xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 754dc53641e0038cd4fd3574b1f5b3c7239f73ce)
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static bool ath9k_hw_macversion_supported(struct ath_hw *ah)
58 {
59 	struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
60 
61 	return priv_ops->macversion_supported(ah->hw_version.macVersion);
62 }
63 
64 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
65 					struct ath9k_channel *chan)
66 {
67 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
68 }
69 
70 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
71 {
72 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
73 		return;
74 
75 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
76 }
77 
78 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
79 {
80 	/* You will not have this callback if using the old ANI */
81 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
82 		return;
83 
84 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
85 }
86 
87 /********************/
88 /* Helper Functions */
89 /********************/
90 
91 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
92 {
93 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
94 
95 	if (!ah->curchan) /* should really check for CCK instead */
96 		return usecs *ATH9K_CLOCK_RATE_CCK;
97 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
98 		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
99 
100 	if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
101 		return usecs * ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
102 	else
103 		return usecs * ATH9K_CLOCK_RATE_5GHZ_OFDM;
104 }
105 
106 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
107 {
108 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
109 
110 	if (conf_is_ht40(conf))
111 		return ath9k_hw_mac_clks(ah, usecs) * 2;
112 	else
113 		return ath9k_hw_mac_clks(ah, usecs);
114 }
115 
116 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
117 {
118 	int i;
119 
120 	BUG_ON(timeout < AH_TIME_QUANTUM);
121 
122 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
123 		if ((REG_READ(ah, reg) & mask) == val)
124 			return true;
125 
126 		udelay(AH_TIME_QUANTUM);
127 	}
128 
129 	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
130 		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
131 		  timeout, reg, REG_READ(ah, reg), mask, val);
132 
133 	return false;
134 }
135 EXPORT_SYMBOL(ath9k_hw_wait);
136 
137 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
138 {
139 	u32 retval;
140 	int i;
141 
142 	for (i = 0, retval = 0; i < n; i++) {
143 		retval = (retval << 1) | (val & 1);
144 		val >>= 1;
145 	}
146 	return retval;
147 }
148 
149 bool ath9k_get_channel_edges(struct ath_hw *ah,
150 			     u16 flags, u16 *low,
151 			     u16 *high)
152 {
153 	struct ath9k_hw_capabilities *pCap = &ah->caps;
154 
155 	if (flags & CHANNEL_5GHZ) {
156 		*low = pCap->low_5ghz_chan;
157 		*high = pCap->high_5ghz_chan;
158 		return true;
159 	}
160 	if ((flags & CHANNEL_2GHZ)) {
161 		*low = pCap->low_2ghz_chan;
162 		*high = pCap->high_2ghz_chan;
163 		return true;
164 	}
165 	return false;
166 }
167 
168 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
169 			   u8 phy, int kbps,
170 			   u32 frameLen, u16 rateix,
171 			   bool shortPreamble)
172 {
173 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
174 
175 	if (kbps == 0)
176 		return 0;
177 
178 	switch (phy) {
179 	case WLAN_RC_PHY_CCK:
180 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
181 		if (shortPreamble)
182 			phyTime >>= 1;
183 		numBits = frameLen << 3;
184 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
185 		break;
186 	case WLAN_RC_PHY_OFDM:
187 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
188 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
189 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
190 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
191 			txTime = OFDM_SIFS_TIME_QUARTER
192 				+ OFDM_PREAMBLE_TIME_QUARTER
193 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
194 		} else if (ah->curchan &&
195 			   IS_CHAN_HALF_RATE(ah->curchan)) {
196 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
197 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
198 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
199 			txTime = OFDM_SIFS_TIME_HALF +
200 				OFDM_PREAMBLE_TIME_HALF
201 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
202 		} else {
203 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
204 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
205 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
206 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
207 				+ (numSymbols * OFDM_SYMBOL_TIME);
208 		}
209 		break;
210 	default:
211 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
212 			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
213 		txTime = 0;
214 		break;
215 	}
216 
217 	return txTime;
218 }
219 EXPORT_SYMBOL(ath9k_hw_computetxtime);
220 
221 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
222 				  struct ath9k_channel *chan,
223 				  struct chan_centers *centers)
224 {
225 	int8_t extoff;
226 
227 	if (!IS_CHAN_HT40(chan)) {
228 		centers->ctl_center = centers->ext_center =
229 			centers->synth_center = chan->channel;
230 		return;
231 	}
232 
233 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
234 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
235 		centers->synth_center =
236 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
237 		extoff = 1;
238 	} else {
239 		centers->synth_center =
240 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
241 		extoff = -1;
242 	}
243 
244 	centers->ctl_center =
245 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
246 	/* 25 MHz spacing is supported by hw but not on upper layers */
247 	centers->ext_center =
248 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
249 }
250 
251 /******************/
252 /* Chip Revisions */
253 /******************/
254 
255 static void ath9k_hw_read_revisions(struct ath_hw *ah)
256 {
257 	u32 val;
258 
259 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
260 
261 	if (val == 0xFF) {
262 		val = REG_READ(ah, AR_SREV);
263 		ah->hw_version.macVersion =
264 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
265 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
266 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
267 	} else {
268 		if (!AR_SREV_9100(ah))
269 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
270 
271 		ah->hw_version.macRev = val & AR_SREV_REVISION;
272 
273 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
274 			ah->is_pciexpress = true;
275 	}
276 }
277 
278 /************************************/
279 /* HW Attach, Detach, Init Routines */
280 /************************************/
281 
282 static void ath9k_hw_disablepcie(struct ath_hw *ah)
283 {
284 	if (AR_SREV_9100(ah))
285 		return;
286 
287 	ENABLE_REGWRITE_BUFFER(ah);
288 
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298 
299 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300 
301 	REGWRITE_BUFFER_FLUSH(ah);
302 	DISABLE_REGWRITE_BUFFER(ah);
303 }
304 
305 /* This should work for all families including legacy */
306 static bool ath9k_hw_chip_test(struct ath_hw *ah)
307 {
308 	struct ath_common *common = ath9k_hw_common(ah);
309 	u32 regAddr[2] = { AR_STA_ID0 };
310 	u32 regHold[2];
311 	u32 patternData[4] = { 0x55555555,
312 			       0xaaaaaaaa,
313 			       0x66666666,
314 			       0x99999999 };
315 	int i, j, loop_max;
316 
317 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
318 		loop_max = 2;
319 		regAddr[1] = AR_PHY_BASE + (8 << 2);
320 	} else
321 		loop_max = 1;
322 
323 	for (i = 0; i < loop_max; i++) {
324 		u32 addr = regAddr[i];
325 		u32 wrData, rdData;
326 
327 		regHold[i] = REG_READ(ah, addr);
328 		for (j = 0; j < 0x100; j++) {
329 			wrData = (j << 16) | j;
330 			REG_WRITE(ah, addr, wrData);
331 			rdData = REG_READ(ah, addr);
332 			if (rdData != wrData) {
333 				ath_print(common, ATH_DBG_FATAL,
334 					  "address test failed "
335 					  "addr: 0x%08x - wr:0x%08x != "
336 					  "rd:0x%08x\n",
337 					  addr, wrData, rdData);
338 				return false;
339 			}
340 		}
341 		for (j = 0; j < 4; j++) {
342 			wrData = patternData[j];
343 			REG_WRITE(ah, addr, wrData);
344 			rdData = REG_READ(ah, addr);
345 			if (wrData != rdData) {
346 				ath_print(common, ATH_DBG_FATAL,
347 					  "address test failed "
348 					  "addr: 0x%08x - wr:0x%08x != "
349 					  "rd:0x%08x\n",
350 					  addr, wrData, rdData);
351 				return false;
352 			}
353 		}
354 		REG_WRITE(ah, regAddr[i], regHold[i]);
355 	}
356 	udelay(100);
357 
358 	return true;
359 }
360 
361 static void ath9k_hw_init_config(struct ath_hw *ah)
362 {
363 	int i;
364 
365 	ah->config.dma_beacon_response_time = 2;
366 	ah->config.sw_beacon_response_time = 10;
367 	ah->config.additional_swba_backoff = 0;
368 	ah->config.ack_6mb = 0x0;
369 	ah->config.cwm_ignore_extcca = 0;
370 	ah->config.pcie_powersave_enable = 0;
371 	ah->config.pcie_clock_req = 0;
372 	ah->config.pcie_waen = 0;
373 	ah->config.analog_shiftreg = 1;
374 	ah->config.ofdm_trig_low = 200;
375 	ah->config.ofdm_trig_high = 500;
376 	ah->config.cck_trig_high = 200;
377 	ah->config.cck_trig_low = 100;
378 	ah->config.enable_ani = true;
379 
380 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
381 		ah->config.spurchans[i][0] = AR_NO_SPUR;
382 		ah->config.spurchans[i][1] = AR_NO_SPUR;
383 	}
384 
385 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
386 		ah->config.ht_enable = 1;
387 	else
388 		ah->config.ht_enable = 0;
389 
390 	ah->config.rx_intr_mitigation = true;
391 	ah->config.pcieSerDesWrite = true;
392 
393 	/*
394 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
395 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
396 	 * This means we use it for all AR5416 devices, and the few
397 	 * minor PCI AR9280 devices out there.
398 	 *
399 	 * Serialization is required because these devices do not handle
400 	 * well the case of two concurrent reads/writes due to the latency
401 	 * involved. During one read/write another read/write can be issued
402 	 * on another CPU while the previous read/write may still be working
403 	 * on our hardware, if we hit this case the hardware poops in a loop.
404 	 * We prevent this by serializing reads and writes.
405 	 *
406 	 * This issue is not present on PCI-Express devices or pre-AR5416
407 	 * devices (legacy, 802.11abg).
