xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/phy.c (revision a180a13081708b78d42232c6d922ce3de63f12e0)
1 /*
2  * PHY functions
3  *
4  * Copyright (c) 2004-2007 Reyk Floeter <reyk@openbsd.org>
5  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
6  * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
7  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
8  *
9  * Permission to use, copy, modify, and distribute this software for any
10  * purpose with or without fee is hereby granted, provided that the above
11  * copyright notice and this permission notice appear in all copies.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
14  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
15  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
16  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
17  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
18  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
19  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20  *
21  */
22 
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 
26 #include "ath5k.h"
27 #include "reg.h"
28 #include "base.h"
29 #include "rfbuffer.h"
30 #include "rfgain.h"
31 
32 /*
33  * Used to modify RF Banks before writing them to AR5K_RF_BUFFER
34  */
35 static unsigned int ath5k_hw_rfb_op(struct ath5k_hw *ah,
36 					const struct ath5k_rf_reg *rf_regs,
37 					u32 val, u8 reg_id, bool set)
38 {
39 	const struct ath5k_rf_reg *rfreg = NULL;
40 	u8 offset, bank, num_bits, col, position;
41 	u16 entry;
42 	u32 mask, data, last_bit, bits_shifted, first_bit;
43 	u32 *rfb;
44 	s32 bits_left;
45 	int i;
46 
47 	data = 0;
48 	rfb = ah->ah_rf_banks;
49 
50 	for (i = 0; i < ah->ah_rf_regs_count; i++) {
51 		if (rf_regs[i].index == reg_id) {
52 			rfreg = &rf_regs[i];
53 			break;
54 		}
55 	}
56 
57 	if (rfb == NULL || rfreg == NULL) {
58 		ATH5K_PRINTF("Rf register not found!\n");
59 		/* should not happen */
60 		return 0;
61 	}
62 
63 	bank = rfreg->bank;
64 	num_bits = rfreg->field.len;
65 	first_bit = rfreg->field.pos;
66 	col = rfreg->field.col;
67 
68 	/* first_bit is an offset from bank's
69 	 * start. Since we have all banks on
70 	 * the same array, we use this offset
71 	 * to mark each bank's start */
72 	offset = ah->ah_offset[bank];
73 
74 	/* Boundary check */
75 	if (!(col <= 3 && num_bits <= 32 && first_bit + num_bits <= 319)) {
76 		ATH5K_PRINTF("invalid values at offset %u\n", offset);
77 		return 0;
78 	}
79 
80 	entry = ((first_bit - 1) / 8) + offset;
81 	position = (first_bit - 1) % 8;
82 
83 	if (set)
84 		data = ath5k_hw_bitswap(val, num_bits);
85 
86 	for (bits_shifted = 0, bits_left = num_bits; bits_left > 0;
87 	position = 0, entry++) {
88 
89 		last_bit = (position + bits_left > 8) ? 8 :
90 					position + bits_left;
91 
92 		mask = (((1 << last_bit) - 1) ^ ((1 << position) - 1)) <<
93 								(col * 8);
94 
95 		if (set) {
96 			rfb[entry] &= ~mask;
97 			rfb[entry] |= ((data << position) << (col * 8)) & mask;
98 			data >>= (8 - position);
99 		} else {
100 			data |= (((rfb[entry] & mask) >> (col * 8)) >> position)
101 				<< bits_shifted;
102 			bits_shifted += last_bit - position;
103 		}
104 
105 		bits_left -= 8 - position;
106 	}
107 
108 	data = set ? 1 : ath5k_hw_bitswap(data, num_bits);
109 
110 	return data;
111 }
112 
113 /**********************\
114 * RF Gain optimization *
115 \**********************/
116 
117 /*
118  * This code is used to optimize RF gain on different environments
119  * (temperature mostly) based on feedback from a power detector.
120  *
121  * It's only used on RF5111 and RF5112, later RF chips seem to have
122  * auto adjustment on hw -notice they have a much smaller BANK 7 and
123  * no gain optimization ladder-.
124  *
125  * For more infos check out this patent doc
126  * http://www.freepatentsonline.com/7400691.html
127  *
128  * This paper describes power drops as seen on the receiver due to
129  * probe packets
130  * http://www.cnri.dit.ie/publications/ICT08%20-%20Practical%20Issues
131  * %20of%20Power%20Control.pdf
132  *
133  * And this is the MadWiFi bug entry related to the above
134  * http://madwifi-project.org/ticket/1659
135  * with various measurements and diagrams
136  *
137  * TODO: Deal with power drops due to probes by setting an apropriate
138  * tx power on the probe packets ! Make this part of the calibration process.
139  */
140 
141 /* Initialize ah_gain durring attach */
142 int ath5k_hw_rfgain_opt_init(struct ath5k_hw *ah)
143 {
144 	/* Initialize the gain optimization values */
145 	switch (ah->ah_radio) {
146 	case AR5K_RF5111:
147 		ah->ah_gain.g_step_idx = rfgain_opt_5111.go_default;
148 		ah->ah_gain.g_low = 20;
149 		ah->ah_gain.g_high = 35;
150 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
151 		break;
152 	case AR5K_RF5112:
153 		ah->ah_gain.g_step_idx = rfgain_opt_5112.go_default;
154 		ah->ah_gain.g_low = 20;
155 		ah->ah_gain.g_high = 85;
156 		ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
157 		break;
158 	default:
159 		return -EINVAL;
160 	}
161 
162 	return 0;
163 }
164 
165 /* Schedule a gain probe check on the next transmited packet.
166  * That means our next packet is going to be sent with lower
167  * tx power and a Peak to Average Power Detector (PAPD) will try
168  * to measure the gain.
169  *
170  * XXX:  How about forcing a tx packet (bypassing PCU arbitrator etc)
171  * just after we enable the probe so that we don't mess with
172  * standard traffic ? Maybe it's time to use sw interrupts and
173  * a probe tasklet !!!
