1 /* 2 * Copyright (c) 2004-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include "core.h" 18 #include "hif-ops.h" 19 #include "cfg80211.h" 20 #include "target.h" 21 #include "debug.h" 22 23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl_vif *vif, u8 *node_addr) 24 { 25 struct ath6kl *ar = vif->ar; 26 struct ath6kl_sta *conn = NULL; 27 u8 i, max_conn; 28 29 max_conn = (vif->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0; 30 31 for (i = 0; i < max_conn; i++) { 32 if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) { 33 conn = &ar->sta_list[i]; 34 break; 35 } 36 } 37 38 return conn; 39 } 40 41 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid) 42 { 43 struct ath6kl_sta *conn = NULL; 44 u8 ctr; 45 46 for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) { 47 if (ar->sta_list[ctr].aid == aid) { 48 conn = &ar->sta_list[ctr]; 49 break; 50 } 51 } 52 return conn; 53 } 54 55 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie, 56 u8 ielen, u8 keymgmt, u8 ucipher, u8 auth) 57 { 58 struct ath6kl_sta *sta; 59 u8 free_slot; 60 61 free_slot = aid - 1; 62 63 sta = &ar->sta_list[free_slot]; 64 memcpy(sta->mac, mac, ETH_ALEN); 65 if (ielen <= ATH6KL_MAX_IE) 66 memcpy(sta->wpa_ie, wpaie, ielen); 67 sta->aid = aid; 68 sta->keymgmt = keymgmt; 69 sta->ucipher = ucipher; 70 sta->auth = auth; 71 72 ar->sta_list_index = ar->sta_list_index | (1 << free_slot); 73 ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid); 74 } 75 76 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i) 77 { 78 struct ath6kl_sta *sta = &ar->sta_list[i]; 79 80 /* empty the queued pkts in the PS queue if any */ 81 spin_lock_bh(&sta->psq_lock); 82 skb_queue_purge(&sta->psq); 83 spin_unlock_bh(&sta->psq_lock); 84 85 memset(&ar->ap_stats.sta[sta->aid - 1], 0, 86 sizeof(struct wmi_per_sta_stat)); 87 memset(sta->mac, 0, ETH_ALEN); 88 memset(sta->wpa_ie, 0, ATH6KL_MAX_IE); 89 sta->aid = 0; 90 sta->sta_flags = 0; 91 92 ar->sta_list_index = ar->sta_list_index & ~(1 << i); 93 94 } 95 96 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason) 97 { 98 u8 i, removed = 0; 99 100 if (is_zero_ether_addr(mac)) 101 return removed; 102 103 if (is_broadcast_ether_addr(mac)) { 104 ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n"); 105 106 for (i = 0; i < AP_MAX_NUM_STA; i++) { 107 if (!is_zero_ether_addr(ar->sta_list[i].mac)) { 108 ath6kl_sta_cleanup(ar, i); 109 removed = 1; 110 } 111 } 112 } else { 113 for (i = 0; i < AP_MAX_NUM_STA; i++) { 114 if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) { 115 ath6kl_dbg(ATH6KL_DBG_TRC, 116 "deleting station %pM aid=%d reason=%d\n", 117 mac, ar->sta_list[i].aid, reason); 118 ath6kl_sta_cleanup(ar, i); 119 removed = 1; 120 break; 121 } 122 } 123 } 124 125 return removed; 126 } 127 128 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac) 129 { 130 struct ath6kl *ar = devt; 131 return ar->ac2ep_map[ac]; 132 } 133 134 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar) 135 { 136 struct ath6kl_cookie *cookie; 137 138 cookie = ar->cookie_list; 139 if (cookie != NULL) { 140 ar->cookie_list = cookie->arc_list_next; 141 ar->cookie_count--; 142 } 143 144 return cookie; 145 } 146 147 void ath6kl_cookie_init(struct ath6kl *ar) 148 { 149 u32 i; 150 151 ar->cookie_list = NULL; 152 ar->cookie_count = 0; 153 154 memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem)); 155 156 for (i = 0; i < MAX_COOKIE_NUM; i++) 157 ath6kl_free_cookie(ar, &ar->cookie_mem[i]); 158 } 159 160 void ath6kl_cookie_cleanup(struct ath6kl *ar) 161 { 162 ar->cookie_list = NULL; 163 ar->cookie_count = 0; 164 } 165 166 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie) 167 { 168 /* Insert first */ 169 170 if (!ar || !cookie) 171 return; 172 173 cookie->arc_list_next = ar->cookie_list; 174 ar->cookie_list = cookie; 175 ar->cookie_count++; 176 } 177 178 /* set the window address register (using 4-byte register access ). */ 179 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr) 180 { 181 int status; 182 s32 i; 183 __le32 addr_val; 184 185 /* 186 * Write bytes 1,2,3 of the register to set the upper address bytes, 187 * the LSB is written last to initiate the access cycle 188 */ 189 190 for (i = 1; i <= 3; i++) { 191 /* 192 * Fill the buffer with the address byte value we want to 193 * hit 4 times. No need to worry about endianness as the 194 * same byte is copied to all four bytes of addr_val at 195 * any time. 196 */ 197 memset((u8 *)&addr_val, ((u8 *)&addr)[i], 4); 198 199 /* 200 * Hit each byte of the register address with a 4-byte 201 * write operation to the same address, this is a harmless 202 * operation. 