408 	 */
409 	if (num_possible_cpus() > 1)
410 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
411 }
412 
413 static void ath9k_hw_init_defaults(struct ath_hw *ah)
414 {
415 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
416 
417 	regulatory->country_code = CTRY_DEFAULT;
418 	regulatory->power_limit = MAX_RATE_POWER;
419 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
420 
421 	ah->hw_version.magic = AR5416_MAGIC;
422 	ah->hw_version.subvendorid = 0;
423 
424 	ah->ah_flags = 0;
425 	if (!AR_SREV_9100(ah))
426 		ah->ah_flags = AH_USE_EEPROM;
427 
428 	ah->atim_window = 0;
429 	ah->sta_id1_defaults =
430 		AR_STA_ID1_CRPT_MIC_ENABLE |
431 		AR_STA_ID1_MCAST_KSRCH;
432 	ah->beacon_interval = 100;
433 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
434 	ah->slottime = (u32) -1;
435 	ah->globaltxtimeout = (u32) -1;
436 	ah->power_mode = ATH9K_PM_UNDEFINED;
437 }
438 
439 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
440 {
441 	struct ath_common *common = ath9k_hw_common(ah);
442 	u32 sum;
443 	int i;
444 	u16 eeval;
445 	u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
446 
447 	sum = 0;
448 	for (i = 0; i < 3; i++) {
449 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
450 		sum += eeval;
451 		common->macaddr[2 * i] = eeval >> 8;
452 		common->macaddr[2 * i + 1] = eeval & 0xff;
453 	}
454 	if (sum == 0 || sum == 0xffff * 3)
455 		return -EADDRNOTAVAIL;
456 
457 	return 0;
458 }
459 
460 static int ath9k_hw_post_init(struct ath_hw *ah)
461 {
462 	int ecode;
463 
464 	if (!AR_SREV_9271(ah)) {
465 		if (!ath9k_hw_chip_test(ah))
466 			return -ENODEV;
467 	}
468 
469 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
470 		ecode = ar9002_hw_rf_claim(ah);
471 		if (ecode != 0)
472 			return ecode;
473 	}
474 
475 	ecode = ath9k_hw_eeprom_init(ah);
476 	if (ecode != 0)
477 		return ecode;
478 
479 	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
480 		  "Eeprom VER: %d, REV: %d\n",
481 		  ah->eep_ops->get_eeprom_ver(ah),
482 		  ah->eep_ops->get_eeprom_rev(ah));
483 
484 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
485 	if (ecode) {
486 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
487 			  "Failed allocating banks for "
488 			  "external radio\n");
489 		return ecode;
490 	}
491 
492 	if (!AR_SREV_9100(ah)) {
493 		ath9k_hw_ani_setup(ah);
494 		ath9k_hw_ani_init(ah);
495 	}
496 
497 	return 0;
498 }
499 
500 static void ath9k_hw_attach_ops(struct ath_hw *ah)
501 {
502 	if (AR_SREV_9300_20_OR_LATER(ah))
503 		ar9003_hw_attach_ops(ah);
504 	else
505 		ar9002_hw_attach_ops(ah);
506 }
507 
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
510 {
511 	struct ath_common *common = ath9k_hw_common(ah);
512 	int r = 0;
513 
514 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
515 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
516 
517 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
518 		ath_print(common, ATH_DBG_FATAL,
519 			  "Couldn't reset chip\n");
520 		return -EIO;
521 	}
522 
523 	ath9k_hw_init_defaults(ah);
524 	ath9k_hw_init_config(ah);
525 
526 	ath9k_hw_attach_ops(ah);
527 
528 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
529 		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
530 		return -EIO;
531 	}
532 
533 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
534 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
535 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
536 		     !ah->is_pciexpress)) {
537 			ah->config.serialize_regmode =
538 				SER_REG_MODE_ON;
539 		} else {
540 			ah->config.serialize_regmode =
541 				SER_REG_MODE_OFF;
542 		}
543 	}
544 
545 	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
546 		ah->config.serialize_regmode);
547 
548 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
549 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
550 	else
551 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
552 
553 	if (!ath9k_hw_macversion_supported(ah)) {
554 		ath_print(common, ATH_DBG_FATAL,
555 			  "Mac Chip Rev 0x%02x.%x is not supported by "
556 			  "this driver\n", ah->hw_version.macVersion,
557 			  ah->hw_version.macRev);
558 		return -EOPNOTSUPP;
559 	}
560 
561 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
562 		ah->is_pciexpress = false;
563 
564 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
565 	ath9k_hw_init_cal_settings(ah);
566 
567 	ah->ani_function = ATH9K_ANI_ALL;
568 	if (AR_SREV_9280_10_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
569 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
570 	if (!AR_SREV_9300_20_OR_LATER(ah))
571 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
572 
573 	ath9k_hw_init_mode_regs(ah);
574 
575 	/*
576 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
577 	 * We need to do this to avoid RMW of this register. We cannot
578 	 * read the reg when chip is asleep.
579 	 */
580 	ah->WARegVal = REG_READ(ah, AR_WA);
581 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
582 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
583 
584 	if (ah->is_pciexpress)
585 		ath9k_hw_configpcipowersave(ah, 0, 0);
586 	else
587 		ath9k_hw_disablepcie(ah);
588 
589 	if (!AR_SREV_9300_20_OR_LATER(ah))
590 		ar9002_hw_cck_chan14_spread(ah);
591 
592 	r = ath9k_hw_post_init(ah);
593 	if (r)
594 		return r;
595 
596 	ath9k_hw_init_mode_gain_regs(ah);
597 	r = ath9k_hw_fill_cap_info(ah);
598 	if (r)
599 		return r;
600 
601 	r = ath9k_hw_init_macaddr(ah);
602 	if (r) {
603 		ath_print(common, ATH_DBG_FATAL,
604 			  "Failed to initialize MAC address\n");
605 		return r;
606 	}
607 
608 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
609 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
610 	else
611 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
612 
613 	ah->bb_watchdog_timeout_ms = 25;
614 
615 	common->state = ATH_HW_INITIALIZED;
616 
617 	return 0;
618 }
619 
620 int ath9k_hw_init(struct ath_hw *ah)
621 {
622 	int ret;
623 	struct ath_common *common = ath9k_hw_common(ah);
624 
625 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
626 	switch (ah->hw_version.devid) {
627 	case AR5416_DEVID_PCI:
628 	case AR5416_DEVID_PCIE:
629 	case AR5416_AR9100_DEVID:
630 	case AR9160_DEVID_PCI:
631 	case AR9280_DEVID_PCI:
632 	case AR9280_DEVID_PCIE:
633 	case AR9285_DEVID_PCIE:
634 	case AR9287_DEVID_PCI:
635 	case AR9287_DEVID_PCIE:
636 	case AR2427_DEVID_PCIE:
637 	case AR9300_DEVID_PCIE:
638 		break;
639 	default:
640 		if (common->bus_ops->ath_bus_type == ATH_USB)
641 			break;
642 		ath_print(common, ATH_DBG_FATAL,
643 			  "Hardware device ID 0x%04x not supported\n",
644 			  ah->hw_version.devid);
645 		return -EOPNOTSUPP;
646 	}
647 
648 	ret = __ath9k_hw_init(ah);
649 	if (ret) {
650 		ath_print(common, ATH_DBG_FATAL,
651 			  "Unable to initialize hardware; "
652 			  "initialization status: %d\n", ret);
653 		return ret;
654 	}
655 
656 	return 0;
657 }
658 EXPORT_SYMBOL(ath9k_hw_init);
659 
660 static void ath9k_hw_init_qos(struct ath_hw *ah)
661 {
662 	ENABLE_REGWRITE_BUFFER(ah);
663 
664 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
665 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
666 
667 	REG_WRITE(ah, AR_QOS_NO_ACK,
668 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
669 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
670 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
671 
672 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
673 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
674 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
675 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
676 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
677 
678 	REGWRITE_BUFFER_FLUSH(ah);
679 	DISABLE_REGWRITE_BUFFER(ah);
680 }
681 
682 static void ath9k_hw_init_pll(struct ath_hw *ah,
683 			      struct ath9k_channel *chan)
684 {
685 	u32 pll = ath9k_hw_compute_pll_control(ah, chan);
686 
687 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
688 
689 	/* Switch the core clock for ar9271 to 117Mhz */
690 	if (AR_SREV_9271(ah)) {
691 		udelay(500);
692 		REG_WRITE(ah, 0x50040, 0x304);
693 	}
694 
695 	udelay(RTC_PLL_SETTLE_DELAY);
696 
697 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
698 }
699 
700 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
701 					  enum nl80211_iftype opmode)
702 {
703 	u32 imr_reg = AR_IMR_TXERR |
704 		AR_IMR_TXURN |
705 		AR_IMR_RXERR |
706 		AR_IMR_RXORN |
707 		AR_IMR_BCNMISC;
708 
709 	if (AR_SREV_9300_20_OR_LATER(ah)) {
710 		imr_reg |= AR_IMR_RXOK_HP;
711 		if (ah->config.rx_intr_mitigation)
712 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
713 		else
714 			imr_reg |= AR_IMR_RXOK_LP;
715 
716 	} else {
717 		if (ah->config.rx_intr_mitigation)
718 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
719 		else
720 			imr_reg |= AR_IMR_RXOK;
721 	}
722 
723 	if (ah->config.tx_intr_mitigation)
724 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
725 	else
726 		imr_reg |= AR_IMR_TXOK;
727 
728 	if (opmode == NL80211_IFTYPE_AP)
729 		imr_reg |= AR_IMR_MIB;
730 
731 	ENABLE_REGWRITE_BUFFER(ah);
732 
733 	REG_WRITE(ah, AR_IMR, imr_reg);
734 	ah->imrs2_reg |= AR_IMR_S2_GTT;
735 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
736 
737 	if (!AR_SREV_9100(ah)) {
738 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
739 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
740 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
741 	}
742 
743 	REGWRITE_BUFFER_FLUSH(ah);
744 	DISABLE_REGWRITE_BUFFER(ah);
745 
746 	if (AR_SREV_9300_20_OR_LATER(ah)) {
747 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
748 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
749 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
750 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
751 	}
752 }
753 
754 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
755 {
756 	u32 val = ath9k_hw_mac_to_clks(ah, us);
757 	val = min(val, (u32) 0xFFFF);
758 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
759 }
760 
761 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
762 {
763 	u32 val = ath9k_hw_mac_to_clks(ah, us);
764 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
765 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
766 }
767 
768 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
769 {
770 	u32 val = ath9k_hw_mac_to_clks(ah, us);
771 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
772 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
773 }
774 
775 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
776 {
777 	if (tu > 0xFFFF) {
778 		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
779 			  "bad global tx timeout %u\n", tu);
780 		ah->globaltxtimeout = (u32) -1;
781 		return false;
782 	} else {
783 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
784 		ah->globaltxtimeout = tu;
785 		return true;
786 	}
787 }
788 
789 void ath9k_hw_init_global_settings(struct ath_hw *ah)
790 {
791 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
792 	int acktimeout;
793 	int slottime;
794 	int sifstime;
795 
796 	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
797 		  ah->misc_mode);
798 
799 	if (ah->misc_mode != 0)
800 		REG_WRITE(ah, AR_PCU_MISC,
801 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
802 
803 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
804 		sifstime = 16;
805 	else
806 		sifstime = 10;
807 
808 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
809 	slottime = ah->slottime + 3 * ah->coverage_class;
810 	acktimeout = slottime + sifstime;
811 
812 	/*
813 	 * Workaround for early ACK timeouts, add an offset to match the
814 	 * initval's 64us ack timeout value.
