }
523 
524 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
525 {
526 	u32 sum;
527 	int i;
528 	u16 eeval;
529 
530 	sum = 0;
531 	for (i = 0; i < 3; i++) {
532 		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
533 		sum += eeval;
534 		ah->macaddr[2 * i] = eeval >> 8;
535 		ah->macaddr[2 * i + 1] = eeval & 0xff;
536 	}
537 	if (sum == 0 || sum == 0xffff * 3)
538 		return -EADDRNOTAVAIL;
539 
540 	return 0;
541 }
542 
543 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
544 {
545 	u32 rxgain_type;
546 
547 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
548 		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
549 
550 		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
551 			INIT_INI_ARRAY(&ah->iniModesRxGain,
552 			ar9280Modes_backoff_13db_rxgain_9280_2,
553 			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
554 		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
555 			INIT_INI_ARRAY(&ah->iniModesRxGain,
556 			ar9280Modes_backoff_23db_rxgain_9280_2,
557 			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
558 		else
559 			INIT_INI_ARRAY(&ah->iniModesRxGain,
560 			ar9280Modes_original_rxgain_9280_2,
561 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
562 	} else {
563 		INIT_INI_ARRAY(&ah->iniModesRxGain,
564 			ar9280Modes_original_rxgain_9280_2,
565 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
566 	}
567 }
568 
569 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
570 {
571 	u32 txgain_type;
572 
573 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
574 		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
575 
576 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
577 			INIT_INI_ARRAY(&ah->iniModesTxGain,
578 			ar9280Modes_high_power_tx_gain_9280_2,
579 			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
580 		else
581 			INIT_INI_ARRAY(&ah->iniModesTxGain,
582 			ar9280Modes_original_tx_gain_9280_2,
583 			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
584 	} else {
585 		INIT_INI_ARRAY(&ah->iniModesTxGain,
586 		ar9280Modes_original_tx_gain_9280_2,
587 		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
588 	}
589 }
590 
591 static int ath9k_hw_post_attach(struct ath_hw *ah)
592 {
593 	int ecode;
594 
595 	if (!ath9k_hw_chip_test(ah))
596 		return -ENODEV;
597 
598 	ecode = ath9k_hw_rf_claim(ah);
599 	if (ecode != 0)
600 		return ecode;
601 
602 	ecode = ath9k_hw_eeprom_attach(ah);
603 	if (ecode != 0)
604 		return ecode;
605 
606 	DPRINTF(ah->ah_sc, ATH_DBG_CONFIG, "Eeprom VER: %d, REV: %d\n",
607 		ah->eep_ops->get_eeprom_ver(ah), ah->eep_ops->get_eeprom_rev(ah));
608 
609 	ecode = ath9k_hw_rfattach(ah);
610 	if (ecode != 0)
611 		return ecode;
612 
613 	if (!AR_SREV_9100(ah)) {
614 		ath9k_hw_ani_setup(ah);
615 		ath9k_hw_ani_attach(ah);
616 	}
617 
618 	return 0;
619 }
620 
621 static struct ath_hw *ath9k_hw_do_attach(u16 devid, struct ath_softc *sc,
622 					 int *status)
623 {
624 	struct ath_hw *ah;
625 	int ecode;
626 	u32 i, j;
627 
628 	ah = ath9k_hw_newstate(devid, sc, status);
629 	if (ah == NULL)
630 		return NULL;
631 
632 	ath9k_hw_set_defaults(ah);
633 
634 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
635 		DPRINTF(sc, ATH_DBG_FATAL, "Couldn't reset chip\n");
636 		ecode = -EIO;
637 		goto bad;
638 	}
639 
640 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
641 		DPRINTF(sc, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
642 		ecode = -EIO;
643 		goto bad;
644 	}
645 
646 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
647 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
648 		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
649 			ah->config.serialize_regmode =
650 				SER_REG_MODE_ON;
651 		} else {
652 			ah->config.serialize_regmode =
653 				SER_REG_MODE_OFF;
654 		}
655 	}
656 
657 	DPRINTF(sc, ATH_DBG_RESET, "serialize_regmode is %d\n",
658 		ah->config.serialize_regmode);
659 
660 	if ((ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCI) &&
661 	    (ah->hw_version.macVersion != AR_SREV_VERSION_5416_PCIE) &&
662 	    (ah->hw_version.macVersion != AR_SREV_VERSION_9160) &&
663 	    (!AR_SREV_9100(ah)) && (!AR_SREV_9280(ah)) && (!AR_SREV_9285(ah))) {
664 		DPRINTF(sc, ATH_DBG_FATAL,
665 			"Mac Chip Rev 0x%02x.%x is not supported by "
666 			"this driver\n", ah->hw_version.macVersion,
667 			ah->hw_version.macRev);
668 		ecode = -EOPNOTSUPP;
669 		goto bad;
670 	}
671 
672 	if (AR_SREV_9100(ah)) {
673 		ah->iq_caldata.calData = &iq_cal_multi_sample;
674 		ah->supp_cals = IQ_MISMATCH_CAL;
675 		ah->is_pciexpress = false;
676 	}
677 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
678 
679 	if (AR_SREV_9160_10_OR_LATER(ah)) {
680 		if (AR_SREV_9280_10_OR_LATER(ah)) {
681 			ah->iq_caldata.calData = &iq_cal_single_sample;
682 			ah->adcgain_caldata.calData =
683 				&adc_gain_cal_single_sample;
684 			ah->adcdc_caldata.calData =
685 				&adc_dc_cal_single_sample;
686 			ah->adcdc_calinitdata.calData =
687 				&adc_init_dc_cal;
688 		} else {
689 			ah->iq_caldata.calData = &iq_cal_multi_sample;
690 			ah->adcgain_caldata.calData =
691 				&adc_gain_cal_multi_sample;
692 			ah->adcdc_caldata.calData =
693 				&adc_dc_cal_multi_sample;
694 			ah->adcdc_calinitdata.calData =
695 				&adc_init_dc_cal;
696 		}
697 		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
698 	}
699 
700 	ah->ani_function = ATH9K_ANI_ALL;
701 	if (AR_SREV_9280_10_OR_LATER(ah))
702 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
703 
704 	if (AR_SREV_9285_12_OR_LATER(ah)) {
705 
706 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
707 			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
708 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
709 			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
710 
711 		if (ah->config.pcie_clock_req) {
712 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
713 			ar9285PciePhy_clkreq_off_L1_9285_1_2,
714 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
715 		} else {
716 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
717 			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
718 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
719 				  2);
720 		}
721 	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
722 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
723 			       ARRAY_SIZE(ar9285Modes_9285), 6);
724 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
725 			       ARRAY_SIZE(ar9285Common_9285), 2);
726 
727 		if (ah->config.pcie_clock_req) {
728 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
729 			ar9285PciePhy_clkreq_off_L1_9285,
730 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
731 		} else {
732 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
733 			ar9285PciePhy_clkreq_always_on_L1_9285,
734 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
735 		}
736 	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
737 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
738 			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
739 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
740 			       ARRAY_SIZE(ar9280Common_9280_2), 2);
741 
742 		if (ah->config.pcie_clock_req) {
743 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
744 			       ar9280PciePhy_clkreq_off_L1_9280,
745 			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
746 		} else {
747 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
748 			       ar9280PciePhy_clkreq_always_on_L1_9280,
749 			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
750 		}
751 		INIT_INI_ARRAY(&ah->iniModesAdditional,
752 			       ar9280Modes_fast_clock_9280_2,
753 			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
754 	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
755 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
756 			       ARRAY_SIZE(ar9280Modes_9280), 6);
757 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
758 			       ARRAY_SIZE(ar9280Common_9280), 2);
759 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
760 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
761 			       ARRAY_SIZE(ar5416Modes_9160), 6);
762 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
763 			       ARRAY_SIZE(ar5416Common_9160), 2);
764 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
765 			       ARRAY_SIZE(ar5416Bank0_9160), 2);
766 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
767 			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
768 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
769 			       ARRAY_SIZE(ar5416Bank1_9160), 2);
770 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
771 			       ARRAY_SIZE(ar5416Bank2_9160), 2);
772 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
773 			       ARRAY_SIZE(ar5416Bank3_9160), 3);
774 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
775 			       ARRAY_SIZE(ar5416Bank6_9160), 3);
776 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
777 			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
778 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
779 			       ARRAY_SIZE(ar5416Bank7_9160), 2);
780 		if (AR_SREV_9160_11(ah)) {
781 			INIT_INI_ARRAY(&ah->iniAddac,
782 				       ar5416Addac_91601_1,
783 				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
784 		} else {
785 			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
786 				       ARRAY_SIZE(ar5416Addac_9160), 2);
787 		}
788 	} else if (AR_SREV_9100_OR_LATER(ah)) {
789 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
790 			       ARRAY_SIZE(ar5416Modes_9100), 6);
791 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
792 			       ARRAY_SIZE(ar5416Common_9100), 2);
793 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
794 			       ARRAY_SIZE(ar5416Bank0_9100), 2);
795 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
796 			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
797 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
798 			       ARRAY_SIZE(ar5416Bank1_9100), 2);
799 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
800 			       ARRAY_SIZE(ar5416Bank2_9100), 2);
801 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
802 			       ARRAY_SIZE(ar5416Bank3_9100), 3);
803 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
804 			       ARRAY_SIZE(ar5416Bank6_9100), 3);
805 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
806 			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
807 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
808 			       ARRAY_SIZE(ar5416Bank7_9100), 2);
809 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
810 			       ARRAY_SIZE(ar5416Addac_9100), 2);
811 	} else {
812 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
813 			       ARRAY_SIZE(ar5416Modes), 6);
814 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
815 			       ARRAY_SIZE(ar5416Common), 2);
816 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
817 			       ARRAY_SIZE(ar5416Bank0), 2);
818 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
819 			       ARRAY_SIZE(ar5416BB_RfGain), 3);
820 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
821 			       ARRAY_SIZE(ar5416Bank1), 2);
822 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
823 			       ARRAY_SIZE(ar5416Bank2), 2);
824 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
825 			       ARRAY_SIZE(ar5416Bank3), 3);
826 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
827 			       ARRAY_SIZE(ar5416Bank6), 3);
828 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
829 			       ARRAY_SIZE(ar5416Bank6TPC), 3);
830 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
831 			       ARRAY_SIZE(ar5416Bank7), 2);
832 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
833 			       ARRAY_SIZE(ar5416Addac), 2);
834 	}
835 
836 	if (ah->is_pciexpress)
837 		ath9k_hw_configpcipowersave(ah, 0);
838 	else
839 		ath9k_hw_disablepcie(ah);
840 
841 	ecode = ath9k_hw_post_attach(ah);
842 	if (ecode != 0)
843 		goto bad;
844 
845 	if (AR_SREV_9285_12_OR_LATER(ah)) {
846 		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
847 
848 		/* txgain table */
849 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
850 			INIT_INI_ARRAY(&ah->iniModesTxGain,
851 			ar9285Modes_high_power_tx_gain_9285_1_2,
852 			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
853 		} else {
854 			INIT_INI_ARRAY(&ah->iniModesTxGain,
855 			ar9285Modes_original_tx_gain_9285_1_2,
856 			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
857 		}
858 
859 	}
860 
861 	/* rxgain table */
862 	if (AR_SREV_9280_20(ah))
863 		ath9k_hw_init_rxgain_ini(ah);
864 
865 	/* txgain table */
866 	if (AR_SREV_9280_20(ah))
867 		ath9k_hw_init_txgain_ini(ah);
868 
869 	ath9k_hw_fill_cap_info(ah);
870 
871 	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
872 	    test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
873 
874 		/* EEPROM Fixup */
875 		for (i = 0; i < ah->iniModes.ia_rows; i++) {
876 			u32 reg = INI_RA(&ah->iniModes, i, 0);
877 
878 			for (j = 1; j < ah->iniModes.ia_columns; j++) {
879 				u32 val = INI_RA(&ah->iniModes, i, j);
880 
881 				INI_RA(&ah->iniModes, i, j) =
882 					ath9k_hw_ini_fixup(ah,
883 							   &ah->eeprom.def,
884 							   reg, val);