203 */ 204 status = hif_read_write_sync(ar, reg_addr + i, (u8 *)&addr_val, 205 4, HIF_WR_SYNC_BYTE_FIX); 206 if (status) 207 break; 208 } 209 210 if (status) { 211 ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n", 212 addr, reg_addr); 213 return status; 214 } 215 216 /* 217 * Write the address register again, this time write the whole 218 * 4-byte value. The effect here is that the LSB write causes the 219 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no 220 * effect since we are writing the same values again 221 */ 222 addr_val = cpu_to_le32(addr); 223 status = hif_read_write_sync(ar, reg_addr, 224 (u8 *)&(addr_val), 225 4, HIF_WR_SYNC_BYTE_INC); 226 227 if (status) { 228 ath6kl_err("failed to write 0x%x to window reg: 0x%X\n", 229 addr, reg_addr); 230 return status; 231 } 232 233 return 0; 234 } 235 236 /* 237 * Read from the hardware through its diagnostic window. No cooperation 238 * from the firmware is required for this. 239 */ 240 int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value) 241 { 242 int ret; 243 244 /* set window register to start read cycle */ 245 ret = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, address); 246 if (ret) 247 return ret; 248 249 /* read the data */ 250 ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) value, 251 sizeof(*value), HIF_RD_SYNC_BYTE_INC); 252 if (ret) { 253 ath6kl_warn("failed to read32 through diagnose window: %d\n", 254 ret); 255 return ret; 256 } 257 258 return 0; 259 } 260 261 /* 262 * Write to the ATH6KL through its diagnostic window. No cooperation from 263 * the Target is required for this. 264 */ 265 int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value) 266 { 267 int ret; 268 269 /* set write data */ 270 ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) &value, 271 sizeof(value), HIF_WR_SYNC_BYTE_INC); 272 if (ret) { 273 ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n", 274 address, value); 275 return ret; 276 } 277 278 /* set window register, which starts the write cycle */ 279 return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS, 280 address); 281 } 282 283 int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length) 284 { 285 u32 count, *buf = data; 286 int ret; 287 288 if (WARN_ON(length % 4)) 289 return -EINVAL; 290 291 for (count = 0; count < length / 4; count++, address += 4) { 292 ret = ath6kl_diag_read32(ar, address, &buf[count]); 293 if (ret) 294 return ret; 295 } 296 297 return 0; 298 } 299 300 int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length) 301 { 302 u32 count; 303 __le32 *buf = data; 304 int ret; 305 306 if (WARN_ON(length % 4)) 307 return -EINVAL; 308 309 for (count = 0; count < length / 4; count++, address += 4) { 310 ret = ath6kl_diag_write32(ar, address, buf[count]); 311 if (ret) 312 return ret; 313 } 314 315 return 0; 316 } 317 318 int ath6kl_read_fwlogs(struct ath6kl *ar) 319 { 320 struct ath6kl_dbglog_hdr debug_hdr; 321 struct ath6kl_dbglog_buf debug_buf; 322 u32 address, length, dropped, firstbuf, debug_hdr_addr; 323 int ret = 0, loop; 324 u8 *buf; 325 326 buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL); 327 if (!buf) 328 return -ENOMEM; 329 330 address = TARG_VTOP(ar->target_type, 331 ath6kl_get_hi_item_addr(ar, 332 HI_ITEM(hi_dbglog_hdr))); 333 334 ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr); 335 if (ret) 336 goto out; 337 338 /* Get the contents of the ring buffer */ 339 if (debug_hdr_addr == 0) { 340 ath6kl_warn("Invalid address for debug_hdr_addr\n"); 341 ret = -EINVAL; 342 goto out; 343 } 344 345 address = TARG_VTOP(ar->target_type, debug_hdr_addr); 346 ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr)); 347 348 address = TARG_VTOP(ar->target_type, 349 le32_to_cpu(debug_hdr.dbuf_addr)); 350 firstbuf = address; 351 dropped = le32_to_cpu(debug_hdr.dropped); 352 ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf)); 353 354 loop = 100; 355 356 do { 357 address = TARG_VTOP(ar->target_type, 358 le32_to_cpu(debug_buf.buffer_addr)); 359 length = le32_to_cpu(debug_buf.length); 360 361 if (length != 0 && (le32_to_cpu(debug_buf.length) <= 362 le32_to_cpu(debug_buf.bufsize))) { 363 length = ALIGN(length, 4); 364 365 ret = ath6kl_diag_read(ar, address, 366 buf, length); 367 if (ret) 368 goto out; 369 370 ath6kl_debug_fwlog_event(ar, buf, length); 371 } 372 373 address = TARG_VTOP(ar->target_type, 374 le32_to_cpu(debug_buf.next)); 375 ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf)); 376 if (ret) 377 goto out; 378 379 loop--; 380 381 if (WARN_ON(loop == 0)) { 382 ret = -ETIMEDOUT; 383 goto out; 384 } 385 } while (address != firstbuf); 386 387 out: 388 kfree(buf); 389 390 return ret; 391 } 392 393 /* FIXME: move to a better place, target.h? */ 394 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000 395 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000 396 397 void ath6kl_reset_device(struct ath6kl *ar, u32 target_type, 398 bool wait_fot_compltn, bool cold_reset) 399 { 400 int status = 0; 401 u32 address; 402 __le32 data; 403 404 if (target_type != TARGET_TYPE_AR6003 && 405 target_type != TARGET_TYPE_AR6004) 406 return; 407 408 data = cold_reset ? cpu_to_le32(RESET_CONTROL_COLD_RST) : 409 cpu_to_le32(RESET_CONTROL_MBOX_RST); 410 411 switch (target_type) { 412 case TARGET_TYPE_AR6003: 413 address = AR6003_RESET_CONTROL_ADDRESS; 414 break; 415 case TARGET_TYPE_AR6004: 416 address = AR6004_RESET_CONTROL_ADDRESS; 417 break; 418 default: 419 address = AR6003_RESET_CONTROL_ADDRESS; 420 break; 421 } 422 423 status = ath6kl_diag_write32(ar, address, data); 424 425 if (status) 426 ath6kl_err("failed to reset target\n"); 427 } 428 429 static void ath6kl_install_static_wep_keys(struct ath6kl_vif *vif) 430 { 431 u8 index; 432 u8 keyusage; 433 434 