xref: /openbmc/linux/drivers/net/wireless/ath/ath6kl/main.c (revision 240d279940ef496e9456db2287b7989f6521e2e2)
1 /*
2  * Copyright (c) 2004-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "core.h"
18 #include "hif-ops.h"
19 #include "cfg80211.h"
20 #include "target.h"
21 #include "debug.h"
22 
23 struct ath6kl_sta *ath6kl_find_sta(struct ath6kl *ar, u8 *node_addr)
24 {
25 	/* TODO: Findout vif */
26 	struct ath6kl_vif *vif = ar->vif;
27 	struct ath6kl_sta *conn = NULL;
28 	u8 i, max_conn;
29 
30 	max_conn = (vif->nw_type == AP_NETWORK) ? AP_MAX_NUM_STA : 0;
31 
32 	for (i = 0; i < max_conn; i++) {
33 		if (memcmp(node_addr, ar->sta_list[i].mac, ETH_ALEN) == 0) {
34 			conn = &ar->sta_list[i];
35 			break;
36 		}
37 	}
38 
39 	return conn;
40 }
41 
42 struct ath6kl_sta *ath6kl_find_sta_by_aid(struct ath6kl *ar, u8 aid)
43 {
44 	struct ath6kl_sta *conn = NULL;
45 	u8 ctr;
46 
47 	for (ctr = 0; ctr < AP_MAX_NUM_STA; ctr++) {
48 		if (ar->sta_list[ctr].aid == aid) {
49 			conn = &ar->sta_list[ctr];
50 			break;
51 		}
52 	}
53 	return conn;
54 }
55 
56 static void ath6kl_add_new_sta(struct ath6kl *ar, u8 *mac, u16 aid, u8 *wpaie,
57 			u8 ielen, u8 keymgmt, u8 ucipher, u8 auth)
58 {
59 	struct ath6kl_sta *sta;
60 	u8 free_slot;
61 
62 	free_slot = aid - 1;
63 
64 	sta = &ar->sta_list[free_slot];
65 	memcpy(sta->mac, mac, ETH_ALEN);
66 	if (ielen <= ATH6KL_MAX_IE)
67 		memcpy(sta->wpa_ie, wpaie, ielen);
68 	sta->aid = aid;
69 	sta->keymgmt = keymgmt;
70 	sta->ucipher = ucipher;
71 	sta->auth = auth;
72 
73 	ar->sta_list_index = ar->sta_list_index | (1 << free_slot);
74 	ar->ap_stats.sta[free_slot].aid = cpu_to_le32(aid);
75 }
76 
77 static void ath6kl_sta_cleanup(struct ath6kl *ar, u8 i)
78 {
79 	struct ath6kl_sta *sta = &ar->sta_list[i];
80 
81 	/* empty the queued pkts in the PS queue if any */
82 	spin_lock_bh(&sta->psq_lock);
83 	skb_queue_purge(&sta->psq);
84 	spin_unlock_bh(&sta->psq_lock);
85 
86 	memset(&ar->ap_stats.sta[sta->aid - 1], 0,
87 	       sizeof(struct wmi_per_sta_stat));
88 	memset(sta->mac, 0, ETH_ALEN);
89 	memset(sta->wpa_ie, 0, ATH6KL_MAX_IE);
90 	sta->aid = 0;
91 	sta->sta_flags = 0;
92 
93 	ar->sta_list_index = ar->sta_list_index & ~(1 << i);
94 
95 }
96 
97 static u8 ath6kl_remove_sta(struct ath6kl *ar, u8 *mac, u16 reason)
98 {
99 	u8 i, removed = 0;
100 
101 	if (is_zero_ether_addr(mac))
102 		return removed;
103 
104 	if (is_broadcast_ether_addr(mac)) {
105 		ath6kl_dbg(ATH6KL_DBG_TRC, "deleting all station\n");
106 
107 		for (i = 0; i < AP_MAX_NUM_STA; i++) {
108 			if (!is_zero_ether_addr(ar->sta_list[i].mac)) {
109 				ath6kl_sta_cleanup(ar, i);
110 				removed = 1;
111 			}
112 		}
113 	} else {
114 		for (i = 0; i < AP_MAX_NUM_STA; i++) {
115 			if (memcmp(ar->sta_list[i].mac, mac, ETH_ALEN) == 0) {
116 				ath6kl_dbg(ATH6KL_DBG_TRC,
117 					   "deleting station %pM aid=%d reason=%d\n",
118 					   mac, ar->sta_list[i].aid, reason);
119 				ath6kl_sta_cleanup(ar, i);
120 				removed = 1;
121 				break;
122 			}
123 		}
124 	}
125 
126 	return removed;
127 }
128 
129 enum htc_endpoint_id ath6kl_ac2_endpoint_id(void *devt, u8 ac)
130 {
131 	struct ath6kl *ar = devt;
132 	return ar->ac2ep_map[ac];
133 }
134 
135 struct ath6kl_cookie *ath6kl_alloc_cookie(struct ath6kl *ar)
136 {
137 	struct ath6kl_cookie *cookie;
138 
139 	cookie = ar->cookie_list;
140 	if (cookie != NULL) {
141 		ar->cookie_list = cookie->arc_list_next;
142 		ar->cookie_count--;
143 	}
144 
145 	return cookie;
146 }
147 
148 void ath6kl_cookie_init(struct ath6kl *ar)
149 {
150 	u32 i;
151 
152 	ar->cookie_list = NULL;
153 	ar->cookie_count = 0;
154 
155 	memset(ar->cookie_mem, 0, sizeof(ar->cookie_mem));
156 
157 	for (i = 0; i < MAX_COOKIE_NUM; i++)
158 		ath6kl_free_cookie(ar, &ar->cookie_mem[i]);
159 }
160 
161 void ath6kl_cookie_cleanup(struct ath6kl *ar)
162 {
163 	ar->cookie_list = NULL;
164 	ar->cookie_count = 0;
165 }
166 
167 void ath6kl_free_cookie(struct ath6kl *ar, struct ath6kl_cookie *cookie)
168 {
169 	/* Insert first */
170 
171 	if (!ar || !cookie)
172 		return;
173 
174 	cookie->arc_list_next = ar->cookie_list;
175 	ar->cookie_list = cookie;
176 	ar->cookie_count++;
177 }
178 
179 /* set the window address register (using 4-byte register access ). */
180 static int ath6kl_set_addrwin_reg(struct ath6kl *ar, u32 reg_addr, u32 addr)
181 {
182 	int status;
183 	s32 i;
184 	__le32 addr_val;
185 
186 	/*
187 	 * Write bytes 1,2,3 of the register to set the upper address bytes,
188 	 * the LSB is written last to initiate the access cycle
189 	 */
190 
191 	for (i = 1; i <= 3; i++) {
192 		/*
193 		 * Fill the buffer with the address byte value we want to
194 		 * hit 4 times. No need to worry about endianness as the
195 		 * same byte is copied to all four bytes of addr_val at
196 		 * any time.
197 		 */
198 		memset((u8 *)&addr_val, ((u8 *)&addr)[i], 4);
199 
200 		/*
201 		 * Hit each byte of the register address with a 4-byte
202 		 * write operation to the same address, this is a harmless
203 		 * operation.
204 		 */
205 		status = hif_read_write_sync(ar, reg_addr + i, (u8 *)&addr_val,
206 					     4, HIF_WR_SYNC_BYTE_FIX);
207 		if (status)
208 			break;
209 	}
210 
211 	if (status) {
212 		ath6kl_err("failed to write initial bytes of 0x%x to window reg: 0x%X\n",
213 			   addr, reg_addr);
214 		return status;
215 	}
216 
217 	/*
218 	 * Write the address register again, this time write the whole
219 	 * 4-byte value. The effect here is that the LSB write causes the
220 	 * cycle to start, the extra 3 byte write to bytes 1,2,3 has no
221 	 * effect since we are writing the same values again
222 	 */
223 	addr_val = cpu_to_le32(addr);
224 	status = hif_read_write_sync(ar, reg_addr,
225 				     (u8 *)&(addr_val),
226 				     4, HIF_WR_SYNC_BYTE_INC);
227 
228 	if (status) {
229 		ath6kl_err("failed to write 0x%x to window reg: 0x%X\n",
230 			   addr, reg_addr);
231 		return status;
232 	}
233 
234 	return 0;
235 }
236 
237 /*
238  * Read from the hardware through its diagnostic window. No cooperation
239  * from the firmware is required for this.