174  */
175 static void ath5k_hw_request_rfgain_probe(struct ath5k_hw *ah)
176 {
177 
178 	/* Skip if gain calibration is inactive or
179 	 * we already handle a probe request */
180 	if (ah->ah_gain.g_state != AR5K_RFGAIN_ACTIVE)
181 		return;
182 
183 	/* Send the packet with 2dB below max power as
184 	 * patent doc suggest */
185 	ath5k_hw_reg_write(ah, AR5K_REG_SM(ah->ah_txpower.txp_ofdm - 4,
186 			AR5K_PHY_PAPD_PROBE_TXPOWER) |
187 			AR5K_PHY_PAPD_PROBE_TX_NEXT, AR5K_PHY_PAPD_PROBE);
188 
189 	ah->ah_gain.g_state = AR5K_RFGAIN_READ_REQUESTED;
190 
191 }
192 
193 /* Calculate gain_F measurement correction
194  * based on the current step for RF5112 rev. 2 */
195 static u32 ath5k_hw_rf_gainf_corr(struct ath5k_hw *ah)
196 {
197 	u32 mix, step;
198 	u32 *rf;
199 	const struct ath5k_gain_opt *go;
200 	const struct ath5k_gain_opt_step *g_step;
201 	const struct ath5k_rf_reg *rf_regs;
202 
203 	/* Only RF5112 Rev. 2 supports it */
204 	if ((ah->ah_radio != AR5K_RF5112) ||
205 	(ah->ah_radio_5ghz_revision <= AR5K_SREV_RAD_5112A))
206 		return 0;
207 
208 	go = &rfgain_opt_5112;
209 	rf_regs = rf_regs_5112a;
210 	ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
211 
212 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
213 
214 	if (ah->ah_rf_banks == NULL)
215 		return 0;
216 
217 	rf = ah->ah_rf_banks;
218 	ah->ah_gain.g_f_corr = 0;
219 
220 	/* No VGA (Variable Gain Amplifier) override, skip */
221 	if (ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR, false) != 1)
222 		return 0;
223 
224 	/* Mix gain stepping */
225 	step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXGAIN_STEP, false);
226 
227 	/* Mix gain override */
228 	mix = g_step->gos_param[0];
229 
230 	switch (mix) {
231 	case 3:
232 		ah->ah_gain.g_f_corr = step * 2;
233 		break;
234 	case 2:
235 		ah->ah_gain.g_f_corr = (step - 5) * 2;
236 		break;
237 	case 1:
238 		ah->ah_gain.g_f_corr = step;
239 		break;
240 	default:
241 		ah->ah_gain.g_f_corr = 0;
242 		break;
243 	}
244 
245 	return ah->ah_gain.g_f_corr;
246 }
247 
248 /* Check if current gain_F measurement is in the range of our
249  * power detector windows. If we get a measurement outside range
250  * we know it's not accurate (detectors can't measure anything outside
251  * their detection window) so we must ignore it */
252 static bool ath5k_hw_rf_check_gainf_readback(struct ath5k_hw *ah)
253 {
254 	const struct ath5k_rf_reg *rf_regs;
255 	u32 step, mix_ovr, level[4];
256 	u32 *rf;
257 
258 	if (ah->ah_rf_banks == NULL)
259 		return false;
260 
261 	rf = ah->ah_rf_banks;
262 
263 	if (ah->ah_radio == AR5K_RF5111) {
264 
265 		rf_regs = rf_regs_5111;
266 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
267 
268 		step = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_RFGAIN_STEP,
269 			false);
270 
271 		level[0] = 0;
272 		level[1] = (step == 63) ? 50 : step + 4;
273 		level[2] = (step != 63) ? 64 : level[0];
274 		level[3] = level[2] + 50 ;
275 
276 		ah->ah_gain.g_high = level[3] -
277 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_HI_MARGIN : -5);
278 		ah->ah_gain.g_low = level[0] +
279 			(step == 63 ? AR5K_GAIN_DYN_ADJUST_LO_MARGIN : 0);
280 	} else {
281 
282 		rf_regs = rf_regs_5112;
283 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
284 
285 		mix_ovr = ath5k_hw_rfb_op(ah, rf_regs, 0, AR5K_RF_MIXVGA_OVR,
286 			false);
287 
288 		level[0] = level[2] = 0;
289 
290 		if (mix_ovr == 1) {
291 			level[1] = level[3] = 83;
292 		} else {
293 			level[1] = level[3] = 107;
294 			ah->ah_gain.g_high = 55;
295 		}
296 	}
297 
298 	return (ah->ah_gain.g_current >= level[0] &&
299 			ah->ah_gain.g_current <= level[1]) ||
300 		(ah->ah_gain.g_current >= level[2] &&
301 			ah->ah_gain.g_current <= level[3]);
302 }
303 
304 /* Perform gain_F adjustment by choosing the right set
305  * of parameters from RF gain optimization ladder */
306 static s8 ath5k_hw_rf_gainf_adjust(struct ath5k_hw *ah)
307 {
308 	const struct ath5k_gain_opt *go;
309 	const struct ath5k_gain_opt_step *g_step;
310 	int ret = 0;
311 
312 	switch (ah->ah_radio) {
313 	case AR5K_RF5111:
314 		go = &rfgain_opt_5111;
315 		break;
316 	case AR5K_RF5112:
317 		go = &rfgain_opt_5112;
318 		break;
319 	default:
320 		return 0;
321 	}
322 
323 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
324 
325 	if (ah->ah_gain.g_current >= ah->ah_gain.g_high) {
326 
327 		/* Reached maximum */
328 		if (ah->ah_gain.g_step_idx == 0)
329 			return -1;
330 
331 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
332 				ah->ah_gain.g_target >=  ah->ah_gain.g_high &&
333 				ah->ah_gain.g_step_idx > 0;
334 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
335 			ah->ah_gain.g_target -= 2 *
336 			    (go->go_step[--(ah->ah_gain.g_step_idx)].gos_gain -
337 			    g_step->gos_gain);
338 
339 		ret = 1;
340 		goto done;
341 	}
342 
343 	if (ah->ah_gain.g_current <= ah->ah_gain.g_low) {
344 
345 		/* Reached minimum */
346 		if (ah->ah_gain.g_step_idx == (go->go_steps_count - 1))
347 			return -2;
348 
349 		for (ah->ah_gain.g_target = ah->ah_gain.g_current;
350 				ah->ah_gain.g_target <= ah->ah_gain.g_low &&
351 				ah->ah_gain.g_step_idx < go->go_steps_count-1;
352 				g_step = &go->go_step[ah->ah_gain.g_step_idx])
353 			ah->ah_gain.g_target -= 2 *
354 			    (go->go_step[++ah->ah_gain.g_step_idx].gos_gain -
355 			    g_step->gos_gain);
356 
357 		ret = 2;
358 		goto done;
359 	}
360 
361 done:
362 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
363 		"ret %d, gain step %u, current gain %u, target gain %u\n",
364 		ret, ah->ah_gain.g_step_idx, ah->ah_gain.g_current,
365 		ah->ah_gain.g_target);
366 
367 	return ret;
368 }
369 
370 /* Main callback for thermal RF gain calibration engine
371  * Check for a new gain reading and schedule an adjustment
372  * if needed.