for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) { 435 if (vif->wep_key_list[index].key_len) { 436 keyusage = GROUP_USAGE; 437 if (index == vif->def_txkey_index) 438 keyusage |= TX_USAGE; 439 440 ath6kl_wmi_addkey_cmd(vif->ar->wmi, vif->fw_vif_idx, 441 index, 442 WEP_CRYPT, 443 keyusage, 444 vif->wep_key_list[index].key_len, 445 NULL, 446 vif->wep_key_list[index].key, 447 KEY_OP_INIT_VAL, NULL, 448 NO_SYNC_WMIFLAG); 449 } 450 } 451 } 452 453 void ath6kl_connect_ap_mode_bss(struct ath6kl_vif *vif, u16 channel) 454 { 455 struct ath6kl *ar = vif->ar; 456 struct ath6kl_req_key *ik; 457 int res; 458 u8 key_rsc[ATH6KL_KEY_SEQ_LEN]; 459 460 ik = &ar->ap_mode_bkey; 461 462 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel); 463 464 switch (vif->auth_mode) { 465 case NONE_AUTH: 466 if (vif->prwise_crypto == WEP_CRYPT) 467 ath6kl_install_static_wep_keys(vif); 468 break; 469 case WPA_PSK_AUTH: 470 case WPA2_PSK_AUTH: 471 case (WPA_PSK_AUTH | WPA2_PSK_AUTH): 472 if (!ik->valid) 473 break; 474 475 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for " 476 "the initial group key for AP mode\n"); 477 memset(key_rsc, 0, sizeof(key_rsc)); 478 res = ath6kl_wmi_addkey_cmd( 479 ar->wmi, vif->fw_vif_idx, ik->key_index, ik->key_type, 480 GROUP_USAGE, ik->key_len, key_rsc, ik->key, 481 KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG); 482 if (res) { 483 ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed " 484 "addkey failed: %d\n", res); 485 } 486 break; 487 } 488 489 ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, NONE_BSS_FILTER, 0); 490 set_bit(CONNECTED, &vif->flags); 491 netif_carrier_on(vif->ndev); 492 } 493 494 void ath6kl_connect_ap_mode_sta(struct ath6kl_vif *vif, u16 aid, u8 *mac_addr, 495 u8 keymgmt, u8 ucipher, u8 auth, 496 u8 assoc_req_len, u8 *assoc_info) 497 { 498 struct ath6kl *ar = vif->ar; 499 u8 *ies = NULL, *wpa_ie = NULL, *pos; 500 size_t ies_len = 0; 501 struct station_info sinfo; 502 503 ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid); 504 505 if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) { 506 struct ieee80211_mgmt *mgmt = 507 (struct ieee80211_mgmt *) assoc_info; 508 if (ieee80211_is_assoc_req(mgmt->frame_control) && 509 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) + 510 sizeof(mgmt->u.assoc_req)) { 511 ies = mgmt->u.assoc_req.variable; 512 ies_len = assoc_info + assoc_req_len - ies; 513 } else if (ieee80211_is_reassoc_req(mgmt->frame_control) && 514 assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) 515 + sizeof(mgmt->u.reassoc_req)) { 516 ies = mgmt->u.reassoc_req.variable; 517 ies_len = assoc_info + assoc_req_len - ies; 518 } 519 } 520 521 pos = ies; 522 while (pos && pos + 1 < ies + ies_len) { 523 if (pos + 2 + pos[1] > ies + ies_len) 524 break; 525 if (pos[0] == WLAN_EID_RSN) 526 wpa_ie = pos; /* RSN IE */ 527 else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC && 528 pos[1] >= 4 && 529 pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) { 530 if (pos[5] == 0x01) 531 wpa_ie = pos; /* WPA IE */ 532 else if (pos[5] == 0x04) { 533 wpa_ie = pos; /* WPS IE */ 534 break; /* overrides WPA/RSN IE */ 535 } 536 } 537 pos += 2 + pos[1]; 538 } 539 540 ath6kl_add_new_sta(ar, mac_addr, aid, wpa_ie, 541 wpa_ie ? 2 + wpa_ie[1] : 0, 542 keymgmt, ucipher, auth); 543 544 /* send event to application */ 545 memset(&sinfo, 0, sizeof(sinfo)); 546 547 /* TODO: sinfo.generation */ 548 549 sinfo.assoc_req_ies = ies; 550 sinfo.assoc_req_ies_len = ies_len; 551 sinfo.filled |= STATION_INFO_ASSOC_REQ_IES; 552 553 cfg80211_new_sta(vif->ndev, mac_addr, &sinfo, GFP_KERNEL); 554 555 netif_wake_queue(vif->ndev); 556 } 557 558 /* Functions for Tx credit handling */ 559 void ath6k_credit_init(struct htc_credit_state_info *cred_info, 560 struct list_head *ep_list, 561 int tot_credits) 562 { 563 struct htc_endpoint_credit_dist *cur_ep_dist; 564 int count; 565 566 cred_info->cur_free_credits = tot_credits; 567 cred_info->total_avail_credits = tot_credits; 568 569 list_for_each_entry(cur_ep_dist, ep_list, list) { 570 if (cur_ep_dist->endpoint == ENDPOINT_0) 571 continue; 572 573 cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg; 574 575 if (tot_credits > 4) 576 if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) || 577 (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) { 578 ath6kl_deposit_credit_to_ep(cred_info, 579 cur_ep_dist, 580 cur_ep_dist->cred_min); 581 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE; 582 } 583 584 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) { 585 ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist, 586 cur_ep_dist->cred_min); 587 /* 588 * Control service is always marked active, it 589 * never goes inactive EVER. 590 */ 591 cur_ep_dist->dist_flags |= HTC_EP_ACTIVE; 592 } else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC) 593 /* this is the lowest priority data endpoint */ 594 cred_info->lowestpri_ep_dist = cur_ep_dist->list; 595 596 /* 597 * Streams have to be created (explicit | implicit) for all 598 * kinds of traffic. BE endpoints are also inactive in the 599 * beginning. When BE traffic starts it creates implicit 600 * streams that redistributes credits. 