815 	 * This was initially only meant to work around an issue with delayed
816 	 * BA frames in some implementations, but it has been found to fix ACK
817 	 * timeout issues in other cases as well.
818 	 */
819 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
820 		acktimeout += 64 - sifstime - ah->slottime;
821 
822 	ath9k_hw_setslottime(ah, slottime);
823 	ath9k_hw_set_ack_timeout(ah, acktimeout);
824 	ath9k_hw_set_cts_timeout(ah, acktimeout);
825 	if (ah->globaltxtimeout != (u32) -1)
826 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
827 }
828 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
829 
830 void ath9k_hw_deinit(struct ath_hw *ah)
831 {
832 	struct ath_common *common = ath9k_hw_common(ah);
833 
834 	if (common->state < ATH_HW_INITIALIZED)
835 		goto free_hw;
836 
837 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
838 
839 free_hw:
840 	ath9k_hw_rf_free_ext_banks(ah);
841 }
842 EXPORT_SYMBOL(ath9k_hw_deinit);
843 
844 /*******/
845 /* INI */
846 /*******/
847 
848 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
849 {
850 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
851 
852 	if (IS_CHAN_B(chan))
853 		ctl |= CTL_11B;
854 	else if (IS_CHAN_G(chan))
855 		ctl |= CTL_11G;
856 	else
857 		ctl |= CTL_11A;
858 
859 	return ctl;
860 }
861 
862 /****************************************/
863 /* Reset and Channel Switching Routines */
864 /****************************************/
865 
866 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
867 {
868 	struct ath_common *common = ath9k_hw_common(ah);
869 	u32 regval;
870 
871 	ENABLE_REGWRITE_BUFFER(ah);
872 
873 	/*
874 	 * set AHB_MODE not to do cacheline prefetches
875 	*/
876 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
877 		regval = REG_READ(ah, AR_AHB_MODE);
878 		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
879 	}
880 
881 	/*
882 	 * let mac dma reads be in 128 byte chunks
883 	 */
884 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
885 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
886 
887 	REGWRITE_BUFFER_FLUSH(ah);
888 	DISABLE_REGWRITE_BUFFER(ah);
889 
890 	/*
891 	 * Restore TX Trigger Level to its pre-reset value.
892 	 * The initial value depends on whether aggregation is enabled, and is
893 	 * adjusted whenever underruns are detected.
894 	 */
895 	if (!AR_SREV_9300_20_OR_LATER(ah))
896 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
897 
898 	ENABLE_REGWRITE_BUFFER(ah);
899 
900 	/*
901 	 * let mac dma writes be in 128 byte chunks
902 	 */
903 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
904 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
905 
906 	/*
907 	 * Setup receive FIFO threshold to hold off TX activities
908 	 */
909 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
910 
911 	if (AR_SREV_9300_20_OR_LATER(ah)) {
912 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
913 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
914 
915 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
916 			ah->caps.rx_status_len);
917 	}
918 
919 	/*
920 	 * reduce the number of usable entries in PCU TXBUF to avoid
921 	 * wrap around issues.
922 	 */
923 	if (AR_SREV_9285(ah)) {
924 		/* For AR9285 the number of Fifos are reduced to half.
925 		 * So set the usable tx buf size also to half to
926 		 * avoid data/delimiter underruns
927 		 */
928 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
929 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
930 	} else if (!AR_SREV_9271(ah)) {
931 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
932 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
933 	}
934 
935 	REGWRITE_BUFFER_FLUSH(ah);
936 	DISABLE_REGWRITE_BUFFER(ah);
937 
938 	if (AR_SREV_9300_20_OR_LATER(ah))
939 		ath9k_hw_reset_txstatus_ring(ah);
940 }
941 
942 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
943 {
944 	u32 val;
945 
946 	val = REG_READ(ah, AR_STA_ID1);
947 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
948 	switch (opmode) {
949 	case NL80211_IFTYPE_AP:
950 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
951 			  | AR_STA_ID1_KSRCH_MODE);
952 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
953 		break;
954 	case NL80211_IFTYPE_ADHOC:
955 	case NL80211_IFTYPE_MESH_POINT:
956 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
957 			  | AR_STA_ID1_KSRCH_MODE);
958 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
959 		break;
960 	case NL80211_IFTYPE_STATION:
961 	case NL80211_IFTYPE_MONITOR:
962 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
963 		break;
964 	}
965 }
966 
967 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
968 				   u32 *coef_mantissa, u32 *coef_exponent)
969 {
970 	u32 coef_exp, coef_man;
971 
972 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
973 		if ((coef_scaled >> coef_exp) & 0x1)
974 			break;
975 
976 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
977 
978 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
979 
980 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
981 	*coef_exponent = coef_exp - 16;
982 }
983 
984 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
985 {
986 	u32 rst_flags;
987 	u32 tmpReg;
988 
989 	if (AR_SREV_9100(ah)) {
990 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
991 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
992 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
993 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
994 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
995 	}
996 
997 	ENABLE_REGWRITE_BUFFER(ah);
998 
999 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1000 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1001 		udelay(10);
1002 	}
1003 
1004 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1005 		  AR_RTC_FORCE_WAKE_ON_INT);
1006 
1007 	if (AR_SREV_9100(ah)) {
1008 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1009 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1010 	} else {
1011 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1012 		if (tmpReg &
1013 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1014 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1015 			u32 val;
1016 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1017 
1018 			val = AR_RC_HOSTIF;
1019 			if (!AR_SREV_9300_20_OR_LATER(ah))
1020 				val |= AR_RC_AHB;
1021 			REG_WRITE(ah, AR_RC, val);
1022 
1023 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1024 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1025 
1026 		rst_flags = AR_RTC_RC_MAC_WARM;
1027 		if (type == ATH9K_RESET_COLD)
1028 			rst_flags |= AR_RTC_RC_MAC_COLD;
1029 	}
1030 
1031 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1032 
1033 	REGWRITE_BUFFER_FLUSH(ah);
1034 	DISABLE_REGWRITE_BUFFER(ah);
1035 
1036 	udelay(50);
1037 
1038 	REG_WRITE(ah, AR_RTC_RC, 0);
1039 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1040 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1041 			  "RTC stuck in MAC reset\n");
1042 		return false;
1043 	}
1044 
1045 	if (!AR_SREV_9100(ah))
1046 		REG_WRITE(ah, AR_RC, 0);
1047 
1048 	if (AR_SREV_9100(ah))
1049 		udelay(50);
1050 
1051 	return true;
1052 }
1053 
1054 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1055 {
1056 	ENABLE_REGWRITE_BUFFER(ah);
1057 
1058 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1059 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1060 		udelay(10);
1061 	}
1062 
1063 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1064 		  AR_RTC_FORCE_WAKE_ON_INT);
1065 
1066 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1067 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1068 
1069 	REG_WRITE(ah, AR_RTC_RESET, 0);
1070 	udelay(2);
1071 
1072 	REGWRITE_BUFFER_FLUSH(ah);
1073 	DISABLE_REGWRITE_BUFFER(ah);
1074 
1075 	if (!AR_SREV_9300_20_OR_LATER(ah))
1076 		udelay(2);
1077 
1078 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1079 		REG_WRITE(ah, AR_RC, 0);
1080 
1081 	REG_WRITE(ah, AR_RTC_RESET, 1);
1082 
1083 	if (!ath9k_hw_wait(ah,
1084 			   AR_RTC_STATUS,
1085 			   AR_RTC_STATUS_M,
1086 			   AR_RTC_STATUS_ON,
1087 			   AH_WAIT_TIMEOUT)) {
1088 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1089 			  "RTC not waking up\n");
1090 		return false;
1091 	}
1092 
1093 	ath9k_hw_read_revisions(ah);
1094 
1095 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1096 }
1097 
1098 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1099 {
1100 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1101 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1102 		udelay(10);
1103 	}
1104 
1105 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1106 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1107 
1108 	switch (type) {
1109 	case ATH9K_RESET_POWER_ON:
1110 		return ath9k_hw_set_reset_power_on(ah);
1111 	case ATH9K_RESET_WARM:
1112 	case ATH9K_RESET_COLD:
1113 		return ath9k_hw_set_reset(ah, type);
1114 	default:
1115 		return false;
1116 	}
1117 }
1118 
1119 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1120 				struct ath9k_channel *chan)
1121 {
1122 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1123 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1124 			return false;
1125 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1126 		return false;
1127 
1128 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1129 		return false;
1130 
1131 	ah->chip_fullsleep = false;
1132 	ath9k_hw_init_pll(ah, chan);
1133 	ath9k_hw_set_rfmode(ah, chan);
1134 
1135 	return true;
1136 }
1137 
1138 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1139 				    struct ath9k_channel *chan)
1140 {
1141 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1142 	struct ath_common *common = ath9k_hw_common(ah);
1143 	struct ieee80211_channel *channel = chan->chan;
1144 	u32 qnum;
1145 	int r;
1146 
1147 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1148 		if (ath9k_hw_numtxpending(ah, qnum)) {
1149 			ath_print(common, ATH_DBG_QUEUE,
1150 				  "Transmit frames pending on "
1151 				  "queue %d\n", qnum);
1152 			return false;
1153 		}
1154 	}
1155 
1156 	if (!ath9k_hw_rfbus_req(ah)) {
1157 		ath_print(common, ATH_DBG_FATAL,
1158 			  "Could not kill baseband RX\n");
1159 		return false;
1160 	}
1161 
1162 	ath9k_hw_set_channel_regs(ah, chan);
1163 
1164 	r = ath9k_hw_rf_set_freq(ah, chan);
1165 	if (r) {
1166 		ath_print(common, ATH_DBG_FATAL,
1167 			  "Failed to set channel\n");
1168 		return false;
1169 	}
1170 
1171 	ah->eep_ops->set_txpower(ah, chan,
1172 			     ath9k_regd_get_ctl(regulatory, chan),
1173 			     channel->max_antenna_gain * 2,
1174 			     channel->max_power * 2,
1175 			     min((u32) MAX_RATE_POWER,
1176 			     (u32) regulatory->power_limit));
1177 
1178 	ath9k_hw_rfbus_done(ah);
1179 
1180 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1181 		ath9k_hw_set_delta_slope(ah, chan);