373  *
374  * TODO: Use sw interrupt to schedule reset if gain_F needs
375  * adjustment */
376 enum ath5k_rfgain ath5k_hw_gainf_calibrate(struct ath5k_hw *ah)
377 {
378 	u32 data, type;
379 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
380 
381 	if (ah->ah_rf_banks == NULL ||
382 	ah->ah_gain.g_state == AR5K_RFGAIN_INACTIVE)
383 		return AR5K_RFGAIN_INACTIVE;
384 
385 	/* No check requested, either engine is inactive
386 	 * or an adjustment is already requested */
387 	if (ah->ah_gain.g_state != AR5K_RFGAIN_READ_REQUESTED)
388 		goto done;
389 
390 	/* Read the PAPD (Peak to Average Power Detector)
391 	 * register */
392 	data = ath5k_hw_reg_read(ah, AR5K_PHY_PAPD_PROBE);
393 
394 	/* No probe is scheduled, read gain_F measurement */
395 	if (!(data & AR5K_PHY_PAPD_PROBE_TX_NEXT)) {
396 		ah->ah_gain.g_current = data >> AR5K_PHY_PAPD_PROBE_GAINF_S;
397 		type = AR5K_REG_MS(data, AR5K_PHY_PAPD_PROBE_TYPE);
398 
399 		/* If tx packet is CCK correct the gain_F measurement
400 		 * by cck ofdm gain delta */
401 		if (type == AR5K_PHY_PAPD_PROBE_TYPE_CCK) {
402 			if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A)
403 				ah->ah_gain.g_current +=
404 					ee->ee_cck_ofdm_gain_delta;
405 			else
406 				ah->ah_gain.g_current +=
407 					AR5K_GAIN_CCK_PROBE_CORR;
408 		}
409 
410 		/* Further correct gain_F measurement for
411 		 * RF5112A radios */
412 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
413 			ath5k_hw_rf_gainf_corr(ah);
414 			ah->ah_gain.g_current =
415 				ah->ah_gain.g_current >= ah->ah_gain.g_f_corr ?
416 				(ah->ah_gain.g_current-ah->ah_gain.g_f_corr) :
417 				0;
418 		}
419 
420 		/* Check if measurement is ok and if we need
421 		 * to adjust gain, schedule a gain adjustment,
422 		 * else switch back to the acive state */
423 		if (ath5k_hw_rf_check_gainf_readback(ah) &&
424 		AR5K_GAIN_CHECK_ADJUST(&ah->ah_gain) &&
425 		ath5k_hw_rf_gainf_adjust(ah)) {
426 			ah->ah_gain.g_state = AR5K_RFGAIN_NEED_CHANGE;
427 		} else {
428 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
429 		}
430 	}
431 
432 done:
433 	return ah->ah_gain.g_state;
434 }
435 
436 /* Write initial RF gain table to set the RF sensitivity
437  * this one works on all RF chips and has nothing to do
438  * with gain_F calibration */
439 int ath5k_hw_rfgain_init(struct ath5k_hw *ah, unsigned int freq)
440 {
441 	const struct ath5k_ini_rfgain *ath5k_rfg;
442 	unsigned int i, size;
443 
444 	switch (ah->ah_radio) {
445 	case AR5K_RF5111:
446 		ath5k_rfg = rfgain_5111;
447 		size = ARRAY_SIZE(rfgain_5111);
448 		break;
449 	case AR5K_RF5112:
450 		ath5k_rfg = rfgain_5112;
451 		size = ARRAY_SIZE(rfgain_5112);
452 		break;
453 	case AR5K_RF2413:
454 		ath5k_rfg = rfgain_2413;
455 		size = ARRAY_SIZE(rfgain_2413);
456 		break;
457 	case AR5K_RF2316:
458 		ath5k_rfg = rfgain_2316;
459 		size = ARRAY_SIZE(rfgain_2316);
460 		break;
461 	case AR5K_RF5413:
462 		ath5k_rfg = rfgain_5413;
463 		size = ARRAY_SIZE(rfgain_5413);
464 		break;
465 	case AR5K_RF2317:
466 	case AR5K_RF2425:
467 		ath5k_rfg = rfgain_2425;
468 		size = ARRAY_SIZE(rfgain_2425);
469 		break;
470 	default:
471 		return -EINVAL;
472 	}
473 
474 	switch (freq) {
475 	case AR5K_INI_RFGAIN_2GHZ:
476 	case AR5K_INI_RFGAIN_5GHZ:
477 		break;
478 	default:
479 		return -EINVAL;
480 	}
481 
482 	for (i = 0; i < size; i++) {
483 		AR5K_REG_WAIT(i);
484 		ath5k_hw_reg_write(ah, ath5k_rfg[i].rfg_value[freq],
485 			(u32)ath5k_rfg[i].rfg_register);
486 	}
487 
488 	return 0;
489 }
490 
491 
492 
493 /********************\
494 * RF Registers setup *
495 \********************/
496 
497 
498 /*
499  * Setup RF registers by writing RF buffer on hw
500  */
501 int ath5k_hw_rfregs_init(struct ath5k_hw *ah, struct ieee80211_channel *channel,
502 		unsigned int mode)
503 {
504 	const struct ath5k_rf_reg *rf_regs;
505 	const struct ath5k_ini_rfbuffer *ini_rfb;
506 	const struct ath5k_gain_opt *go = NULL;
507 	const struct ath5k_gain_opt_step *g_step;
508 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
509 	u8 ee_mode = 0;
510 	u32 *rfb;
511 	int i, obdb = -1, bank = -1;
512 
513 	switch (ah->ah_radio) {
514 	case AR5K_RF5111:
515 		rf_regs = rf_regs_5111;
516 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5111);
517 		ini_rfb = rfb_5111;
518 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5111);
519 		go = &rfgain_opt_5111;
520 		break;
521 	case AR5K_RF5112:
522 		if (ah->ah_radio_5ghz_revision >= AR5K_SREV_RAD_5112A) {
523 			rf_regs = rf_regs_5112a;
524 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112a);
525 			ini_rfb = rfb_5112a;
526 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112a);
527 		} else {
528 			rf_regs = rf_regs_5112;
529 			ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5112);
530 			ini_rfb = rfb_5112;
531 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5112);
532 		}
533 		go = &rfgain_opt_5112;
534 		break;
535 	case AR5K_RF2413:
536 		rf_regs = rf_regs_2413;
537 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2413);
538 		ini_rfb = rfb_2413;
539 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2413);
540 		break;
541 	case AR5K_RF2316:
542 		rf_regs = rf_regs_2316;
543 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2316);
544 		ini_rfb = rfb_2316;
545 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2316);
546 		break;
547 	case AR5K_RF5413:
548 		rf_regs = rf_regs_5413;
549 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_5413);
550 		ini_rfb = rfb_5413;
551 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_5413);
552 		break;
553 	case AR5K_RF2317:
554 		rf_regs = rf_regs_2425;
555 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
556 		ini_rfb = rfb_2317;
557 		ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2317);
558 		break;
559 	case AR5K_RF2425:
560 		rf_regs = rf_regs_2425;
561 		ah->ah_rf_regs_count = ARRAY_SIZE(rf_regs_2425);
562 		if (ah->ah_mac_srev < AR5K_SREV_AR2417) {
563 			ini_rfb = rfb_2425;
564 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2425);
565 		} else {
566 			ini_rfb = rfb_2417;
567 			ah->ah_rf_banks_size = ARRAY_SIZE(rfb_2417);
568 		}
569 		break;
570 	default:
571 		return -EINVAL;
572 	}
573 
574 	/* If it's the first time we set RF buffer, allocate
575 	 * ah->ah_rf_banks based on ah->ah_rf_banks_size
576 	 * we set above */
577 	if (ah->ah_rf_banks == NULL) {
578 		ah->ah_rf_banks = kmalloc(sizeof(u32) * ah->ah_rf_banks_size,
579 								GFP_KERNEL);
580 		if (ah->ah_rf_banks == NULL) {
581 			ATH5K_ERR(ah->ah_sc, "out of memory\n");
582 			return -ENOMEM;
583 		}
584 	}
585 
586 	/* Copy values to modify them */
587 	rfb = ah->ah_rf_banks;
588 
589 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
590 		if (ini_rfb[i].rfb_bank >= AR5K_MAX_RF_BANKS) {
591 			ATH5K_ERR(ah->ah_sc, "invalid bank\n");
592 			return -EINVAL;
593 		}
594 
595 		/* Bank changed, write down the offset */
596 		if (bank != ini_rfb[i].rfb_bank) {
597 			bank = ini_rfb[i].rfb_bank;
598 			ah->ah_offset[bank] = i;
599 		}
600 
601 		rfb[i] = ini_rfb[i].rfb_mode_data[mode];
602 	}
603 
604 	/* Set Output and Driver bias current (OB/DB) */
605 	if (channel->hw_value & CHANNEL_2GHZ) {
606 
607 		if (channel->hw_value & CHANNEL_CCK)
608 			ee_mode = AR5K_EEPROM_MODE_11B;
609 		else
610 			ee_mode = AR5K_EEPROM_MODE_11G;
611 
612 		/* For RF511X/RF211X combination we
613 		 * use b_OB and b_DB parameters stored
614 		 * in eeprom on ee->ee_ob[ee_mode][0]
615 		 *
616 		 * For all other chips we use OB/DB for 2Ghz
617 		 * stored in the b/g modal section just like
618 		 * 802.11a on ee->ee_ob[ee_mode][1] */
619 		if ((ah->ah_radio == AR5K_RF5111) ||
620 		(ah->ah_radio == AR5K_RF5112))
621 			obdb = 0;
622 		else
623 			obdb = 1;
624 
625 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
626 						AR5K_RF_OB_2GHZ, true);
627 
628 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
629 						AR5K_RF_DB_2GHZ, true);
630 
631 	/* RF5111 always needs OB/DB for 5GHz, even if we use 2GHz */
632 	} else if ((channel->hw_value & CHANNEL_5GHZ) ||
633 			(ah->ah_radio == AR5K_RF5111)) {
634 
635 		/* For 11a, Turbo and XR we need to choose
636 		 * OB/DB based on frequency range */
637 		ee_mode = AR5K_EEPROM_MODE_11A;
638 		obdb =	 channel->center_freq >= 5725 ? 3 :
639 			(channel->center_freq >= 5500 ? 2 :
640 			(channel->center_freq >= 5260 ? 1 :
641 			 (channel->center_freq > 4000 ? 0 : -1)));
642 
643 		if (obdb < 0)
644 			return -EINVAL;
645 
646 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_ob[ee_mode][obdb],
647 						AR5K_RF_OB_5GHZ, true);
648 
649 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_db[ee_mode][obdb],
650 						AR5K_RF_DB_5GHZ, true);
651 	}
652 
653 	g_step = &go->go_step[ah->ah_gain.g_step_idx];
654 
655 	/* Bank Modifications (chip-specific) */
656 	if (ah->ah_radio == AR5K_RF5111) {
657 
658 		/* Set gain_F settings according to current step */
659 		if (channel->hw_value & CHANNEL_OFDM) {
660 
661 			AR5K_REG_WRITE_BITS(ah, AR5K_PHY_FRAME_CTL,
662 					AR5K_PHY_FRAME_CTL_TX_CLIP,
663 					g_step->gos_param[0]);
664 
665 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
666 							AR5K_RF_PWD_90, true);
667 
668 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
669 							AR5K_RF_PWD_84, true);
670 
671 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
672 						AR5K_RF_RFGAIN_SEL, true);
673 
674 			/* We programmed gain_F parameters, switch back
675 			 * to active state */
676 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
677 
678 		}
679 
680 		/* Bank 6/7 setup */
681 
682 		ath5k_hw_rfb_op(ah, rf_regs, !ee->ee_xpd[ee_mode],
683 						AR5K_RF_PWD_XPD, true);
684 
685 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_x_gain[ee_mode],
686 						AR5K_RF_XPD_GAIN, true);
687 
688 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