601 * 602 * Note: all other endpoints have minimums set but are 603 * initially given NO credits. credits will be distributed 604 * as traffic activity demands 605 */ 606 } 607 608 WARN_ON(cred_info->cur_free_credits <= 0); 609 610 list_for_each_entry(cur_ep_dist, ep_list, list) { 611 if (cur_ep_dist->endpoint == ENDPOINT_0) 612 continue; 613 614 if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) 615 cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg; 616 else { 617 /* 618 * For the remaining data endpoints, we assume that 619 * each cred_per_msg are the same. We use a simple 620 * calculation here, we take the remaining credits 621 * and determine how many max messages this can 622 * cover and then set each endpoint's normal value 623 * equal to 3/4 this amount. 624 */ 625 count = (cred_info->cur_free_credits / 626 cur_ep_dist->cred_per_msg) 627 * cur_ep_dist->cred_per_msg; 628 count = (count * 3) >> 2; 629 count = max(count, cur_ep_dist->cred_per_msg); 630 cur_ep_dist->cred_norm = count; 631 632 } 633 } 634 } 635 636 /* initialize and setup credit distribution */ 637 int ath6k_setup_credit_dist(void *htc_handle, 638 struct htc_credit_state_info *cred_info) 639 { 640 u16 servicepriority[5]; 641 642 memset(cred_info, 0, sizeof(struct htc_credit_state_info)); 643 644 servicepriority[0] = WMI_CONTROL_SVC; /* highest */ 645 servicepriority[1] = WMI_DATA_VO_SVC; 646 servicepriority[2] = WMI_DATA_VI_SVC; 647 servicepriority[3] = WMI_DATA_BE_SVC; 648 servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */ 649 650 /* set priority list */ 651 ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5); 652 653 return 0; 654 } 655 656 /* reduce an ep's credits back to a set limit */ 657 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info, 658 struct htc_endpoint_credit_dist *ep_dist, 659 int limit) 660 { 661 int credits; 662 663 ep_dist->cred_assngd = limit; 664 665 if (ep_dist->credits <= limit) 666 return; 667 668 credits = ep_dist->credits - limit; 669 ep_dist->credits -= credits; 670 cred_info->cur_free_credits += credits; 671 } 672 673 static void ath6k_credit_update(struct htc_credit_state_info *cred_info, 674 struct list_head *epdist_list) 675 { 676 struct htc_endpoint_credit_dist *cur_dist_list; 677 678 list_for_each_entry(cur_dist_list, epdist_list, list) { 679 if (cur_dist_list->endpoint == ENDPOINT_0) 680 continue; 681 682 if (cur_dist_list->cred_to_dist > 0) { 683 cur_dist_list->credits += 684 cur_dist_list->cred_to_dist; 685 cur_dist_list->cred_to_dist = 0; 686 if (cur_dist_list->credits > 687 cur_dist_list->cred_assngd) 688 ath6k_reduce_credits(cred_info, 689 cur_dist_list, 690 cur_dist_list->cred_assngd); 691 692 if (cur_dist_list->credits > 693 cur_dist_list->cred_norm) 694 ath6k_reduce_credits(cred_info, cur_dist_list, 695 cur_dist_list->cred_norm); 696 697 if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) { 698 if (cur_dist_list->txq_depth == 0) 699 ath6k_reduce_credits(cred_info, 700 cur_dist_list, 0); 701 } 702 } 703 } 704 } 705 706 /* 707 * HTC has an endpoint that needs credits, ep_dist is the endpoint in 708 * question. 709 */ 710 void ath6k_seek_credits(struct htc_credit_state_info *cred_info, 711 struct htc_endpoint_credit_dist *ep_dist) 712 { 713 struct htc_endpoint_credit_dist *curdist_list; 714 int credits = 0; 715 int need; 716 717 if (ep_dist->svc_id == WMI_CONTROL_SVC) 718 goto out; 719 720 if ((ep_dist->svc_id == WMI_DATA_VI_SVC) || 721 (ep_dist->svc_id == WMI_DATA_VO_SVC)) 722 if ((ep_dist->cred_assngd >= ep_dist->cred_norm)) 723 goto out; 724 725 /* 726 * For all other services, we follow a simple algorithm of: 727 * 728 * 1. checking the free pool for credits 729 * 2. checking lower priority endpoints for credits to take 730 */ 731 732 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred); 733 734 if (credits >= ep_dist->seek_cred) 735 goto out; 736 737 /* 738 * We don't have enough in the free pool, try taking away from 739 * lower priority services The rule for taking away credits: 740 * 741 * 1. Only take from lower priority endpoints 742 * 2. Only take what is allocated above the minimum (never 743 * starve an endpoint completely) 744 * 3. Only take what you need. 745 */ 746 747 list_for_each_entry_reverse(curdist_list, 748 &cred_info->lowestpri_ep_dist, 749 list) { 750 if (curdist_list == ep_dist) 751 break; 752 753 need = ep_dist->seek_cred - cred_info->cur_free_credits; 754 755 if ((curdist_list->cred_assngd - need) >= 756 curdist_list->cred_min) { 757 /* 758 * The current one has been allocated more than 759 * it's minimum and it has enough credits assigned 760 * above it's minimum to fulfill our need try to 761 * take away just enough to fulfill our need. 762 */ 763 ath6k_reduce_credits(cred_info, curdist_list, 764 curdist_list->cred_assngd - need); 765 766 if (cred_info->cur_free_credits >= 767 ep_dist->seek_cred) 768 break; 769 } 770 771 if (curdist_list->endpoint == ENDPOINT_0) 772 break; 773 } 774 775 credits = min(cred_info->cur_free_credits, ep_dist->seek_cred); 776 777 out: 778 /* did we find some credits? */ 779 if (credits) 780 ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits); 781 782 ep_dist->seek_cred = 0; 783 } 784 785 /* redistribute credits based on activity change */ 786 static void ath6k_redistribute_credits(struct htc_credit_state_info *info, 787 struct list_head *ep_dist_list) 788 { 789 struct htc_endpoint_credit_dist *curdist_list; 790 791 list_for_each_entry(curdist_list, ep_dist_list, list) { 792 if (curdist_list->endpoint == ENDPOINT_0) 793 continue; 794 795 if ((curdist_list->svc_id == WMI_DATA_BK_SVC) || 796 (curdist_list->svc_id == WMI_DATA_BE_SVC)) 797 curdist_list->dist_flags |= HTC_EP_ACTIVE; 798 799 if ((curdist_list->svc_id != WMI_CONTROL_SVC) && 800 !