xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/eeprom_9287.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 #define SIZE_EEPROM_AR9287 (sizeof(struct ar9287_eeprom) / sizeof(u16))
22 
23 static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
24 {
25 	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
26 }
27 
28 static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
29 {
30 	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
31 }
32 
33 static bool __ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
34 {
35 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
36 	u16 *eep_data;
37 	int addr, eep_start_loc = AR9287_EEP_START_LOC;
38 	eep_data = (u16 *)eep;
39 
40 	for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
41 		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
42 			return false;
43 		eep_data++;
44 	}
45 
46 	return true;
47 }
48 
49 static bool __ath9k_hw_usb_ar9287_fill_eeprom(struct ath_hw *ah)
50 {
51 	u16 *eep_data = (u16 *)&ah->eeprom.map9287;
52 
53 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
54 				     AR9287_HTC_EEP_START_LOC,
55 				     SIZE_EEPROM_AR9287);
56 	return true;
57 }
58 
59 static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
60 {
61 	struct ath_common *common = ath9k_hw_common(ah);
62 
63 	if (!ath9k_hw_use_flash(ah)) {
64 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
65 	}
66 
67 	if (common->bus_ops->ath_bus_type == ATH_USB)
68 		return __ath9k_hw_usb_ar9287_fill_eeprom(ah);
69 	else
70 		return __ath9k_hw_ar9287_fill_eeprom(ah);
71 }
72 
73 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
74 static u32 ar9287_dump_modal_eeprom(char *buf, u32 len, u32 size,
75 				    struct modal_eep_ar9287_header *modal_hdr)
76 {
77 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
78 	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
79 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
80 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
81 	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
82 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
83 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
84 	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
85 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
86 	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
87 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
88 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
89 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
90 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
91 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
92 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
93 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
94 	PR_EEP("xpdGain", modal_hdr->xpdGain);
95 	PR_EEP("External PD", modal_hdr->xpd);
96 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
97 	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
98 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
99 	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
100 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
101 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
102 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
103 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
104 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
105 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
106 	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
107 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
108 	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
109 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
110 	PR_EEP("AR92x7 Version", modal_hdr->version);
111 	PR_EEP("DriverBias1", modal_hdr->db1);
112 	PR_EEP("DriverBias2", modal_hdr->db1);
113 	PR_EEP("CCK OutputBias", modal_hdr->ob_cck);
114 	PR_EEP("PSK OutputBias", modal_hdr->ob_psk);
115 	PR_EEP("QAM OutputBias", modal_hdr->ob_qam);
116 	PR_EEP("PAL_OFF OutputBias", modal_hdr->ob_pal_off);
117 
118 	return len;
119 }
120 
121 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
122 				       u8 *buf, u32 len, u32 size)
123 {
124 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
125 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
126 
127 	if (!dump_base_hdr) {
128 		len += scnprintf(buf + len, size - len,
129 				 "%20s :\n", "2GHz modal Header");
130 		len = ar9287_dump_modal_eeprom(buf, len, size,
131 						&eep->modalHeader);
132 		goto out;
133 	}
134 
135 	PR_EEP("Major Version", pBase->version >> 12);
136 	PR_EEP("Minor Version", pBase->version & 0xFFF);
137 	PR_EEP("Checksum", pBase->checksum);
138 	PR_EEP("Length", pBase->length);
139 	PR_EEP("RegDomain1", pBase->regDmn[0]);
140 	PR_EEP("RegDomain2", pBase->regDmn[1]);
141 	PR_EEP("TX Mask", pBase->txMask);