689 						AR5K_RF_GAIN_I, true);
690 
691 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
692 						AR5K_RF_PLO_SEL, true);
693 
694 		/* TODO: Half/quarter channel support */
695 	}
696 
697 	if (ah->ah_radio == AR5K_RF5112) {
698 
699 		/* Set gain_F settings according to current step */
700 		if (channel->hw_value & CHANNEL_OFDM) {
701 
702 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[0],
703 						AR5K_RF_MIXGAIN_OVR, true);
704 
705 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[1],
706 						AR5K_RF_PWD_138, true);
707 
708 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[2],
709 						AR5K_RF_PWD_137, true);
710 
711 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[3],
712 						AR5K_RF_PWD_136, true);
713 
714 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[4],
715 						AR5K_RF_PWD_132, true);
716 
717 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[5],
718 						AR5K_RF_PWD_131, true);
719 
720 			ath5k_hw_rfb_op(ah, rf_regs, g_step->gos_param[6],
721 						AR5K_RF_PWD_130, true);
722 
723 			/* We programmed gain_F parameters, switch back
724 			 * to active state */
725 			ah->ah_gain.g_state = AR5K_RFGAIN_ACTIVE;
726 		}
727 
728 		/* Bank 6/7 setup */
729 
730 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_xpd[ee_mode],
731 						AR5K_RF_XPD_SEL, true);
732 
733 		if (ah->ah_radio_5ghz_revision < AR5K_SREV_RAD_5112A) {
734 			/* Rev. 1 supports only one xpd */
735 			ath5k_hw_rfb_op(ah, rf_regs,
736 						ee->ee_x_gain[ee_mode],
737 						AR5K_RF_XPD_GAIN, true);
738 
739 		} else {
740 			u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
741 			if (ee->ee_pd_gains[ee_mode] > 1) {
742 				ath5k_hw_rfb_op(ah, rf_regs,
743 						pdg_curve_to_idx[0],
744 						AR5K_RF_PD_GAIN_LO, true);
745 				ath5k_hw_rfb_op(ah, rf_regs,
746 						pdg_curve_to_idx[1],
747 						AR5K_RF_PD_GAIN_HI, true);
748 			} else {
749 				ath5k_hw_rfb_op(ah, rf_regs,
750 						pdg_curve_to_idx[0],
751 						AR5K_RF_PD_GAIN_LO, true);
752 				ath5k_hw_rfb_op(ah, rf_regs,
753 						pdg_curve_to_idx[0],
754 						AR5K_RF_PD_GAIN_HI, true);
755 			}
756 
757 			/* Lower synth voltage on Rev 2 */
758 			ath5k_hw_rfb_op(ah, rf_regs, 2,
759 					AR5K_RF_HIGH_VC_CP, true);
760 
761 			ath5k_hw_rfb_op(ah, rf_regs, 2,
762 					AR5K_RF_MID_VC_CP, true);
763 
764 			ath5k_hw_rfb_op(ah, rf_regs, 2,
765 					AR5K_RF_LOW_VC_CP, true);
766 
767 			ath5k_hw_rfb_op(ah, rf_regs, 2,
768 					AR5K_RF_PUSH_UP, true);
769 
770 			/* Decrease power consumption on 5213+ BaseBand */
771 			if (ah->ah_phy_revision >= AR5K_SREV_PHY_5212A) {
772 				ath5k_hw_rfb_op(ah, rf_regs, 1,
773 						AR5K_RF_PAD2GND, true);
774 
775 				ath5k_hw_rfb_op(ah, rf_regs, 1,
776 						AR5K_RF_XB2_LVL, true);
777 
778 				ath5k_hw_rfb_op(ah, rf_regs, 1,
779 						AR5K_RF_XB5_LVL, true);
780 
781 				ath5k_hw_rfb_op(ah, rf_regs, 1,
782 						AR5K_RF_PWD_167, true);
783 
784 				ath5k_hw_rfb_op(ah, rf_regs, 1,
785 						AR5K_RF_PWD_166, true);
786 			}
787 		}
788 
789 		ath5k_hw_rfb_op(ah, rf_regs, ee->ee_i_gain[ee_mode],
790 						AR5K_RF_GAIN_I, true);
791 
792 		/* TODO: Half/quarter channel support */
793 
794 	}
795 
796 	if (ah->ah_radio == AR5K_RF5413 &&
797 	channel->hw_value & CHANNEL_2GHZ) {
798 
799 		ath5k_hw_rfb_op(ah, rf_regs, 1, AR5K_RF_DERBY_CHAN_SEL_MODE,
800 									true);
801 
802 		/* Set optimum value for early revisions (on pci-e chips) */
803 		if (ah->ah_mac_srev >= AR5K_SREV_AR5424 &&
804 		ah->ah_mac_srev < AR5K_SREV_AR5413)
805 			ath5k_hw_rfb_op(ah, rf_regs, ath5k_hw_bitswap(6, 3),
806 						AR5K_RF_PWD_ICLOBUF_2G, true);
807 
808 	}
809 
810 	/* Write RF banks on hw */
811 	for (i = 0; i < ah->ah_rf_banks_size; i++) {
812 		AR5K_REG_WAIT(i);
813 		ath5k_hw_reg_write(ah, rfb[i], ini_rfb[i].rfb_ctrl_register);
814 	}
815 
816 	return 0;
817 }
818 
819 
820 /**************************\
821   PHY/RF channel functions
822 \**************************/
823 
824 /*
825  * Check if a channel is supported
826  */
827 bool ath5k_channel_ok(struct ath5k_hw *ah, u16 freq, unsigned int flags)
828 {
829 	/* Check if the channel is in our supported range */
830 	if (flags & CHANNEL_2GHZ) {
831 		if ((freq >= ah->ah_capabilities.cap_range.range_2ghz_min) &&
832 		    (freq <= ah->ah_capabilities.cap_range.range_2ghz_max))
833 			return true;
834 	} else if (flags & CHANNEL_5GHZ)
835 		if ((freq >= ah->ah_capabilities.cap_range.range_5ghz_min) &&
836 		    (freq <= ah->ah_capabilities.cap_range.range_5ghz_max))
837 			return true;
838 
839 	return false;
840 }
841 
842 /*
843  * Convertion needed for RF5110
844  */
845 static u32 ath5k_hw_rf5110_chan2athchan(struct ieee80211_channel *channel)
846 {
847 	u32 athchan;
848 
849 	/*
850 	 * Convert IEEE channel/MHz to an internal channel value used
851 	 * by the AR5210 chipset. This has not been verified with
852 	 * newer chipsets like the AR5212A who have a completely
853 	 * different RF/PHY part.