(curdist_list->dist_flags & HTC_EP_ACTIVE)) { 801 if (curdist_list->txq_depth == 0) 802 ath6k_reduce_credits(info, 803 curdist_list, 0); 804 else 805 ath6k_reduce_credits(info, 806 curdist_list, 807 curdist_list->cred_min); 808 } 809 } 810 } 811 812 /* 813 * 814 * This function is invoked whenever endpoints require credit 815 * distributions. A lock is held while this function is invoked, this 816 * function shall NOT block. The ep_dist_list is a list of distribution 817 * structures in prioritized order as defined by the call to the 818 * htc_set_credit_dist() api. 819 */ 820 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info, 821 struct list_head *ep_dist_list, 822 enum htc_credit_dist_reason reason) 823 { 824 switch (reason) { 825 case HTC_CREDIT_DIST_SEND_COMPLETE: 826 ath6k_credit_update(cred_info, ep_dist_list); 827 break; 828 case HTC_CREDIT_DIST_ACTIVITY_CHANGE: 829 ath6k_redistribute_credits(cred_info, ep_dist_list); 830 break; 831 default: 832 break; 833 } 834 835 WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits); 836 WARN_ON(cred_info->cur_free_credits < 0); 837 } 838 839 void disconnect_timer_handler(unsigned long ptr) 840 { 841 struct net_device *dev = (struct net_device *)ptr; 842 struct ath6kl_vif *vif = netdev_priv(dev); 843 844 ath6kl_init_profile_info(vif); 845 ath6kl_disconnect(vif); 846 } 847 848 void ath6kl_disconnect(struct ath6kl_vif *vif) 849 { 850 if (test_bit(CONNECTED, &vif->flags) || 851 test_bit(CONNECT_PEND, &vif->flags)) { 852 ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx); 853 /* 854 * Disconnect command is issued, clear the connect pending 855 * flag. The connected flag will be cleared in 856 * disconnect event notification. 857 */ 858 clear_bit(CONNECT_PEND, &vif->flags); 859 } 860 } 861 862 void ath6kl_deep_sleep_enable(struct ath6kl *ar) 863 { 864 /* TODO: Pass vif instead of taking it from ar */ 865 struct ath6kl_vif *vif = ar->vif; 866 867 switch (vif->sme_state) { 868 case SME_CONNECTING: 869 cfg80211_connect_result(vif->ndev, vif->bssid, NULL, 0, 870 NULL, 0, 871 WLAN_STATUS_UNSPECIFIED_FAILURE, 872 GFP_KERNEL); 873 break; 874 case SME_CONNECTED: 875 default: 876 /* 877 * FIXME: oddly enough smeState is in DISCONNECTED during 878 * suspend, why? Need to send disconnected event in that 879 * state. 880 */ 881 cfg80211_disconnected(vif->ndev, 0, NULL, 0, GFP_KERNEL); 882 break; 883 } 884 885 if (test_bit(CONNECTED, &vif->flags) || 886 test_bit(CONNECT_PEND, &vif->flags)) 887 ath6kl_wmi_disconnect_cmd(ar->wmi, vif->fw_vif_idx); 888 889 vif->sme_state = SME_DISCONNECTED; 890 891 /* disable scanning */ 892 if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF, 0, 0, 893 0, 0, 0, 0, 0, 0, 0) != 0) 894 printk(KERN_WARNING "ath6kl: failed to disable scan " 895 "during suspend\n"); 896 897 ath6kl_cfg80211_scan_complete_event(vif, -ECANCELED); 898 899 /* save the current power mode before enabling power save */ 900 ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode; 901 902 if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0) 903 ath6kl_warn("ath6kl_deep_sleep_enable: " 904 "wmi_powermode_cmd failed\n"); 905 } 906 907 /* WMI Event handlers */ 908 909 static const char *get_hw_id_string(u32 id) 910 { 911 switch (id) { 912 case AR6003_REV1_VERSION: 913 return "1.0"; 914 case AR6003_REV2_VERSION: 915 return "2.0"; 916 case AR6003_REV3_VERSION: 917 return "2.1.1"; 918 default: 919 return "unknown"; 920 } 921 } 922 923 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver) 924 { 925 struct ath6kl *ar = devt; 926 struct net_device *dev = ar->vif->ndev; 927 928 memcpy(dev->dev_addr, datap, ETH_ALEN); 929 ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n", 930 __func__, dev->dev_addr); 931 932 ar->version.wlan_ver = sw_ver; 933 ar->version.abi_ver = abi_ver; 934 935 snprintf(ar->wiphy->fw_version, 936 sizeof(ar->wiphy->fw_version), 937 "%u.%u.%u.