142 	PR_EEP("RX Mask", pBase->rxMask);
143 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
144 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
145 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
146 					AR5416_OPFLAGS_N_2G_HT20));
147 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
148 					AR5416_OPFLAGS_N_2G_HT40));
149 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
150 					AR5416_OPFLAGS_N_5G_HT20));
151 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
152 					AR5416_OPFLAGS_N_5G_HT40));
153 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
154 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
155 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
156 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
157 	PR_EEP("Power Table Offset", pBase->pwrTableOffset);
158 	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
159 
160 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
161 			 pBase->macAddr);
162 
163 out:
164 	if (len > size)
165 		len = size;
166 
167 	return len;
168 }
169 #else
170 static u32 ath9k_hw_ar9287_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
171 				       u8 *buf, u32 len, u32 size)
172 {
173 	return 0;
174 }
175 #endif
176 
177 
178 static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
179 {
180 	u32 sum = 0, el, integer;
181 	u16 temp, word, magic, magic2, *eepdata;
182 	int i, addr;
183 	bool need_swap = false;
184 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
185 	struct ath_common *common = ath9k_hw_common(ah);
186 
187 	if (!ath9k_hw_use_flash(ah)) {
188 		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
189 					 &magic)) {
190 			ath_err(common, "Reading Magic # failed\n");
191 			return false;
192 		}
193 
194 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
195 
196 		if (magic != AR5416_EEPROM_MAGIC) {
197 			magic2 = swab16(magic);
198 
199 			if (magic2 == AR5416_EEPROM_MAGIC) {
200 				need_swap = true;
201 				eepdata = (u16 *)(&ah->eeprom);
202 
203 				for (addr = 0; addr < SIZE_EEPROM_AR9287; addr++) {
204 					temp = swab16(*eepdata);
205 					*eepdata = temp;
206 					eepdata++;
207 				}
208 			} else {
209 				ath_err(common,
210 					"Invalid EEPROM Magic. Endianness mismatch.\n");
211 				return -EINVAL;
212 			}
213 		}
214 	}
215 
216 	ath_dbg(common, EEPROM, "need_swap = %s\n",
217 		need_swap ? "True" : "False");
218 
219 	if (need_swap)
220 		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
221 	else
222 		el = ah->eeprom.map9287.baseEepHeader.length;
223 
224 	if (el > sizeof(struct ar9287_eeprom))
225 		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
226 	else
227 		el = el / sizeof(u16);
228 
229 	eepdata = (u16 *)(&ah->eeprom);
230 
231 	for (i = 0; i < el; i++)
232 		sum ^= *eepdata++;
233 
234 	if (need_swap) {
235 		word = swab16(eep->baseEepHeader.length);
236 		eep->baseEepHeader.length = word;
237 
238 		word = swab16(eep->baseEepHeader.checksum);
239 		eep->baseEepHeader.checksum = word;
240 
241 		word = swab16(eep->baseEepHeader.version);
242 		eep->baseEepHeader.version = word;
243 
244 		word = swab16(eep->baseEepHeader.regDmn[0]);
245 		eep->baseEepHeader.regDmn[0] = word;
246 
247 		word = swab16(eep->baseEepHeader.regDmn[1]);
248 		eep->baseEepHeader.regDmn[1] = word;
249 
250 		word = swab16(eep->baseEepHeader.rfSilent);
251 		eep->baseEepHeader.rfSilent = word;
252 
253 		word = swab16(eep->baseEepHeader.blueToothOptions);
254 		eep->baseEepHeader.blueToothOptions = word;
255 
256 		word = swab16(eep->baseEepHeader.deviceCap);
257 		eep->baseEepHeader.deviceCap = word;
258 
259 		integer = swab32(eep->modalHeader.antCtrlCommon);
260 		eep->modalHeader.antCtrlCommon = integer;
261 
262 		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
263 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
264 			eep->modalHeader.antCtrlChain[i] = integer;
265 		}
266 
267 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
268 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
269 			eep->modalHeader.spurChans[i].spurChan = word;
270 		}
271 	}
272 
273 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
274 	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
275 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
276 			sum, ah->eep_ops->get_eeprom_ver(ah));
277 		return -EINVAL;
278 	}
279 
280 	return 0;
281 }
282 
283 static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
284 				      enum eeprom_param param)
285 {
286 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
287 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
288 	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
289 	u16 ver_minor;
290 
291 	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;