885 			}
886 		}
887 	}
888 
889 	ecode = ath9k_hw_init_macaddr(ah);
890 	if (ecode != 0) {
891 		DPRINTF(sc, ATH_DBG_FATAL,
892 			"Failed to initialize MAC address\n");
893 		goto bad;
894 	}
895 
896 	if (AR_SREV_9285(ah))
897 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
898 	else
899 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
900 
901 	ath9k_init_nfcal_hist_buffer(ah);
902 
903 	return ah;
904 bad:
905 	if (ah)
906 		ath9k_hw_detach(ah);
907 	if (status)
908 		*status = ecode;
909 
910 	return NULL;
911 }
912 
913 static void ath9k_hw_init_bb(struct ath_hw *ah,
914 			     struct ath9k_channel *chan)
915 {
916 	u32 synthDelay;
917 
918 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
919 	if (IS_CHAN_B(chan))
920 		synthDelay = (4 * synthDelay) / 22;
921 	else
922 		synthDelay /= 10;
923 
924 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
925 
926 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
927 }
928 
929 static void ath9k_hw_init_qos(struct ath_hw *ah)
930 {
931 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
932 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
933 
934 	REG_WRITE(ah, AR_QOS_NO_ACK,
935 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
936 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
937 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
938 
939 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
940 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
941 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
942 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
943 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
944 }
945 
946 static void ath9k_hw_init_pll(struct ath_hw *ah,
947 			      struct ath9k_channel *chan)
948 {
949 	u32 pll;
950 
951 	if (AR_SREV_9100(ah)) {
952 		if (chan && IS_CHAN_5GHZ(chan))
953 			pll = 0x1450;
954 		else
955 			pll = 0x1458;
956 	} else {
957 		if (AR_SREV_9280_10_OR_LATER(ah)) {
958 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
959 
960 			if (chan && IS_CHAN_HALF_RATE(chan))
961 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
962 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
963 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
964 
965 			if (chan && IS_CHAN_5GHZ(chan)) {
966 				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
967 
968 
969 				if (AR_SREV_9280_20(ah)) {
970 					if (((chan->channel % 20) == 0)
971 					    || ((chan->channel % 10) == 0))
972 						pll = 0x2850;
973 					else
974 						pll = 0x142c;
975 				}
976 			} else {
977 				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
978 			}
979 
980 		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
981 
982 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
983 
984 			if (chan && IS_CHAN_HALF_RATE(chan))
985 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
986 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
987 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
988 
989 			if (chan && IS_CHAN_5GHZ(chan))
990 				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
991 			else
992 				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
993 		} else {
994 			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
995 
996 			if (chan && IS_CHAN_HALF_RATE(chan))
997 				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
998 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
999 				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1000 
1001 			if (chan && IS_CHAN_5GHZ(chan))
1002 				pll |= SM(0xa, AR_RTC_PLL_DIV);
1003 			else
1004 				pll |= SM(0xb, AR_RTC_PLL_DIV);
1005 		}
1006 	}
1007 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1008 
1009 	udelay(RTC_PLL_SETTLE_DELAY);
1010 
1011 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1012 }
1013 
1014 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1015 {
1016 	int rx_chainmask, tx_chainmask;
1017 
1018 	rx_chainmask = ah->rxchainmask;
1019 	tx_chainmask = ah->txchainmask;
1020 
1021 	switch (rx_chainmask) {
1022 	case 0x5:
1023 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1024 			    AR_PHY_SWAP_ALT_CHAIN);
1025 	case 0x3:
1026 		if (((ah)->hw_version.macVersion <= AR_SREV_VERSION_9160)) {
1027 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1028 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1029 			break;
1030 		}
1031 	case 0x1:
1032 	case 0x2:
1033 	case 0x7:
1034 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1035 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1036 		break;
1037 	default:
1038 		break;
1039 	}
1040 
1041 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1042 	if (tx_chainmask == 0x5) {
1043 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1044 			    AR_PHY_SWAP_ALT_CHAIN);
1045 	}
1046 	if (AR_SREV_9100(ah))
1047 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1048 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1049 }
1050 
1051 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1052 					  enum nl80211_iftype opmode)
1053 {
1054 	ah->mask_reg = AR_IMR_TXERR |
1055 		AR_IMR_TXURN |
1056 		AR_IMR_RXERR |
1057 		AR_IMR_RXORN |
1058 		AR_IMR_BCNMISC;
1059 
1060 	if (ah->config.intr_mitigation)
1061 		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1062 	else
1063 		ah->mask_reg |= AR_IMR_RXOK;
1064 
1065 	ah->mask_reg |= AR_IMR_TXOK;
1066 
1067 	if (opmode == NL80211_IFTYPE_AP)
1068 		ah->mask_reg |= AR_IMR_MIB;
1069 
1070 	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1071 	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1072 
1073 	if (!AR_SREV_9100(ah)) {
1074 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1075 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1076 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1077 	}
1078 }
1079 
1080 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1081 {
1082 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1083 		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad ack timeout %u\n", us);
1084 		ah->acktimeout = (u32) -1;
1085 		return false;
1086 	} else {
1087 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1088 			      AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1089 		ah->acktimeout = us;
1090 		return true;
1091 	}
1092 }
1093 
1094 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1095 {
1096 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1097 		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad cts timeout %u\n", us);
1098 		ah->ctstimeout = (u32) -1;
1099 		return false;
1100 	} else {
1101 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1102 			      AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1103 		ah->ctstimeout = us;
1104 		return true;
1105 	}
1106 }
1107 
1108 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1109 {
1110 	if (tu > 0xFFFF) {
1111 		DPRINTF(ah->ah_sc, ATH_DBG_XMIT,
1112 			"bad global tx timeout %u\n", tu);
1113 		ah->globaltxtimeout = (u32) -1;
1114 		return false;
1115 	} else {
1116 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1117 		ah->globaltxtimeout = tu;
1118 		return true;
1119 	}
1120 }
1121 
1122 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1123 {
1124 	DPRINTF(ah->ah_sc, ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1125 		ah->misc_mode);
1126 
1127 	if (ah->misc_mode != 0)
1128 		REG_WRITE(ah, AR_PCU_MISC,
1129 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1130 	if (ah->slottime != (u32) -1)
1131 		ath9k_hw_setslottime(ah, ah->slottime);
1132 	if (ah->acktimeout != (u32) -1)
1133 		ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1134 	if (ah->ctstimeout != (u32) -1)
1135 		ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1136 	if (ah->globaltxtimeout != (u32) -1)
1137 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1138 }
1139 
1140 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1141 {
1142 	return vendorid == ATHEROS_VENDOR_ID ?
1143 		ath9k_hw_devname(devid) : NULL;
1144 }
1145 
1146 void ath9k_hw_detach(struct ath_hw *ah)
1147 {
1148 	if (!AR_SREV_9100(ah))
1149 		ath9k_hw_ani_detach(ah);
1150 
1151 	ath9k_hw_rfdetach(ah);
1152 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1153 	kfree(ah);
1154 }
1155 
1156 struct ath_hw *ath9k_hw_attach(u16 devid, struct ath_softc *sc, int *error)
1157 {
1158 	struct ath_hw *ah = NULL;
1159 
1160 	switch (devid) {
1161 	case AR5416_DEVID_PCI:
1162 	case AR5416_DEVID_PCIE:
1163 	case AR5416_AR9100_DEVID:
1164 	case AR9160_DEVID_PCI:
1165 	case AR9280_DEVID_PCI:
1166 	case AR9280_DEVID_PCIE:
1167 	case AR9285_DEVID_PCIE:
1168 		ah = ath9k_hw_do_attach(devid, sc, error);
1169 		break;
1170 	default:
1171 		*error = -ENXIO;
1172 		break;
1173 	}
1174 
1175 	return ah;
1176 }
1177 
1178 /*******/
1179 /* INI */
1180 /*******/
1181 
1182 static void ath9k_hw_override_ini(struct ath_hw *ah,
1183 				  struct ath9k_channel *chan)
1184 {
1185 	/*
1186 	 * Set the RX_ABORT and RX_DIS and clear if off only after
1187 	 * RXE is set for MAC. This prevents frames with corrupted
1188 	 * descriptor status.
1189 	 */
1190 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1191 
1192 
1193 	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1194 	    AR_SREV_9280_10_OR_LATER(ah))
1195 		return;
1196 
1197 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1198 }
1199 
1200 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1201 			      struct ar5416_eeprom_def *pEepData,
1202 			      u32 reg, u32 value)
1203 {
1204 	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1205 
1206 	switch (ah->hw_version.devid) {
1207 	case AR9280_DEVID_PCI:
1208 		if (reg == 0x7894) {
1209 			DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1210 				"ini VAL: %x  EEPROM: %x\n", value,
1211 				(pBase->version & 0xff));
1212 
1213 			if ((pBase->version & 0xff) > 0x0a) {
1214 				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1215 					"PWDCLKIND: %d\n",
1216 					pBase->pwdclkind);
1217 				value &= ~AR_AN_TOP2_PWDCLKIND;
1218 				value |= AR_AN_TOP2_PWDCLKIND &
1219 					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1220 			} else {
1221 				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1222 					"PWDCLKIND Earlier Rev\n");
1223 			}
1224 
1225 			DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1226 				"final ini VAL: %x\n", value);
1227 		}
1228 		break;
1229 	}
1230 
1231 	return value;
1232 }
1233 
1234 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1235 			      struct ar5416_eeprom_def *pEepData,
1236 			      u32 reg, u32 value)
1237 {
1238 	if (ah->eep_map == EEP_MAP_4KBITS)
1239 		return value;
1240 	else
1241 		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1242 }
1243 
1244 static void ath9k_olc_init(struct ath_hw *ah)
1245 {
1246 	u32 i;
1247 
1248 	for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1249 		ah->originalGain[i] =
1250 			MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1251 					AR_PHY_TX_GAIN);
1252 	ah->PDADCdelta = 0;
1253 }
1254 
1255 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1256 			      struct ath9k_channel *chan)
1257 {
1258 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1259 
1260 	if (IS_CHAN_B(chan))
1261 		ctl |= CTL_11B;
1262 	else if (IS_CHAN_G(chan))
1263 		ctl |= CTL_11G;
1264 	else
1265 		ctl |= CTL_11A;
1266 
1267 	return ctl;
1268 }
1269 
1270 static int ath9k_hw_process_ini(struct ath_hw *ah,
1271 				struct ath9k_channel *chan,
1272 				enum ath9k_ht_macmode macmode)
1273 {
1274 	int i, regWrites = 0;
1275 	struct ieee80211_channel *channel = chan->chan;
1276 	u32 modesIndex, freqIndex;
1277 
1278 	switch (chan->chanmode) {
1279 	case CHANNEL_A:
1280 	case CHANNEL_A_HT20:
1281 		modesIndex = 1;
1282 		freqIndex = 1;
1283 		break;
1284 	case CHANNEL_A_HT40PLUS:
1285 	case CHANNEL_A_HT40MINUS:
1286 		modesIndex = 2;
1287 		freqIndex = 1;
1288 		break;
1289 	case CHANNEL_G:
1290 	case CHANNEL_G_HT20:
1291 	case CHANNEL_B:
1292 		modesIndex = 4;
1293 		freqIndex = 2;
1294 		break;
1295 	case CHANNEL_G_HT40PLUS:
1296 	case CHANNEL_G_HT40MINUS:
1297 		modesIndex = 3;
1298 		freqIndex = 2;
1299 		break;
1300 
1301 	default:
1302 		return -EINVAL;
1303 	}
1304 
1305 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1306 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1307 	ah->eep_ops->set_addac(ah, chan);
1308 
1309 	if (AR_SREV_5416_22_OR_LATER(ah)) {
1310 		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1311 	} else {
1312 		struct ar5416IniArray temp;
1313 		u32 addacSize =
1314 			sizeof(u32) * ah->iniAddac.ia_rows *
1315 			ah->iniAddac.ia_columns;
1316 
1317 		memcpy(ah->addac5416_21,
1318 		       ah->iniAddac.ia_array, addacSize);
1319 
1320 		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1321 
1322 		temp.ia_array = ah->addac5416_21;
1323 		temp.ia_columns = ah->iniAddac.ia_columns;
1324 		temp.ia_rows = ah->iniAddac.ia_rows;
1325 		REG_WRITE_ARRAY(&temp, 1, regWrites);
1326 	}
1327 
1328 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1329 
1330 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1331 		u32 reg = INI_RA(&ah->iniModes, i, 0);
1332 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1333 
1334 		REG_WRITE(ah, reg, val);
1335 
1336 		if (reg >= 0x7800 && reg < 0x78a0