%u", 938 (ar->version.wlan_ver & 0xf0000000) >> 28, 939 (ar->version.wlan_ver & 0x0f000000) >> 24, 940 (ar->version.wlan_ver & 0x00ff0000) >> 16, 941 (ar->version.wlan_ver & 0x0000ffff)); 942 943 /* indicate to the waiting thread that the ready event was received */ 944 set_bit(WMI_READY, &ar->flag); 945 wake_up(&ar->event_wq); 946 947 ath6kl_info("hw %s fw %s%s\n", 948 get_hw_id_string(ar->wiphy->hw_version), 949 ar->wiphy->fw_version, 950 test_bit(TESTMODE, &ar->flag) ? " testmode" : ""); 951 } 952 953 void ath6kl_scan_complete_evt(struct ath6kl_vif *vif, int status) 954 { 955 struct ath6kl *ar = vif->ar; 956 957 ath6kl_cfg80211_scan_complete_event(vif, status); 958 959 if (!ar->usr_bss_filter) { 960 clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags); 961 ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, 962 NONE_BSS_FILTER, 0); 963 } 964 965 ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status); 966 } 967 968 void ath6kl_connect_event(struct ath6kl_vif *vif, u16 channel, u8 *bssid, 969 u16 listen_int, u16 beacon_int, 970 enum network_type net_type, u8 beacon_ie_len, 971 u8 assoc_req_len, u8 assoc_resp_len, 972 u8 *assoc_info) 973 { 974 struct ath6kl *ar = vif->ar; 975 976 ath6kl_cfg80211_connect_event(vif, channel, bssid, 977 listen_int, beacon_int, 978 net_type, beacon_ie_len, 979 assoc_req_len, assoc_resp_len, 980 assoc_info); 981 982 memcpy(vif->bssid, bssid, sizeof(vif->bssid)); 983 vif->bss_ch = channel; 984 985 if ((vif->nw_type == INFRA_NETWORK)) 986 ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx, 987 ar->listen_intvl_t, 988 ar->listen_intvl_b); 989 990 netif_wake_queue(vif->ndev); 991 992 /* Update connect & link status atomically */ 993 spin_lock_bh(&ar->lock); 994 set_bit(CONNECTED, &vif->flags); 995 clear_bit(CONNECT_PEND, &vif->flags); 996 netif_carrier_on(vif->ndev); 997 spin_unlock_bh(&ar->lock); 998 999 aggr_reset_state(vif->aggr_cntxt); 1000 vif->reconnect_flag = 0; 1001 1002 if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) { 1003 memset(ar->node_map, 0, sizeof(ar->node_map)); 1004 ar->node_num = 0; 1005 ar->next_ep_id = ENDPOINT_2; 1006 } 1007 1008 if (!ar->usr_bss_filter) { 1009 set_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags); 1010 ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, 1011 CURRENT_BSS_FILTER, 0); 1012 } 1013 } 1014 1015 void ath6kl_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid, bool ismcast) 1016 { 1017 struct ath6kl_sta *sta; 1018 struct ath6kl *ar = vif->ar; 1019 u8 tsc[6]; 1020 1021 /* 1022 * For AP case, keyid will have aid of STA which sent pkt with 1023 * MIC error. Use this aid to get MAC & send it to hostapd. 1024 */ 1025 if (vif->nw_type == AP_NETWORK) { 1026 sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2)); 1027 if (!sta) 1028 return; 1029 1030 ath6kl_dbg(ATH6KL_DBG_TRC, 1031 "ap tkip mic error received from aid=%d\n", keyid); 1032 1033 memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */ 1034 cfg80211_michael_mic_failure(vif->ndev, sta->mac, 1035 NL80211_KEYTYPE_PAIRWISE, keyid, 1036 tsc, GFP_KERNEL); 1037 } else 1038 ath6kl_cfg80211_tkip_micerr_event(vif, keyid, ismcast); 1039 1040 } 1041 1042 static void ath6kl_update_target_stats(struct ath6kl_vif *vif, u8 *ptr, u32 len) 1043 { 1044 struct wmi_target_stats *tgt_stats = 1045 (struct wmi_target_stats *) ptr; 1046 struct ath6kl *ar = vif->ar; 1047 struct target_stats *stats = &vif->target_stats; 1048 struct tkip_ccmp_stats *ccmp_stats; 1049 u8 ac; 1050 1051 if (len < sizeof(*tgt_stats)) 1052 return; 1053 1054 ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n"); 1055 1056 stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt); 1057 stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte); 1058 stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt); 1059 stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte); 1060 stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt); 1061 stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte); 1062 stats->tx_bcast_pkt += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt); 1063 stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte); 1064 stats->tx_rts_success_cnt += 1065 le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt); 1066 1067 for (ac = 0; ac < WMM_NUM_AC; ac++) 1068 stats->tx_pkt_per_ac[ac] += 1069 le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]); 1070 1071 stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err); 1072 stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt); 1073 stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt); 1074 stats->tx_mult_retry_cnt += 1075 le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt); 1076 stats->tx_rts_fail_cnt += 1077 le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt); 1078 stats->tx_ucast_rate = 1079 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate)); 1080 1081 stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt); 1082 stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte); 1083 stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt); 1084 stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte); 1085 stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt); 1086 stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte); 1087 stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt); 1088 stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte); 1089 stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt); 1090 stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err); 1091 stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err); 1092 stats->rx_key_cache_miss += 1093 le32_to_cpu(tgt_stats->stats.rx.key_cache_miss); 1094 stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err); 1095 stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame); 1096 stats->rx_ucast_rate = 1097 ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate)); 1098 1099 ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats; 1100 1101 stats->tkip_local_mic_fail += 1102 le32_to_cpu(ccmp_stats->tkip_local_mic_fail); 1103 stats->tkip_cnter_measures_invoked += 1104 le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked); 1105 stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err); 1106 1107 stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err); 1108 stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays); 1109 1110 stats->pwr_save_fail_cnt += 1111 le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt); 1112 stats->noise_floor_calib = 1113 a_sle32_to_cpu(tgt_stats->noise_floor_calib); 1114 1115 stats->cs_bmiss_cnt += 1116 le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt); 1117 stats->cs_low_rssi_cnt += 1118 le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt); 1119 stats->cs_connect_cnt += 1120 le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt); 1121 stats->cs_discon_cnt += 1122 le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt); 1123 1124 stats->cs_ave_beacon_rssi = 1125 a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi); 1126 1127 stats->cs_last_roam_msec = 1128 tgt_stats->cserv_stats.cs_last_roam_msec; 1129 stats->cs_snr = tgt_stats->cserv_stats.cs_snr; 1130 stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi); 1131 1132 stats->lq_val = le32_to_cpu(tgt_stats->lq_val); 1133 1134 stats->wow_pkt_dropped += 1135 le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped); 1136 stats->wow_host_pkt_wakeups += 1137 tgt_stats->wow_stats.wow_host_pkt_wakeups; 1138 stats->wow_host_evt_wakeups += 1139 tgt_stats->wow_stats.wow_host_evt_wakeups; 1140 stats->wow_evt_discarded += 1141 le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded); 1142 1143 if (test_bit(STATS_UPDATE_PEND, &vif->flags)) { 1144 clear_bit(STATS_UPDATE_PEND, &vif->flags); 1145 wake_up(&ar->event_wq); 1146 } 1147 } 1148 1149 static void ath6kl_add_le32(__le32 *var, __le32 val) 1150 { 1151 *var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val)); 1152 } 1153 1154 void ath6kl_tgt_stats_event(struct ath6kl_vif *vif, u8 *ptr, u32 len) 1155 { 1156 struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr; 1157 struct ath6kl *ar = vif->ar; 1158 struct wmi_ap_mode_stat *ap = &ar->ap_stats; 1159 struct wmi_per_sta_stat *st_ap, *st_p; 1160 u8 ac; 1161 1162 if (vif->nw_type == AP_NETWORK) { 1163 if (len < sizeof(*p)) 1164 return; 1165 1166 for (ac = 0; ac < AP_MAX_NUM_STA; ac++) { 1167 st_ap = &ap->sta[ac]; 1168 st_p = &p->sta[ac]; 1169 1170 ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes); 1171 ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts); 1172 ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error); 1173 ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard); 1174 ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes); 1175 ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts); 1176 ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error); 1177 ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard); 1178 } 1179 1180 } else { 1181 ath6kl_update_target_stats(vif, ptr, len); 1182 } 1183 } 1184 1185 void ath6kl_wakeup_event(void *dev) 1186 { 1187 struct ath6kl *ar = (struct ath6kl *) dev; 1188 1189 wake_up(&ar->event_wq); 1190 } 1191 1192 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr) 1193 { 1194 struct ath6kl *ar = (struct ath6kl *) devt; 1195 1196 ar->tx_pwr = tx_pwr; 1197 wake_up(&ar->event_wq); 1198 } 1199 1200 void ath6kl_pspoll_event(struct ath6kl_vif *vif, u8 aid) 1201 { 1202 struct ath6kl_sta *conn; 1203 struct sk_buff *skb; 1204 bool psq_empty = false; 1205 struct ath6kl *ar = vif->ar; 1206 1207 conn = ath6kl_find_sta_by_aid(ar, aid); 1208 1209 if (!conn) 1210 return; 1211 /* 1212 * Send out a packet queued on ps queue. When the ps queue 1213 * becomes empty update the PVB for this station. 1214 */ 1215 spin_lock_bh(&conn->psq_lock); 1216 psq_empty = skb_queue_empty(&conn->psq); 1217 spin_unlock_bh(&conn->psq_lock); 1218 1219 if (psq_empty) 1220 /* TODO: Send out a NULL data frame */ 1221 return; 1222 1223 spin_lock_bh(&conn->psq_lock); 1224 skb = skb_dequeue(&conn->psq); 1225 spin_unlock_bh(&conn->psq_lock); 1226 1227 conn->sta_flags |= STA_PS_POLLED; 1228 ath6kl_data_tx(skb, vif->ndev); 1229 conn->sta_flags &= ~STA_PS_POLLED; 1230 1231 spin_lock_bh(&conn->psq_lock); 1232 psq_empty = skb_queue_empty(&conn->psq); 1233 spin_unlock_bh(&conn->psq_lock); 1234 1235 if (psq_empty) 1236 ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0); 1237 } 1238 1239 void ath6kl_dtimexpiry_event(struct ath6kl_vif *vif) 1240 { 1241 bool mcastq_empty = false; 1242 struct sk_buff *skb; 1243 struct ath6kl *ar = vif->ar; 1244 1245 /* 1246 * If there are no associated STAs, ignore the DTIM expiry event. 