240  */
241 int ath6kl_diag_read32(struct ath6kl *ar, u32 address, u32 *value)
242 {
243 	int ret;
244 
245 	/* set window register to start read cycle */
246 	ret = ath6kl_set_addrwin_reg(ar, WINDOW_READ_ADDR_ADDRESS, address);
247 	if (ret)
248 		return ret;
249 
250 	/* read the data */
251 	ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) value,
252 				  sizeof(*value), HIF_RD_SYNC_BYTE_INC);
253 	if (ret) {
254 		ath6kl_warn("failed to read32 through diagnose window: %d\n",
255 			    ret);
256 		return ret;
257 	}
258 
259 	return 0;
260 }
261 
262 /*
263  * Write to the ATH6KL through its diagnostic window. No cooperation from
264  * the Target is required for this.
265  */
266 int ath6kl_diag_write32(struct ath6kl *ar, u32 address, __le32 value)
267 {
268 	int ret;
269 
270 	/* set write data */
271 	ret = hif_read_write_sync(ar, WINDOW_DATA_ADDRESS, (u8 *) &value,
272 				  sizeof(value), HIF_WR_SYNC_BYTE_INC);
273 	if (ret) {
274 		ath6kl_err("failed to write 0x%x during diagnose window to 0x%d\n",
275 			   address, value);
276 		return ret;
277 	}
278 
279 	/* set window register, which starts the write cycle */
280 	return ath6kl_set_addrwin_reg(ar, WINDOW_WRITE_ADDR_ADDRESS,
281 				      address);
282 }
283 
284 int ath6kl_diag_read(struct ath6kl *ar, u32 address, void *data, u32 length)
285 {
286 	u32 count, *buf = data;
287 	int ret;
288 
289 	if (WARN_ON(length % 4))
290 		return -EINVAL;
291 
292 	for (count = 0; count < length / 4; count++, address += 4) {
293 		ret = ath6kl_diag_read32(ar, address, &buf[count]);
294 		if (ret)
295 			return ret;
296 	}
297 
298 	return 0;
299 }
300 
301 int ath6kl_diag_write(struct ath6kl *ar, u32 address, void *data, u32 length)
302 {
303 	u32 count;
304 	__le32 *buf = data;
305 	int ret;
306 
307 	if (WARN_ON(length % 4))
308 		return -EINVAL;
309 
310 	for (count = 0; count < length / 4; count++, address += 4) {
311 		ret = ath6kl_diag_write32(ar, address, buf[count]);
312 		if (ret)
313 			return ret;
314 	}
315 
316 	return 0;
317 }
318 
319 int ath6kl_read_fwlogs(struct ath6kl *ar)
320 {
321 	struct ath6kl_dbglog_hdr debug_hdr;
322 	struct ath6kl_dbglog_buf debug_buf;
323 	u32 address, length, dropped, firstbuf, debug_hdr_addr;
324 	int ret = 0, loop;
325 	u8 *buf;
326 
327 	buf = kmalloc(ATH6KL_FWLOG_PAYLOAD_SIZE, GFP_KERNEL);
328 	if (!buf)
329 		return -ENOMEM;
330 
331 	address = TARG_VTOP(ar->target_type,
332 			    ath6kl_get_hi_item_addr(ar,
333 						    HI_ITEM(hi_dbglog_hdr)));
334 
335 	ret = ath6kl_diag_read32(ar, address, &debug_hdr_addr);
336 	if (ret)
337 		goto out;
338 
339 	/* Get the contents of the ring buffer */
340 	if (debug_hdr_addr == 0) {
341 		ath6kl_warn("Invalid address for debug_hdr_addr\n");
342 		ret = -EINVAL;
343 		goto out;
344 	}
345 
346 	address = TARG_VTOP(ar->target_type, debug_hdr_addr);
347 	ath6kl_diag_read(ar, address, &debug_hdr, sizeof(debug_hdr));
348 
349 	address = TARG_VTOP(ar->target_type,
350 			    le32_to_cpu(debug_hdr.dbuf_addr));
351 	firstbuf = address;
352 	dropped = le32_to_cpu(debug_hdr.dropped);
353 	ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
354 
355 	loop = 100;
356 
357 	do {
358 		address = TARG_VTOP(ar->target_type,
359 				    le32_to_cpu(debug_buf.buffer_addr));
360 		length = le32_to_cpu(debug_buf.length);
361 
362 		if (length != 0 && (le32_to_cpu(debug_buf.length) <=
363 				    le32_to_cpu(debug_buf.bufsize))) {
364 			length = ALIGN(length, 4);
365 
366 			ret = ath6kl_diag_read(ar, address,
367 					       buf, length);
368 			if (ret)
369 				goto out;
370 
371 			ath6kl_debug_fwlog_event(ar, buf, length);
372 		}
373 
374 		address = TARG_VTOP(ar->target_type,
375 				    le32_to_cpu(debug_buf.next));
376 		ath6kl_diag_read(ar, address, &debug_buf, sizeof(debug_buf));
377 		if (ret)
378 			goto out;
379 
380 		loop--;
381 
382 		if (WARN_ON(loop == 0)) {
383 			ret = -ETIMEDOUT;
384 			goto out;
385 		}
386 	} while (address != firstbuf);
387 
388 out:
389 	kfree(buf);
390 
391 	return ret;
392 }
393 
394 /* FIXME: move to a better place, target.h? */
395 #define AR6003_RESET_CONTROL_ADDRESS 0x00004000
396 #define AR6004_RESET_CONTROL_ADDRESS 0x00004000
397 
398 static void ath6kl_reset_device(struct ath6kl *ar, u32 target_type,
399 				bool wait_fot_compltn, bool cold_reset)
400 {
401 	int status = 0;
402 	u32 address;
403 	__le32 data;
404 
405 	if (target_type != TARGET_TYPE_AR6003 &&
406 		target_type != TARGET_TYPE_AR6004)
407 		return;
408 
409 	data = cold_reset ? cpu_to_le32(RESET_CONTROL_COLD_RST) :
410 			    cpu_to_le32(RESET_CONTROL_MBOX_RST);
411 
412 	switch (target_type) {
413 	case TARGET_TYPE_AR6003:
414 		address = AR6003_RESET_CONTROL_ADDRESS;
415 		break;
416 	case TARGET_TYPE_AR6004:
417 		address = AR6004_RESET_CONTROL_ADDRESS;
418 		break;
419 	default:
420 		address = AR6003_RESET_CONTROL_ADDRESS;
421 		break;
422 	}
423 
424 	status = ath6kl_diag_write32(ar, address, data);
425 
426 	if (status)
427 		ath6kl_err("failed to reset target\n");
428 }
429 
430 void ath6kl_stop_endpoint(struct net_device *dev, bool keep_profile,
431 			  bool get_dbglogs)
432 {
433 	struct ath6kl *ar = ath6kl_priv(dev);
434 	struct ath6kl_vif *vif = netdev_priv(dev);
435 	static u8 bcast_mac[] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
436 	bool discon_issued;
437 
438 	netif_stop_queue(dev);
439 
440 	/* disable the target and the interrupts associated with it */
441 	if (test_bit(WMI_READY, &ar->flag)) {
442 		discon_issued = (test_bit(CONNECTED, &vif->flags) ||
443 				 test_bit(CONNECT_PEND, &vif->flags));
444 		ath6kl_disconnect(vif);
445 		if (!keep_profile)
446 			ath6kl_init_profile_info(ar);
447 
448 		del_timer(&vif->disconnect_timer);
449 
450 		clear_bit(WMI_READY, &ar->flag);
451 		ath6kl_wmi_shutdown(ar->wmi);
452 		clear_bit(WMI_ENABLED, &ar->flag);
453 		ar->wmi = NULL;
454 
455 		/*
456 		 * After wmi_shudown all WMI events will be dropped. We
457 		 * need to cleanup the buffers allocated in AP mode and
458 		 * give disconnect notification to stack, which usually
459 		 * happens in the disconnect_event. Simulate the disconnect
460 		 * event by calling the function directly. Sometimes
461 		 * disconnect_event will be received when the debug logs
462 		 * are collected.