854 	 */
855 	athchan = (ath5k_hw_bitswap(
856 			(ieee80211_frequency_to_channel(
857 				channel->center_freq) - 24) / 2, 5)
858 				<< 1) | (1 << 6) | 0x1;
859 	return athchan;
860 }
861 
862 /*
863  * Set channel on RF5110
864  */
865 static int ath5k_hw_rf5110_channel(struct ath5k_hw *ah,
866 		struct ieee80211_channel *channel)
867 {
868 	u32 data;
869 
870 	/*
871 	 * Set the channel and wait
872 	 */
873 	data = ath5k_hw_rf5110_chan2athchan(channel);
874 	ath5k_hw_reg_write(ah, data, AR5K_RF_BUFFER);
875 	ath5k_hw_reg_write(ah, 0, AR5K_RF_BUFFER_CONTROL_0);
876 	mdelay(1);
877 
878 	return 0;
879 }
880 
881 /*
882  * Convertion needed for 5111
883  */
884 static int ath5k_hw_rf5111_chan2athchan(unsigned int ieee,
885 		struct ath5k_athchan_2ghz *athchan)
886 {
887 	int channel;
888 
889 	/* Cast this value to catch negative channel numbers (>= -19) */
890 	channel = (int)ieee;
891 
892 	/*
893 	 * Map 2GHz IEEE channel to 5GHz Atheros channel
894 	 */
895 	if (channel <= 13) {
896 		athchan->a2_athchan = 115 + channel;
897 		athchan->a2_flags = 0x46;
898 	} else if (channel == 14) {
899 		athchan->a2_athchan = 124;
900 		athchan->a2_flags = 0x44;
901 	} else if (channel >= 15 && channel <= 26) {
902 		athchan->a2_athchan = ((channel - 14) * 4) + 132;
903 		athchan->a2_flags = 0x46;
904 	} else
905 		return -EINVAL;
906 
907 	return 0;
908 }
909 
910 /*
911  * Set channel on 5111
912  */
913 static int ath5k_hw_rf5111_channel(struct ath5k_hw *ah,
914 		struct ieee80211_channel *channel)
915 {
916 	struct ath5k_athchan_2ghz ath5k_channel_2ghz;
917 	unsigned int ath5k_channel =
918 		ieee80211_frequency_to_channel(channel->center_freq);
919 	u32 data0, data1, clock;
920 	int ret;
921 
922 	/*
923 	 * Set the channel on the RF5111 radio
924 	 */
925 	data0 = data1 = 0;
926 
927 	if (channel->hw_value & CHANNEL_2GHZ) {
928 		/* Map 2GHz channel to 5GHz Atheros channel ID */
929 		ret = ath5k_hw_rf5111_chan2athchan(
930 			ieee80211_frequency_to_channel(channel->center_freq),
931 			&ath5k_channel_2ghz);
932 		if (ret)
933 			return ret;
934 
935 		ath5k_channel = ath5k_channel_2ghz.a2_athchan;
936 		data0 = ((ath5k_hw_bitswap(ath5k_channel_2ghz.a2_flags, 8) & 0xff)
937 		    << 5) | (1 << 4);
938 	}
939 
940 	if (ath5k_channel < 145 || !(ath5k_channel & 1)) {
941 		clock = 1;
942 		data1 = ((ath5k_hw_bitswap(ath5k_channel - 24, 8) & 0xff) << 2) |
943 			(clock << 1) | (1 << 10) | 1;
944 	} else {
945 		clock = 0;
946 		data1 = ((ath5k_hw_bitswap((ath5k_channel - 24) / 2, 8) & 0xff)
947 			<< 2) | (clock << 1) | (1 << 10) | 1;
948 	}
949 
950 	ath5k_hw_reg_write(ah, (data1 & 0xff) | ((data0 & 0xff) << 8),
951 			AR5K_RF_BUFFER);
952 	ath5k_hw_reg_write(ah, ((data1 >> 8) & 0xff) | (data0 & 0xff00),
953 			AR5K_RF_BUFFER_CONTROL_3);
954 
955 	return 0;
956 }
957 
958 /*
959  * Set channel on 5112 and newer
960  */
961 static int ath5k_hw_rf5112_channel(struct ath5k_hw *ah,
962 		struct ieee80211_channel *channel)
963 {
964 	u32 data, data0, data1, data2;
965 	u16 c;
966 
967 	data = data0 = data1 = data2 = 0;
968 	c = channel->center_freq;
969 
970 	if (c < 4800) {
971 		if (!((c - 2224) % 5)) {
972 			data0 = ((2 * (c - 704)) - 3040) / 10;
973 			data1 = 1;
974 		} else if (!((c - 2192) % 5)) {
975 			data0 = ((2 * (c - 672)) - 3040) / 10;
976 			data1 = 0;
977 		} else
978 			return -EINVAL;
979 
980 		data0 = ath5k_hw_bitswap((data0 << 2) & 0xff, 8);
981 	} else if ((c % 5) != 2 || c > 5435) {
982 		if (!(c % 20) && c >= 5120) {
983 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
984 			data2 = ath5k_hw_bitswap(3, 2);
985 		} else if (!(c % 10)) {
986 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
987 			data2 = ath5k_hw_bitswap(2, 2);
988 		} else if (!(c % 5)) {
989 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
990 			data2 = ath5k_hw_bitswap(1, 2);
991 		} else
992 			return -EINVAL;
993 	} else {
994 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
995 		data2 = ath5k_hw_bitswap(0, 2);
996 	}
997 
998 	data = (data0 << 4) | (data1 << 1) | (data2 << 2) | 0x1001;
999 
1000 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1001 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1002 
1003 	return 0;
1004 }
1005 
1006 /*
1007  * Set the channel on the RF2425
1008  */
1009 static int ath5k_hw_rf2425_channel(struct ath5k_hw *ah,
1010 		struct ieee80211_channel *channel)
1011 {
1012 	u32 data, data0, data2;
1013 	u16 c;
1014 
1015 	data = data0 = data2 = 0;
1016 	c = channel->center_freq;
1017 
1018 	if (c < 4800) {
1019 		data0 = ath5k_hw_bitswap((c - 2272), 8);
1020 		data2 = 0;
1021 	/* ? 5GHz ? */
1022 	} else if ((c % 5) != 2 || c > 5435) {
1023 		if (!(c % 20) && c < 5120)
1024 			data0 = ath5k_hw_bitswap(((c - 4800) / 20 << 2), 8);
1025 		else if (!(c % 10))
1026 			data0 = ath5k_hw_bitswap(((c - 4800) / 10 << 1), 8);
1027 		else if (!(c % 5))
1028 			data0 = ath5k_hw_bitswap((c - 4800) / 5, 8);
1029 		else
1030 			return -EINVAL;
1031 		data2 = ath5k_hw_bitswap(1, 2);
1032 	} else {
1033 		data0 = ath5k_hw_bitswap((10 * (c - 2 - 4800)) / 25 + 1, 8);
1034 		data2 = ath5k_hw_bitswap(0, 2);
1035 	}
1036 
1037 	data = (data0 << 4) | data2 << 2 | 0x1001;
1038 
1039 	ath5k_hw_reg_write(ah, data & 0xff, AR5K_RF_BUFFER);
1040 	ath5k_hw_reg_write(ah, (data >> 8) & 0x7f, AR5K_RF_BUFFER_CONTROL_5);
1041 
1042 	return 0;
1043 }
1044 
1045 /*
1046  * Set a channel on the radio chip
1047  */
1048 int ath5k_hw_channel(struct ath5k_hw *ah, struct ieee80211_channel *channel)
1049 {
1050 	int ret;
1051 	/*
1052 	 * Check bounds supported by the PHY (we don't care about regultory
1053 	 * restrictions at this point). Note: hw_value already has the band