1337 		    && ah->config.analog_shiftreg) {
1338 			udelay(100);
1339 		}
1340 
1341 		DO_DELAY(regWrites);
1342 	}
1343 
1344 	if (AR_SREV_9280(ah))
1345 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1346 
1347 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah))
1348 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1349 
1350 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1351 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1352 		u32 val = INI_RA(&ah->iniCommon, i, 1);
1353 
1354 		REG_WRITE(ah, reg, val);
1355 
1356 		if (reg >= 0x7800 && reg < 0x78a0
1357 		    && ah->config.analog_shiftreg) {
1358 			udelay(100);
1359 		}
1360 
1361 		DO_DELAY(regWrites);
1362 	}
1363 
1364 	ath9k_hw_write_regs(ah, modesIndex, freqIndex, regWrites);
1365 
1366 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1367 		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1368 				regWrites);
1369 	}
1370 
1371 	ath9k_hw_override_ini(ah, chan);
1372 	ath9k_hw_set_regs(ah, chan, macmode);
1373 	ath9k_hw_init_chain_masks(ah);
1374 
1375 	if (OLC_FOR_AR9280_20_LATER)
1376 		ath9k_olc_init(ah);
1377 
1378 	ah->eep_ops->set_txpower(ah, chan,
1379 				 ath9k_regd_get_ctl(&ah->regulatory, chan),
1380 				 channel->max_antenna_gain * 2,
1381 				 channel->max_power * 2,
1382 				 min((u32) MAX_RATE_POWER,
1383 				 (u32) ah->regulatory.power_limit));
1384 
1385 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1386 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1387 			"ar5416SetRfRegs failed\n");
1388 		return -EIO;
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 /****************************************/
1395 /* Reset and Channel Switching Routines */
1396 /****************************************/
1397 
1398 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1399 {
1400 	u32 rfMode = 0;
1401 
1402 	if (chan == NULL)
1403 		return;
1404 
1405 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1406 		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1407 
1408 	if (!AR_SREV_9280_10_OR_LATER(ah))
1409 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1410 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1411 
1412 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1413 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1414 
1415 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1416 }
1417 
1418 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1419 {
1420 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1421 }
1422 
1423 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1424 {
1425 	u32 regval;
1426 
1427 	regval = REG_READ(ah, AR_AHB_MODE);
1428 	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1429 
1430 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1431 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1432 
1433 	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1434 
1435 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1436 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1437 
1438 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1439 
1440 	if (AR_SREV_9285(ah)) {
1441 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1442 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1443 	} else {
1444 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1445 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1446 	}
1447 }
1448 
1449 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1450 {
1451 	u32 val;
1452 
1453 	val = REG_READ(ah, AR_STA_ID1);
1454 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1455 	switch (opmode) {
1456 	case NL80211_IFTYPE_AP:
1457 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1458 			  | AR_STA_ID1_KSRCH_MODE);
1459 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1460 		break;
1461 	case NL80211_IFTYPE_ADHOC:
1462 	case NL80211_IFTYPE_MESH_POINT:
1463 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1464 			  | AR_STA_ID1_KSRCH_MODE);
1465 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1466 		break;
1467 	case NL80211_IFTYPE_STATION:
1468 	case NL80211_IFTYPE_MONITOR:
1469 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1470 		break;
1471 	}
1472 }
1473 
1474 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1475 						 u32 coef_scaled,
1476 						 u32 *coef_mantissa,
1477 						 u32 *coef_exponent)
1478 {
1479 	u32 coef_exp, coef_man;
1480 
1481 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1482 		if ((coef_scaled >> coef_exp) & 0x1)
1483 			break;
1484 
1485 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1486 
1487 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1488 
1489 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1490 	*coef_exponent = coef_exp - 16;
1491 }
1492 
1493 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1494 				     struct ath9k_channel *chan)
1495 {
1496 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1497 	u32 clockMhzScaled = 0x64000000;
1498 	struct chan_centers centers;
1499 
1500 	if (IS_CHAN_HALF_RATE(chan))
1501 		clockMhzScaled = clockMhzScaled >> 1;
1502 	else if (IS_CHAN_QUARTER_RATE(chan))
1503 		clockMhzScaled = clockMhzScaled >> 2;
1504 
1505 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1506 	coef_scaled = clockMhzScaled / centers.synth_center;
1507 
1508 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1509 				      &ds_coef_exp);
1510 
1511 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1512 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1513 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1514 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1515 
1516 	coef_scaled = (9 * coef_scaled) / 10;
1517 
1518 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1519 				      &ds_coef_exp);
1520 
1521 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1522 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1523 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1524 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1525 }
1526 
1527 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1528 {
1529 	u32 rst_flags;
1530 	u32 tmpReg;
1531 
1532 	if (AR_SREV_9100(ah)) {
1533 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1534 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1535 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1536 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1537 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1538 	}
1539 
1540 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1541 		  AR_RTC_FORCE_WAKE_ON_INT);
1542 
1543 	if (AR_SREV_9100(ah)) {
1544 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1545 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1546 	} else {
1547 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1548 		if (tmpReg &
1549 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1550 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1551 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1552 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1553 		} else {
1554 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1555 		}
1556 
1557 		rst_flags = AR_RTC_RC_MAC_WARM;
1558 		if (type == ATH9K_RESET_COLD)
1559 			rst_flags |= AR_RTC_RC_MAC_COLD;
1560 	}
1561 
1562 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1563 	udelay(50);
1564 
1565 	REG_WRITE(ah, AR_RTC_RC, 0);
1566 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1567 		DPRINTF(ah->ah_sc, ATH_DBG_RESET,
1568 			"RTC stuck in MAC reset\n");
1569 		return false;
1570 	}
1571 
1572 	if (!AR_SREV_9100(ah))
1573 		REG_WRITE(ah, AR_RC, 0);
1574 
1575 	ath9k_hw_init_pll(ah, NULL);
1576 
1577 	if (AR_SREV_9100(ah))
1578 		udelay(50);
1579 
1580 	return true;
1581 }
1582 
1583 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1584 {
1585 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1586 		  AR_RTC_FORCE_WAKE_ON_INT);
1587 
1588 	REG_WRITE(ah, AR_RTC_RESET, 0);
1589 	udelay(2);
1590 	REG_WRITE(ah, AR_RTC_RESET, 1);
1591 
1592 	if (!ath9k_hw_wait(ah,
1593 			   AR_RTC_STATUS,
1594 			   AR_RTC_STATUS_M,
1595 			   AR_RTC_STATUS_ON,
1596 			   AH_WAIT_TIMEOUT)) {
1597 		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "RTC not waking up\n");
1598 		return false;
1599 	}
1600 
1601 	ath9k_hw_read_revisions(ah);
1602 
1603 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1604 }
1605 
1606 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1607 {
1608 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1609 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1610 
1611 	switch (type) {
1612 	case ATH9K_RESET_POWER_ON:
1613 		return ath9k_hw_set_reset_power_on(ah);
1614 	case ATH9K_RESET_WARM:
1615 	case ATH9K_RESET_COLD:
1616 		return ath9k_hw_set_reset(ah, type);
1617 	default:
1618 		return false;
1619 	}
1620 }
1621 
1622 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan,
1623 			      enum ath9k_ht_macmode macmode)
1624 {
1625 	u32 phymode;
1626 	u32 enableDacFifo = 0;
1627 
1628 	if (AR_SREV_9285_10_OR_LATER(ah))
1629 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1630 					 AR_PHY_FC_ENABLE_DAC_FIFO);
1631 
1632 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1633 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1634 
1635 	if (IS_CHAN_HT40(chan)) {
1636 		phymode |= AR_PHY_FC_DYN2040_EN;
1637 
1638 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1639 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1640 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1641 
1642 		if (ah->extprotspacing == ATH9K_HT_EXTPROTSPACING_25)
1643 			phymode |= AR_PHY_FC_DYN2040_EXT_CH;
1644 	}
1645 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1646 
1647 	ath9k_hw_set11nmac2040(ah, macmode);
1648 
1649 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1650 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1651 }
1652 
1653 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1654 				struct ath9k_channel *chan)
1655 {
1656 	if (OLC_FOR_AR9280_20_LATER) {
1657 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1658 			return false;
1659 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1660 		return false;
1661 
1662 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1663 		return false;
1664 
1665 	ah->chip_fullsleep = false;
1666 	ath9k_hw_init_pll(ah, chan);
1667 	ath9k_hw_set_rfmode(ah, chan);
1668 
1669 	return true;
1670 }
1671 
1672 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1673 				    struct ath9k_channel *chan,
1674 				    enum ath9k_ht_macmode macmode)
1675 {
1676 	struct ieee80211_channel *channel = chan->chan;
1677 	u32 synthDelay, qnum;
1678 
1679 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1680 		if (ath9k_hw_numtxpending(ah, qnum)) {
1681 			DPRINTF(ah->ah_sc, ATH_DBG_QUEUE,
1682 				"Transmit frames pending on queue %d\n", qnum);
1683 			return false;
1684 		}
1685 	}
1686 
1687 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1688 	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1689 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1690 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1691 			"Could not kill baseband RX\n");
1692 		return false;
1693 	}
1694 
1695 	ath9k_hw_set_regs(ah, chan, macmode);
1696 
1697 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1698 		ath9k_hw_ar9280_set_channel(ah, chan);
1699 	} else {
1700 		if (!(ath9k_hw_set_channel(ah, chan))) {
1701 			DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
1702 				"Failed to set channel\n");
1703 			return false;
1704 		}
1705 	}
1706 
1707 	ah->eep_ops->set_txpower(ah, chan,
1708 			     ath9k_regd_get_ctl(&ah->regulatory, chan),
1709 			     channel->max_antenna_gain * 2,
1710 			     channel->max_power * 2,
1711 			     min((u32) MAX_RATE_POWER,
1712 			     (u32) ah->regulatory.power_limit));
1713 
1714 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1715 	if (IS_CHAN_B(chan))
1716 		synthDelay = (4 * synthDelay) / 22;
1717 	else
1718 		synthDelay /= 10;
1719 
1720 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1721 
1722 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1723 
1724 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1725 		ath9k_hw_set_delta_slope(ah, chan);
1726 
1727 	if (AR_SREV_9280_10_OR_LATER(ah))
1728 		ath9k_hw_9280_spur_mitigate(ah, chan);
1729 	else
1730 		ath9k_hw_spur_mitigate(ah, chan);
1731 
1732 	if (!chan->oneTimeCalsDone)
1733 		chan->oneTimeCalsDone = true;
1734 
1735 	return true;
1736 }
1737 
1738 static void ath9k_hw_9280_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1739 {
1740 	int bb_spur = AR_NO_SPUR;
1741 	int freq;
1742 	int bin, cur_bin;
1743 	int bb_spur_off, spur_subchannel_sd;
1744 	int spur_freq_sd;
1745 	int spur_delta_phase;
1746 	int denominator;
1747 	int upper, lower, cur_vit_mask;
1748 	int tmp, newVal;
1749 	int i;
1750 	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1751 			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
1752 	};
1753 	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
1754 			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
1755 	};
1756 	int inc[4] = { 0, 100, 0, 0 };
1757 	struct chan_centers centers;
1758 
1759 	int8_t mask_m[123];
1760 	int8_t mask_p[123];
1761 	int8_t mask_amt;