1182 
1183 	ath9k_hw_spur_mitigate_freq(ah, chan);
1184 
1185 	return true;
1186 }
1187 
1188 bool ath9k_hw_check_alive(struct ath_hw *ah)
1189 {
1190 	int count = 50;
1191 	u32 reg;
1192 
1193 	if (AR_SREV_9285_10_OR_LATER(ah))
1194 		return true;
1195 
1196 	do {
1197 		reg = REG_READ(ah, AR_OBS_BUS_1);
1198 
1199 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1200 			continue;
1201 
1202 		switch (reg & 0x7E000B00) {
1203 		case 0x1E000000:
1204 		case 0x52000B00:
1205 		case 0x18000B00:
1206 			continue;
1207 		default:
1208 			return true;
1209 		}
1210 	} while (count-- > 0);
1211 
1212 	return false;
1213 }
1214 EXPORT_SYMBOL(ath9k_hw_check_alive);
1215 
1216 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1217 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1218 {
1219 	struct ath_common *common = ath9k_hw_common(ah);
1220 	u32 saveLedState;
1221 	struct ath9k_channel *curchan = ah->curchan;
1222 	u32 saveDefAntenna;
1223 	u32 macStaId1;
1224 	u64 tsf = 0;
1225 	int i, r;
1226 
1227 	ah->txchainmask = common->tx_chainmask;
1228 	ah->rxchainmask = common->rx_chainmask;
1229 
1230 	if (!ah->chip_fullsleep) {
1231 		ath9k_hw_abortpcurecv(ah);
1232 		if (!ath9k_hw_stopdmarecv(ah)) {
1233 			ath_print(common, ATH_DBG_XMIT,
1234 				"Failed to stop receive dma\n");
1235 			bChannelChange = false;
1236 		}
1237 	}
1238 
1239 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1240 		return -EIO;
1241 
1242 	if (curchan && !ah->chip_fullsleep && ah->caldata)
1243 		ath9k_hw_getnf(ah, curchan);
1244 
1245 	ah->caldata = caldata;
1246 	if (caldata &&
1247 	    (chan->channel != caldata->channel ||
1248 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1249 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1250 		/* Operating channel changed, reset channel calibration data */
1251 		memset(caldata, 0, sizeof(*caldata));
1252 		ath9k_init_nfcal_hist_buffer(ah, chan);
1253 	}
1254 
1255 	if (bChannelChange &&
1256 	    (ah->chip_fullsleep != true) &&
1257 	    (ah->curchan != NULL) &&
1258 	    (chan->channel != ah->curchan->channel) &&
1259 	    ((chan->channelFlags & CHANNEL_ALL) ==
1260 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1261 	    !AR_SREV_9280(ah)) {
1262 
1263 		if (ath9k_hw_channel_change(ah, chan)) {
1264 			ath9k_hw_loadnf(ah, ah->curchan);
1265 			ath9k_hw_start_nfcal(ah, true);
1266 			return 0;
1267 		}
1268 	}
1269 
1270 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1271 	if (saveDefAntenna == 0)
1272 		saveDefAntenna = 1;
1273 
1274 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1275 
1276 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1277 	if (AR_SREV_9100(ah) ||
1278 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1279 		tsf = ath9k_hw_gettsf64(ah);
1280 
1281 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1282 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1283 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1284 
1285 	ath9k_hw_mark_phy_inactive(ah);
1286 
1287 	/* Only required on the first reset */
1288 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1289 		REG_WRITE(ah,
1290 			  AR9271_RESET_POWER_DOWN_CONTROL,
1291 			  AR9271_RADIO_RF_RST);
1292 		udelay(50);
1293 	}
1294 
1295 	if (!ath9k_hw_chip_reset(ah, chan)) {
1296 		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1297 		return -EINVAL;
1298 	}
1299 
1300 	/* Only required on the first reset */
1301 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1302 		ah->htc_reset_init = false;
1303 		REG_WRITE(ah,
1304 			  AR9271_RESET_POWER_DOWN_CONTROL,
1305 			  AR9271_GATE_MAC_CTL);
1306 		udelay(50);
1307 	}
1308 
1309 	/* Restore TSF */
1310 	if (tsf)
1311 		ath9k_hw_settsf64(ah, tsf);
1312 
1313 	if (AR_SREV_9280_10_OR_LATER(ah))
1314 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1315 
1316 	if (!AR_SREV_9300_20_OR_LATER(ah))
1317 		ar9002_hw_enable_async_fifo(ah);
1318 
1319 	r = ath9k_hw_process_ini(ah, chan);
1320 	if (r)
1321 		return r;
1322 
1323 	/*
1324 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1325 	 * right after the chip reset. When that happens, write a new
1326 	 * value after the initvals have been applied, with an offset
1327 	 * based on measured time difference
1328 	 */
1329 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1330 		tsf += 1500;
1331 		ath9k_hw_settsf64(ah, tsf);
1332 	}
1333 
1334 	/* Setup MFP options for CCMP */
1335 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1336 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1337 		 * frames when constructing CCMP AAD. */
1338 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1339 			      0xc7ff);
1340 		ah->sw_mgmt_crypto = false;
1341 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1342 		/* Disable hardware crypto for management frames */
1343 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1344 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1345 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1346 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1347 		ah->sw_mgmt_crypto = true;
1348 	} else
1349 		ah->sw_mgmt_crypto = true;
1350 
1351 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1352 		ath9k_hw_set_delta_slope(ah, chan);
1353 
1354 	ath9k_hw_spur_mitigate_freq(ah, chan);
1355 	ah->eep_ops->set_board_values(ah, chan);
1356 
1357 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1358 
1359 	ENABLE_REGWRITE_BUFFER(ah);
1360 
1361 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1362 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1363 		  | macStaId1
1364 		  | AR_STA_ID1_RTS_USE_DEF
1365 		  | (ah->config.
1366 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1367 		  | ah->sta_id1_defaults);
1368 	ath_hw_setbssidmask(common);
1369 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1370 	ath9k_hw_write_associd(ah);
1371 	REG_WRITE(ah, AR_ISR, ~0);
1372 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1373 
1374 	REGWRITE_BUFFER_FLUSH(ah);
1375 	DISABLE_REGWRITE_BUFFER(ah);
1376 
1377 	r = ath9k_hw_rf_set_freq(ah, chan);
1378 	if (r)
1379 		return r;
1380 
1381 	ENABLE_REGWRITE_BUFFER(ah);
1382 
1383 	for (i = 0; i < AR_NUM_DCU; i++)
1384 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1385 
1386 	REGWRITE_BUFFER_FLUSH(ah);
1387 	DISABLE_REGWRITE_BUFFER(ah);
1388 
1389 	ah->intr_txqs = 0;
1390 	for (i = 0; i < ah->caps.total_queues; i++)
1391 		ath9k_hw_resettxqueue(ah, i);
1392 
1393 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1394 	ath9k_hw_ani_cache_ini_regs(ah);
1395 	ath9k_hw_init_qos(ah);
1396 
1397 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1398 		ath9k_enable_rfkill(ah);
1399 
1400 	ath9k_hw_init_global_settings(ah);
1401 
1402 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1403 		ar9002_hw_update_async_fifo(ah);
1404 		ar9002_hw_enable_wep_aggregation(ah);
1405 	}
1406 
1407 	REG_WRITE(ah, AR_STA_ID1,
1408 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1409 
1410 	ath9k_hw_set_dma(ah);
1411 
1412 	REG_WRITE(ah, AR_OBS, 8);
1413 
1414 	if (ah->config.rx_intr_mitigation) {
1415 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1416 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1417 	}
1418 
1419 	if (ah->config.tx_intr_mitigation) {
1420 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1421 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1422 	}
1423 
1424 	ath9k_hw_init_bb(ah, chan);
1425 
1426 	if (!ath9k_hw_init_cal(ah, chan))
1427 		return -EIO;
1428 
1429 	ENABLE_REGWRITE_BUFFER(ah);
1430 
1431 	ath9k_hw_restore_chainmask(ah);
1432 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1433 
1434 	REGWRITE_BUFFER_FLUSH(ah);
1435 	DISABLE_REGWRITE_BUFFER(ah);
1436 
1437 	/*
1438 	 * For big endian systems turn on swapping for descriptors
1439 	 */
1440 	if (AR_SREV_9100(ah)) {
1441 		u32 mask;
1442 		mask = REG_READ(ah, AR_CFG);
1443 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1444 			ath_print(common, ATH_DBG_RESET,
1445 				"CFG Byte Swap Set 0x%x\n", mask);
1446 		} else {
1447 			mask =
1448 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1449 			REG_WRITE(ah, AR_CFG, mask);
1450 			ath_print(common, ATH_DBG_RESET,
1451 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1452 		}
1453 	} else {
1454 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1455 			/* Configure AR9271 target WLAN */
1456 			if (AR_SREV_9271(ah))
1457 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1458 			else
1459 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1460 		}
1461 #ifdef __BIG_ENDIAN
1462                 else
1463 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1464 #endif
1465 	}
1466 
1467 	if (ah->btcoex_hw.enabled)
1468 		ath9k_hw_btcoex_enable(ah);
1469 
1470 	if (AR_SREV_9300_20_OR_LATER(ah))
1471 		ar9003_hw_bb_watchdog_config(ah);
1472 
1473 	return 0;
1474 }
1475 EXPORT_SYMBOL(ath9k_hw_reset);
1476 
1477 /************************/
1478 /* Key Cache Management */
1479 /************************/
1480 
1481 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
1482 {
1483 	u32 keyType;
1484 
1485 	if (entry >= ah->caps.keycache_size) {
1486 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1487 			  "keychache entry %u out of range\n", entry);
1488 		return false;
1489 	}
1490 
1491 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
1492 
1493 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
1494 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
1495 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
1496 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
1497 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
1498 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
1499 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
1500 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
1501 
1502 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1503 		u16 micentry = entry + 64;
1504 
1505 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
1506 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1507 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
1508 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1509 
1510 	}
1511 
1512 	return true;
1513 }
1514 EXPORT_SYMBOL(ath9k_hw_keyreset);
1515 
1516 static bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
1517 {
1518 	u32 macHi, macLo;
1519 	u32 unicast_flag = AR_KEYTABLE_VALID;
1520 
1521 	if (entry >= ah->caps.keycache_size) {
1522 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1523 			  "keychache entry %u out of range\n", entry);
1524 		return false;
1525 	}
1526 
1527 	if (mac != NULL) {
1528 		/*
1529 		 * AR_KEYTABLE_VALID indicates that the address is a unicast
1530 		 * address, which must match the transmitter address for
1531 		 * decrypting frames.