292 
293 	switch (param) {
294 	case EEP_NFTHRESH_2:
295 		return pModal->noiseFloorThreshCh[0];
296 	case EEP_MAC_LSW:
297 		return get_unaligned_be16(pBase->macAddr);
298 	case EEP_MAC_MID:
299 		return get_unaligned_be16(pBase->macAddr + 2);
300 	case EEP_MAC_MSW:
301 		return get_unaligned_be16(pBase->macAddr + 4);
302 	case EEP_REG_0:
303 		return pBase->regDmn[0];
304 	case EEP_OP_CAP:
305 		return pBase->deviceCap;
306 	case EEP_OP_MODE:
307 		return pBase->opCapFlags;
308 	case EEP_RF_SILENT:
309 		return pBase->rfSilent;
310 	case EEP_MINOR_REV:
311 		return ver_minor;
312 	case EEP_TX_MASK:
313 		return pBase->txMask;
314 	case EEP_RX_MASK:
315 		return pBase->rxMask;
316 	case EEP_DEV_TYPE:
317 		return pBase->deviceType;
318 	case EEP_OL_PWRCTRL:
319 		return pBase->openLoopPwrCntl;
320 	case EEP_TEMPSENSE_SLOPE:
321 		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
322 			return pBase->tempSensSlope;
323 		else
324 			return 0;
325 	case EEP_TEMPSENSE_SLOPE_PAL_ON:
326 		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
327 			return pBase->tempSensSlopePalOn;
328 		else
329 			return 0;
330 	case EEP_ANTENNA_GAIN_2G:
331 		return max_t(u8, pModal->antennaGainCh[0],
332 				 pModal->antennaGainCh[1]);
333 	default:
334 		return 0;
335 	}
336 }
337 
338 static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
339 			    struct ath9k_channel *chan,
340 			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
341 			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
342 {
343 	u16 idxL = 0, idxR = 0, numPiers;
344 	bool match;
345 	struct chan_centers centers;
346 
347 	ath9k_hw_get_channel_centers(ah, chan, &centers);
348 
349 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
350 		if (pCalChans[numPiers] == AR5416_BCHAN_UNUSED)
351 			break;
352 	}
353 
354 	match = ath9k_hw_get_lower_upper_index(
355 		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
356 		pCalChans, numPiers, &idxL, &idxR);
357 
358 	if (match) {
359 		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
360 	} else {
361 		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
362 			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
363 	}
364 
365 }
366 
367 static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
368 					  int32_t txPower, u16 chain)
369 {
370 	u32 tmpVal;
371 	u32 a;
372 
373 	/* Enable OLPC for chain 0 */
374 
375 	tmpVal = REG_READ(ah, 0xa270);
376 	tmpVal = tmpVal & 0xFCFFFFFF;
377 	tmpVal = tmpVal | (0x3 << 24);
378 	REG_WRITE(ah, 0xa270, tmpVal);
379 
380 	/* Enable OLPC for chain 1 */
381 
382 	tmpVal = REG_READ(ah, 0xb270);
383 	tmpVal = tmpVal & 0xFCFFFFFF;
384 	tmpVal = tmpVal | (0x3 << 24);
385 	REG_WRITE(ah, 0xb270, tmpVal);
386 
387 	/* Write the OLPC ref power for chain 0 */
388 
389 	if (chain == 0) {
390 		tmpVal = REG_READ(ah, 0xa398);
391 		tmpVal = tmpVal & 0xff00ffff;
392 		a = (txPower)&0xff;
393 		tmpVal = tmpVal | (a << 16);
394 		REG_WRITE(ah, 0xa398, tmpVal);
395 	}
396 
397 	/* Write the OLPC ref power for chain 1 */
398 
399 	if (chain == 1) {
400 		tmpVal = REG_READ(ah, 0xb398);
401 		tmpVal = tmpVal & 0xff00ffff;
402 		a = (txPower)&0xff;
403 		tmpVal = tmpVal | (a << 16);
404 		REG_WRITE(ah, 0xb398, tmpVal);
405 	}
406 }
407 
408 static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
409 						struct ath9k_channel *chan)
410 {
411 	struct cal_data_per_freq_ar9287 *pRawDataset;
412 	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
413 	u8 *pCalBChans = NULL;
414 	u16 pdGainOverlap_t2;
415 	u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
416 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
417 	u16 numPiers = 0, i, j;
418 	u16 numXpdGain, xpdMask;
419 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = {0, 0, 0, 0};
420 	u32 reg32, regOffset, regChainOffset, regval;
421 	int16_t diff = 0;
422 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
423 
424 	xpdMask = pEepData->modalHeader.xpdGain;
425 
426 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
427 	    AR9287_EEP_MINOR_VER_2)
428 		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
429 	else
430 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
431 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
432 
433 	if (IS_CHAN_2GHZ(chan)) {
434 		pCalBChans = pEepData->calFreqPier2G;
435 		numPiers = AR9287_NUM_2G_CAL_PIERS;
436 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
437 			pRawDatasetOpenLoop =
438 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
439 			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
440 		}
441 	}
442 
443 	numXpdGain = 0;
444 
445 	/* Calculate the value of xpdgains from the xpdGain Mask */
446 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