1762 	int tmp_mask;
1763 	int cur_bb_spur;
1764 	bool is2GHz = IS_CHAN_2GHZ(chan);
1765 
1766 	memset(&mask_m, 0, sizeof(int8_t) * 123);
1767 	memset(&mask_p, 0, sizeof(int8_t) * 123);
1768 
1769 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1770 	freq = centers.synth_center;
1771 
1772 	ah->config.spurmode = SPUR_ENABLE_EEPROM;
1773 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
1774 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
1775 
1776 		if (is2GHz)
1777 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_2GHZ;
1778 		else
1779 			cur_bb_spur = (cur_bb_spur / 10) + AR_BASE_FREQ_5GHZ;
1780 
1781 		if (AR_NO_SPUR == cur_bb_spur)
1782 			break;
1783 		cur_bb_spur = cur_bb_spur - freq;
1784 
1785 		if (IS_CHAN_HT40(chan)) {
1786 			if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT40) &&
1787 			    (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT40)) {
1788 				bb_spur = cur_bb_spur;
1789 				break;
1790 			}
1791 		} else if ((cur_bb_spur > -AR_SPUR_FEEQ_BOUND_HT20) &&
1792 			   (cur_bb_spur < AR_SPUR_FEEQ_BOUND_HT20)) {
1793 			bb_spur = cur_bb_spur;
1794 			break;
1795 		}
1796 	}
1797 
1798 	if (AR_NO_SPUR == bb_spur) {
1799 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1800 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1801 		return;
1802 	} else {
1803 		REG_CLR_BIT(ah, AR_PHY_FORCE_CLKEN_CCK,
1804 			    AR_PHY_FORCE_CLKEN_CCK_MRC_MUX);
1805 	}
1806 
1807 	bin = bb_spur * 320;
1808 
1809 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
1810 
1811 	newVal = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
1812 			AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
1813 			AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
1814 			AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
1815 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), newVal);
1816 
1817 	newVal = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
1818 		  AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
1819 		  AR_PHY_SPUR_REG_MASK_RATE_SELECT |
1820 		  AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
1821 		  SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
1822 	REG_WRITE(ah, AR_PHY_SPUR_REG, newVal);
1823 
1824 	if (IS_CHAN_HT40(chan)) {
1825 		if (bb_spur < 0) {
1826 			spur_subchannel_sd = 1;
1827 			bb_spur_off = bb_spur + 10;
1828 		} else {
1829 			spur_subchannel_sd = 0;
1830 			bb_spur_off = bb_spur - 10;
1831 		}
1832 	} else {
1833 		spur_subchannel_sd = 0;
1834 		bb_spur_off = bb_spur;
1835 	}
1836 
1837 	if (IS_CHAN_HT40(chan))
1838 		spur_delta_phase =
1839 			((bb_spur * 262144) /
1840 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1841 	else
1842 		spur_delta_phase =
1843 			((bb_spur * 524288) /
1844 			 10) & AR_PHY_TIMING11_SPUR_DELTA_PHASE;
1845 
1846 	denominator = IS_CHAN_2GHZ(chan) ? 44 : 40;
1847 	spur_freq_sd = ((bb_spur_off * 2048) / denominator) & 0x3ff;
1848 
1849 	newVal = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
1850 		  SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
1851 		  SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
1852 	REG_WRITE(ah, AR_PHY_TIMING11, newVal);
1853 
1854 	newVal = spur_subchannel_sd << AR_PHY_SFCORR_SPUR_SUBCHNL_SD_S;
1855 	REG_WRITE(ah, AR_PHY_SFCORR_EXT, newVal);
1856 
1857 	cur_bin = -6000;
1858 	upper = bin + 100;
1859 	lower = bin - 100;
1860 
1861 	for (i = 0; i < 4; i++) {
1862 		int pilot_mask = 0;
1863 		int chan_mask = 0;
1864 		int bp = 0;
1865 		for (bp = 0; bp < 30; bp++) {
1866 			if ((cur_bin > lower) && (cur_bin < upper)) {
1867 				pilot_mask = pilot_mask | 0x1 << bp;
1868 				chan_mask = chan_mask | 0x1 << bp;
1869 			}
1870 			cur_bin += 100;
1871 		}
1872 		cur_bin += inc[i];
1873 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
1874 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
1875 	}
1876 
1877 	cur_vit_mask = 6100;
1878 	upper = bin + 120;
1879 	lower = bin - 120;
1880 
1881 	for (i = 0; i < 123; i++) {
1882 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
1883 
1884 			/* workaround for gcc bug #37014 */
1885 			volatile int tmp_v = abs(cur_vit_mask - bin);
1886 
1887 			if (tmp_v < 75)
1888 				mask_amt = 1;
1889 			else
1890 				mask_amt = 0;
1891 			if (cur_vit_mask < 0)
1892 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
1893 			else
1894 				mask_p[cur_vit_mask / 100] = mask_amt;
1895 		}
1896 		cur_vit_mask -= 100;
1897 	}
1898 
1899 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
1900 		| (mask_m[48] << 26) | (mask_m[49] << 24)
1901 		| (mask_m[50] << 22) | (mask_m[51] << 20)
1902 		| (mask_m[52] << 18) | (mask_m[53] << 16)
1903 		| (mask_m[54] << 14) | (mask_m[55] << 12)
1904 		| (mask_m[56] << 10) | (mask_m[57] << 8)
1905 		| (mask_m[58] << 6) | (mask_m[59] << 4)
1906 		| (mask_m[60] << 2) | (mask_m[61] << 0);
1907 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
1908 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
1909 
1910 	tmp_mask = (mask_m[31] << 28)
1911 		| (mask_m[32] << 26) | (mask_m[33] << 24)
1912 		| (mask_m[34] << 22) | (mask_m[35] << 20)
1913 		| (mask_m[36] << 18) | (mask_m[37] << 16)
1914 		| (mask_m[48] << 14) | (mask_m[39] << 12)
1915 		| (mask_m[40] << 10) | (mask_m[41] << 8)
1916 		| (mask_m[42] << 6) | (mask_m[43] << 4)
1917 		| (mask_m[44] << 2) | (mask_m[45] << 0);
1918 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
1919 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
1920 
1921 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
1922 		| (mask_m[18] << 26) | (mask_m[18] << 24)
1923 		| (mask_m[20] << 22) | (mask_m[20] << 20)
1924 		| (mask_m[22] << 18) | (mask_m[22] << 16)
1925 		| (mask_m[24] << 14) | (mask_m[24] << 12)
1926 		| (mask_m[25] << 10) | (mask_m[26] << 8)
1927 		| (mask_m[27] << 6) | (mask_m[28] << 4)
1928 		| (mask_m[29] << 2) | (mask_m[30] << 0);
1929 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
1930 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
1931 
1932 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
1933 		| (mask_m[2] << 26) | (mask_m[3] << 24)
1934 		| (mask_m[4] << 22) | (mask_m[5] << 20)
1935 		| (mask_m[6] << 18) | (mask_m[7] << 16)
1936 		| (mask_m[8] << 14) | (mask_m[9] << 12)
1937 		| (mask_m[10] << 10) | (mask_m[11] << 8)
1938 		| (mask_m[12] << 6) | (mask_m[13] << 4)
1939 		| (mask_m[14] << 2) | (mask_m[15] << 0);
1940 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
1941 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
1942 
1943 	tmp_mask = (mask_p[15] << 28)
1944 		| (mask_p[14] << 26) | (mask_p[13] << 24)
1945 		| (mask_p[12] << 22) | (mask_p[11] << 20)
1946 		| (mask_p[10] << 18) | (mask_p[9] << 16)
1947 		| (mask_p[8] << 14) | (mask_p[7] << 12)
1948 		| (mask_p[6] << 10) | (mask_p[5] << 8)
1949 		| (mask_p[4] << 6) | (mask_p[3] << 4)
1950 		| (mask_p[2] << 2) | (mask_p[1] << 0);
1951 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
1952 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
1953 
1954 	tmp_mask = (mask_p[30] << 28)
1955 		| (mask_p[29] << 26) | (mask_p[28] << 24)
1956 		| (mask_p[27] << 22) | (mask_p[26] << 20)
1957 		| (mask_p[25] << 18) | (mask_p[24] << 16)
1958 		| (mask_p[23] << 14) | (mask_p[22] << 12)
1959 		| (mask_p[21] << 10) | (mask_p[20] << 8)
1960 		| (mask_p[19] << 6) | (mask_p[18] << 4)
1961 		| (mask_p[17] << 2) | (mask_p[16] << 0);
1962 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
1963 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
1964 
1965 	tmp_mask = (mask_p[45] << 28)
1966 		| (mask_p[44] << 26) | (mask_p[43] << 24)
1967 		| (mask_p[42] << 22) | (mask_p[41] << 20)
1968 		| (mask_p[40] << 18) | (mask_p[39] << 16)
1969 		| (mask_p[38] << 14) | (mask_p[37] << 12)
1970 		| (mask_p[36] << 10) | (mask_p[35] << 8)
1971 		| (mask_p[34] << 6) | (mask_p[33] << 4)
1972 		| (mask_p[32] << 2) | (mask_p[31] << 0);
1973 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
1974 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
1975 
1976 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
1977 		| (mask_p[59] << 26) | (mask_p[58] << 24)
1978 		| (mask_p[57] << 22) | (mask_p[56] << 20)
1979 		| (mask_p[55] << 18) | (mask_p[54] << 16)
1980 		| (mask_p[53] << 14) | (mask_p[52] << 12)
1981 		| (mask_p[51] << 10) | (mask_p[50] << 8)
1982 		| (mask_p[49] << 6) | (mask_p[48] << 4)
1983 		| (mask_p[47] << 2) | (mask_p[46] << 0);
1984 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
1985 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
1986 }
1987 
1988 static void ath9k_hw_spur_mitigate(struct ath_hw *ah, struct ath9k_channel *chan)
1989 {
1990 	int bb_spur = AR_NO_SPUR;
1991 	int bin, cur_bin;
1992 	int spur_freq_sd;
1993 	int spur_delta_phase;
1994 	int denominator;
1995 	int upper, lower, cur_vit_mask;
1996 	int tmp, new;
1997 	int i;
1998 	int pilot_mask_reg[4] = { AR_PHY_TIMING7, AR_PHY_TIMING8,
1999 			  AR_PHY_PILOT_MASK_01_30, AR_PHY_PILOT_MASK_31_60
2000 	};
2001 	int chan_mask_reg[4] = { AR_PHY_TIMING9, AR_PHY_TIMING10,
2002 			 AR_PHY_CHANNEL_MASK_01_30, AR_PHY_CHANNEL_MASK_31_60
2003 	};
2004 	int inc[4] = { 0, 100, 0, 0 };
2005 
2006 	int8_t mask_m[123];
2007 	int8_t mask_p[123];
2008 	int8_t mask_amt;
2009 	int tmp_mask;
2010 	int cur_bb_spur;
2011 	bool is2GHz = IS_CHAN_2GHZ(chan);
2012 
2013 	memset(&mask_m, 0, sizeof(int8_t) * 123);
2014 	memset(&mask_p, 0, sizeof(int8_t) * 123);
2015 
2016 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
2017 		cur_bb_spur = ah->eep_ops->get_spur_channel(ah, i, is2GHz);
2018 		if (AR_NO_SPUR == cur_bb_spur)
2019 			break;
2020 		cur_bb_spur = cur_bb_spur - (chan->channel * 10);
2021 		if ((cur_bb_spur > -95) && (cur_bb_spur < 95)) {
2022 			bb_spur = cur_bb_spur;
2023 			break;
2024 		}
2025 	}
2026 
2027 	if (AR_NO_SPUR == bb_spur)
2028 		return;
2029 
2030 	bin = bb_spur * 32;
2031 
2032 	tmp = REG_READ(ah, AR_PHY_TIMING_CTRL4(0));
2033 	new = tmp | (AR_PHY_TIMING_CTRL4_ENABLE_SPUR_RSSI |
2034 		     AR_PHY_TIMING_CTRL4_ENABLE_SPUR_FILTER |
2035 		     AR_PHY_TIMING_CTRL4_ENABLE_CHAN_MASK |
2036 		     AR_PHY_TIMING_CTRL4_ENABLE_PILOT_MASK);
2037 
2038 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0), new);
2039 
2040 	new = (AR_PHY_SPUR_REG_MASK_RATE_CNTL |
2041 	       AR_PHY_SPUR_REG_ENABLE_MASK_PPM |
2042 	       AR_PHY_SPUR_REG_MASK_RATE_SELECT |
2043 	       AR_PHY_SPUR_REG_ENABLE_VIT_SPUR_RSSI |
2044 	       SM(SPUR_RSSI_THRESH, AR_PHY_SPUR_REG_SPUR_RSSI_THRESH));
2045 	REG_WRITE(ah, AR_PHY_SPUR_REG, new);
2046 
2047 	spur_delta_phase = ((bb_spur * 524288) / 100) &
2048 		AR_PHY_TIMING11_SPUR_DELTA_PHASE;
2049 
2050 	denominator = IS_CHAN_2GHZ(chan) ? 440 : 400;
2051 	spur_freq_sd = ((bb_spur * 2048) / denominator) & 0x3ff;
2052 
2053 	new = (AR_PHY_TIMING11_USE_SPUR_IN_AGC |
2054 	       SM(spur_freq_sd, AR_PHY_TIMING11_SPUR_FREQ_SD) |
2055 	       SM(spur_delta_phase, AR_PHY_TIMING11_SPUR_DELTA_PHASE));
2056 	REG_WRITE(ah, AR_PHY_TIMING11, new);
2057 
2058 	cur_bin = -6000;
2059 	upper = bin + 100;
2060 	lower = bin - 100;
2061 
2062 	for (i = 0; i < 4; i++) {
2063 		int pilot_mask = 0;
2064 		int chan_mask = 0;
2065 		int bp = 0;
2066 		for (bp = 0; bp < 30; bp++) {
2067 			if ((cur_bin > lower) && (cur_bin < upper)) {
2068 				pilot_mask = pilot_mask | 0x1 << bp;
2069 				chan_mask = chan_mask | 0x1 << bp;
2070 			}
2071 			cur_bin += 100;
2072 		}
2073 		cur_bin += inc[i];
2074 		REG_WRITE(ah, pilot_mask_reg[i], pilot_mask);
2075 		REG_WRITE(ah, chan_mask_reg[i], chan_mask);
2076 	}
2077 
2078 	cur_vit_mask = 6100;
2079 	upper = bin + 120;
2080 	lower = bin - 120;
2081 
2082 	for (i = 0; i < 123; i++) {
2083 		if ((cur_vit_mask > lower) && (cur_vit_mask < upper)) {
2084 
2085 			/* workaround for gcc bug #37014 */
2086 			volatile int tmp_v = abs(cur_vit_mask - bin);
2087 
2088 			if (tmp_v < 75)
2089 				mask_amt = 1;
2090 			else
2091 				mask_amt = 0;
2092 			if (cur_vit_mask < 0)
2093 				mask_m[abs(cur_vit_mask / 100)] = mask_amt;
2094 			else
2095 				mask_p[cur_vit_mask / 100] = mask_amt;
2096 		}
2097 		cur_vit_mask -= 100;
2098 	}
2099 
2100 	tmp_mask = (mask_m[46] << 30) | (mask_m[47] << 28)
2101 		| (mask_m[48] << 26) | (mask_m[49] << 24)
2102 		| (mask_m[50] << 22) | (mask_m[51] << 20)
2103 		| (mask_m[52] << 18) | (mask_m[53] << 16)
2104 		| (mask_m[54] << 14) | (mask_m[55] << 12)
2105 		| (mask_m[56] << 10) | (mask_m[57] << 8)
2106 		| (mask_m[58] << 6) | (mask_m[59] << 4)
2107 		| (mask_m[60] << 2) | (mask_m[61] << 0);
2108 	REG_WRITE(ah, AR_PHY_BIN_MASK_1, tmp_mask);
2109 	REG_WRITE(ah, AR_PHY_VIT_MASK2_M_46_61, tmp_mask);
2110 
2111 	tmp_mask = (mask_m[31] << 28)
2112 		| (mask_m[32] << 26) | (mask_m[33] << 24)
2113 		| (mask_m[34] << 22) | (mask_m[35] << 20)
2114 		| (mask_m[36] << 18) | (mask_m[37] << 16)
2115 		| (mask_m[48] << 14) | (mask_m[39] << 12)
2116 		| (mask_m[40] << 10) | (mask_m[41] << 8)
2117 		| (mask_m[42] << 6) | (mask_m[43] << 4)
2118 		| (mask_m[44] << 2) | (mask_m[45] << 0);
2119 	REG_WRITE(ah, AR_PHY_BIN_MASK_2, tmp_mask);
2120 	REG_WRITE(ah, AR_PHY_MASK2_M_31_45, tmp_mask);
2121 
2122 	tmp_mask = (mask_m[16] << 30) | (mask_m[16] << 28)
2123 		| (mask_m[18] << 26) | (mask_m[18] << 24)
2124 		| (mask_m[20] << 22) | (mask_m[20] << 20)
2125 		| (mask_m[22] << 18) | (mask_m[22] << 16)