1532 		 * Not setting this bit allows the hardware to use the key
1533 		 * for multicast frame decryption.
1534 		 */
1535 		if (mac[0] & 0x01)
1536 			unicast_flag = 0;
1537 
1538 		macHi = (mac[5] << 8) | mac[4];
1539 		macLo = (mac[3] << 24) |
1540 			(mac[2] << 16) |
1541 			(mac[1] << 8) |
1542 			mac[0];
1543 		macLo >>= 1;
1544 		macLo |= (macHi & 1) << 31;
1545 		macHi >>= 1;
1546 	} else {
1547 		macLo = macHi = 0;
1548 	}
1549 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
1550 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | unicast_flag);
1551 
1552 	return true;
1553 }
1554 
1555 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
1556 				 const struct ath9k_keyval *k,
1557 				 const u8 *mac)
1558 {
1559 	const struct ath9k_hw_capabilities *pCap = &ah->caps;
1560 	struct ath_common *common = ath9k_hw_common(ah);
1561 	u32 key0, key1, key2, key3, key4;
1562 	u32 keyType;
1563 
1564 	if (entry >= pCap->keycache_size) {
1565 		ath_print(common, ATH_DBG_FATAL,
1566 			  "keycache entry %u out of range\n", entry);
1567 		return false;
1568 	}
1569 
1570 	switch (k->kv_type) {
1571 	case ATH9K_CIPHER_AES_OCB:
1572 		keyType = AR_KEYTABLE_TYPE_AES;
1573 		break;
1574 	case ATH9K_CIPHER_AES_CCM:
1575 		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
1576 			ath_print(common, ATH_DBG_ANY,
1577 				  "AES-CCM not supported by mac rev 0x%x\n",
1578 				  ah->hw_version.macRev);
1579 			return false;
1580 		}
1581 		keyType = AR_KEYTABLE_TYPE_CCM;
1582 		break;
1583 	case ATH9K_CIPHER_TKIP:
1584 		keyType = AR_KEYTABLE_TYPE_TKIP;
1585 		if (ATH9K_IS_MIC_ENABLED(ah)
1586 		    && entry + 64 >= pCap->keycache_size) {
1587 			ath_print(common, ATH_DBG_ANY,
1588 				  "entry %u inappropriate for TKIP\n", entry);
1589 			return false;
1590 		}
1591 		break;
1592 	case ATH9K_CIPHER_WEP:
1593 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
1594 			ath_print(common, ATH_DBG_ANY,
1595 				  "WEP key length %u too small\n", k->kv_len);
1596 			return false;
1597 		}
1598 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
1599 			keyType = AR_KEYTABLE_TYPE_40;
1600 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1601 			keyType = AR_KEYTABLE_TYPE_104;
1602 		else
1603 			keyType = AR_KEYTABLE_TYPE_128;
1604 		break;
1605 	case ATH9K_CIPHER_CLR:
1606 		keyType = AR_KEYTABLE_TYPE_CLR;
1607 		break;
1608 	default:
1609 		ath_print(common, ATH_DBG_FATAL,
1610 			  "cipher %u not supported\n", k->kv_type);
1611 		return false;
1612 	}
1613 
1614 	key0 = get_unaligned_le32(k->kv_val + 0);
1615 	key1 = get_unaligned_le16(k->kv_val + 4);
1616 	key2 = get_unaligned_le32(k->kv_val + 6);
1617 	key3 = get_unaligned_le16(k->kv_val + 10);
1618 	key4 = get_unaligned_le32(k->kv_val + 12);
1619 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
1620 		key4 &= 0xff;
1621 
1622 	/*
1623 	 * Note: Key cache registers access special memory area that requires
1624 	 * two 32-bit writes to actually update the values in the internal
1625 	 * memory. Consequently, the exact order and pairs used here must be
1626 	 * maintained.
1627 	 */
1628 
1629 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
1630 		u16 micentry = entry + 64;
1631 
1632 		/*
1633 		 * Write inverted key[47:0] first to avoid Michael MIC errors
1634 		 * on frames that could be sent or received at the same time.
1635 		 * The correct key will be written in the end once everything
1636 		 * else is ready.
1637 		 */
1638 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
1639 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
1640 
1641 		/* Write key[95:48] */
1642 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1643 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1644 
1645 		/* Write key[127:96] and key type */
1646 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1647 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1648 
1649 		/* Write MAC address for the entry */
1650 		(void) ath9k_hw_keysetmac(ah, entry, mac);
1651 
1652 		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
1653 			/*
1654 			 * TKIP uses two key cache entries:
1655 			 * Michael MIC TX/RX keys in the same key cache entry
1656 			 * (idx = main index + 64):
1657 			 * key0 [31:0] = RX key [31:0]
1658 			 * key1 [15:0] = TX key [31:16]
1659 			 * key1 [31:16] = reserved
1660 			 * key2 [31:0] = RX key [63:32]
1661 			 * key3 [15:0] = TX key [15:0]
1662 			 * key3 [31:16] = reserved
1663 			 * key4 [31:0] = TX key [63:32]
1664 			 */
1665 			u32 mic0, mic1, mic2, mic3, mic4;
1666 
1667 			mic0 = get_unaligned_le32(k->kv_mic + 0);
1668 			mic2 = get_unaligned_le32(k->kv_mic + 4);
1669 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
1670 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
1671 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
1672 
1673 			/* Write RX[31:0] and TX[31:16] */
1674 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1675 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
1676 
1677 			/* Write RX[63:32] and TX[15:0] */
1678 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1679 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
1680 
1681 			/* Write TX[63:32] and keyType(reserved) */
1682 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
1683 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1684 				  AR_KEYTABLE_TYPE_CLR);
1685 
1686 		} else {
1687 			/*
1688 			 * TKIP uses four key cache entries (two for group
1689 			 * keys):
1690 			 * Michael MIC TX/RX keys are in different key cache
1691 			 * entries (idx = main index + 64 for TX and
1692 			 * main index + 32 + 96 for RX):
1693 			 * key0 [31:0] = TX/RX MIC key [31:0]
1694 			 * key1 [31:0] = reserved
1695 			 * key2 [31:0] = TX/RX MIC key [63:32]
1696 			 * key3 [31:0] = reserved
1697 			 * key4 [31:0] = reserved
1698 			 *
1699 			 * Upper layer code will call this function separately
1700 			 * for TX and RX keys when these registers offsets are
1701 			 * used.
1702 			 */
1703 			u32 mic0, mic2;
1704 
1705 			mic0 = get_unaligned_le32(k->kv_mic + 0);
1706 			mic2 = get_unaligned_le32(k->kv_mic + 4);
1707 
1708 			/* Write MIC key[31:0] */
1709 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
1710 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
1711 
1712 			/* Write MIC key[63:32] */
1713 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
1714 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
1715 
1716 			/* Write TX[63:32] and keyType(reserved) */
1717 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
1718 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
1719 				  AR_KEYTABLE_TYPE_CLR);
1720 		}
1721 
1722 		/* MAC address registers are reserved for the MIC entry */
1723 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
1724 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
1725 
1726 		/*
1727 		 * Write the correct (un-inverted) key[47:0] last to enable
1728 		 * TKIP now that all other registers are set with correct
1729 		 * values.
1730 		 */
1731 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1732 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1733 	} else {
1734 		/* Write key[47:0] */
1735 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
1736 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
1737 
1738 		/* Write key[95:48] */
1739 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
1740 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
1741 
1742 		/* Write key[127:96] and key type */
1743 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
1744 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
1745 
1746 		/* Write MAC address for the entry */
1747 		(void) ath9k_hw_keysetmac(ah, entry, mac);
1748 	}
1749 
1750 	return true;
1751 }
1752 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
1753 
1754 /******************************/
1755 /* Power Management (Chipset) */
1756 /******************************/
1757 
1758 /*
1759  * Notify Power Mgt is disabled in self-generated frames.
1760  * If requested, force chip to sleep.
1761  */
1762 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1763 {
1764 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1765 	if (setChip) {
1766 		/*
1767 		 * Clear the RTC force wake bit to allow the
1768 		 * mac to go to sleep.