463 		 */
464 		if (discon_issued)
465 			ath6kl_disconnect_event(vif, DISCONNECT_CMD,
466 						(vif->nw_type & AP_NETWORK) ?
467 						bcast_mac : vif->bssid,
468 						0, NULL, 0);
469 
470 		ar->user_key_ctrl = 0;
471 
472 	} else {
473 		ath6kl_dbg(ATH6KL_DBG_TRC,
474 			   "%s: wmi is not ready 0x%p 0x%p\n",
475 			   __func__, ar, ar->wmi);
476 
477 		/* Shut down WMI if we have started it */
478 		if (test_bit(WMI_ENABLED, &ar->flag)) {
479 			ath6kl_dbg(ATH6KL_DBG_TRC,
480 				   "%s: shut down wmi\n", __func__);
481 			ath6kl_wmi_shutdown(ar->wmi);
482 			clear_bit(WMI_ENABLED, &ar->flag);
483 			ar->wmi = NULL;
484 		}
485 	}
486 
487 	if (ar->htc_target) {
488 		ath6kl_dbg(ATH6KL_DBG_TRC, "%s: shut down htc\n", __func__);
489 		ath6kl_htc_stop(ar->htc_target);
490 	}
491 
492 	/*
493 	 * Try to reset the device if we can. The driver may have been
494 	 * configure NOT to reset the target during a debug session.
495 	 */
496 	ath6kl_dbg(ATH6KL_DBG_TRC,
497 		   "attempting to reset target on instance destroy\n");
498 	ath6kl_reset_device(ar, ar->target_type, true, true);
499 }
500 
501 static void ath6kl_install_static_wep_keys(struct ath6kl_vif *vif)
502 {
503 	u8 index;
504 	u8 keyusage;
505 
506 	for (index = WMI_MIN_KEY_INDEX; index <= WMI_MAX_KEY_INDEX; index++) {
507 		if (vif->wep_key_list[index].key_len) {
508 			keyusage = GROUP_USAGE;
509 			if (index == vif->def_txkey_index)
510 				keyusage |= TX_USAGE;
511 
512 			ath6kl_wmi_addkey_cmd(vif->ar->wmi, vif->fw_vif_idx,
513 					      index,
514 					      WEP_CRYPT,
515 					      keyusage,
516 					      vif->wep_key_list[index].key_len,
517 					      NULL,
518 					      vif->wep_key_list[index].key,
519 					      KEY_OP_INIT_VAL, NULL,
520 					      NO_SYNC_WMIFLAG);
521 		}
522 	}
523 }
524 
525 void ath6kl_connect_ap_mode_bss(struct ath6kl_vif *vif, u16 channel)
526 {
527 	struct ath6kl *ar = vif->ar;
528 	struct ath6kl_req_key *ik;
529 	int res;
530 	u8 key_rsc[ATH6KL_KEY_SEQ_LEN];
531 
532 	ik = &ar->ap_mode_bkey;
533 
534 	ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "AP mode started on %u MHz\n", channel);
535 
536 	switch (vif->auth_mode) {
537 	case NONE_AUTH:
538 		if (vif->prwise_crypto == WEP_CRYPT)
539 			ath6kl_install_static_wep_keys(vif);
540 		break;
541 	case WPA_PSK_AUTH:
542 	case WPA2_PSK_AUTH:
543 	case (WPA_PSK_AUTH | WPA2_PSK_AUTH):
544 		if (!ik->valid)
545 			break;
546 
547 		ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed addkey for "
548 			   "the initial group key for AP mode\n");
549 		memset(key_rsc, 0, sizeof(key_rsc));
550 		res = ath6kl_wmi_addkey_cmd(
551 			ar->wmi, vif->fw_vif_idx, ik->key_index, ik->key_type,
552 			GROUP_USAGE, ik->key_len, key_rsc, ik->key,
553 			KEY_OP_INIT_VAL, NULL, SYNC_BOTH_WMIFLAG);
554 		if (res) {
555 			ath6kl_dbg(ATH6KL_DBG_WLAN_CFG, "Delayed "
556 				   "addkey failed: %d\n", res);
557 		}
558 		break;
559 	}
560 
561 	ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx, NONE_BSS_FILTER, 0);
562 	set_bit(CONNECTED, &vif->flags);
563 	netif_carrier_on(vif->ndev);
564 }
565 
566 void ath6kl_connect_ap_mode_sta(struct ath6kl_vif *vif, u16 aid, u8 *mac_addr,
567 				u8 keymgmt, u8 ucipher, u8 auth,
568 				u8 assoc_req_len, u8 *assoc_info)
569 {
570 	struct ath6kl *ar = vif->ar;
571 	u8 *ies = NULL, *wpa_ie = NULL, *pos;
572 	size_t ies_len = 0;
573 	struct station_info sinfo;
574 
575 	ath6kl_dbg(ATH6KL_DBG_TRC, "new station %pM aid=%d\n", mac_addr, aid);
576 
577 	if (assoc_req_len > sizeof(struct ieee80211_hdr_3addr)) {
578 		struct ieee80211_mgmt *mgmt =
579 			(struct ieee80211_mgmt *) assoc_info;
580 		if (ieee80211_is_assoc_req(mgmt->frame_control) &&
581 		    assoc_req_len >= sizeof(struct ieee80211_hdr_3addr) +
582 		    sizeof(mgmt->u.assoc_req)) {
583 			ies = mgmt->u.assoc_req.variable;
584 			ies_len = assoc_info + assoc_req_len - ies;
585 		} else if (ieee80211_is_reassoc_req(mgmt->frame_control) &&
586 			   assoc_req_len >= sizeof(struct ieee80211_hdr_3addr)
587 			   + sizeof(mgmt->u.reassoc_req)) {
588 			ies = mgmt->u.reassoc_req.variable;
589 			ies_len = assoc_info + assoc_req_len - ies;
590 		}
591 	}
592 
593 	pos = ies;
594 	while (pos && pos + 1 < ies + ies_len) {
595 		if (pos + 2 + pos[1] > ies + ies_len)
596 			break;
597 		if (pos[0] == WLAN_EID_RSN)
598 			wpa_ie = pos; /* RSN IE */
599 		else if (pos[0] == WLAN_EID_VENDOR_SPECIFIC &&
600 			 pos[1] >= 4 &&
601 			 pos[2] == 0x00 && pos[3] == 0x50 && pos[4] == 0xf2) {
602 			if (pos[5] == 0x01)
603 				wpa_ie = pos; /* WPA IE */
604 			else if (pos[5] == 0x04) {
605 				wpa_ie = pos; /* WPS IE */
606 				break; /* overrides WPA/RSN IE */
607 			}
608 		}
609 		pos += 2 + pos[1];
610 	}
611 
612 	ath6kl_add_new_sta(ar, mac_addr, aid, wpa_ie,
613 			   wpa_ie ? 2 + wpa_ie[1] : 0,
614 			   keymgmt, ucipher, auth);
615 
616 	/* send event to application */
617 	memset(&sinfo, 0, sizeof(sinfo));
618 
619 	/* TODO: sinfo.generation */
620 
621 	sinfo.assoc_req_ies = ies;
622 	sinfo.assoc_req_ies_len = ies_len;
623 	sinfo.filled |= STATION_INFO_ASSOC_REQ_IES;
624 
625 	cfg80211_new_sta(vif->ndev, mac_addr, &sinfo, GFP_KERNEL);
626 
627 	netif_wake_queue(vif->ndev);
628 }
629 
630 /* Functions for Tx credit handling */
631 void ath6k_credit_init(struct htc_credit_state_info *cred_info,
632 		       struct list_head *ep_list,
633 		       int tot_credits)
634 {
635 	struct htc_endpoint_credit_dist *cur_ep_dist;
636 	int count;
637 
638 	cred_info->cur_free_credits = tot_credits;
639 	cred_info->total_avail_credits = tot_credits;
640 
641 	list_for_each_entry(cur_ep_dist, ep_list, list) {
642 		if (cur_ep_dist->endpoint == ENDPOINT_0)
643 			continue;
644 
645 		cur_ep_dist->cred_min = cur_ep_dist->cred_per_msg;
646 
647 		if (tot_credits > 4)
648 			if ((cur_ep_dist->svc_id == WMI_DATA_BK_SVC) ||
649 			    (cur_ep_dist->svc_id == WMI_DATA_BE_SVC)) {
650 				ath6kl_deposit_credit_to_ep(cred_info,
651 						cur_ep_dist,
652 						cur_ep_dist->cred_min);
653 				cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
654 			}
655 
656 		if (cur_ep_dist->svc_id == WMI_CONTROL_SVC) {
657 			ath6kl_deposit_credit_to_ep(cred_info, cur_ep_dist,
658 						    cur_ep_dist->cred_min);
659 			/*
660 			 * Control service is always marked active, it
661 			 * never goes inactive EVER.