2126 		| (mask_m[24] << 14) | (mask_m[24] << 12)
2127 		| (mask_m[25] << 10) | (mask_m[26] << 8)
2128 		| (mask_m[27] << 6) | (mask_m[28] << 4)
2129 		| (mask_m[29] << 2) | (mask_m[30] << 0);
2130 	REG_WRITE(ah, AR_PHY_BIN_MASK_3, tmp_mask);
2131 	REG_WRITE(ah, AR_PHY_MASK2_M_16_30, tmp_mask);
2132 
2133 	tmp_mask = (mask_m[0] << 30) | (mask_m[1] << 28)
2134 		| (mask_m[2] << 26) | (mask_m[3] << 24)
2135 		| (mask_m[4] << 22) | (mask_m[5] << 20)
2136 		| (mask_m[6] << 18) | (mask_m[7] << 16)
2137 		| (mask_m[8] << 14) | (mask_m[9] << 12)
2138 		| (mask_m[10] << 10) | (mask_m[11] << 8)
2139 		| (mask_m[12] << 6) | (mask_m[13] << 4)
2140 		| (mask_m[14] << 2) | (mask_m[15] << 0);
2141 	REG_WRITE(ah, AR_PHY_MASK_CTL, tmp_mask);
2142 	REG_WRITE(ah, AR_PHY_MASK2_M_00_15, tmp_mask);
2143 
2144 	tmp_mask = (mask_p[15] << 28)
2145 		| (mask_p[14] << 26) | (mask_p[13] << 24)
2146 		| (mask_p[12] << 22) | (mask_p[11] << 20)
2147 		| (mask_p[10] << 18) | (mask_p[9] << 16)
2148 		| (mask_p[8] << 14) | (mask_p[7] << 12)
2149 		| (mask_p[6] << 10) | (mask_p[5] << 8)
2150 		| (mask_p[4] << 6) | (mask_p[3] << 4)
2151 		| (mask_p[2] << 2) | (mask_p[1] << 0);
2152 	REG_WRITE(ah, AR_PHY_BIN_MASK2_1, tmp_mask);
2153 	REG_WRITE(ah, AR_PHY_MASK2_P_15_01, tmp_mask);
2154 
2155 	tmp_mask = (mask_p[30] << 28)
2156 		| (mask_p[29] << 26) | (mask_p[28] << 24)
2157 		| (mask_p[27] << 22) | (mask_p[26] << 20)
2158 		| (mask_p[25] << 18) | (mask_p[24] << 16)
2159 		| (mask_p[23] << 14) | (mask_p[22] << 12)
2160 		| (mask_p[21] << 10) | (mask_p[20] << 8)
2161 		| (mask_p[19] << 6) | (mask_p[18] << 4)
2162 		| (mask_p[17] << 2) | (mask_p[16] << 0);
2163 	REG_WRITE(ah, AR_PHY_BIN_MASK2_2, tmp_mask);
2164 	REG_WRITE(ah, AR_PHY_MASK2_P_30_16, tmp_mask);
2165 
2166 	tmp_mask = (mask_p[45] << 28)
2167 		| (mask_p[44] << 26) | (mask_p[43] << 24)
2168 		| (mask_p[42] << 22) | (mask_p[41] << 20)
2169 		| (mask_p[40] << 18) | (mask_p[39] << 16)
2170 		| (mask_p[38] << 14) | (mask_p[37] << 12)
2171 		| (mask_p[36] << 10) | (mask_p[35] << 8)
2172 		| (mask_p[34] << 6) | (mask_p[33] << 4)
2173 		| (mask_p[32] << 2) | (mask_p[31] << 0);
2174 	REG_WRITE(ah, AR_PHY_BIN_MASK2_3, tmp_mask);
2175 	REG_WRITE(ah, AR_PHY_MASK2_P_45_31, tmp_mask);
2176 
2177 	tmp_mask = (mask_p[61] << 30) | (mask_p[60] << 28)
2178 		| (mask_p[59] << 26) | (mask_p[58] << 24)
2179 		| (mask_p[57] << 22) | (mask_p[56] << 20)
2180 		| (mask_p[55] << 18) | (mask_p[54] << 16)
2181 		| (mask_p[53] << 14) | (mask_p[52] << 12)
2182 		| (mask_p[51] << 10) | (mask_p[50] << 8)
2183 		| (mask_p[49] << 6) | (mask_p[48] << 4)
2184 		| (mask_p[47] << 2) | (mask_p[46] << 0);
2185 	REG_WRITE(ah, AR_PHY_BIN_MASK2_4, tmp_mask);
2186 	REG_WRITE(ah, AR_PHY_MASK2_P_61_45, tmp_mask);
2187 }
2188 
2189 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
2190 		    bool bChannelChange)
2191 {
2192 	u32 saveLedState;
2193 	struct ath_softc *sc = ah->ah_sc;
2194 	struct ath9k_channel *curchan = ah->curchan;
2195 	u32 saveDefAntenna;
2196 	u32 macStaId1;
2197 	int i, rx_chainmask, r;
2198 
2199 	ah->extprotspacing = sc->ht_extprotspacing;
2200 	ah->txchainmask = sc->tx_chainmask;
2201 	ah->rxchainmask = sc->rx_chainmask;
2202 
2203 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2204 		return -EIO;
2205 
2206 	if (curchan)
2207 		ath9k_hw_getnf(ah, curchan);
2208 
2209 	if (bChannelChange &&
2210 	    (ah->chip_fullsleep != true) &&
2211 	    (ah->curchan != NULL) &&
2212 	    (chan->channel != ah->curchan->channel) &&
2213 	    ((chan->channelFlags & CHANNEL_ALL) ==
2214 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
2215 	    (!AR_SREV_9280(ah) || (!IS_CHAN_A_5MHZ_SPACED(chan) &&
2216 				   !IS_CHAN_A_5MHZ_SPACED(ah->curchan)))) {
2217 
2218 		if (ath9k_hw_channel_change(ah, chan, sc->tx_chan_width)) {
2219 			ath9k_hw_loadnf(ah, ah->curchan);
2220 			ath9k_hw_start_nfcal(ah);
2221 			return 0;
2222 		}
2223 	}
2224 
2225 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
2226 	if (saveDefAntenna == 0)
2227 		saveDefAntenna = 1;
2228 
2229 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
2230 
2231 	saveLedState = REG_READ(ah, AR_CFG_LED) &
2232 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
2233 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
2234 
2235 	ath9k_hw_mark_phy_inactive(ah);
2236 
2237 	if (!ath9k_hw_chip_reset(ah, chan)) {
2238 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Chip reset failed\n");
2239 		return -EINVAL;
2240 	}
2241 
2242 	if (AR_SREV_9280_10_OR_LATER(ah))
2243 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2244 
2245 	r = ath9k_hw_process_ini(ah, chan, sc->tx_chan_width);
2246 	if (r)
2247 		return r;
2248 
2249 	/* Setup MFP options for CCMP */
2250 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2251 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2252 		 * frames when constructing CCMP AAD. */
2253 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2254 			      0xc7ff);
2255 		ah->sw_mgmt_crypto = false;
2256 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2257 		/* Disable hardware crypto for management frames */
2258 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2259 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2260 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2261 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2262 		ah->sw_mgmt_crypto = true;
2263 	} else
2264 		ah->sw_mgmt_crypto = true;
2265 
2266 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2267 		ath9k_hw_set_delta_slope(ah, chan);
2268 
2269 	if (AR_SREV_9280_10_OR_LATER(ah))
2270 		ath9k_hw_9280_spur_mitigate(ah, chan);
2271 	else
2272 		ath9k_hw_spur_mitigate(ah, chan);
2273 
2274 	ah->eep_ops->set_board_values(ah, chan);
2275 
2276 	ath9k_hw_decrease_chain_power(ah, chan);
2277 
2278 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(ah->macaddr));
2279 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(ah->macaddr + 4)
2280 		  | macStaId1
2281 		  | AR_STA_ID1_RTS_USE_DEF
2282 		  | (ah->config.
2283 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2284 		  | ah->sta_id1_defaults);
2285 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2286 
2287 	REG_WRITE(ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
2288 	REG_WRITE(ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
2289 
2290 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2291 
2292 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
2293 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
2294 		  ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2295 
2296 	REG_WRITE(ah, AR_ISR, ~0);
2297 
2298 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2299 
2300 	if (AR_SREV_9280_10_OR_LATER(ah))
2301 		ath9k_hw_ar9280_set_channel(ah, chan);
2302 	else
2303 		if (!(ath9k_hw_set_channel(ah, chan)))
2304 			return -EIO;
2305 
2306 	for (i = 0; i < AR_NUM_DCU; i++)
2307 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2308 
2309 	ah->intr_txqs = 0;
2310 	for (i = 0; i < ah->caps.total_queues; i++)
2311 		ath9k_hw_resettxqueue(ah, i);
2312 
2313 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2314 	ath9k_hw_init_qos(ah);
2315 
2316 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2317 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2318 		ath9k_enable_rfkill(ah);
2319 #endif
2320 	ath9k_hw_init_user_settings(ah);
2321 
2322 	REG_WRITE(ah, AR_STA_ID1,
2323 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2324 
2325 	ath9k_hw_set_dma(ah);
2326 
2327 	REG_WRITE(ah, AR_OBS, 8);
2328 
2329 	if (ah->config.intr_mitigation) {
2330 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2331 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2332 	}
2333 
2334 	ath9k_hw_init_bb(ah, chan);
2335 
2336 	if (!ath9k_hw_init_cal(ah, chan))
2337 		return -EIO;;
2338 
2339 	rx_chainmask = ah->rxchainmask;
2340 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2341 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2342 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2343 	}
2344 
2345 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2346 
2347 	if (AR_SREV_9100(ah)) {
2348 		u32 mask;
2349 		mask = REG_READ(ah, AR_CFG);
2350 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2351 			DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2352 				"CFG Byte Swap Set 0x%x\n", mask);
2353 		} else {
2354 			mask =
2355 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2356 			REG_WRITE(ah, AR_CFG, mask);
2357 			DPRINTF(ah->ah_sc, ATH_DBG_RESET,
2358 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2359 		}
2360 	} else {
2361 #ifdef __BIG_ENDIAN
2362 		REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2363 #endif
2364 	}
2365 
2366 	return 0;
2367 }
2368 
2369 /************************/
2370 /* Key Cache Management */
2371 /************************/
2372 
2373 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2374 {
2375 	u32 keyType;
2376 
2377 	if (entry >= ah->caps.keycache_size) {
2378 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2379 			"keychache entry %u out of range\n", entry);
2380 		return false;
2381 	}
2382 
2383 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2384 
2385 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2386 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2387 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2388 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2389 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2390 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2391 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2392 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2393 
2394 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2395 		u16 micentry = entry + 64;
2396 
2397 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2398 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2399 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2400 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2401 
2402 	}
2403 
2404 	if (ah->curchan == NULL)
2405 		return true;
2406 
2407 	return true;
2408 }
2409 
2410 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2411 {
2412 	u32 macHi, macLo;
2413 
2414 	if (entry >= ah->caps.keycache_size) {
2415 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2416 			"keychache entry %u out of range\n", entry);
2417 		return false;
2418 	}
2419 
2420 	if (mac != NULL) {
2421 		macHi = (mac[5] << 8) | mac[4];
2422 		macLo = (mac[3] << 24) |
2423 			(mac[2] << 16) |
2424 			(mac[1] << 8) |
2425 			mac[0];
2426 		macLo >>= 1;
2427 		macLo |= (macHi & 1) << 31;
2428 		macHi >>= 1;
2429 	} else {
2430 		macLo = macHi = 0;
2431 	}
2432 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2433 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2434 
2435 	return true;
2436 }
2437 
2438 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2439 				 const struct ath9k_keyval *k,
2440 				 const u8 *mac)
2441 {
2442 	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2443 	u32 key0, key1, key2, key3, key4;
2444 	u32 keyType;
2445 
2446 	if (entry >= pCap->keycache_size) {
2447 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2448 			"keycache entry %u out of range\n", entry);
2449 		return false;
2450 	}
2451 
2452 	switch (k->kv_type) {
2453 	case ATH9K_CIPHER_AES_OCB:
2454 		keyType = AR_KEYTABLE_TYPE_AES;
2455 		break;
2456 	case ATH9K_CIPHER_AES_CCM:
2457 		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2458 			DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2459 				"AES-CCM not supported by mac rev 0x%x\n",
2460 				ah->hw_version.macRev);
2461 			return false;
2462 		}
2463 		keyType = AR_KEYTABLE_TYPE_CCM;
2464 		break;
2465 	case ATH9K_CIPHER_TKIP:
2466 		keyType = AR_KEYTABLE_TYPE_TKIP;
2467 		if (ATH9K_IS_MIC_ENABLED(ah)
2468 		    && entry + 64 >= pCap->keycache_size) {
2469 			DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2470 				"entry %u inappropriate for TKIP\n", entry);
2471 			return false;
2472 		}
2473 		break;
2474 	case ATH9K_CIPHER_WEP:
2475 		if (k->kv_len < LEN_WEP40) {
2476 			DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2477 				"WEP key length %u too small\n", k->kv_len);
2478 			return false;
2479 		}
2480 		if (k->kv_len <= LEN_WEP40)
2481 			keyType = AR_KEYTABLE_TYPE_40;
2482 		else if (k->kv_len <= LEN_WEP104)
2483 			keyType = AR_KEYTABLE_TYPE_104;
2484 		else
2485 			keyType = AR_KEYTABLE_TYPE_128;
2486 		break;
2487 	case ATH9K_CIPHER_CLR:
2488 		keyType = AR_KEYTABLE_TYPE_CLR;
2489 		break;
2490 	default:
2491 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2492 			"cipher %u not supported\n", k->kv_type);
2493 		return false;
2494 	}
2495 
2496 	key0 = get_unaligned_le32(k->kv_val + 0);
2497 	key1 = get_unaligned_le16(k->kv_val + 4);
2498 	key2 = get_unaligned_le32(k->kv_val + 6);
2499 	key3 = get_unaligned_le16(k->kv_val + 10);
2500 	key4 = get_unaligned_le32(k->kv_val + 12);
2501 	if (k->kv_len <= LEN_WEP104)
2502 		key4 &= 0xff;
2503 
2504 	/*
2505 	 * Note: Key cache registers access special memory area that requires
2506 	 * two 32-bit writes to actually update the values in the internal
2507 	 * memory. Consequently, the exact order and pairs used here must be
2508 	 * maintained.