1769 		 */
1770 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1771 			    AR_RTC_FORCE_WAKE_EN);
1772 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1773 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1774 
1775 		/* Shutdown chip. Active low */
1776 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1777 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1778 				    AR_RTC_RESET_EN);
1779 	}
1780 
1781 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1782 	if (AR_SREV_9300_20_OR_LATER(ah))
1783 		REG_WRITE(ah, AR_WA,
1784 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1785 }
1786 
1787 /*
1788  * Notify Power Management is enabled in self-generating
1789  * frames. If request, set power mode of chip to
1790  * auto/normal.  Duration in units of 128us (1/8 TU).
1791  */
1792 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1793 {
1794 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1795 	if (setChip) {
1796 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1797 
1798 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1799 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1800 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1801 				  AR_RTC_FORCE_WAKE_ON_INT);
1802 		} else {
1803 			/*
1804 			 * Clear the RTC force wake bit to allow the
1805 			 * mac to go to sleep.
1806 			 */
1807 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1808 				    AR_RTC_FORCE_WAKE_EN);
1809 		}
1810 	}
1811 
1812 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1813 	if (AR_SREV_9300_20_OR_LATER(ah))
1814 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1815 }
1816 
1817 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1818 {
1819 	u32 val;
1820 	int i;
1821 
1822 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1823 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1824 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1825 		udelay(10);
1826 	}
1827 
1828 	if (setChip) {
1829 		if ((REG_READ(ah, AR_RTC_STATUS) &
1830 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1831 			if (ath9k_hw_set_reset_reg(ah,
1832 					   ATH9K_RESET_POWER_ON) != true) {
1833 				return false;
1834 			}
1835 			if (!AR_SREV_9300_20_OR_LATER(ah))
1836 				ath9k_hw_init_pll(ah, NULL);
1837 		}
1838 		if (AR_SREV_9100(ah))
1839 			REG_SET_BIT(ah, AR_RTC_RESET,
1840 				    AR_RTC_RESET_EN);
1841 
1842 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1843 			    AR_RTC_FORCE_WAKE_EN);
1844 		udelay(50);
1845 
1846 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1847 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1848 			if (val == AR_RTC_STATUS_ON)
1849 				break;
1850 			udelay(50);
1851 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1852 				    AR_RTC_FORCE_WAKE_EN);
1853 		}
1854 		if (i == 0) {
1855 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1856 				  "Failed to wakeup in %uus\n",
1857 				  POWER_UP_TIME / 20);
1858 			return false;
1859 		}
1860 	}
1861 
1862 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1863 
1864 	return true;
1865 }
1866 
1867 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1868 {
1869 	struct ath_common *common = ath9k_hw_common(ah);
1870 	int status = true, setChip = true;
1871 	static const char *modes[] = {
1872 		"AWAKE",
1873 		"FULL-SLEEP",
1874 		"NETWORK SLEEP",
1875 		"UNDEFINED"
1876 	};
1877 
1878 	if (ah->power_mode == mode)
1879 		return status;
1880 
1881 	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
1882 		  modes[ah->power_mode], modes[mode]);
1883 
1884 	switch (mode) {
1885 	case ATH9K_PM_AWAKE:
1886 		status = ath9k_hw_set_power_awake(ah, setChip);
1887 		break;
1888 	case ATH9K_PM_FULL_SLEEP:
1889 		ath9k_set_power_sleep(ah, setChip);
1890 		ah->chip_fullsleep = true;
1891 		break;
1892 	case ATH9K_PM_NETWORK_SLEEP:
1893 		ath9k_set_power_network_sleep(ah, setChip);
1894 		break;
1895 	default:
1896 		ath_print(common, ATH_DBG_FATAL,
1897 			  "Unknown power mode %u\n", mode);
1898 		return false;
1899 	}
1900 	ah->power_mode = mode;
1901 
1902 	return status;
1903 }
1904 EXPORT_SYMBOL(ath9k_hw_setpower);
1905 
1906 /*******************/
1907 /* Beacon Handling */
1908 /*******************/
1909 
1910 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1911 {
1912 	int flags = 0;
1913 
1914 	ah->beacon_interval = beacon_period;
1915 
1916 	ENABLE_REGWRITE_BUFFER(ah);
1917 
1918 	switch (ah->opmode) {
1919 	case NL80211_IFTYPE_STATION:
1920 	case NL80211_IFTYPE_MONITOR:
1921 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1922 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
1923 		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
1924 		flags |= AR_TBTT_TIMER_EN;
1925 		break;
1926 	case NL80211_IFTYPE_ADHOC:
1927 	case NL80211_IFTYPE_MESH_POINT:
1928 		REG_SET_BIT(ah, AR_TXCFG,
1929 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1930 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1931 			  TU_TO_USEC(next_beacon +
1932 				     (ah->atim_window ? ah->
1933 				      atim_window : 1)));
1934 		flags |= AR_NDP_TIMER_EN;
1935 	case NL80211_IFTYPE_AP:
1936 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1937 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1938 			  TU_TO_USEC(next_beacon -
1939 				     ah->config.
1940 				     dma_beacon_response_time));
1941 		REG_WRITE(ah, AR_NEXT_SWBA,
1942 			  TU_TO_USEC(next_beacon -
1943 				     ah->config.
1944 				     sw_beacon_response_time));
1945 		flags |=
1946 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1947 		break;
1948 	default:
1949 		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
1950 			  "%s: unsupported opmode: %d\n",
1951 			  __func__, ah->opmode);
1952 		return;
1953 		break;
1954 	}
1955 
1956 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1957 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1958 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1959 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1960 
1961 	REGWRITE_BUFFER_FLUSH(ah);
1962 	DISABLE_REGWRITE_BUFFER(ah);
1963 
1964 	beacon_period &= ~ATH9K_BEACON_ENA;
1965 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1966 		ath9k_hw_reset_tsf(ah);
1967 	}
1968 
1969 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1970 }
1971 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1972 
1973 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1974 				    const struct ath9k_beacon_state *bs)
1975 {
1976 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1977 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1978 	struct ath_common *common = ath9k_hw_common(ah);
1979 
1980 	ENABLE_REGWRITE_BUFFER(ah);
1981 
1982 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1983 
1984 	REG_WRITE(ah, AR_BEACON_PERIOD,
1985 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1986 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1987 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1988 
1989 	REGWRITE_BUFFER_FLUSH(ah);
1990 	DISABLE_REGWRITE_BUFFER(ah);
1991 
1992 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1993 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1994 
1995 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1996 
1997 	if (bs->bs_sleepduration > beaconintval)
1998 		beaconintval = bs->bs_sleepduration;
1999 
2000 	dtimperiod = bs->bs_dtimperiod;
2001 	if (bs->bs_sleepduration > dtimperiod)
2002 		dtimperiod = bs->bs_sleepduration;
2003 
2004 	if (beaconintval == dtimperiod)
2005 		nextTbtt = bs->bs_nextdtim;
2006 	else
2007 		nextTbtt = bs->bs_nexttbtt;
2008 
2009 	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2010 	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
2011 	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
2012 	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
2013 
2014 	ENABLE_REGWRITE_BUFFER(ah);
2015 
2016 	REG_WRITE(ah, AR_NEXT_DTIM,
2017 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2018 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2019 
2020 	REG_WRITE(ah, AR_SLEEP1,
2021 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2022 		  | AR_SLEEP1_ASSUME_DTIM);
2023 
2024 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2025 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2026 	else
2027 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2028 
2029 	REG_WRITE(ah, AR_SLEEP2,
2030 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2031 
2032 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2033 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2034 
2035 	REGWRITE_BUFFER_FLUSH(ah);
2036 	DISABLE_REGWRITE_BUFFER(ah);
2037 
2038 	REG_SET_BIT(ah, AR_TIMER_MODE,
2039 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2040 		    AR_DTIM_TIMER_EN);
2041 
2042 	/* TSF Out of Range Threshold */
2043 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2044 }
2045 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2046 
2047 /*******************/
2048 /* HW Capabilities */
2049 /*******************/
2050 
2051 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2052 {
2053 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2054 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2055 	struct ath_common *common = ath9k_hw_common(ah);
2056 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2057 
2058 	u16 capField = 0, eeval;
2059 	u8 ant_div_ctl1;
2060 
2061 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2062 	regulatory->current_rd = eeval;
2063 
2064 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2065 	if (AR_SREV_9285_10_OR_LATER(ah))
2066 		eeval |= AR9285_RDEXT_DEFAULT;
2067 	regulatory->current_rd_ext = eeval;
2068 
2069 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
2070 
2071 	if (ah->opmode != NL80211_IFTYPE_AP &&
2072 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2073 		if (regulatory->current_rd == 0x64 ||
2074 		    regulatory->current_rd == 0x65)
2075 			regulatory->current_rd += 5;
2076 		else if (regulatory->current_rd == 0x41)
2077 			regulatory->current_rd = 0x43;
2078 		ath_print(common, ATH_DBG_REGULATORY,
2079 			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
2080 	}
2081 
2082 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2083 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2084 		ath_print(common, ATH_DBG_FATAL,
2085 			  "no band has been marked as supported in EEPROM.\n");
2086 		return -EINVAL;
2087 	}
2088 
2089 	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
2090 
2091 	if (eeval & AR5416_OPFLAGS_11A) {
2092 		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
2093 		if (ah->config.ht_enable) {
2094 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
2095 				set_bit(ATH9K_MODE_11NA_HT20,
2096 					pCap->wireless_modes);
2097 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
2098 				set_bit(ATH9K_MODE_11NA_HT40PLUS,
2099 					pCap->wireless_modes);
2100 				set_bit(ATH9K_MODE_11NA_HT40MINUS,
2101 					pCap->wireless_modes);
2102 			}
2103 		}
2104 	}
2105 
2106 	if (eeval & AR5416_OPFLAGS_11G) {
2107 		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
2108 		if (ah->config.ht_enable) {
2109 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
2110 				set_bit(ATH9K_MODE_11NG_HT20,
2111 					pCap->wireless_modes);
2112 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
2113 				set_bit(ATH9K_MODE_11NG_HT40PLUS,
2114 					pCap->wireless_modes);
2115 				set_bit(ATH9K_MODE_11NG_HT40MINUS,
2116 					pCap->wireless_modes);
2117 			}
2118 		}
2119 	}
2120 
2121 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2122 	/*
2123 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2124 	 * the EEPROM.