1054 	 * (CHANNEL_2GHZ, or CHANNEL_5GHZ) so we inform ath5k_channel_ok()
1055 	 * of the band by that */
1056 	if (!ath5k_channel_ok(ah, channel->center_freq, channel->hw_value)) {
1057 		ATH5K_ERR(ah->ah_sc,
1058 			"channel frequency (%u MHz) out of supported "
1059 			"band range\n",
1060 			channel->center_freq);
1061 			return -EINVAL;
1062 	}
1063 
1064 	/*
1065 	 * Set the channel and wait
1066 	 */
1067 	switch (ah->ah_radio) {
1068 	case AR5K_RF5110:
1069 		ret = ath5k_hw_rf5110_channel(ah, channel);
1070 		break;
1071 	case AR5K_RF5111:
1072 		ret = ath5k_hw_rf5111_channel(ah, channel);
1073 		break;
1074 	case AR5K_RF2425:
1075 		ret = ath5k_hw_rf2425_channel(ah, channel);
1076 		break;
1077 	default:
1078 		ret = ath5k_hw_rf5112_channel(ah, channel);
1079 		break;
1080 	}
1081 
1082 	if (ret)
1083 		return ret;
1084 
1085 	/* Set JAPAN setting for channel 14 */
1086 	if (channel->center_freq == 2484) {
1087 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1088 				AR5K_PHY_CCKTXCTL_JAPAN);
1089 	} else {
1090 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_CCKTXCTL,
1091 				AR5K_PHY_CCKTXCTL_WORLD);
1092 	}
1093 
1094 	ah->ah_current_channel = channel;
1095 	ah->ah_turbo = channel->hw_value == CHANNEL_T ? true : false;
1096 
1097 	return 0;
1098 }
1099 
1100 /*****************\
1101   PHY calibration
1102 \*****************/
1103 
1104 static int sign_extend(int val, const int nbits)
1105 {
1106 	int order = BIT(nbits-1);
1107 	return (val ^ order) - order;
1108 }
1109 
1110 static s32 ath5k_hw_read_measured_noise_floor(struct ath5k_hw *ah)
1111 {
1112 	s32 val;
1113 
1114 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF);
1115 	return sign_extend(AR5K_REG_MS(val, AR5K_PHY_NF_MINCCA_PWR), 9);
1116 }
1117 
1118 void ath5k_hw_init_nfcal_hist(struct ath5k_hw *ah)
1119 {
1120 	int i;
1121 
1122 	ah->ah_nfcal_hist.index = 0;
1123 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++)
1124 		ah->ah_nfcal_hist.nfval[i] = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1125 }
1126 
1127 static void ath5k_hw_update_nfcal_hist(struct ath5k_hw *ah, s16 noise_floor)
1128 {
1129 	struct ath5k_nfcal_hist *hist = &ah->ah_nfcal_hist;
1130 	hist->index = (hist->index + 1) & (ATH5K_NF_CAL_HIST_MAX-1);
1131 	hist->nfval[hist->index] = noise_floor;
1132 }
1133 
1134 static s16 ath5k_hw_get_median_noise_floor(struct ath5k_hw *ah)
1135 {
1136 	s16 sort[ATH5K_NF_CAL_HIST_MAX];
1137 	s16 tmp;
1138 	int i, j;
1139 
1140 	memcpy(sort, ah->ah_nfcal_hist.nfval, sizeof(sort));
1141 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX - 1; i++) {
1142 		for (j = 1; j < ATH5K_NF_CAL_HIST_MAX - i; j++) {
1143 			if (sort[j] > sort[j-1]) {
1144 				tmp = sort[j];
1145 				sort[j] = sort[j-1];
1146 				sort[j-1] = tmp;
1147 			}
1148 		}
1149 	}
1150 	for (i = 0; i < ATH5K_NF_CAL_HIST_MAX; i++) {
1151 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1152 			"cal %d:%d\n", i, sort[i]);
1153 	}
1154 	return sort[(ATH5K_NF_CAL_HIST_MAX-1) / 2];
1155 }
1156 
1157 /*
1158  * When we tell the hardware to perform a noise floor calibration
1159  * by setting the AR5K_PHY_AGCCTL_NF bit, it will periodically
1160  * sample-and-hold the minimum noise level seen at the antennas.
1161  * This value is then stored in a ring buffer of recently measured
1162  * noise floor values so we have a moving window of the last few
1163  * samples.
1164  *
1165  * The median of the values in the history is then loaded into the
1166  * hardware for its own use for RSSI and CCA measurements.
1167  */
1168 void ath5k_hw_update_noise_floor(struct ath5k_hw *ah)
1169 {
1170 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1171 	u32 val;
1172 	s16 nf, threshold;
1173 	u8 ee_mode;
1174 
1175 	/* keep last value if calibration hasn't completed */
1176 	if (ath5k_hw_reg_read(ah, AR5K_PHY_AGCCTL) & AR5K_PHY_AGCCTL_NF) {
1177 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1178 			"NF did not complete in calibration window\n");
1179 
1180 		return;
1181 	}
1182 
1183 	switch (ah->ah_current_channel->hw_value & CHANNEL_MODES) {
1184 	case CHANNEL_A:
1185 	case CHANNEL_T:
1186 	case CHANNEL_XR:
1187 		ee_mode = AR5K_EEPROM_MODE_11A;
1188 		break;
1189 	case CHANNEL_G:
1190 	case CHANNEL_TG:
1191 		ee_mode = AR5K_EEPROM_MODE_11G;
1192 		break;
1193 	default:
1194 	case CHANNEL_B:
1195 		ee_mode = AR5K_EEPROM_MODE_11B;
1196 		break;
1197 	}
1198 
1199 
1200 	/* completed NF calibration, test threshold */
1201 	nf = ath5k_hw_read_measured_noise_floor(ah);
1202 	threshold = ee->ee_noise_floor_thr[ee_mode];
1203 
1204 	if (nf > threshold) {
1205 		ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1206 			"noise floor failure detected; "
1207 			"read %d, threshold %d\n",
1208 			nf, threshold);
1209 
1210 		nf = AR5K_TUNE_CCA_MAX_GOOD_VALUE;
1211 	}
1212 
1213 	ath5k_hw_update_nfcal_hist(ah, nf);
1214 	nf = ath5k_hw_get_median_noise_floor(ah);
1215 
1216 	/* load noise floor (in .5 dBm) so the hardware will use it */
1217 	val = ath5k_hw_reg_read(ah, AR5K_PHY_NF) & ~AR5K_PHY_NF_M;
1218 	val |= (nf * 2) & AR5K_PHY_NF_M;
1219 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1220 
1221 	AR5K_REG_MASKED_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1222 		~(AR5K_PHY_AGCCTL_NF_EN | AR5K_PHY_AGCCTL_NF_NOUPDATE));
1223 
1224 	ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_NF,
1225 		0, false);
1226 
1227 	/*
1228 	 * Load a high max CCA Power value (-50 dBm in .5 dBm units)
1229 	 * so that we're not capped by the median we just loaded.
1230 	 * This will be used as the initial value for the next noise
1231 	 * floor calibration.