662 			 */
663 			cur_ep_dist->dist_flags |= HTC_EP_ACTIVE;
664 		} else if (cur_ep_dist->svc_id == WMI_DATA_BK_SVC)
665 			/* this is the lowest priority data endpoint */
666 			cred_info->lowestpri_ep_dist = cur_ep_dist->list;
667 
668 		/*
669 		 * Streams have to be created (explicit | implicit) for all
670 		 * kinds of traffic. BE endpoints are also inactive in the
671 		 * beginning. When BE traffic starts it creates implicit
672 		 * streams that redistributes credits.
673 		 *
674 		 * Note: all other endpoints have minimums set but are
675 		 * initially given NO credits. credits will be distributed
676 		 * as traffic activity demands
677 		 */
678 	}
679 
680 	WARN_ON(cred_info->cur_free_credits <= 0);
681 
682 	list_for_each_entry(cur_ep_dist, ep_list, list) {
683 		if (cur_ep_dist->endpoint == ENDPOINT_0)
684 			continue;
685 
686 		if (cur_ep_dist->svc_id == WMI_CONTROL_SVC)
687 			cur_ep_dist->cred_norm = cur_ep_dist->cred_per_msg;
688 		else {
689 			/*
690 			 * For the remaining data endpoints, we assume that
691 			 * each cred_per_msg are the same. We use a simple
692 			 * calculation here, we take the remaining credits
693 			 * and determine how many max messages this can
694 			 * cover and then set each endpoint's normal value
695 			 * equal to 3/4 this amount.
696 			 */
697 			count = (cred_info->cur_free_credits /
698 				 cur_ep_dist->cred_per_msg)
699 				* cur_ep_dist->cred_per_msg;
700 			count = (count * 3) >> 2;
701 			count = max(count, cur_ep_dist->cred_per_msg);
702 			cur_ep_dist->cred_norm = count;
703 
704 		}
705 	}
706 }
707 
708 /* initialize and setup credit distribution */
709 int ath6k_setup_credit_dist(void *htc_handle,
710 			    struct htc_credit_state_info *cred_info)
711 {
712 	u16 servicepriority[5];
713 
714 	memset(cred_info, 0, sizeof(struct htc_credit_state_info));
715 
716 	servicepriority[0] = WMI_CONTROL_SVC;  /* highest */
717 	servicepriority[1] = WMI_DATA_VO_SVC;
718 	servicepriority[2] = WMI_DATA_VI_SVC;
719 	servicepriority[3] = WMI_DATA_BE_SVC;
720 	servicepriority[4] = WMI_DATA_BK_SVC; /* lowest */
721 
722 	/* set priority list */
723 	ath6kl_htc_set_credit_dist(htc_handle, cred_info, servicepriority, 5);
724 
725 	return 0;
726 }
727 
728 /* reduce an ep's credits back to a set limit */
729 static void ath6k_reduce_credits(struct htc_credit_state_info *cred_info,
730 				 struct htc_endpoint_credit_dist  *ep_dist,
731 				 int limit)
732 {
733 	int credits;
734 
735 	ep_dist->cred_assngd = limit;
736 
737 	if (ep_dist->credits <= limit)
738 		return;
739 
740 	credits = ep_dist->credits - limit;
741 	ep_dist->credits -= credits;
742 	cred_info->cur_free_credits += credits;
743 }
744 
745 static void ath6k_credit_update(struct htc_credit_state_info *cred_info,
746 				struct list_head *epdist_list)
747 {
748 	struct htc_endpoint_credit_dist *cur_dist_list;
749 
750 	list_for_each_entry(cur_dist_list, epdist_list, list) {
751 		if (cur_dist_list->endpoint == ENDPOINT_0)
752 			continue;
753 
754 		if (cur_dist_list->cred_to_dist > 0) {
755 			cur_dist_list->credits +=
756 					cur_dist_list->cred_to_dist;
757 			cur_dist_list->cred_to_dist = 0;
758 			if (cur_dist_list->credits >
759 			    cur_dist_list->cred_assngd)
760 				ath6k_reduce_credits(cred_info,
761 						cur_dist_list,
762 						cur_dist_list->cred_assngd);
763 
764 			if (cur_dist_list->credits >
765 			    cur_dist_list->cred_norm)
766 				ath6k_reduce_credits(cred_info, cur_dist_list,
767 						     cur_dist_list->cred_norm);
768 
769 			if (!(cur_dist_list->dist_flags & HTC_EP_ACTIVE)) {
770 				if (cur_dist_list->txq_depth == 0)
771 					ath6k_reduce_credits(cred_info,
772 							     cur_dist_list, 0);
773 			}
774 		}
775 	}
776 }
777 
778 /*
779  * HTC has an endpoint that needs credits, ep_dist is the endpoint in
780  * question.
781  */
782 void ath6k_seek_credits(struct htc_credit_state_info *cred_info,
783 			struct htc_endpoint_credit_dist *ep_dist)
784 {
785 	struct htc_endpoint_credit_dist *curdist_list;
786 	int credits = 0;
787 	int need;
788 
789 	if (ep_dist->svc_id == WMI_CONTROL_SVC)
790 		goto out;
791 
792 	if ((ep_dist->svc_id == WMI_DATA_VI_SVC) ||
793 	    (ep_dist->svc_id == WMI_DATA_VO_SVC))
794 		if ((ep_dist->cred_assngd >= ep_dist->cred_norm))
795 			goto out;
796 
797 	/*
798 	 * For all other services, we follow a simple algorithm of:
799 	 *
800 	 * 1. checking the free pool for credits
801 	 * 2. checking lower priority endpoints for credits to take
802 	 */
803 
804 	credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
805 
806 	if (credits >= ep_dist->seek_cred)
807 		goto out;
808 
809 	/*
810 	 * We don't have enough in the free pool, try taking away from
811 	 * lower priority services The rule for taking away credits:
812 	 *
813 	 *   1. Only take from lower priority endpoints
814 	 *   2. Only take what is allocated above the minimum (never
815 	 *      starve an endpoint completely)
816 	 *   3. Only take what you need.
817 	 */
818 
819 	list_for_each_entry_reverse(curdist_list,
820 				    &cred_info->lowestpri_ep_dist,
821 				    list) {
822 		if (curdist_list == ep_dist)
823 			break;
824 
825 		need = ep_dist->seek_cred - cred_info->cur_free_credits;
826 
827 		if ((curdist_list->cred_assngd - need) >=
828 		     curdist_list->cred_min) {
829 			/*
830 			 * The current one has been allocated more than
831 			 * it's minimum and it has enough credits assigned
832 			 * above it's minimum to fulfill our need try to
833 			 * take away just enough to fulfill our need.