2125 	 */
2126 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2127 	    !(eeval & AR5416_OPFLAGS_11A) &&
2128 	    !(AR_SREV_9271(ah)))
2129 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2130 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2131 	else
2132 		/* Use rx_chainmask from EEPROM. */
2133 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2134 
2135 	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
2136 		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2137 
2138 	pCap->low_2ghz_chan = 2312;
2139 	pCap->high_2ghz_chan = 2732;
2140 
2141 	pCap->low_5ghz_chan = 4920;
2142 	pCap->high_5ghz_chan = 6100;
2143 
2144 	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
2145 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
2146 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
2147 
2148 	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
2149 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
2150 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
2151 
2152 	if (ah->config.ht_enable)
2153 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2154 	else
2155 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2156 
2157 	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
2158 	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
2159 	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
2160 	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
2161 
2162 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
2163 		pCap->total_queues =
2164 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
2165 	else
2166 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
2167 
2168 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
2169 		pCap->keycache_size =
2170 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
2171 	else
2172 		pCap->keycache_size = AR_KEYTABLE_SIZE;
2173 
2174 	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
2175 
2176 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
2177 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
2178 	else
2179 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
2180 
2181 	if (AR_SREV_9271(ah))
2182 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2183 	else if (AR_DEVID_7010(ah))
2184 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2185 	else if (AR_SREV_9285_10_OR_LATER(ah))
2186 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2187 	else if (AR_SREV_9280_10_OR_LATER(ah))
2188 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2189 	else
2190 		pCap->num_gpio_pins = AR_NUM_GPIO;
2191 
2192 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2193 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2194 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2195 	} else {
2196 		pCap->rts_aggr_limit = (8 * 1024);
2197 	}
2198 
2199 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
2200 
2201 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2202 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2203 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2204 		ah->rfkill_gpio =
2205 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2206 		ah->rfkill_polarity =
2207 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2208 
2209 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2210 	}
2211 #endif
2212 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2213 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2214 	else
2215 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2216 
2217 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2218 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2219 	else
2220 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2221 
2222 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
2223 		pCap->reg_cap =
2224 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2225 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
2226 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
2227 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
2228 	} else {
2229 		pCap->reg_cap =
2230 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
2231 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
2232 	}
2233 
2234 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
2235 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
2236 	    AR_SREV_5416(ah))
2237 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
2238 
2239 	pCap->num_antcfg_5ghz =
2240 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
2241 	pCap->num_antcfg_2ghz =
2242 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
2243 
2244 	if (AR_SREV_9280_10_OR_LATER(ah) &&
2245 	    ath9k_hw_btcoex_supported(ah)) {
2246 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
2247 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
2248 
2249 		if (AR_SREV_9285(ah)) {
2250 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2251 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
2252 		} else {
2253 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2254 		}
2255 	} else {
2256 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2257 	}
2258 
2259 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2260 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_LDPC |
2261 				 ATH9K_HW_CAP_FASTCLOCK;
2262 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2263 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2264 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2265 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2266 		pCap->txs_len = sizeof(struct ar9003_txs);
2267 		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2268 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2269 	} else {
2270 		pCap->tx_desc_len = sizeof(struct ath_desc);
2271 		if (AR_SREV_9280_20(ah) &&
2272 		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
2273 		      AR5416_EEP_MINOR_VER_16) ||
2274 		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2275 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2276 	}
2277 
2278 	if (AR_SREV_9300_20_OR_LATER(ah))
2279 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2280 
2281 	if (AR_SREV_9287_10_OR_LATER(ah) || AR_SREV_9271(ah))
2282 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2283 
2284 	if (AR_SREV_9285(ah))
2285 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2286 			ant_div_ctl1 =
2287 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2288 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2289 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2290 		}
2291 
2292 	return 0;
2293 }
2294 
2295 /****************************/
2296 /* GPIO / RFKILL / Antennae */
2297 /****************************/
2298 
2299 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2300 					 u32 gpio, u32 type)
2301 {
2302 	int addr;
2303 	u32 gpio_shift, tmp;
2304 
2305 	if (gpio > 11)
2306 		addr = AR_GPIO_OUTPUT_MUX3;
2307 	else if (gpio > 5)
2308 		addr = AR_GPIO_OUTPUT_MUX2;
2309 	else
2310 		addr = AR_GPIO_OUTPUT_MUX1;
2311 
2312 	gpio_shift = (gpio % 6) * 5;
2313 
2314 	if (AR_SREV_9280_20_OR_LATER(ah)
2315 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2316 		REG_RMW(ah, addr, (type << gpio_shift),
2317 			(0x1f << gpio_shift));
2318 	} else {
2319 		tmp = REG_READ(ah, addr);
2320 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2321 		tmp &= ~(0x1f << gpio_shift);
2322 		tmp |= (type << gpio_shift);
2323 		REG_WRITE(ah, addr, tmp);
2324 	}
2325 }
2326 
2327 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2328 {
2329 	u32 gpio_shift;
2330 
2331 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2332 
2333 	if (AR_DEVID_7010(ah)) {
2334 		gpio_shift = gpio;
2335 		REG_RMW(ah, AR7010_GPIO_OE,
2336 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2337 			(AR7010_GPIO_OE_MASK << gpio_shift));
2338 		return;
2339 	}
2340 
2341 	gpio_shift = gpio << 1;
2342 	REG_RMW(ah,
2343 		AR_GPIO_OE_OUT,
2344 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2345 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2346 }
2347 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2348 
2349 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2350 {
2351 #define MS_REG_READ(x, y) \
2352 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2353 
2354 	if (gpio >= ah->caps.num_gpio_pins)
2355 		return 0xffffffff;
2356 
2357 	if (AR_DEVID_7010(ah)) {
2358 		u32 val;
2359 		val = REG_READ(ah, AR7010_GPIO_IN);
2360 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2361 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2362 		return MS_REG_READ(AR9300, gpio) != 0;
2363 	else if (AR_SREV_9271(ah))
2364 		return MS_REG_READ(AR9271, gpio) != 0;
2365 	else if (AR_SREV_9287_10_OR_LATER(ah))
2366 		return MS_REG_READ(AR9287, gpio) != 0;
2367 	else if (AR_SREV_9285_10_OR_LATER(ah))
2368 		return MS_REG_READ(AR9285, gpio) != 0;
2369 	else if (AR_SREV_9280_10_OR_LATER(ah))
2370 		return MS_REG_READ(AR928X, gpio) != 0;
2371 	else
2372 		return MS_REG_READ(AR, gpio) != 0;
2373 }
2374 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2375 
2376 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2377 			 u32 ah_signal_type)
2378 {
2379 	u32 gpio_shift;
2380 
2381 	if (AR_DEVID_7010(ah)) {
2382 		gpio_shift = gpio;
2383 		REG_RMW(ah, AR7010_GPIO_OE,
2384 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2385 			(AR7010_GPIO_OE_MASK << gpio_shift));
2386 		return;
2387 	}
2388 
2389 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2390 	gpio_shift = 2 * gpio;
2391 	REG_RMW(ah,
2392 		AR_GPIO_OE_OUT,
2393 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2394 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2395 }
2396 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2397 
2398 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2399 {
2400 	if (AR_DEVID_7010(ah)) {
2401 		val = val ? 0 : 1;
2402 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2403 			AR_GPIO_BIT(gpio));
2404 		return;
2405 	}
2406 
2407 	if (AR_SREV_9271(ah))
2408 		val = ~val;
2409 
2410 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2411 		AR_GPIO_BIT(gpio));
2412 }
2413 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2414 
2415 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2416 {
2417 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2418 }
2419 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2420 
2421 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2422 {
2423 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2424 }
2425 EXPORT_SYMBOL(ath9k_hw_setantenna);
2426 
2427 /*********************/
2428 /* General Operation */
2429 /*********************/
2430 
2431 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2432 {
2433 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2434 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2435 
2436 	if (phybits & AR_PHY_ERR_RADAR)
2437 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2438 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2439 		bits |= ATH9K_RX_FILTER_PHYERR;
2440 
2441 	return bits;
2442 }
2443 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2444 
2445 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2446 {
2447 	u32 phybits;
2448 
2449 	ENABLE_REGWRITE_BUFFER(ah);
2450 
2451 	REG_WRITE(ah, AR_RX_FILTER, bits);
2452 
2453 	phybits = 0;
2454 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2455 		phybits |= AR_PHY_ERR_RADAR;
2456 	if (bits & ATH9K_RX_FILTER_PHYERR)
2457 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2458 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2459 
2460 	if (phybits)
2461 		REG_WRITE(ah, AR_RXCFG,
2462 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2463 	else
2464 		REG_WRITE(ah, AR_RXCFG,
2465 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2466 
2467 	REGWRITE_BUFFER_FLUSH(ah);
2468 	DISABLE_REGWRITE_BUFFER(ah);
2469 }
2470 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2471 
2472 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2473 {
2474 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2475 		return false;
2476 
2477 	ath9k_hw_init_pll(ah, NULL);
2478 	return true;
2479 }
2480 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2481 
2482 bool ath9k_hw_disable(struct ath_hw *ah)
2483 {
2484 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2485 		return false;
2486 
2487 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2488 		return false;
2489 
2490 	ath9k_hw_init_pll(ah, NULL);
2491 	return true;
2492 }
2493 EXPORT_SYMBOL(ath9k_hw_disable);
2494 
2495 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