447 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
448 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
449 				break;
450 			xpdGainValues[numXpdGain] =
451 				(u16)(AR5416_PD_GAINS_IN_MASK-i);
452 			numXpdGain++;
453 		}
454 	}
455 
456 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
457 		      (numXpdGain - 1) & 0x3);
458 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
459 		      xpdGainValues[0]);
460 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
461 		      xpdGainValues[1]);
462 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
463 		      xpdGainValues[2]);
464 
465 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
466 		regChainOffset = i * 0x1000;
467 
468 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
469 			pRawDatasetOpenLoop =
470 			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];
471 
472 			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
473 				int8_t txPower;
474 				ar9287_eeprom_get_tx_gain_index(ah, chan,
475 							pRawDatasetOpenLoop,
476 							pCalBChans, numPiers,
477 							&txPower);
478 				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
479 			} else {
480 				pRawDataset =
481 					(struct cal_data_per_freq_ar9287 *)
482 					pEepData->calPierData2G[i];
483 
484 				ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
485 							   pRawDataset,
486 							   pCalBChans, numPiers,
487 							   pdGainOverlap_t2,
488 							   gainBoundaries,
489 							   pdadcValues,
490 							   numXpdGain);
491 			}
492 
493 			ENABLE_REGWRITE_BUFFER(ah);
494 
495 			if (i == 0) {
496 				if (!ath9k_hw_ar9287_get_eeprom(ah,
497 							EEP_OL_PWRCTRL)) {
498 
499 					regval = SM(pdGainOverlap_t2,
500 						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
501 						| SM(gainBoundaries[0],
502 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
503 						| SM(gainBoundaries[1],
504 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
505 						| SM(gainBoundaries[2],
506 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
507 						| SM(gainBoundaries[3],
508 						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);
509 
510 					REG_WRITE(ah,
511 						  AR_PHY_TPCRG5 + regChainOffset,
512 						  regval);
513 				}
514 			}
515 
516 			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
517 			    pEepData->baseEepHeader.pwrTableOffset) {
518 				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
519 					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
520 				diff *= 2;
521 
522 				for (j = 0; j < ((u16)AR5416_NUM_PDADC_VALUES-diff); j++)
523 					pdadcValues[j] = pdadcValues[j+diff];
524 
525 				for (j = (u16)(AR5416_NUM_PDADC_VALUES-diff);
526 				     j < AR5416_NUM_PDADC_VALUES; j++)
527 					pdadcValues[j] =
528 					  pdadcValues[AR5416_NUM_PDADC_VALUES-diff];
529 			}
530 
531 			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
532 				regOffset = AR_PHY_BASE +
533 					(672 << 2) + regChainOffset;
534 
535 				for (j = 0; j < 32; j++) {
536 					reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
537 
538 					REG_WRITE(ah, regOffset, reg32);
539 					regOffset += 4;
540 				}
541 			}
542 			REGWRITE_BUFFER_FLUSH(ah);
543 		}
544 	}
545 }
546 
547 static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
548 						     struct ath9k_channel *chan,
549 						     int16_t *ratesArray,
550 						     u16 cfgCtl,
551 						     u16 antenna_reduction,
552 						     u16 powerLimit)
553 {
554 #define CMP_CTL \
555 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
556 	 pEepData->ctlIndex[i])
557 
558 #define CMP_NO_CTL \
559 	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
560 	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
561 
562 	u16 twiceMaxEdgePower;
563 	int i;
564 	struct cal_ctl_data_ar9287 *rep;
565 	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
566 				    targetPowerCck = {0, {0, 0, 0, 0} };
567 	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
568 				    targetPowerCckExt = {0, {0, 0, 0, 0} };
569 	struct cal_target_power_ht targetPowerHt20,
570 				    targetPowerHt40 = {0, {0, 0, 0, 0} };
571 	u16 scaledPower = 0, minCtlPower;
572 	static const u16 ctlModesFor11g[] = {
573 		CTL_11B, CTL_11G, CTL_2GHT20,
574 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
575 	};
576 	u16 numCtlModes = 0;
577 	const u16 *pCtlMode = NULL;
578 	u16 ctlMode, freq;
579 	struct chan_centers centers;
580 	int tx_chainmask;
581 	u16 twiceMinEdgePower;
582 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
583 	tx_chainmask = ah->txchainmask;
584 
585 	ath9k_hw_get_channel_centers(ah, chan, &centers);
586 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
587 						antenna_reduction);
588 
589 	/*
590 	 * Get TX power from EEPROM.