834 			 */
835 			ath6k_reduce_credits(cred_info, curdist_list,
836 					curdist_list->cred_assngd - need);
837 
838 			if (cred_info->cur_free_credits >=
839 			    ep_dist->seek_cred)
840 				break;
841 		}
842 
843 		if (curdist_list->endpoint == ENDPOINT_0)
844 			break;
845 	}
846 
847 	credits = min(cred_info->cur_free_credits, ep_dist->seek_cred);
848 
849 out:
850 	/* did we find some credits? */
851 	if (credits)
852 		ath6kl_deposit_credit_to_ep(cred_info, ep_dist, credits);
853 
854 	ep_dist->seek_cred = 0;
855 }
856 
857 /* redistribute credits based on activity change */
858 static void ath6k_redistribute_credits(struct htc_credit_state_info *info,
859 				       struct list_head *ep_dist_list)
860 {
861 	struct htc_endpoint_credit_dist *curdist_list;
862 
863 	list_for_each_entry(curdist_list, ep_dist_list, list) {
864 		if (curdist_list->endpoint == ENDPOINT_0)
865 			continue;
866 
867 		if ((curdist_list->svc_id == WMI_DATA_BK_SVC)  ||
868 		    (curdist_list->svc_id == WMI_DATA_BE_SVC))
869 			curdist_list->dist_flags |= HTC_EP_ACTIVE;
870 
871 		if ((curdist_list->svc_id != WMI_CONTROL_SVC) &&
872 		    !(curdist_list->dist_flags & HTC_EP_ACTIVE)) {
873 			if (curdist_list->txq_depth == 0)
874 				ath6k_reduce_credits(info,
875 						curdist_list, 0);
876 			else
877 				ath6k_reduce_credits(info,
878 						curdist_list,
879 						curdist_list->cred_min);
880 		}
881 	}
882 }
883 
884 /*
885  *
886  * This function is invoked whenever endpoints require credit
887  * distributions. A lock is held while this function is invoked, this
888  * function shall NOT block. The ep_dist_list is a list of distribution
889  * structures in prioritized order as defined by the call to the
890  * htc_set_credit_dist() api.
891  */
892 void ath6k_credit_distribute(struct htc_credit_state_info *cred_info,
893 			     struct list_head *ep_dist_list,
894 			     enum htc_credit_dist_reason reason)
895 {
896 	switch (reason) {
897 	case HTC_CREDIT_DIST_SEND_COMPLETE:
898 		ath6k_credit_update(cred_info, ep_dist_list);
899 		break;
900 	case HTC_CREDIT_DIST_ACTIVITY_CHANGE:
901 		ath6k_redistribute_credits(cred_info, ep_dist_list);
902 		break;
903 	default:
904 		break;
905 	}
906 
907 	WARN_ON(cred_info->cur_free_credits > cred_info->total_avail_credits);
908 	WARN_ON(cred_info->cur_free_credits < 0);
909 }
910 
911 void disconnect_timer_handler(unsigned long ptr)
912 {
913 	struct net_device *dev = (struct net_device *)ptr;
914 	struct ath6kl_vif *vif = netdev_priv(dev);
915 
916 	ath6kl_init_profile_info(vif->ar);
917 	ath6kl_disconnect(vif);
918 }
919 
920 void ath6kl_disconnect(struct ath6kl_vif *vif)
921 {
922 	if (test_bit(CONNECTED, &vif->flags) ||
923 	    test_bit(CONNECT_PEND, &vif->flags)) {
924 		ath6kl_wmi_disconnect_cmd(vif->ar->wmi, vif->fw_vif_idx);
925 		/*
926 		 * Disconnect command is issued, clear the connect pending
927 		 * flag. The connected flag will be cleared in
928 		 * disconnect event notification.
929 		 */
930 		clear_bit(CONNECT_PEND, &vif->flags);
931 	}
932 }
933 
934 void ath6kl_deep_sleep_enable(struct ath6kl *ar)
935 {
936 	/* TODO: Pass vif instead of taking it from ar */
937 	struct ath6kl_vif *vif = ar->vif;
938 
939 	switch (vif->sme_state) {
940 	case SME_CONNECTING:
941 		cfg80211_connect_result(ar->net_dev, vif->bssid, NULL, 0,
942 					NULL, 0,
943 					WLAN_STATUS_UNSPECIFIED_FAILURE,
944 					GFP_KERNEL);
945 		break;
946 	case SME_CONNECTED:
947 	default:
948 		/*
949 		 * FIXME: oddly enough smeState is in DISCONNECTED during
950 		 * suspend, why? Need to send disconnected event in that
951 		 * state.
952 		 */
953 		cfg80211_disconnected(ar->net_dev, 0, NULL, 0, GFP_KERNEL);
954 		break;
955 	}
956 
957 	if (test_bit(CONNECTED, &vif->flags) ||
958 	    test_bit(CONNECT_PEND, &vif->flags))
959 		ath6kl_wmi_disconnect_cmd(ar->wmi, vif->fw_vif_idx);
960 
961 	vif->sme_state = SME_DISCONNECTED;
962 
963 	/* disable scanning */
964 	if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF, 0, 0,
965 				      0, 0, 0, 0, 0, 0, 0) != 0)
966 		printk(KERN_WARNING "ath6kl: failed to disable scan "
967 		       "during suspend\n");
968 
969 	ath6kl_cfg80211_scan_complete_event(vif, -ECANCELED);
970 
971 	/* save the current power mode before enabling power save */
972 	ar->wmi->saved_pwr_mode = ar->wmi->pwr_mode;
973 
974 	if (ath6kl_wmi_powermode_cmd(ar->wmi, 0, REC_POWER) != 0)
975 		ath6kl_warn("ath6kl_deep_sleep_enable: "
976 			"wmi_powermode_cmd failed\n");
977 }
978 
979 /* WMI Event handlers */
980 
981 static const char *get_hw_id_string(u32 id)
982 {
983 	switch (id) {
984 	case AR6003_REV1_VERSION:
985 		return "1.0";
986 	case AR6003_REV2_VERSION:
987 		return "2.0";
988 	case AR6003_REV3_VERSION:
989 		return "2.1.1";
990 	default:
991 		return "unknown";
992 	}
993 }
994 
995 void ath6kl_ready_event(void *devt, u8 *datap, u32 sw_ver, u32 abi_ver)
996 {
997 	struct ath6kl *ar = devt;
998 	struct net_device *dev = ar->net_dev;
999 
1000 	memcpy(dev->dev_addr, datap, ETH_ALEN);
1001 	ath6kl_dbg(ATH6KL_DBG_TRC, "%s: mac addr = %pM\n",
1002 		   __func__, dev->dev_addr);
1003 
1004 	ar->version.wlan_ver = sw_ver;
1005 	ar->version.abi_ver = abi_ver;
1006 
1007 	snprintf(ar->wiphy->fw_version,
1008 		 sizeof(ar->wiphy->fw_version),
1009 		 "%u.%u.%u.%u",
1010 		 (ar->version.wlan_ver & 0xf0000000) >> 28,
1011 		 (ar->version.wlan_ver & 0x0f000000) >> 24,
1012 		 (ar->version.wlan_ver & 0x00ff0000) >> 16,
1013 		 (ar->version.wlan_ver & 0x0000ffff));
1014 
1015 	/* indicate to the waiting thread that the ready event was received */
1016 	set_bit(WMI_READY, &ar->flag);