2509 	 */
2510 
2511 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2512 		u16 micentry = entry + 64;
2513 
2514 		/*
2515 		 * Write inverted key[47:0] first to avoid Michael MIC errors
2516 		 * on frames that could be sent or received at the same time.
2517 		 * The correct key will be written in the end once everything
2518 		 * else is ready.
2519 		 */
2520 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2521 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2522 
2523 		/* Write key[95:48] */
2524 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2525 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2526 
2527 		/* Write key[127:96] and key type */
2528 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2529 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2530 
2531 		/* Write MAC address for the entry */
2532 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2533 
2534 		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2535 			/*
2536 			 * TKIP uses two key cache entries:
2537 			 * Michael MIC TX/RX keys in the same key cache entry
2538 			 * (idx = main index + 64):
2539 			 * key0 [31:0] = RX key [31:0]
2540 			 * key1 [15:0] = TX key [31:16]
2541 			 * key1 [31:16] = reserved
2542 			 * key2 [31:0] = RX key [63:32]
2543 			 * key3 [15:0] = TX key [15:0]
2544 			 * key3 [31:16] = reserved
2545 			 * key4 [31:0] = TX key [63:32]
2546 			 */
2547 			u32 mic0, mic1, mic2, mic3, mic4;
2548 
2549 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2550 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2551 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2552 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2553 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2554 
2555 			/* Write RX[31:0] and TX[31:16] */
2556 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2557 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2558 
2559 			/* Write RX[63:32] and TX[15:0] */
2560 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2561 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2562 
2563 			/* Write TX[63:32] and keyType(reserved) */
2564 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2565 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2566 				  AR_KEYTABLE_TYPE_CLR);
2567 
2568 		} else {
2569 			/*
2570 			 * TKIP uses four key cache entries (two for group
2571 			 * keys):
2572 			 * Michael MIC TX/RX keys are in different key cache
2573 			 * entries (idx = main index + 64 for TX and
2574 			 * main index + 32 + 96 for RX):
2575 			 * key0 [31:0] = TX/RX MIC key [31:0]
2576 			 * key1 [31:0] = reserved
2577 			 * key2 [31:0] = TX/RX MIC key [63:32]
2578 			 * key3 [31:0] = reserved
2579 			 * key4 [31:0] = reserved
2580 			 *
2581 			 * Upper layer code will call this function separately
2582 			 * for TX and RX keys when these registers offsets are
2583 			 * used.
2584 			 */
2585 			u32 mic0, mic2;
2586 
2587 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2588 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2589 
2590 			/* Write MIC key[31:0] */
2591 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2592 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2593 
2594 			/* Write MIC key[63:32] */
2595 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2596 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2597 
2598 			/* Write TX[63:32] and keyType(reserved) */
2599 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2600 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2601 				  AR_KEYTABLE_TYPE_CLR);
2602 		}
2603 
2604 		/* MAC address registers are reserved for the MIC entry */
2605 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2606 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2607 
2608 		/*
2609 		 * Write the correct (un-inverted) key[47:0] last to enable
2610 		 * TKIP now that all other registers are set with correct
2611 		 * values.
2612 		 */
2613 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2614 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2615 	} else {
2616 		/* Write key[47:0] */
2617 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2618 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2619 
2620 		/* Write key[95:48] */
2621 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2622 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2623 
2624 		/* Write key[127:96] and key type */
2625 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2626 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2627 
2628 		/* Write MAC address for the entry */
2629 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2630 	}
2631 
2632 	return true;
2633 }
2634 
2635 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2636 {
2637 	if (entry < ah->caps.keycache_size) {
2638 		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2639 		if (val & AR_KEYTABLE_VALID)
2640 			return true;
2641 	}
2642 	return false;
2643 }
2644 
2645 /******************************/
2646 /* Power Management (Chipset) */
2647 /******************************/
2648 
2649 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2650 {
2651 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2652 	if (setChip) {
2653 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2654 			    AR_RTC_FORCE_WAKE_EN);
2655 		if (!AR_SREV_9100(ah))
2656 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2657 
2658 		REG_CLR_BIT(ah, (AR_RTC_RESET),
2659 			    AR_RTC_RESET_EN);
2660 	}
2661 }
2662 
2663 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2664 {
2665 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2666 	if (setChip) {
2667 		struct ath9k_hw_capabilities *pCap = &ah->caps;
2668 
2669 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2670 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2671 				  AR_RTC_FORCE_WAKE_ON_INT);
2672 		} else {
2673 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2674 				    AR_RTC_FORCE_WAKE_EN);
2675 		}
2676 	}
2677 }
2678 
2679 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2680 {
2681 	u32 val;
2682 	int i;
2683 
2684 	if (setChip) {
2685 		if ((REG_READ(ah, AR_RTC_STATUS) &
2686 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2687 			if (ath9k_hw_set_reset_reg(ah,
2688 					   ATH9K_RESET_POWER_ON) != true) {
2689 				return false;
2690 			}
2691 		}
2692 		if (AR_SREV_9100(ah))
2693 			REG_SET_BIT(ah, AR_RTC_RESET,
2694 				    AR_RTC_RESET_EN);
2695 
2696 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2697 			    AR_RTC_FORCE_WAKE_EN);
2698 		udelay(50);
2699 
2700 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2701 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2702 			if (val == AR_RTC_STATUS_ON)
2703 				break;
2704 			udelay(50);
2705 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2706 				    AR_RTC_FORCE_WAKE_EN);
2707 		}
2708 		if (i == 0) {
2709 			DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2710 				"Failed to wakeup in %uus\n", POWER_UP_TIME / 20);
2711 			return false;
2712 		}
2713 	}
2714 
2715 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2716 
2717 	return true;
2718 }
2719 
2720 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2721 {
2722 	int status = true, setChip = true;
2723 	static const char *modes[] = {
2724 		"AWAKE",
2725 		"FULL-SLEEP",
2726 		"NETWORK SLEEP",
2727 		"UNDEFINED"
2728 	};
2729 
2730 	DPRINTF(ah->ah_sc, ATH_DBG_RESET, "%s -> %s\n",
2731 		modes[ah->power_mode], modes[mode]);
2732 
2733 	switch (mode) {
2734 	case ATH9K_PM_AWAKE:
2735 		status = ath9k_hw_set_power_awake(ah, setChip);
2736 		break;
2737 	case ATH9K_PM_FULL_SLEEP:
2738 		ath9k_set_power_sleep(ah, setChip);
2739 		ah->chip_fullsleep = true;
2740 		break;
2741 	case ATH9K_PM_NETWORK_SLEEP:
2742 		ath9k_set_power_network_sleep(ah, setChip);
2743 		break;
2744 	default:
2745 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
2746 			"Unknown power mode %u\n", mode);
2747 		return false;
2748 	}
2749 	ah->power_mode = mode;
2750 
2751 	return status;
2752 }
2753 
2754 /*
2755  * Helper for ASPM support.
2756  *
2757  * Disable PLL when in L0s as well as receiver clock when in L1.
2758  * This power saving option must be enabled through the SerDes.
2759  *
2760  * Programming the SerDes must go through the same 288 bit serial shift
2761  * register as the other analog registers.  Hence the 9 writes.
2762  */
2763 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore)
2764 {
2765 	u8 i;
2766 
2767 	if (ah->is_pciexpress != true)
2768 		return;
2769 
2770 	/* Do not touch SerDes registers */
2771 	if (ah->config.pcie_powersave_enable == 2)
2772 		return;
2773 
2774 	/* Nothing to do on restore for 11N */
2775 	if (restore)
2776 		return;
2777 
2778 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2779 		/*
2780 		 * AR9280 2.0 or later chips use SerDes values from the
2781 		 * initvals.h initialized depending on chipset during
2782 		 * ath9k_hw_do_attach()
2783 		 */
2784 		for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2785 			REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2786 				  INI_RA(&ah->iniPcieSerdes, i, 1));
2787 		}
2788 	} else if (AR_SREV_9280(ah) &&
2789 		   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2790 		REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2791 		REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2792 
2793 		/* RX shut off when elecidle is asserted */
2794 		REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2795 		REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2796 		REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2797 
2798 		/* Shut off CLKREQ active in L1 */
2799 		if (ah->config.pcie_clock_req)
2800 			REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2801 		else
2802 			REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2803 
2804 		REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2805 		REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2806 		REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2807 
2808 		/* Load the new settings */
2809 		REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2810 
2811 	} else {
2812 		REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2813 		REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2814 
2815 		/* RX shut off when elecidle is asserted */
2816 		REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2817 		REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2818 		REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2819 
2820 		/*
2821 		 * Ignore ah->ah_config.pcie_clock_req setting for
2822 		 * pre-AR9280 11n
2823 		 */
2824 		REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2825 
2826 		REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2827 		REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2828 		REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2829 
2830 		/* Load the new settings */
2831 		REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2832 	}
2833 
2834 	udelay(1000);
2835 
2836 	/* set bit 19 to allow forcing of pcie core into L1 state */
2837 	REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2838 
2839 	/* Several PCIe massages to ensure proper behaviour */
2840 	if (ah->config.pcie_waen) {
2841 		REG_WRITE(ah, AR_WA, ah->config.pcie_waen);
2842 	} else {
2843 		if (AR_SREV_9285(ah))
2844 			REG_WRITE(ah, AR_WA, AR9285_WA_DEFAULT);
2845 		/*
2846 		 * On AR9280 chips bit 22 of 0x4004 needs to be set to
2847 		 * otherwise card may disappear.