1247 * There can be potential race conditions where the last associated 1248 * STA may disconnect & before the host could clear the 'Indicate 1249 * DTIM' request to the firmware, the firmware would have just 1250 * indicated a DTIM expiry event. The race is between 'clear DTIM 1251 * expiry cmd' going from the host to the firmware & the DTIM 1252 * expiry event happening from the firmware to the host. 1253 */ 1254 if (!ar->sta_list_index) 1255 return; 1256 1257 spin_lock_bh(&ar->mcastpsq_lock); 1258 mcastq_empty = skb_queue_empty(&ar->mcastpsq); 1259 spin_unlock_bh(&ar->mcastpsq_lock); 1260 1261 if (mcastq_empty) 1262 return; 1263 1264 /* set the STA flag to dtim_expired for the frame to go out */ 1265 set_bit(DTIM_EXPIRED, &vif->flags); 1266 1267 spin_lock_bh(&ar->mcastpsq_lock); 1268 while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) { 1269 spin_unlock_bh(&ar->mcastpsq_lock); 1270 1271 ath6kl_data_tx(skb, vif->ndev); 1272 1273 spin_lock_bh(&ar->mcastpsq_lock); 1274 } 1275 spin_unlock_bh(&ar->mcastpsq_lock); 1276 1277 clear_bit(DTIM_EXPIRED, &vif->flags); 1278 1279 /* clear the LSB of the BitMapCtl field of the TIM IE */ 1280 ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 0); 1281 } 1282 1283 void ath6kl_disconnect_event(struct ath6kl_vif *vif, u8 reason, u8 *bssid, 1284 u8 assoc_resp_len, u8 *assoc_info, 1285 u16 prot_reason_status) 1286 { 1287 struct ath6kl *ar = vif->ar; 1288 1289 if (vif->nw_type == AP_NETWORK) { 1290 if (!ath6kl_remove_sta(ar, bssid, prot_reason_status)) 1291 return; 1292 1293 /* if no more associated STAs, empty the mcast PS q */ 1294 if (ar->sta_list_index == 0) { 1295 spin_lock_bh(&ar->mcastpsq_lock); 1296 skb_queue_purge(&ar->mcastpsq); 1297 spin_unlock_bh(&ar->mcastpsq_lock); 1298 1299 /* clear the LSB of the TIM IE's BitMapCtl field */ 1300 if (test_bit(WMI_READY, &ar->flag)) 1301 ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, 1302 MCAST_AID, 0); 1303 } 1304 1305 if (!is_broadcast_ether_addr(bssid)) { 1306 /* send event to application */ 1307 cfg80211_del_sta(vif->ndev, bssid, GFP_KERNEL); 1308 } 1309 1310 if (memcmp(vif->ndev->dev_addr, bssid, ETH_ALEN) == 0) { 1311 memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list)); 1312 clear_bit(CONNECTED, &vif->flags); 1313 } 1314 return; 1315 } 1316 1317 ath6kl_cfg80211_disconnect_event(vif, reason, bssid, 1318 assoc_resp_len, assoc_info, 1319 prot_reason_status); 1320 1321 aggr_reset_state(vif->aggr_cntxt); 1322 1323 del_timer(&vif->disconnect_timer); 1324 1325 ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT, 1326 "disconnect reason is %d\n", reason); 1327 1328 /* 1329 * If the event is due to disconnect cmd from the host, only they 1330 * the target would stop trying to connect. Under any other 1331 * condition, target would keep trying to connect. 1332 */ 1333 if (reason == DISCONNECT_CMD) { 1334 if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag)) 1335 ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, 1336 NONE_BSS_FILTER, 0); 1337 } else { 1338 set_bit(CONNECT_PEND, &vif->flags); 1339 if (((reason == ASSOC_FAILED) && 1340 (prot_reason_status == 0x11)) || 1341 ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0) 1342 && (vif->reconnect_flag == 1))) { 1343 set_bit(CONNECTED, &vif->flags); 1344 return; 1345 } 1346 } 1347 1348 /* update connect & link status atomically */ 1349 spin_lock_bh(&ar->lock); 1350 clear_bit(CONNECTED, &vif->flags); 1351 netif_carrier_off(vif->ndev); 1352 spin_unlock_bh(&ar->lock); 1353 1354 if ((reason != CSERV_DISCONNECT) || (vif->reconnect_flag != 1)) 1355 vif->reconnect_flag = 0; 1356 1357 if (reason != CSERV_DISCONNECT) 1358 ar->user_key_ctrl = 0; 1359 1360 netif_stop_queue(vif->ndev); 1361 memset(vif->bssid, 0, sizeof(vif->bssid)); 1362 vif->bss_ch = 0; 1363 1364 ath6kl_tx_data_cleanup(ar); 1365 } 1366 1367 static int ath6kl_open(struct net_device *dev) 1368 { 1369 struct ath6kl *ar = ath6kl_priv(dev); 1370 struct ath6kl_vif *vif = netdev_priv(dev); 1371 1372 spin_lock_bh(&ar->lock); 1373 1374 set_bit(WLAN_ENABLED, &vif->flags); 1375 1376 if (test_bit(CONNECTED, &vif->flags)) { 1377 netif_carrier_on(dev); 1378 netif_wake_queue(dev); 1379 } else 1380 netif_carrier_off(dev); 1381 1382 spin_unlock_bh(&ar->lock); 1383 1384 return 0; 1385 } 1386 1387 static int ath6kl_close(struct net_device *dev) 1388 { 1389 struct ath6kl *ar = ath6kl_priv(dev); 1390 struct ath6kl_vif *vif = netdev_priv(dev); 1391 1392 netif_stop_queue(dev); 1393 1394 ath6kl_disconnect(vif); 1395 1396 if (test_bit(WMI_READY, &ar->flag)) { 1397 if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF, 1398 0, 0, 0, 0, 0, 0, 0, 0, 0)) 1399 return -EIO; 1400 1401 clear_bit(WLAN_ENABLED, &vif->flags); 1402 } 1403 1404 ath6kl_cfg80211_scan_complete_event(vif, -ECANCELED); 1405 1406 return 0; 1407 } 1408 1409 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev) 1410 { 1411 struct ath6kl_vif *vif = netdev_priv(dev); 1412 1413 return &vif->net_stats; 1414 } 1415 1416 static struct net_device_ops ath6kl_netdev_ops = { 1417 .ndo_open = ath6kl_open, 1418 .ndo_stop = ath6kl_close, 1419 .ndo_start_xmit = ath6kl_data_tx, 1420 .ndo_get_stats = ath6kl_get_stats, 1421 }; 1422 1423 void init_netdev(struct net_device *dev) 1424 { 1425 dev->netdev_ops = &ath6kl_netdev_ops; 1426 dev->watchdog_timeo = ATH6KL_TX_TIMEOUT; 1427 1428 dev->needed_headroom = ETH_HLEN; 1429 dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) + 1430 sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH 1431 + WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES; 1432 1433 return; 1434 } 1435