1017 	wake_up(&ar->event_wq);
1018 
1019 	ath6kl_info("hw %s fw %s%s\n",
1020 		    get_hw_id_string(ar->wiphy->hw_version),
1021 		    ar->wiphy->fw_version,
1022 		    test_bit(TESTMODE, &ar->flag) ? " testmode" : "");
1023 }
1024 
1025 void ath6kl_scan_complete_evt(struct ath6kl_vif *vif, int status)
1026 {
1027 	struct ath6kl *ar = vif->ar;
1028 
1029 	ath6kl_cfg80211_scan_complete_event(vif, status);
1030 
1031 	if (!ar->usr_bss_filter) {
1032 		clear_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
1033 		ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
1034 					 NONE_BSS_FILTER, 0);
1035 	}
1036 
1037 	ath6kl_dbg(ATH6KL_DBG_WLAN_SCAN, "scan complete: %d\n", status);
1038 }
1039 
1040 void ath6kl_connect_event(struct ath6kl_vif *vif, u16 channel, u8 *bssid,
1041 			  u16 listen_int, u16 beacon_int,
1042 			  enum network_type net_type, u8 beacon_ie_len,
1043 			  u8 assoc_req_len, u8 assoc_resp_len,
1044 			  u8 *assoc_info)
1045 {
1046 	struct ath6kl *ar = vif->ar;
1047 
1048 	ath6kl_cfg80211_connect_event(vif, channel, bssid,
1049 				      listen_int, beacon_int,
1050 				      net_type, beacon_ie_len,
1051 				      assoc_req_len, assoc_resp_len,
1052 				      assoc_info);
1053 
1054 	memcpy(vif->bssid, bssid, sizeof(vif->bssid));
1055 	vif->bss_ch = channel;
1056 
1057 	if ((vif->nw_type == INFRA_NETWORK))
1058 		ath6kl_wmi_listeninterval_cmd(ar->wmi, vif->fw_vif_idx,
1059 					      ar->listen_intvl_t,
1060 					      ar->listen_intvl_b);
1061 
1062 	netif_wake_queue(vif->ndev);
1063 
1064 	/* Update connect & link status atomically */
1065 	spin_lock_bh(&ar->lock);
1066 	set_bit(CONNECTED, &vif->flags);
1067 	clear_bit(CONNECT_PEND, &vif->flags);
1068 	netif_carrier_on(vif->ndev);
1069 	spin_unlock_bh(&ar->lock);
1070 
1071 	aggr_reset_state(vif->aggr_cntxt);
1072 	vif->reconnect_flag = 0;
1073 
1074 	if ((vif->nw_type == ADHOC_NETWORK) && ar->ibss_ps_enable) {
1075 		memset(ar->node_map, 0, sizeof(ar->node_map));
1076 		ar->node_num = 0;
1077 		ar->next_ep_id = ENDPOINT_2;
1078 	}
1079 
1080 	if (!ar->usr_bss_filter) {
1081 		set_bit(CLEAR_BSSFILTER_ON_BEACON, &vif->flags);
1082 		ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
1083 					 CURRENT_BSS_FILTER, 0);
1084 	}
1085 }
1086 
1087 void ath6kl_tkip_micerr_event(struct ath6kl_vif *vif, u8 keyid, bool ismcast)
1088 {
1089 	struct ath6kl_sta *sta;
1090 	struct ath6kl *ar = vif->ar;
1091 	u8 tsc[6];
1092 
1093 	/*
1094 	 * For AP case, keyid will have aid of STA which sent pkt with
1095 	 * MIC error. Use this aid to get MAC & send it to hostapd.
1096 	 */
1097 	if (vif->nw_type == AP_NETWORK) {
1098 		sta = ath6kl_find_sta_by_aid(ar, (keyid >> 2));
1099 		if (!sta)
1100 			return;
1101 
1102 		ath6kl_dbg(ATH6KL_DBG_TRC,
1103 			   "ap tkip mic error received from aid=%d\n", keyid);
1104 
1105 		memset(tsc, 0, sizeof(tsc)); /* FIX: get correct TSC */
1106 		cfg80211_michael_mic_failure(vif->ndev, sta->mac,
1107 					     NL80211_KEYTYPE_PAIRWISE, keyid,
1108 					     tsc, GFP_KERNEL);
1109 	} else
1110 		ath6kl_cfg80211_tkip_micerr_event(vif, keyid, ismcast);
1111 
1112 }
1113 
1114 static void ath6kl_update_target_stats(struct ath6kl_vif *vif, u8 *ptr, u32 len)
1115 {
1116 	struct wmi_target_stats *tgt_stats =
1117 		(struct wmi_target_stats *) ptr;
1118 	struct ath6kl *ar = vif->ar;
1119 	struct target_stats *stats = &vif->target_stats;
1120 	struct tkip_ccmp_stats *ccmp_stats;
1121 	u8 ac;
1122 
1123 	if (len < sizeof(*tgt_stats))
1124 		return;
1125 
1126 	ath6kl_dbg(ATH6KL_DBG_TRC, "updating target stats\n");
1127 
1128 	stats->tx_pkt += le32_to_cpu(tgt_stats->stats.tx.pkt);
1129 	stats->tx_byte += le32_to_cpu(tgt_stats->stats.tx.byte);
1130 	stats->tx_ucast_pkt += le32_to_cpu(tgt_stats->stats.tx.ucast_pkt);
1131 	stats->tx_ucast_byte += le32_to_cpu(tgt_stats->stats.tx.ucast_byte);
1132 	stats->tx_mcast_pkt += le32_to_cpu(tgt_stats->stats.tx.mcast_pkt);
1133 	stats->tx_mcast_byte += le32_to_cpu(tgt_stats->stats.tx.mcast_byte);
1134 	stats->tx_bcast_pkt  += le32_to_cpu(tgt_stats->stats.tx.bcast_pkt);
1135 	stats->tx_bcast_byte += le32_to_cpu(tgt_stats->stats.tx.bcast_byte);
1136 	stats->tx_rts_success_cnt +=
1137 		le32_to_cpu(tgt_stats->stats.tx.rts_success_cnt);
1138 
1139 	for (ac = 0; ac < WMM_NUM_AC; ac++)
1140 		stats->tx_pkt_per_ac[ac] +=
1141 			le32_to_cpu(tgt_stats->stats.tx.pkt_per_ac[ac]);
1142 
1143 	stats->tx_err += le32_to_cpu(tgt_stats->stats.tx.err);
1144 	stats->tx_fail_cnt += le32_to_cpu(tgt_stats->stats.tx.fail_cnt);
1145 	stats->tx_retry_cnt += le32_to_cpu(tgt_stats->stats.tx.retry_cnt);
1146 	stats->tx_mult_retry_cnt +=
1147 		le32_to_cpu(tgt_stats->stats.tx.mult_retry_cnt);
1148 	stats->tx_rts_fail_cnt +=
1149 		le32_to_cpu(tgt_stats->stats.tx.rts_fail_cnt);
1150 	stats->tx_ucast_rate =
1151 	    ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.tx.ucast_rate));
1152 
1153 	stats->rx_pkt += le32_to_cpu(tgt_stats->stats.rx.pkt);
1154 	stats->rx_byte += le32_to_cpu(tgt_stats->stats.rx.byte);
1155 	stats->rx_ucast_pkt += le32_to_cpu(tgt_stats->stats.rx.ucast_pkt);
1156 	stats->rx_ucast_byte += le32_to_cpu(tgt_stats->stats.rx.ucast_byte);
1157 	stats->rx_mcast_pkt += le32_to_cpu(tgt_stats->stats.rx.mcast_pkt);
1158 	stats->rx_mcast_byte += le32_to_cpu(tgt_stats->stats.rx.mcast_byte);
1159 	stats->rx_bcast_pkt += le32_to_cpu(tgt_stats->stats.rx.bcast_pkt);
1160 	stats->rx_bcast_byte += le32_to_cpu(tgt_stats->stats.rx.bcast_byte);
1161 	stats->rx_frgment_pkt += le32_to_cpu(tgt_stats->stats.rx.frgment_pkt);
1162 	stats->rx_err += le32_to_cpu(tgt_stats->stats.rx.err);
1163 	stats->rx_crc_err += le32_to_cpu(tgt_stats->stats.rx.crc_err);