2848 		 */
2849 		else if (AR_SREV_9280(ah))
2850 			REG_WRITE(ah, AR_WA, AR9280_WA_DEFAULT);
2851 		else
2852 			REG_WRITE(ah, AR_WA, AR_WA_DEFAULT);
2853 	}
2854 }
2855 
2856 /**********************/
2857 /* Interrupt Handling */
2858 /**********************/
2859 
2860 bool ath9k_hw_intrpend(struct ath_hw *ah)
2861 {
2862 	u32 host_isr;
2863 
2864 	if (AR_SREV_9100(ah))
2865 		return true;
2866 
2867 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2868 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2869 		return true;
2870 
2871 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2872 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
2873 	    && (host_isr != AR_INTR_SPURIOUS))
2874 		return true;
2875 
2876 	return false;
2877 }
2878 
2879 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2880 {
2881 	u32 isr = 0;
2882 	u32 mask2 = 0;
2883 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2884 	u32 sync_cause = 0;
2885 	bool fatal_int = false;
2886 
2887 	if (!AR_SREV_9100(ah)) {
2888 		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2889 			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2890 			    == AR_RTC_STATUS_ON) {
2891 				isr = REG_READ(ah, AR_ISR);
2892 			}
2893 		}
2894 
2895 		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2896 			AR_INTR_SYNC_DEFAULT;
2897 
2898 		*masked = 0;
2899 
2900 		if (!isr && !sync_cause)
2901 			return false;
2902 	} else {
2903 		*masked = 0;
2904 		isr = REG_READ(ah, AR_ISR);
2905 	}
2906 
2907 	if (isr) {
2908 		if (isr & AR_ISR_BCNMISC) {
2909 			u32 isr2;
2910 			isr2 = REG_READ(ah, AR_ISR_S2);
2911 			if (isr2 & AR_ISR_S2_TIM)
2912 				mask2 |= ATH9K_INT_TIM;
2913 			if (isr2 & AR_ISR_S2_DTIM)
2914 				mask2 |= ATH9K_INT_DTIM;
2915 			if (isr2 & AR_ISR_S2_DTIMSYNC)
2916 				mask2 |= ATH9K_INT_DTIMSYNC;
2917 			if (isr2 & (AR_ISR_S2_CABEND))
2918 				mask2 |= ATH9K_INT_CABEND;
2919 			if (isr2 & AR_ISR_S2_GTT)
2920 				mask2 |= ATH9K_INT_GTT;
2921 			if (isr2 & AR_ISR_S2_CST)
2922 				mask2 |= ATH9K_INT_CST;
2923 			if (isr2 & AR_ISR_S2_TSFOOR)
2924 				mask2 |= ATH9K_INT_TSFOOR;
2925 		}
2926 
2927 		isr = REG_READ(ah, AR_ISR_RAC);
2928 		if (isr == 0xffffffff) {
2929 			*masked = 0;
2930 			return false;
2931 		}
2932 
2933 		*masked = isr & ATH9K_INT_COMMON;
2934 
2935 		if (ah->config.intr_mitigation) {
2936 			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2937 				*masked |= ATH9K_INT_RX;
2938 		}
2939 
2940 		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2941 			*masked |= ATH9K_INT_RX;
2942 		if (isr &
2943 		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2944 		     AR_ISR_TXEOL)) {
2945 			u32 s0_s, s1_s;
2946 
2947 			*masked |= ATH9K_INT_TX;
2948 
2949 			s0_s = REG_READ(ah, AR_ISR_S0_S);
2950 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2951 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2952 
2953 			s1_s = REG_READ(ah, AR_ISR_S1_S);
2954 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2955 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2956 		}
2957 
2958 		if (isr & AR_ISR_RXORN) {
2959 			DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2960 				"receive FIFO overrun interrupt\n");
2961 		}
2962 
2963 		if (!AR_SREV_9100(ah)) {
2964 			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2965 				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2966 				if (isr5 & AR_ISR_S5_TIM_TIMER)
2967 					*masked |= ATH9K_INT_TIM_TIMER;
2968 			}
2969 		}
2970 
2971 		*masked |= mask2;
2972 	}
2973 
2974 	if (AR_SREV_9100(ah))
2975 		return true;
2976 
2977 	if (sync_cause) {
2978 		fatal_int =
2979 			(sync_cause &
2980 			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2981 			? true : false;
2982 
2983 		if (fatal_int) {
2984 			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2985 				DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2986 					"received PCI FATAL interrupt\n");
2987 			}
2988 			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2989 				DPRINTF(ah->ah_sc, ATH_DBG_ANY,
2990 					"received PCI PERR interrupt\n");
2991 			}
2992 			*masked |= ATH9K_INT_FATAL;
2993 		}
2994 		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2995 			DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
2996 				"AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2997 			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2998 			REG_WRITE(ah, AR_RC, 0);
2999 			*masked |= ATH9K_INT_FATAL;
3000 		}
3001 		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
3002 			DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT,
3003 				"AR_INTR_SYNC_LOCAL_TIMEOUT\n");
3004 		}
3005 
3006 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
3007 		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
3008 	}
3009 
3010 	return true;
3011 }
3012 
3013 enum ath9k_int ath9k_hw_intrget(struct ath_hw *ah)
3014 {
3015 	return ah->mask_reg;
3016 }
3017 
3018 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
3019 {
3020 	u32 omask = ah->mask_reg;
3021 	u32 mask, mask2;
3022 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3023 
3024 	DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
3025 
3026 	if (omask & ATH9K_INT_GLOBAL) {
3027 		DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "disable IER\n");
3028 		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
3029 		(void) REG_READ(ah, AR_IER);
3030 		if (!AR_SREV_9100(ah)) {
3031 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
3032 			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
3033 
3034 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
3035 			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
3036 		}
3037 	}
3038 
3039 	mask = ints & ATH9K_INT_COMMON;
3040 	mask2 = 0;
3041 
3042 	if (ints & ATH9K_INT_TX) {
3043 		if (ah->txok_interrupt_mask)
3044 			mask |= AR_IMR_TXOK;
3045 		if (ah->txdesc_interrupt_mask)
3046 			mask |= AR_IMR_TXDESC;
3047 		if (ah->txerr_interrupt_mask)
3048 			mask |= AR_IMR_TXERR;
3049 		if (ah->txeol_interrupt_mask)
3050 			mask |= AR_IMR_TXEOL;
3051 	}
3052 	if (ints & ATH9K_INT_RX) {
3053 		mask |= AR_IMR_RXERR;
3054 		if (ah->config.intr_mitigation)
3055 			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
3056 		else
3057 			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
3058 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
3059 			mask |= AR_IMR_GENTMR;
3060 	}
3061 
3062 	if (ints & (ATH9K_INT_BMISC)) {
3063 		mask |= AR_IMR_BCNMISC;
3064 		if (ints & ATH9K_INT_TIM)
3065 			mask2 |= AR_IMR_S2_TIM;
3066 		if (ints & ATH9K_INT_DTIM)
3067 			mask2 |= AR_IMR_S2_DTIM;
3068 		if (ints & ATH9K_INT_DTIMSYNC)
3069 			mask2 |= AR_IMR_S2_DTIMSYNC;
3070 		if (ints & ATH9K_INT_CABEND)
3071 			mask2 |= AR_IMR_S2_CABEND;
3072 		if (ints & ATH9K_INT_TSFOOR)
3073 			mask2 |= AR_IMR_S2_TSFOOR;
3074 	}
3075 
3076 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
3077 		mask |= AR_IMR_BCNMISC;
3078 		if (ints & ATH9K_INT_GTT)
3079 			mask2 |= AR_IMR_S2_GTT;
3080 		if (ints & ATH9K_INT_CST)
3081 			mask2 |= AR_IMR_S2_CST;
3082 	}
3083 
3084 	DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
3085 	REG_WRITE(ah, AR_IMR, mask);
3086 	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
3087 					   AR_IMR_S2_DTIM |
3088 					   AR_IMR_S2_DTIMSYNC |
3089 					   AR_IMR_S2_CABEND |
3090 					   AR_IMR_S2_CABTO |
3091 					   AR_IMR_S2_TSFOOR |
3092 					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
3093 	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
3094 	ah->mask_reg = ints;
3095 
3096 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
3097 		if (ints & ATH9K_INT_TIM_TIMER)
3098 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3099 		else
3100 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
3101 	}
3102 
3103 	if (ints & ATH9K_INT_GLOBAL) {
3104 		DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "enable IER\n");
3105 		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
3106 		if (!AR_SREV_9100(ah)) {
3107 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
3108 				  AR_INTR_MAC_IRQ);
3109 			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
3110 
3111 
3112 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
3113 				  AR_INTR_SYNC_DEFAULT);
3114 			REG_WRITE(ah, AR_INTR_SYNC_MASK,
3115 				  AR_INTR_SYNC_DEFAULT);
3116 		}
3117 		DPRINTF(ah->ah_sc, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
3118 			 REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
3119 	}
3120 
3121 	return omask;
3122 }
3123 
3124 /*******************/
3125 /* Beacon Handling */
3126 /*******************/
3127 
3128 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
3129 {
3130 	int flags = 0;
3131 
3132 	ah->beacon_interval = beacon_period;
3133 
3134 	switch (ah->opmode) {
3135 	case NL80211_IFTYPE_STATION:
3136 	case NL80211_IFTYPE_MONITOR:
3137 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3138 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3139 		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3140 		flags |= AR_TBTT_TIMER_EN;
3141 		break;
3142 	case NL80211_IFTYPE_ADHOC:
3143 	case NL80211_IFTYPE_MESH_POINT:
3144 		REG_SET_BIT(ah, AR_TXCFG,
3145 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3146 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3147 			  TU_TO_USEC(next_beacon +
3148 				     (ah->atim_window ? ah->
3149 				      atim_window : 1)));
3150 		flags |= AR_NDP_TIMER_EN;
3151 	case NL80211_IFTYPE_AP:
3152 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3153 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3154 			  TU_TO_USEC(next_beacon -
3155 				     ah->config.
3156 				     dma_beacon_response_time));
3157 		REG_WRITE(ah, AR_NEXT_SWBA,
3158 			  TU_TO_USEC(next_beacon -
3159 				     ah->config.
3160 				     sw_beacon_response_time));
3161 		flags |=
3162 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3163 		break;
3164 	default:
3165 		DPRINTF(ah->ah_sc, ATH_DBG_BEACON,
3166 			"%s: unsupported opmode: %d\n",
3167 			__func__, ah->opmode);
3168 		return;
3169 		break;
3170 	}
3171 
3172 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3173 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3174 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3175 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3176 
3177 	beacon_period &= ~ATH9K_BEACON_ENA;
3178 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3179 		beacon_period &= ~ATH9K_BEACON_RESET_TSF;
3180 		ath9k_hw_reset_tsf(ah);
3181 	}
3182 
3183 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3184 }
3185 
3186 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3187 				    const struct ath9k_beacon_state *bs)
3188 {
3189 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3190 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3191 
3192 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3193 
3194 	REG_WRITE(ah, AR_BEACON_PERIOD,
3195 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3196 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3197 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3198 
3199 	REG_RMW_FIELD(ah, AR_RSSI_THR,
3200 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3201 
3202 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3203 
3204 	if (bs->bs_sleepduration > beaconintval)
3205 		beaconintval = bs->bs_sleepduration;
3206 
3207 	dtimperiod = bs->bs_dtimperiod;
3208 	if (bs->bs_sleepduration > dtimperiod)
3209 		dtimperiod = bs->bs_sleepduration;
3210 
3211 	if (beaconintval == dtimperiod)
3212 		nextTbtt = bs->bs_nextdtim;
3213 	else
3214 		nextTbtt = bs->bs_nexttbtt;
3215 
3216 	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3217 	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3218 	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3219 	DPRINTF(ah->ah_sc, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3220 
3221 	REG_WRITE(ah, AR_NEXT_DTIM,
3222 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3223 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3224 
3225 	REG_WRITE(ah, AR_SLEEP1,
3226 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3227 		  | AR_SLEEP1_ASSUME_DTIM);
3228 
3229 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3230 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3231 	else
3232 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3233 
3234 	REG_WRITE(ah, AR_SLEEP2,
3235 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3236 
3237 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3238 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3239 
3240 	REG_SET_BIT(ah, AR_TIMER_MODE,
3241 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3242 		    AR_DTIM_TIMER_EN);
3243 
3244 	/* TSF Out of Range Threshold */
3245 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3246 }
3247 
3248 /*******************/
3249 /* HW Capabilities */
3250 /*******************/
3251 
3252 void ath9k_hw_fill_cap_info(struct ath_hw *ah)
3253 {
3254 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3255 	u16 capField = 0, eeval;
3256 
3257 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3258 	ah->regulatory.current_rd = eeval;
3259 
3260 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3261 	if (AR_SREV_9285_10_OR_LATER(ah))
3262 		eeval |= AR9285_RDEXT_DEFAULT;
3263 	ah->regulatory.current_rd_ext = eeval;
3264 
3265 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3266 
3267 	if (ah->opmode != NL80211_IFTYPE_AP &&
3268 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3269 		if (ah->regulatory.current_rd == 0x64 ||
3270 		    ah->regulatory.current_rd == 0x65)
3271 			ah->regulatory.current_rd += 5;
3272 		else if (ah->regulatory.current_rd == 0x41)
3273 			ah->regulatory.current_rd = 0x43;
3274 		DPRINTF(ah->ah_sc, ATH_DBG_REGULATORY,
3275 			"regdomain mapped to 0x%x\n", ah->regulatory.current_rd);
3276 	}
3277 
3278 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3279 	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3280 
3281 	if (eeval & AR5416_OPFLAGS_11A) {
3282 		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3283 		if (ah->config.ht_enable) {
3284 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3285 				set_bit(ATH9K_MODE_11NA_HT20,
3286 					pCap->wireless_modes);
3287 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3288 				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3289 					pCap->wireless_modes);
3290 				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3291 					pCap->wireless_modes);
3292 			}
3293 		}
3294 	}
3295 
3296 	if (eeval & AR5416_OPFLAGS_11G) {
3297 		set_bit(ATH9K_MODE_11B, pCap->wireless_modes);
3298 		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3299 		if (ah->config.ht_enable) {
3300 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3301 				set_bit(ATH9K_MODE_11NG_HT20,
3302 					pCap->wireless_modes);
3303 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3304 				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3305 					pCap->wireless_modes);
3306 				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3307 					pCap->wireless_modes);
3308 			}
3309 		}
3310 	}
3311 
3312 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3313 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3314 	    !(eeval & AR5416_OPFLAGS_11A))
3315 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3316 	else
3317 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3318 
3319 	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3320 		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3321 
3322 	pCap->low_2ghz_chan = 2312;
3323 	pCap->high_2ghz_chan = 2732;
3324 
3325 	pCap->low_5ghz_chan = 4920;
3326 	pCap->high_5ghz_chan = 6100;
3327 
3328 	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3329 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3330 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3331 
3332 	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3333 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3334 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3335 
3336 	if (ah->config.ht_enable)
3337 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3338 	else
3339 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3340 