591 	 */
592 	if (IS_CHAN_2GHZ(chan))	{
593 		/* CTL_11B, CTL_11G, CTL_2GHT20 */
594 		numCtlModes =
595 			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
596 
597 		pCtlMode = ctlModesFor11g;
598 
599 		ath9k_hw_get_legacy_target_powers(ah, chan,
600 						  pEepData->calTargetPowerCck,
601 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
602 						  &targetPowerCck, 4, false);
603 		ath9k_hw_get_legacy_target_powers(ah, chan,
604 						  pEepData->calTargetPower2G,
605 						  AR9287_NUM_2G_20_TARGET_POWERS,
606 						  &targetPowerOfdm, 4, false);
607 		ath9k_hw_get_target_powers(ah, chan,
608 					   pEepData->calTargetPower2GHT20,
609 					   AR9287_NUM_2G_20_TARGET_POWERS,
610 					   &targetPowerHt20, 8, false);
611 
612 		if (IS_CHAN_HT40(chan))	{
613 			/* All 2G CTLs */
614 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
615 			ath9k_hw_get_target_powers(ah, chan,
616 						   pEepData->calTargetPower2GHT40,
617 						   AR9287_NUM_2G_40_TARGET_POWERS,
618 						   &targetPowerHt40, 8, true);
619 			ath9k_hw_get_legacy_target_powers(ah, chan,
620 						  pEepData->calTargetPowerCck,
621 						  AR9287_NUM_2G_CCK_TARGET_POWERS,
622 						  &targetPowerCckExt, 4, true);
623 			ath9k_hw_get_legacy_target_powers(ah, chan,
624 						  pEepData->calTargetPower2G,
625 						  AR9287_NUM_2G_20_TARGET_POWERS,
626 						  &targetPowerOfdmExt, 4, true);
627 		}
628 	}
629 
630 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
631 		bool isHt40CtlMode =
632 			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;
633 
634 		if (isHt40CtlMode)
635 			freq = centers.synth_center;
636 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
637 			freq = centers.ext_center;
638 		else
639 			freq = centers.ctl_center;
640 
641 		twiceMaxEdgePower = MAX_RATE_POWER;
642 		/* Walk through the CTL indices stored in EEPROM */
643 		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
644 			struct cal_ctl_edges *pRdEdgesPower;
645 
646 			/*
647 			 * Compare test group from regulatory channel list
648 			 * with test mode from pCtlMode list
649 			 */
650 			if (CMP_CTL || CMP_NO_CTL) {
651 				rep = &(pEepData->ctlData[i]);
652 				pRdEdgesPower =
653 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];
654 
655 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
656 								pRdEdgesPower,
657 								IS_CHAN_2GHZ(chan),
658 								AR5416_NUM_BAND_EDGES);
659 
660 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
661 					twiceMaxEdgePower = min(twiceMaxEdgePower,
662 								twiceMinEdgePower);
663 				} else {
664 					twiceMaxEdgePower = twiceMinEdgePower;
665 					break;
666 				}
667 			}
668 		}
669 
670 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
671 
672 		/* Apply ctl mode to correct target power set */
673 		switch (pCtlMode[ctlMode]) {
674 		case CTL_11B:
675 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
676 				targetPowerCck.tPow2x[i] =
677 					(u8)min((u16)targetPowerCck.tPow2x[i],
678 						minCtlPower);
679 			}
680 			break;
681 		case CTL_11A:
682 		case CTL_11G:
683 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
684 				targetPowerOfdm.tPow2x[i] =
685 					(u8)min((u16)targetPowerOfdm.tPow2x[i],
686 						minCtlPower);
687 			}
688 			break;
689 		case CTL_5GHT20:
690 		case CTL_2GHT20:
691 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
692 				targetPowerHt20.tPow2x[i] =
693 					(u8)min((u16)targetPowerHt20.tPow2x[i],
694 						minCtlPower);
695 			}
696 			break;
697 		case CTL_11B_EXT:
698 			targetPowerCckExt.tPow2x[0] =
699 				(u8)min((u16)targetPowerCckExt.tPow2x[0],
700 					minCtlPower);
701 			break;
702 		case CTL_11A_EXT:
703 		case CTL_11G_EXT:
704 			targetPowerOfdmExt.tPow2x[0] =
705 				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
706 					minCtlPower);
707 			break;
708 		case CTL_5GHT40:
709 		case CTL_2GHT40:
710 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
711 				targetPowerHt40.tPow2x[i] =
712 					(u8)min((u16)targetPowerHt40.tPow2x[i],
713 						minCtlPower);
714 			}
715 			break;
716 		default:
717 			break;
718 		}
719 	}
720 
721 	/* Now set the rates array */
722 
723 	ratesArray[rate6mb] =
724 	ratesArray[rate9mb] =
725 	ratesArray[rate12mb] =
726 	ratesArray[rate18mb] =
727 	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];
728 
729 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
730 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
731 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
732 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
733 
734 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
735 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
736 
737 	if (IS_CHAN_2GHZ(chan))	{
738 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
739 		ratesArray[rate2s] =
740 		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
741 		ratesArray[rate5_5s] =
742 		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
743 		ratesArray[rate11s] =
744 		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
745 	}
746 	if (IS_CHAN_HT40(chan))	{
747 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
748 			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];
749 
750 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
751 		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
752 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
753 
754 		if (IS_CHAN_2GHZ(chan))
755 			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
756 	}
757 
758 #undef CMP_CTL
759 #undef CMP_NO_CTL
760 }
761 
762 static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