1164 	stats->rx_key_cache_miss +=
1165 		le32_to_cpu(tgt_stats->stats.rx.key_cache_miss);
1166 	stats->rx_decrypt_err += le32_to_cpu(tgt_stats->stats.rx.decrypt_err);
1167 	stats->rx_dupl_frame += le32_to_cpu(tgt_stats->stats.rx.dupl_frame);
1168 	stats->rx_ucast_rate =
1169 	    ath6kl_wmi_get_rate(a_sle32_to_cpu(tgt_stats->stats.rx.ucast_rate));
1170 
1171 	ccmp_stats = &tgt_stats->stats.tkip_ccmp_stats;
1172 
1173 	stats->tkip_local_mic_fail +=
1174 		le32_to_cpu(ccmp_stats->tkip_local_mic_fail);
1175 	stats->tkip_cnter_measures_invoked +=
1176 		le32_to_cpu(ccmp_stats->tkip_cnter_measures_invoked);
1177 	stats->tkip_fmt_err += le32_to_cpu(ccmp_stats->tkip_fmt_err);
1178 
1179 	stats->ccmp_fmt_err += le32_to_cpu(ccmp_stats->ccmp_fmt_err);
1180 	stats->ccmp_replays += le32_to_cpu(ccmp_stats->ccmp_replays);
1181 
1182 	stats->pwr_save_fail_cnt +=
1183 		le32_to_cpu(tgt_stats->pm_stats.pwr_save_failure_cnt);
1184 	stats->noise_floor_calib =
1185 		a_sle32_to_cpu(tgt_stats->noise_floor_calib);
1186 
1187 	stats->cs_bmiss_cnt +=
1188 		le32_to_cpu(tgt_stats->cserv_stats.cs_bmiss_cnt);
1189 	stats->cs_low_rssi_cnt +=
1190 		le32_to_cpu(tgt_stats->cserv_stats.cs_low_rssi_cnt);
1191 	stats->cs_connect_cnt +=
1192 		le16_to_cpu(tgt_stats->cserv_stats.cs_connect_cnt);
1193 	stats->cs_discon_cnt +=
1194 		le16_to_cpu(tgt_stats->cserv_stats.cs_discon_cnt);
1195 
1196 	stats->cs_ave_beacon_rssi =
1197 		a_sle16_to_cpu(tgt_stats->cserv_stats.cs_ave_beacon_rssi);
1198 
1199 	stats->cs_last_roam_msec =
1200 		tgt_stats->cserv_stats.cs_last_roam_msec;
1201 	stats->cs_snr = tgt_stats->cserv_stats.cs_snr;
1202 	stats->cs_rssi = a_sle16_to_cpu(tgt_stats->cserv_stats.cs_rssi);
1203 
1204 	stats->lq_val = le32_to_cpu(tgt_stats->lq_val);
1205 
1206 	stats->wow_pkt_dropped +=
1207 		le32_to_cpu(tgt_stats->wow_stats.wow_pkt_dropped);
1208 	stats->wow_host_pkt_wakeups +=
1209 		tgt_stats->wow_stats.wow_host_pkt_wakeups;
1210 	stats->wow_host_evt_wakeups +=
1211 		tgt_stats->wow_stats.wow_host_evt_wakeups;
1212 	stats->wow_evt_discarded +=
1213 		le16_to_cpu(tgt_stats->wow_stats.wow_evt_discarded);
1214 
1215 	if (test_bit(STATS_UPDATE_PEND, &vif->flags)) {
1216 		clear_bit(STATS_UPDATE_PEND, &vif->flags);
1217 		wake_up(&ar->event_wq);
1218 	}
1219 }
1220 
1221 static void ath6kl_add_le32(__le32 *var, __le32 val)
1222 {
1223 	*var = cpu_to_le32(le32_to_cpu(*var) + le32_to_cpu(val));
1224 }
1225 
1226 void ath6kl_tgt_stats_event(struct ath6kl_vif *vif, u8 *ptr, u32 len)
1227 {
1228 	struct wmi_ap_mode_stat *p = (struct wmi_ap_mode_stat *) ptr;
1229 	struct ath6kl *ar = vif->ar;
1230 	struct wmi_ap_mode_stat *ap = &ar->ap_stats;
1231 	struct wmi_per_sta_stat *st_ap, *st_p;
1232 	u8 ac;
1233 
1234 	if (vif->nw_type == AP_NETWORK) {
1235 		if (len < sizeof(*p))
1236 			return;
1237 
1238 		for (ac = 0; ac < AP_MAX_NUM_STA; ac++) {
1239 			st_ap = &ap->sta[ac];
1240 			st_p = &p->sta[ac];
1241 
1242 			ath6kl_add_le32(&st_ap->tx_bytes, st_p->tx_bytes);
1243 			ath6kl_add_le32(&st_ap->tx_pkts, st_p->tx_pkts);
1244 			ath6kl_add_le32(&st_ap->tx_error, st_p->tx_error);
1245 			ath6kl_add_le32(&st_ap->tx_discard, st_p->tx_discard);
1246 			ath6kl_add_le32(&st_ap->rx_bytes, st_p->rx_bytes);
1247 			ath6kl_add_le32(&st_ap->rx_pkts, st_p->rx_pkts);
1248 			ath6kl_add_le32(&st_ap->rx_error, st_p->rx_error);
1249 			ath6kl_add_le32(&st_ap->rx_discard, st_p->rx_discard);
1250 		}
1251 
1252 	} else {
1253 		ath6kl_update_target_stats(vif, ptr, len);
1254 	}
1255 }
1256 
1257 void ath6kl_wakeup_event(void *dev)
1258 {
1259 	struct ath6kl *ar = (struct ath6kl *) dev;
1260 
1261 	wake_up(&ar->event_wq);
1262 }
1263 
1264 void ath6kl_txpwr_rx_evt(void *devt, u8 tx_pwr)
1265 {
1266 	struct ath6kl *ar = (struct ath6kl *) devt;
1267 
1268 	ar->tx_pwr = tx_pwr;
1269 	wake_up(&ar->event_wq);
1270 }
1271 
1272 void ath6kl_pspoll_event(struct ath6kl_vif *vif, u8 aid)
1273 {
1274 	struct ath6kl_sta *conn;
1275 	struct sk_buff *skb;
1276 	bool psq_empty = false;
1277 	struct ath6kl *ar = vif->ar;
1278 
1279 	conn = ath6kl_find_sta_by_aid(ar, aid);
1280 
1281 	if (!conn)
1282 		return;
1283 	/*
1284 	 * Send out a packet queued on ps queue. When the ps queue
1285 	 * becomes empty update the PVB for this station.
1286 	 */
1287 	spin_lock_bh(&conn->psq_lock);
1288 	psq_empty  = skb_queue_empty(&conn->psq);
1289 	spin_unlock_bh(&conn->psq_lock);
1290 
1291 	if (psq_empty)
1292 		/* TODO: Send out a NULL data frame */
1293 		return;
1294 
1295 	spin_lock_bh(&conn->psq_lock);
1296 	skb = skb_dequeue(&conn->psq);
1297 	spin_unlock_bh(&conn->psq_lock);
1298 
1299 	conn->sta_flags |= STA_PS_POLLED;
1300 	ath6kl_data_tx(skb, vif->ndev);
1301 	conn->sta_flags &= ~STA_PS_POLLED;
1302 
1303 	spin_lock_bh(&conn->psq_lock);
1304 	psq_empty  = skb_queue_empty(&conn->psq);
1305 	spin_unlock_bh(&conn->psq_lock);
1306 
1307 	if (psq_empty)
1308 		ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, conn->aid, 0);
1309 }
1310 
1311 void ath6kl_dtimexpiry_event(struct ath6kl_vif *vif)
1312 {
1313 	bool mcastq_empty = false;
1314 	struct sk_buff *skb;
1315 	struct ath6kl *ar = vif->ar;
1316 
1317 	/*
1318 	 * If there are no associated STAs, ignore the DTIM expiry event.
1319 	 * There can be potential race conditions where the last associated
1320 	 * STA may disconnect & before the host could clear the 'Indicate
1321 	 * DTIM' request to the firmware, the firmware would have just
1322 	 * indicated a DTIM expiry event. The race is between 'clear DTIM
1323 	 * expiry cmd' going from the host to the firmware & the DTIM
1324 	 * expiry event happening from the firmware to the host.