3341 	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3342 	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3343 	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3344 	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3345 
3346 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3347 		pCap->total_queues =
3348 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3349 	else
3350 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3351 
3352 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3353 		pCap->keycache_size =
3354 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3355 	else
3356 		pCap->keycache_size = AR_KEYTABLE_SIZE;
3357 
3358 	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3359 	pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3360 
3361 	if (AR_SREV_9285_10_OR_LATER(ah))
3362 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3363 	else if (AR_SREV_9280_10_OR_LATER(ah))
3364 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3365 	else
3366 		pCap->num_gpio_pins = AR_NUM_GPIO;
3367 
3368 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3369 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3370 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3371 	} else {
3372 		pCap->rts_aggr_limit = (8 * 1024);
3373 	}
3374 
3375 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3376 
3377 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3378 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3379 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3380 		ah->rfkill_gpio =
3381 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3382 		ah->rfkill_polarity =
3383 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3384 
3385 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3386 	}
3387 #endif
3388 
3389 	if ((ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI) ||
3390 	    (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) ||
3391 	    (ah->hw_version.macVersion == AR_SREV_VERSION_9160) ||
3392 	    (ah->hw_version.macVersion == AR_SREV_VERSION_9100) ||
3393 	    (ah->hw_version.macVersion == AR_SREV_VERSION_9280) ||
3394 	    (ah->hw_version.macVersion == AR_SREV_VERSION_9285))
3395 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3396 	else
3397 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
3398 
3399 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3400 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3401 	else
3402 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3403 
3404 	if (ah->regulatory.current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3405 		pCap->reg_cap =
3406 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3407 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3408 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3409 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3410 	} else {
3411 		pCap->reg_cap =
3412 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3413 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3414 	}
3415 
3416 	pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3417 
3418 	pCap->num_antcfg_5ghz =
3419 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3420 	pCap->num_antcfg_2ghz =
3421 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3422 
3423 	if (AR_SREV_9280_10_OR_LATER(ah) && btcoex_enable) {
3424 		pCap->hw_caps |= ATH9K_HW_CAP_BT_COEX;
3425 		ah->btactive_gpio = 6;
3426 		ah->wlanactive_gpio = 5;
3427 	}
3428 }
3429 
3430 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3431 			    u32 capability, u32 *result)
3432 {
3433 	switch (type) {
3434 	case ATH9K_CAP_CIPHER:
3435 		switch (capability) {
3436 		case ATH9K_CIPHER_AES_CCM:
3437 		case ATH9K_CIPHER_AES_OCB:
3438 		case ATH9K_CIPHER_TKIP:
3439 		case ATH9K_CIPHER_WEP:
3440 		case ATH9K_CIPHER_MIC:
3441 		case ATH9K_CIPHER_CLR:
3442 			return true;
3443 		default:
3444 			return false;
3445 		}
3446 	case ATH9K_CAP_TKIP_MIC:
3447 		switch (capability) {
3448 		case 0:
3449 			return true;
3450 		case 1:
3451 			return (ah->sta_id1_defaults &
3452 				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3453 			false;
3454 		}
3455 	case ATH9K_CAP_TKIP_SPLIT:
3456 		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3457 			false : true;
3458 	case ATH9K_CAP_DIVERSITY:
3459 		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3460 			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3461 			true : false;
3462 	case ATH9K_CAP_MCAST_KEYSRCH:
3463 		switch (capability) {
3464 		case 0:
3465 			return true;
3466 		case 1:
3467 			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3468 				return false;
3469 			} else {
3470 				return (ah->sta_id1_defaults &
3471 					AR_STA_ID1_MCAST_KSRCH) ? true :
3472 					false;
3473 			}
3474 		}
3475 		return false;
3476 	case ATH9K_CAP_TXPOW:
3477 		switch (capability) {
3478 		case 0:
3479 			return 0;
3480 		case 1:
3481 			*result = ah->regulatory.power_limit;
3482 			return 0;
3483 		case 2:
3484 			*result = ah->regulatory.max_power_level;
3485 			return 0;
3486 		case 3:
3487 			*result = ah->regulatory.tp_scale;
3488 			return 0;
3489 		}
3490 		return false;
3491 	case ATH9K_CAP_DS:
3492 		return (AR_SREV_9280_20_OR_LATER(ah) &&
3493 			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3494 			? false : true;
3495 	default:
3496 		return false;
3497 	}
3498 }
3499 
3500 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3501 			    u32 capability, u32 setting, int *status)
3502 {
3503 	u32 v;
3504 
3505 	switch (type) {
3506 	case ATH9K_CAP_TKIP_MIC:
3507 		if (setting)
3508 			ah->sta_id1_defaults |=
3509 				AR_STA_ID1_CRPT_MIC_ENABLE;
3510 		else
3511 			ah->sta_id1_defaults &=
3512 				~AR_STA_ID1_CRPT_MIC_ENABLE;
3513 		return true;
3514 	case ATH9K_CAP_DIVERSITY:
3515 		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3516 		if (setting)
3517 			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3518 		else
3519 			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3520 		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3521 		return true;
3522 	case ATH9K_CAP_MCAST_KEYSRCH:
3523 		if (setting)
3524 			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3525 		else
3526 			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3527 		return true;
3528 	default:
3529 		return false;
3530 	}
3531 }
3532 
3533 /****************************/
3534 /* GPIO / RFKILL / Antennae */
3535 /****************************/
3536 
3537 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3538 					 u32 gpio, u32 type)
3539 {
3540 	int addr;
3541 	u32 gpio_shift, tmp;
3542 
3543 	if (gpio > 11)
3544 		addr = AR_GPIO_OUTPUT_MUX3;
3545 	else if (gpio > 5)
3546 		addr = AR_GPIO_OUTPUT_MUX2;
3547 	else
3548 		addr = AR_GPIO_OUTPUT_MUX1;
3549 
3550 	gpio_shift = (gpio % 6) * 5;
3551 
3552 	if (AR_SREV_9280_20_OR_LATER(ah)
3553 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3554 		REG_RMW(ah, addr, (type << gpio_shift),
3555 			(0x1f << gpio_shift));
3556 	} else {
3557 		tmp = REG_READ(ah, addr);
3558 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3559 		tmp &= ~(0x1f << gpio_shift);
3560 		tmp |= (type << gpio_shift);
3561 		REG_WRITE(ah, addr, tmp);
3562 	}
3563 }
3564 
3565 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3566 {
3567 	u32 gpio_shift;
3568 
3569 	ASSERT(gpio < ah->caps.num_gpio_pins);
3570 
3571 	gpio_shift = gpio << 1;
3572 
3573 	REG_RMW(ah,
3574 		AR_GPIO_OE_OUT,
3575 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3576 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3577 }
3578 
3579 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3580 {
3581 #define MS_REG_READ(x, y) \
3582 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3583 
3584 	if (gpio >= ah->caps.num_gpio_pins)
3585 		return 0xffffffff;
3586 
3587 	if (AR_SREV_9285_10_OR_LATER(ah))
3588 		return MS_REG_READ(AR9285, gpio) != 0;
3589 	else if (AR_SREV_9280_10_OR_LATER(ah))
3590 		return MS_REG_READ(AR928X, gpio) != 0;
3591 	else
3592 		return MS_REG_READ(AR, gpio) != 0;
3593 }
3594 
3595 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3596 			 u32 ah_signal_type)
3597 {
3598 	u32 gpio_shift;
3599 
3600 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3601 
3602 	gpio_shift = 2 * gpio;
3603 
3604 	REG_RMW(ah,
3605 		AR_GPIO_OE_OUT,
3606 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3607 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3608 }
3609 
3610 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3611 {
3612 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3613 		AR_GPIO_BIT(gpio));
3614 }
3615 
3616 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3617 void ath9k_enable_rfkill(struct ath_hw *ah)
3618 {
3619 	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3620 		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
3621 
3622 	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
3623 		    AR_GPIO_INPUT_MUX2_RFSILENT);
3624 
3625 	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
3626 	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
3627 }
3628 #endif
3629 
3630 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3631 {
3632 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3633 }
3634 
3635 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3636 {
3637 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3638 }
3639 
3640 bool ath9k_hw_setantennaswitch(struct ath_hw *ah,
3641 			       enum ath9k_ant_setting settings,
3642 			       struct ath9k_channel *chan,
3643 			       u8 *tx_chainmask,
3644 			       u8 *rx_chainmask,
3645 			       u8 *antenna_cfgd)
3646 {
3647 	static u8 tx_chainmask_cfg, rx_chainmask_cfg;
3648 
3649 	if (AR_SREV_9280(ah)) {
3650 		if (!tx_chainmask_cfg) {
3651 
3652 			tx_chainmask_cfg = *tx_chainmask;
3653 			rx_chainmask_cfg = *rx_chainmask;
3654 		}
3655 
3656 		switch (settings) {
3657 		case ATH9K_ANT_FIXED_A:
3658 			*tx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3659 			*rx_chainmask = ATH9K_ANTENNA0_CHAINMASK;
3660 			*antenna_cfgd = true;
3661 			break;
3662 		case ATH9K_ANT_FIXED_B:
3663 			if (ah->caps.tx_chainmask >
3664 			    ATH9K_ANTENNA1_CHAINMASK) {
3665 				*tx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3666 			}
3667 			*rx_chainmask = ATH9K_ANTENNA1_CHAINMASK;
3668 			*antenna_cfgd = true;
3669 			break;
3670 		case ATH9K_ANT_VARIABLE:
3671 			*tx_chainmask = tx_chainmask_cfg;
3672 			*rx_chainmask = rx_chainmask_cfg;
3673 			*antenna_cfgd = true;
3674 			break;
3675 		default:
3676 			break;
3677 		}
3678 	} else {
3679 		ah->diversity_control = settings;
3680 	}
3681 
3682 	return true;
3683 }
3684 
3685 /*********************/
3686 /* General Operation */
3687 /*********************/
3688 
3689 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3690 {
3691 	u32 bits = REG_READ(ah, AR_RX_FILTER);
3692 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3693 
3694 	if (phybits & AR_PHY_ERR_RADAR)
3695 		bits |= ATH9K_RX_FILTER_PHYRADAR;
3696 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3697 		bits |= ATH9K_RX_FILTER_PHYERR;
3698 
3699 	return bits;
3700 }
3701 
3702 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3703 {
3704 	u32 phybits;
3705 
3706 	REG_WRITE(ah, AR_RX_FILTER, (bits & 0xffff) | AR_RX_COMPR_BAR);
3707 	phybits = 0;
3708 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3709 		phybits |= AR_PHY_ERR_RADAR;
3710 	if (bits & ATH9K_RX_FILTER_PHYERR)
3711 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3712 	REG_WRITE(ah, AR_PHY_ERR, phybits);
3713 
3714 	if (phybits)
3715 		REG_WRITE(ah, AR_RXCFG,
3716 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3717 	else
3718 		REG_WRITE(ah, AR_RXCFG,
3719 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3720 }
3721 
3722 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3723 {
3724 	return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM);
3725 }
3726 
3727 bool ath9k_hw_disable(struct ath_hw *ah)
3728 {
3729 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3730 		return false;
3731 
3732 	return ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD);
3733 }
3734 
3735 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3736 {
3737 	struct ath9k_channel *chan = ah->curchan;
3738 	struct ieee80211_channel *channel = chan->chan;
3739 
3740 	ah->regulatory.power_limit = min(limit, (u32) MAX_RATE_POWER);
3741 
3742 	ah->eep_ops->set_txpower(ah, chan,
3743 				 ath9k_regd_get_ctl(&ah->regulatory, chan),
3744 				 channel->max_antenna_gain * 2,
3745 				 channel->max_power * 2,
3746 				 min((u32) MAX_RATE_POWER,
3747 				 (u32) ah->regulatory.power_limit));
3748 }
3749 
3750 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3751 {
3752 	memcpy(ah->macaddr, mac, ETH_ALEN);
3753 }
3754 
3755 void ath9k_hw_setopmode(struct ath_hw *ah)
3756 {
3757 	ath9k_hw_set_operating_mode(ah, ah->opmode);
3758 }
3759 
3760 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3761 {
3762 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3763 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3764 }
3765 
3766 void ath9k_hw_setbssidmask(struct ath_softc *sc)
3767 {
3768 	REG_WRITE(sc->sc_ah, AR_BSSMSKL, get_unaligned_le32(sc->bssidmask));
3769 	REG_WRITE(sc->sc_ah, AR_BSSMSKU, get_unaligned_le16(sc->bssidmask + 4));
3770 }
3771 
3772 void ath9k_hw_write_associd(struct ath_softc *sc)
3773 {
3774 	REG_WRITE(sc->sc_ah, AR_BSS_ID0, get_unaligned_le32(sc->curbssid));
3775 	REG_WRITE(sc->sc_ah, AR_BSS_ID1, get_unaligned_le16(sc->curbssid + 4) |
3776 		  ((sc->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3777 }
3778 
3779 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3780 {
3781 	u64 tsf;
3782 
3783 	tsf = REG_READ(ah, AR_TSF_U32);
3784 	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3785 
3786 	return tsf;
3787 }
3788 
3789 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3790 {
3791 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3792 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3793 }
3794 
3795 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3796 {
3797 	int count;
3798 
3799 	count = 0;
3800 	while (REG_READ(ah, AR_SLP32_MODE) & AR_SLP32_TSF_WRITE_STATUS) {
3801 		count++;
3802 		if (count > 10) {
3803 			DPRINTF(ah->ah_sc, ATH_DBG_RESET,
3804 				"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3805 			break;
3806 		}
3807 		udelay(10);
3808 	}
3809 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3810 }
3811 
3812 bool ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3813 {
3814 	if (setting)
3815 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3816 	else
3817 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3818 
3819 	return true;
3820 }
3821 
3822 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3823 {
3824 	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3825 		DPRINTF(ah->ah_sc, ATH_DBG_RESET, "bad slot time %u\n", us);
3826 		ah->slottime = (u32) -1;
3827 		return false;
3828 	} else {
3829 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3830 		ah->slottime = us;
3831 		return true;
3832 	}
3833 }
3834 
3835 void ath9k_hw_set11nmac2040(struct ath_hw *ah, enum ath9k_ht_macmode mode)
3836 {
3837 	u32 macmode;
3838 
3839 	if (mode == ATH9K_HT_MACMODE_2040 &&
3840 	    !ah->config.cwm_ignore_extcca)
3841 		macmode = AR_2040_JOINED_RX_CLEAR;
3842 	else
3843 		macmode = 0;
3844 
3845 	REG_WRITE(ah, AR_2040_MODE, macmode);
3846 }
3847 
3848 /***************************/
3849 /*  Bluetooth Coexistence  */
3850 /***************************/
3851 
3852 void ath9k_hw_btcoex_enable(struct ath_hw *ah)
3853 {
3854 	/* connect bt_active to baseband */
3855 	REG_CLR_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3856 			(AR_GPIO_INPUT_EN_VAL_BT_PRIORITY_DEF |
3857 			 AR_GPIO_INPUT_EN_VAL_BT_FREQUENCY_DEF));
3858 
3859 	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
3860 			AR_GPIO_INPUT_EN_VAL_BT_ACTIVE_BB);
3861 
3862 	/* Set input mux for bt_active to gpio pin */
3863 	REG_RMW_FIELD(ah, AR_GPIO_INPUT_MUX1,
3864 			AR_GPIO_INPUT_MUX1_BT_ACTIVE,
3865 			ah->btactive_gpio);
3866 
3867 	/* Configure the desired gpio port for input */
3868 	ath9k_hw_cfg_gpio_input(ah, ah->btactive_gpio);
3869 
3870 	/* Configure the desired GPIO port for TX_FRAME output */
3871 	ath9k_hw_cfg_output(ah, ah->wlanactive_gpio,
3872 			    AR_GPIO_OUTPUT_MUX_AS_TX_FRAME);
3873 }
3874