2496 {
2497 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2498 	struct ath9k_channel *chan = ah->curchan;
2499 	struct ieee80211_channel *channel = chan->chan;
2500 
2501 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2502 
2503 	ah->eep_ops->set_txpower(ah, chan,
2504 				 ath9k_regd_get_ctl(regulatory, chan),
2505 				 channel->max_antenna_gain * 2,
2506 				 channel->max_power * 2,
2507 				 min((u32) MAX_RATE_POWER,
2508 				 (u32) regulatory->power_limit));
2509 }
2510 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2511 
2512 void ath9k_hw_setopmode(struct ath_hw *ah)
2513 {
2514 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2515 }
2516 EXPORT_SYMBOL(ath9k_hw_setopmode);
2517 
2518 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2519 {
2520 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2521 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2522 }
2523 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2524 
2525 void ath9k_hw_write_associd(struct ath_hw *ah)
2526 {
2527 	struct ath_common *common = ath9k_hw_common(ah);
2528 
2529 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2530 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2531 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2532 }
2533 EXPORT_SYMBOL(ath9k_hw_write_associd);
2534 
2535 #define ATH9K_MAX_TSF_READ 10
2536 
2537 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2538 {
2539 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2540 	int i;
2541 
2542 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2543 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2544 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2545 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2546 		if (tsf_upper2 == tsf_upper1)
2547 			break;
2548 		tsf_upper1 = tsf_upper2;
2549 	}
2550 
2551 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2552 
2553 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2554 }
2555 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2556 
2557 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2558 {
2559 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2560 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2561 }
2562 EXPORT_SYMBOL(ath9k_hw_settsf64);
2563 
2564 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2565 {
2566 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2567 			   AH_TSF_WRITE_TIMEOUT))
2568 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
2569 			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2570 
2571 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2572 }
2573 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2574 
2575 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2576 {
2577 	if (setting)
2578 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2579 	else
2580 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2581 }
2582 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2583 
2584 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2585 {
2586 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2587 	u32 macmode;
2588 
2589 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2590 		macmode = AR_2040_JOINED_RX_CLEAR;
2591 	else
2592 		macmode = 0;
2593 
2594 	REG_WRITE(ah, AR_2040_MODE, macmode);
2595 }
2596 
2597 /* HW Generic timers configuration */
2598 
2599 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2600 {
2601 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2602 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2603 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2604 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2605 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2606 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2607 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2608 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2609 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2610 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2611 				AR_NDP2_TIMER_MODE, 0x0002},
2612 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2613 				AR_NDP2_TIMER_MODE, 0x0004},
2614 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2615 				AR_NDP2_TIMER_MODE, 0x0008},
2616 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2617 				AR_NDP2_TIMER_MODE, 0x0010},
2618 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2619 				AR_NDP2_TIMER_MODE, 0x0020},
2620 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2621 				AR_NDP2_TIMER_MODE, 0x0040},
2622 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2623 				AR_NDP2_TIMER_MODE, 0x0080}
2624 };
2625 
2626 /* HW generic timer primitives */
2627 
2628 /* compute and clear index of rightmost 1 */
2629 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2630 {
2631 	u32 b;
2632 
2633 	b = *mask;
2634 	b &= (0-b);
2635 	*mask &= ~b;
2636 	b *= debruijn32;
2637 	b >>= 27;
2638 
2639 	return timer_table->gen_timer_index[b];
2640 }
2641 
2642 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2643 {
2644 	return REG_READ(ah, AR_TSF_L32);
2645 }
2646 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2647 
2648 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2649 					  void (*trigger)(void *),
2650 					  void (*overflow)(void *),
2651 					  void *arg,
2652 					  u8 timer_index)
2653 {
2654 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2655 	struct ath_gen_timer *timer;
2656 
2657 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2658 
2659 	if (timer == NULL) {
2660 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2661 			  "Failed to allocate memory"
2662 			  "for hw timer[%d]\n", timer_index);
2663 		return NULL;
2664 	}
2665 
2666 	/* allocate a hardware generic timer slot */
2667 	timer_table->timers[timer_index] = timer;
2668 	timer->index = timer_index;
2669 	timer->trigger = trigger;
2670 	timer->overflow = overflow;
2671 	timer->arg = arg;
2672 
2673 	return timer;
2674 }
2675 EXPORT_SYMBOL(ath_gen_timer_alloc);
2676 
2677 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2678 			      struct ath_gen_timer *timer,
2679 			      u32 timer_next,
2680 			      u32 timer_period)
2681 {
2682 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2683 	u32 tsf;
2684 
2685 	BUG_ON(!timer_period);
2686 
2687 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2688 
2689 	tsf = ath9k_hw_gettsf32(ah);
2690 
2691 	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2692 		  "curent tsf %x period %x"
2693 		  "timer_next %x\n", tsf, timer_period, timer_next);
2694 
2695 	/*
2696 	 * Pull timer_next forward if the current TSF already passed it
2697 	 * because of software latency
2698 	 */
2699 	if (timer_next < tsf)
2700 		timer_next = tsf + timer_period;
2701 
2702 	/*
2703 	 * Program generic timer registers
2704 	 */
2705 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2706 		 timer_next);
2707 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2708 		  timer_period);
2709 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2710 		    gen_tmr_configuration[timer->index].mode_mask);
2711 
2712 	/* Enable both trigger and thresh interrupt masks */
2713 	REG_SET_BIT(ah, AR_IMR_S5,
2714 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2715 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2716 }
2717 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2718 
2719 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2720 {
2721 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2722 
2723 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2724 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2725 		return;
2726 	}
2727 
2728 	/* Clear generic timer enable bits. */
2729 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2730 			gen_tmr_configuration[timer->index].mode_mask);
2731 
2732 	/* Disable both trigger and thresh interrupt masks */
2733 	REG_CLR_BIT(ah, AR_IMR_S5,
2734 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2735 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2736 
2737 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2738 }
2739 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2740 
2741 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2742 {
2743 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2744 
2745 	/* free the hardware generic timer slot */
2746 	timer_table->timers[timer->index] = NULL;
2747 	kfree(timer);
2748 }
2749 EXPORT_SYMBOL(ath_gen_timer_free);
2750 
2751 /*
2752  * Generic Timer Interrupts handling
2753  */
2754 void ath_gen_timer_isr(struct ath_hw *ah)
2755 {
2756 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2757 	struct ath_gen_timer *timer;
2758 	struct ath_common *common = ath9k_hw_common(ah);
2759 	u32 trigger_mask, thresh_mask, index;
2760 
2761 	/* get hardware generic timer interrupt status */
2762 	trigger_mask = ah->intr_gen_timer_trigger;
2763 	thresh_mask = ah->intr_gen_timer_thresh;
2764 	trigger_mask &= timer_table->timer_mask.val;
2765 	thresh_mask &= timer_table->timer_mask.val;
2766 
2767 	trigger_mask &= ~thresh_mask;
2768 
2769 	while (thresh_mask) {
2770 		index = rightmost_index(timer_table, &thresh_mask);
2771 		timer = timer_table->timers[index];
2772 		BUG_ON(!timer);
2773 		ath_print(common, ATH_DBG_HWTIMER,
2774 			  "TSF overflow for Gen timer %d\n", index);
2775 		timer->overflow(timer->arg);
2776 	}
2777 
2778 	while (trigger_mask) {
2779 		index = rightmost_index(timer_table, &trigger_mask);
2780 		timer = timer_table->timers[index];
2781 		BUG_ON(!timer);
2782 		ath_print(common, ATH_DBG_HWTIMER,
2783 			  "Gen timer[%d] trigger\n", index);
2784 		timer->trigger(timer->arg);
2785 	}
2786 }
2787 EXPORT_SYMBOL(ath_gen_timer_isr);
2788 
2789 /********/
2790 /* HTC  */
2791 /********/
2792 
2793 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2794 {
2795 	ah->htc_reset_init = true;
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2798 
2799 static struct {
2800 	u32 version;
2801 	const char * name;
2802 } ath_mac_bb_names[] = {
2803 	/* Devices with external radios */
2804 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2805 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2806 	{ AR_SREV_VERSION_9100,		"9100" },
2807 	{ AR_SREV_VERSION_9160,		"9160" },
2808 	/* Single-chip solutions */
2809 	{ AR_SREV_VERSION_9280,		"9280" },
2810 	{ AR_SREV_VERSION_9285,		"9285" },
2811 	{ AR_SREV_VERSION_9287,         "9287" },
2812 	{ AR_SREV_VERSION_9271,         "9271" },
2813 	{ AR_SREV_VERSION_9300,         "9300" },
2814 };
2815 
2816 /* For devices with external radios */
2817 static struct {
2818 	u16 version;
2819 	const char * name;
2820 } ath_rf_names[] = {
2821 	{ 0,				"5133" },
2822 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2823 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2824 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2825 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2826 };
2827 
2828 /*
2829  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2830  */
2831 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2832 {
2833 	int i;
2834 
2835 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2836 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2837 			return ath_mac_bb_names[i].name;
2838 		}
2839 	}
2840 
2841 	return "????";
2842 }
2843 
2844 /*
2845  * Return the RF name. "????" is returned if the RF is unknown.
2846  * Used for devices with external radios.
2847  */
2848 static const char *ath9k_hw_rf_name(u16 rf_version)
2849 {
2850 	int i;
2851 
2852 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2853 		if (ath_rf_names[i].version == rf_version) {
2854 			return ath_rf_names[i].name;
2855 		}
2856 	}
2857 
2858 	return "????";
2859 }
2860 
2861 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2862 {
2863 	int used;
2864 
2865 	/* chipsets >= AR9280 are single-chip */
2866 	if (AR_SREV_9280_10_OR_LATER(ah)) {
2867 		used = snprintf(hw_name, len,
2868 			       "Atheros AR%s Rev:%x",
2869 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2870 			       ah->hw_version.macRev);
2871 	}
2872 	else {
2873 		used = snprintf(hw_name, len,
2874 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2875 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2876 			       ah->hw_version.macRev,
2877 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2878 						AR_RADIO_SREV_MAJOR)),
2879 			       ah->hw_version.phyRev);
2880 	}
2881 
2882 	hw_name[used] = '\0';
2883 }
2884 EXPORT_SYMBOL(ath9k_hw_name);
2885