1325 	 */
1326 	if (!ar->sta_list_index)
1327 		return;
1328 
1329 	spin_lock_bh(&ar->mcastpsq_lock);
1330 	mcastq_empty = skb_queue_empty(&ar->mcastpsq);
1331 	spin_unlock_bh(&ar->mcastpsq_lock);
1332 
1333 	if (mcastq_empty)
1334 		return;
1335 
1336 	/* set the STA flag to dtim_expired for the frame to go out */
1337 	set_bit(DTIM_EXPIRED, &vif->flags);
1338 
1339 	spin_lock_bh(&ar->mcastpsq_lock);
1340 	while ((skb = skb_dequeue(&ar->mcastpsq)) != NULL) {
1341 		spin_unlock_bh(&ar->mcastpsq_lock);
1342 
1343 		ath6kl_data_tx(skb, vif->ndev);
1344 
1345 		spin_lock_bh(&ar->mcastpsq_lock);
1346 	}
1347 	spin_unlock_bh(&ar->mcastpsq_lock);
1348 
1349 	clear_bit(DTIM_EXPIRED, &vif->flags);
1350 
1351 	/* clear the LSB of the BitMapCtl field of the TIM IE */
1352 	ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx, MCAST_AID, 0);
1353 }
1354 
1355 void ath6kl_disconnect_event(struct ath6kl_vif *vif, u8 reason, u8 *bssid,
1356 			     u8 assoc_resp_len, u8 *assoc_info,
1357 			     u16 prot_reason_status)
1358 {
1359 	struct ath6kl *ar = vif->ar;
1360 
1361 	if (vif->nw_type == AP_NETWORK) {
1362 		if (!ath6kl_remove_sta(ar, bssid, prot_reason_status))
1363 			return;
1364 
1365 		/* if no more associated STAs, empty the mcast PS q */
1366 		if (ar->sta_list_index == 0) {
1367 			spin_lock_bh(&ar->mcastpsq_lock);
1368 			skb_queue_purge(&ar->mcastpsq);
1369 			spin_unlock_bh(&ar->mcastpsq_lock);
1370 
1371 			/* clear the LSB of the TIM IE's BitMapCtl field */
1372 			if (test_bit(WMI_READY, &ar->flag))
1373 				ath6kl_wmi_set_pvb_cmd(ar->wmi, vif->fw_vif_idx,
1374 						       MCAST_AID, 0);
1375 		}
1376 
1377 		if (!is_broadcast_ether_addr(bssid)) {
1378 			/* send event to application */
1379 			cfg80211_del_sta(vif->ndev, bssid, GFP_KERNEL);
1380 		}
1381 
1382 		if (memcmp(vif->ndev->dev_addr, bssid, ETH_ALEN) == 0) {
1383 			memset(vif->wep_key_list, 0, sizeof(vif->wep_key_list));
1384 			clear_bit(CONNECTED, &vif->flags);
1385 		}
1386 		return;
1387 	}
1388 
1389 	ath6kl_cfg80211_disconnect_event(vif, reason, bssid,
1390 				       assoc_resp_len, assoc_info,
1391 				       prot_reason_status);
1392 
1393 	aggr_reset_state(vif->aggr_cntxt);
1394 
1395 	del_timer(&vif->disconnect_timer);
1396 
1397 	ath6kl_dbg(ATH6KL_DBG_WLAN_CONNECT,
1398 		   "disconnect reason is %d\n", reason);
1399 
1400 	/*
1401 	 * If the event is due to disconnect cmd from the host, only they
1402 	 * the target would stop trying to connect. Under any other
1403 	 * condition, target would keep trying to connect.
1404 	 */
1405 	if (reason == DISCONNECT_CMD) {
1406 		if (!ar->usr_bss_filter && test_bit(WMI_READY, &ar->flag))
1407 			ath6kl_wmi_bssfilter_cmd(ar->wmi, vif->fw_vif_idx,
1408 						 NONE_BSS_FILTER, 0);
1409 	} else {
1410 		set_bit(CONNECT_PEND, &vif->flags);
1411 		if (((reason == ASSOC_FAILED) &&
1412 		    (prot_reason_status == 0x11)) ||
1413 		    ((reason == ASSOC_FAILED) && (prot_reason_status == 0x0)
1414 		     && (vif->reconnect_flag == 1))) {
1415 			set_bit(CONNECTED, &vif->flags);
1416 			return;
1417 		}
1418 	}
1419 
1420 	/* update connect & link status atomically */
1421 	spin_lock_bh(&ar->lock);
1422 	clear_bit(CONNECTED, &vif->flags);
1423 	netif_carrier_off(vif->ndev);
1424 	spin_unlock_bh(&ar->lock);
1425 
1426 	if ((reason != CSERV_DISCONNECT) || (vif->reconnect_flag != 1))
1427 		vif->reconnect_flag = 0;
1428 
1429 	if (reason != CSERV_DISCONNECT)
1430 		ar->user_key_ctrl = 0;
1431 
1432 	netif_stop_queue(vif->ndev);
1433 	memset(vif->bssid, 0, sizeof(vif->bssid));
1434 	vif->bss_ch = 0;
1435 
1436 	ath6kl_tx_data_cleanup(ar);
1437 }
1438 
1439 static int ath6kl_open(struct net_device *dev)
1440 {
1441 	struct ath6kl *ar = ath6kl_priv(dev);
1442 	struct ath6kl_vif *vif = netdev_priv(dev);
1443 
1444 	spin_lock_bh(&ar->lock);
1445 
1446 	set_bit(WLAN_ENABLED, &vif->flags);
1447 
1448 	if (test_bit(CONNECTED, &vif->flags)) {
1449 		netif_carrier_on(dev);
1450 		netif_wake_queue(dev);
1451 	} else
1452 		netif_carrier_off(dev);
1453 
1454 	spin_unlock_bh(&ar->lock);
1455 
1456 	return 0;
1457 }
1458 
1459 static int ath6kl_close(struct net_device *dev)
1460 {
1461 	struct ath6kl *ar = ath6kl_priv(dev);
1462 	struct ath6kl_vif *vif = netdev_priv(dev);
1463 
1464 	netif_stop_queue(dev);
1465 
1466 	ath6kl_disconnect(vif);
1467 
1468 	if (test_bit(WMI_READY, &ar->flag)) {
1469 		if (ath6kl_wmi_scanparams_cmd(ar->wmi, vif->fw_vif_idx, 0xFFFF,
1470 					      0, 0, 0, 0, 0, 0, 0, 0, 0))
1471 			return -EIO;
1472 
1473 		clear_bit(WLAN_ENABLED, &vif->flags);
1474 	}
1475 
1476 	ath6kl_cfg80211_scan_complete_event(vif, -ECANCELED);
1477 
1478 	return 0;
1479 }
1480 
1481 static struct net_device_stats *ath6kl_get_stats(struct net_device *dev)
1482 {
1483 	struct ath6kl_vif *vif = netdev_priv(dev);
1484 
1485 	return &vif->net_stats;
1486 }
1487 
1488 static struct net_device_ops ath6kl_netdev_ops = {
1489 	.ndo_open               = ath6kl_open,
1490 	.ndo_stop               = ath6kl_close,
1491 	.ndo_start_xmit         = ath6kl_data_tx,
1492 	.ndo_get_stats          = ath6kl_get_stats,
1493 };
1494 
1495 void init_netdev(struct net_device *dev)
1496 {
1497 	dev->netdev_ops = &ath6kl_netdev_ops;
1498 	dev->watchdog_timeo = ATH6KL_TX_TIMEOUT;
1499 
1500 	dev->needed_headroom = ETH_HLEN;
1501 	dev->needed_headroom += sizeof(struct ath6kl_llc_snap_hdr) +
1502 				sizeof(struct wmi_data_hdr) + HTC_HDR_LENGTH
1503 				+ WMI_MAX_TX_META_SZ + ATH6KL_HTC_ALIGN_BYTES;
1504 
1505 	return;
1506 }
1507