763 					struct ath9k_channel *chan, u16 cfgCtl,
764 					u8 twiceAntennaReduction,
765 					u8 powerLimit, bool test)
766 {
767 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
768 	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
769 	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
770 	int16_t ratesArray[Ar5416RateSize];
771 	u8 ht40PowerIncForPdadc = 2;
772 	int i;
773 
774 	memset(ratesArray, 0, sizeof(ratesArray));
775 
776 	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
777 	    AR9287_EEP_MINOR_VER_2)
778 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
779 
780 	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
781 						 &ratesArray[0], cfgCtl,
782 						 twiceAntennaReduction,
783 						 powerLimit);
784 
785 	ath9k_hw_set_ar9287_power_cal_table(ah, chan);
786 
787 	regulatory->max_power_level = 0;
788 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
789 		if (ratesArray[i] > MAX_RATE_POWER)
790 			ratesArray[i] = MAX_RATE_POWER;
791 
792 		if (ratesArray[i] > regulatory->max_power_level)
793 			regulatory->max_power_level = ratesArray[i];
794 	}
795 
796 	ath9k_hw_update_regulatory_maxpower(ah);
797 
798 	if (test)
799 		return;
800 
801 	for (i = 0; i < Ar5416RateSize; i++)
802 		ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
803 
804 	ENABLE_REGWRITE_BUFFER(ah);
805 
806 	/* OFDM power per rate */
807 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
808 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
809 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
810 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
811 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
812 
813 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
814 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
815 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
816 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
817 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
818 
819 	/* CCK power per rate */
820 	if (IS_CHAN_2GHZ(chan))	{
821 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
822 			  ATH9K_POW_SM(ratesArray[rate2s], 24)
823 			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
824 			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
825 			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
826 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
827 			  ATH9K_POW_SM(ratesArray[rate11s], 24)
828 			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
829 			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
830 			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
831 	}
832 
833 	/* HT20 power per rate */
834 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
835 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
836 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
837 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
838 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
839 
840 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
841 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
842 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
843 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
844 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
845 
846 	/* HT40 power per rate */
847 	if (IS_CHAN_HT40(chan))	{
848 		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
849 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
850 				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
851 				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
852 				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
853 				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));
854 
855 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
856 				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
857 				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
858 				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
859 				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
860 		} else {
861 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
862 				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
863 					       ht40PowerIncForPdadc, 24)
864 				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
865 						 ht40PowerIncForPdadc, 16)
866 				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
867 						 ht40PowerIncForPdadc, 8)
868 				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
869 						 ht40PowerIncForPdadc, 0));
870 
871 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
872 				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
873 					       ht40PowerIncForPdadc, 24)
874 				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
875 						 ht40PowerIncForPdadc, 16)
876 				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
877 						 ht40PowerIncForPdadc, 8)
878 				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
879 						 ht40PowerIncForPdadc, 0));
880 		}
881 
882 		/* Dup/Ext power per rate */
883 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
884 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
885 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
886 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
887 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
888 	}
889 
890 	/* TPC initializations */
891 	if (ah->tpc_enabled) {
892 		int ht40_delta;
893 
894 		ht40_delta = (IS_CHAN_HT40(chan)) ? ht40PowerIncForPdadc : 0;
895 		ar5008_hw_init_rate_txpower(ah, ratesArray, chan, ht40_delta);
896 		/* Enable TPC */
897 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX,
898 			MAX_RATE_POWER | AR_PHY_POWER_TX_RATE_MAX_TPC_ENABLE);
899 	} else {
900 		/* Disable TPC */
901 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE_MAX, MAX_RATE_POWER);
902 	}
903 
904 	REGWRITE_BUFFER_FLUSH(ah);
905 }
906 
907 static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
908 					     struct ath9k_channel *chan)
909 {
910 	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
911 	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
912 	u32 regChainOffset, regval;
913 	u8 txRxAttenLocal;
914 	int i;
915 
916 	pModal = &eep->modalHeader;
917 
918 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
919 
920 	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
921 		regChainOffset = i * 0x1000;
922 
923 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
924 			  pModal->antCtrlChain[i]);
925 
926 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
927 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
928 			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
929 			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
930 			  SM(pModal->iqCalICh[i],
931 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
932 			  SM(pModal->iqCalQCh[i],
933 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
934 
935 		txRxAttenLocal = pModal->txRxAttenCh[i];
936 
937 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
938 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
939 			      pModal->bswMargin[i]);
940 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
941 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
942 			      pModal->bswAtten[i]);
943 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
944 			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
945 			      txRxAttenLocal);
946 		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
947 			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
948 			      pModal->rxTxMarginCh[i]);
949 	}
950 
951 
952 	if (IS_CHAN_HT40(chan))
953 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
954 			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
955 	else
956 		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
957 			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);
958 
959 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
960 		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);
961 
962 	REG_WRITE(ah, AR_PHY_RF_CTL4,
963 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
964 		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
965 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
966 		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
967 
968 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
969 		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);
970 
971 	REG_RMW_FIELD(ah, AR_PHY_CCA,
972 		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
973 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
974 		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);
975 
976 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
977 	regval &= ~(AR9287_AN_RF2G3_DB1 |
978 		    AR9287_AN_RF2G3_DB2 |
979 		    AR9287_AN_RF2G3_OB_CCK |
980 		    AR9287_AN_RF2G3_OB_PSK |
981 		    AR9287_AN_RF2G3_OB_QAM |
982 		    AR9287_AN_RF2G3_OB_PAL_OFF);
983 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
984 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
985 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
986 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
987 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
988 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
989 
990 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);
991 
992 	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
993 	regval &= ~(AR9287_AN_RF2G3_DB1 |
994 		    AR9287_AN_RF2G3_DB2 |
995 		    AR9287_AN_RF2G3_OB_CCK |
996 		    AR9287_AN_RF2G3_OB_PSK |
997 		    AR9287_AN_RF2G3_OB_QAM |
998 		    AR9287_AN_RF2G3_OB_PAL_OFF);
999 	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
1000 		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
1001 		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
1002 		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
1003 		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
1004 		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));
1005 
1006 	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);
1007 
1008 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1009 		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
1010 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
1011 		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);
1012 
1013 	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
1014 				  AR9287_AN_TOP2_XPABIAS_LVL,
1015 				  AR9287_AN_TOP2_XPABIAS_LVL_S,
1016 				  pModal->xpaBiasLvl);
1017 }
1018 
1019 static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
1020 					    u16 i, bool is2GHz)
1021 {
1022 	return ah->eeprom.map9287.modalHeader.spurChans[i].spurChan;
1023 }
1024 
1025 const struct eeprom_ops eep_ar9287_ops = {
1026 	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
1027 	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
1028 	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
1029 	.dump_eeprom		= ath9k_hw_ar9287_dump_eeprom,
1030 	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
1031 	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
1032 	.set_board_values	= ath9k_hw_ar9287_set_board_values,
1033 	.set_txpower		= ath9k_hw_ar9287_set_txpower,
1034 	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
1035 };
1036