1232 	 */
1233 	val = (val & ~AR5K_PHY_NF_M) | ((-50 * 2) & AR5K_PHY_NF_M);
1234 	ath5k_hw_reg_write(ah, val, AR5K_PHY_NF);
1235 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1236 		AR5K_PHY_AGCCTL_NF_EN |
1237 		AR5K_PHY_AGCCTL_NF_NOUPDATE |
1238 		AR5K_PHY_AGCCTL_NF);
1239 
1240 	ah->ah_noise_floor = nf;
1241 
1242 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1243 		"noise floor calibrated: %d\n", nf);
1244 }
1245 
1246 /*
1247  * Perform a PHY calibration on RF5110
1248  * -Fix BPSK/QAM Constellation (I/Q correction)
1249  */
1250 static int ath5k_hw_rf5110_calibrate(struct ath5k_hw *ah,
1251 		struct ieee80211_channel *channel)
1252 {
1253 	u32 phy_sig, phy_agc, phy_sat, beacon;
1254 	int ret;
1255 
1256 	/*
1257 	 * Disable beacons and RX/TX queues, wait
1258 	 */
1259 	AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW_5210,
1260 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1261 	beacon = ath5k_hw_reg_read(ah, AR5K_BEACON_5210);
1262 	ath5k_hw_reg_write(ah, beacon & ~AR5K_BEACON_ENABLE, AR5K_BEACON_5210);
1263 
1264 	mdelay(2);
1265 
1266 	/*
1267 	 * Set the channel (with AGC turned off)
1268 	 */
1269 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1270 	udelay(10);
1271 	ret = ath5k_hw_channel(ah, channel);
1272 
1273 	/*
1274 	 * Activate PHY and wait
1275 	 */
1276 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_ENABLE, AR5K_PHY_ACT);
1277 	mdelay(1);
1278 
1279 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1280 
1281 	if (ret)
1282 		return ret;
1283 
1284 	/*
1285 	 * Calibrate the radio chip
1286 	 */
1287 
1288 	/* Remember normal state */
1289 	phy_sig = ath5k_hw_reg_read(ah, AR5K_PHY_SIG);
1290 	phy_agc = ath5k_hw_reg_read(ah, AR5K_PHY_AGCCOARSE);
1291 	phy_sat = ath5k_hw_reg_read(ah, AR5K_PHY_ADCSAT);
1292 
1293 	/* Update radio registers */
1294 	ath5k_hw_reg_write(ah, (phy_sig & ~(AR5K_PHY_SIG_FIRPWR)) |
1295 		AR5K_REG_SM(-1, AR5K_PHY_SIG_FIRPWR), AR5K_PHY_SIG);
1296 
1297 	ath5k_hw_reg_write(ah, (phy_agc & ~(AR5K_PHY_AGCCOARSE_HI |
1298 			AR5K_PHY_AGCCOARSE_LO)) |
1299 		AR5K_REG_SM(-1, AR5K_PHY_AGCCOARSE_HI) |
1300 		AR5K_REG_SM(-127, AR5K_PHY_AGCCOARSE_LO), AR5K_PHY_AGCCOARSE);
1301 
1302 	ath5k_hw_reg_write(ah, (phy_sat & ~(AR5K_PHY_ADCSAT_ICNT |
1303 			AR5K_PHY_ADCSAT_THR)) |
1304 		AR5K_REG_SM(2, AR5K_PHY_ADCSAT_ICNT) |
1305 		AR5K_REG_SM(12, AR5K_PHY_ADCSAT_THR), AR5K_PHY_ADCSAT);
1306 
1307 	udelay(20);
1308 
1309 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1310 	udelay(10);
1311 	ath5k_hw_reg_write(ah, AR5K_PHY_RFSTG_DISABLE, AR5K_PHY_RFSTG);
1312 	AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGC, AR5K_PHY_AGC_DISABLE);
1313 
1314 	mdelay(1);
1315 
1316 	/*
1317 	 * Enable calibration and wait until completion
1318 	 */
1319 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL, AR5K_PHY_AGCCTL_CAL);
1320 
1321 	ret = ath5k_hw_register_timeout(ah, AR5K_PHY_AGCCTL,
1322 			AR5K_PHY_AGCCTL_CAL, 0, false);
1323 
1324 	/* Reset to normal state */
1325 	ath5k_hw_reg_write(ah, phy_sig, AR5K_PHY_SIG);
1326 	ath5k_hw_reg_write(ah, phy_agc, AR5K_PHY_AGCCOARSE);
1327 	ath5k_hw_reg_write(ah, phy_sat, AR5K_PHY_ADCSAT);
1328 
1329 	if (ret) {
1330 		ATH5K_ERR(ah->ah_sc, "calibration timeout (%uMHz)\n",
1331 				channel->center_freq);
1332 		return ret;
1333 	}
1334 
1335 	/*
1336 	 * Re-enable RX/TX and beacons
1337 	 */
1338 	AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW_5210,
1339 		AR5K_DIAG_SW_DIS_TX | AR5K_DIAG_SW_DIS_RX_5210);
1340 	ath5k_hw_reg_write(ah, beacon, AR5K_BEACON_5210);
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  * Perform I/Q calibration on RF5111/5112 and newer chips
1347  */
1348 static int
1349 ath5k_hw_rf511x_iq_calibrate(struct ath5k_hw *ah)
1350 {
1351 	u32 i_pwr, q_pwr;
1352 	s32 iq_corr, i_coff, i_coffd, q_coff, q_coffd;
1353 	int i;
1354 
1355 	if (!ah->ah_calibration ||
1356 		ath5k_hw_reg_read(ah, AR5K_PHY_IQ) & AR5K_PHY_IQ_RUN)
1357 		return 0;
1358 
1359 	/* Calibration has finished, get the results and re-run */
1360 	/* work around empty results which can apparently happen on 5212 */
1361 	for (i = 0; i <= 10; i++) {
1362 		iq_corr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_CORR);
1363 		i_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_I);
1364 		q_pwr = ath5k_hw_reg_read(ah, AR5K_PHY_IQRES_CAL_PWR_Q);
1365 		ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1366 			"iq_corr:%x i_pwr:%x q_pwr:%x", iq_corr, i_pwr, q_pwr);
1367 		if (i_pwr && q_pwr)
1368 			break;
1369 	}
1370 
1371 	i_coffd = ((i_pwr >> 1) + (q_pwr >> 1)) >> 7;
1372 
1373 	if (ah->ah_version == AR5K_AR5211)
1374 		q_coffd = q_pwr >> 6;
1375 	else
1376 		q_coffd = q_pwr >> 7;
1377 
1378 	/* protect against divide by 0 and loss of sign bits */
1379 	if (i_coffd == 0 || q_coffd < 2)
1380 		return -1;
1381 
1382 	i_coff = (-iq_corr) / i_coffd;
1383 	i_coff = clamp(i_coff, -32, 31); /* signed 6 bit */
1384 
1385 	if (ah->ah_version == AR5K_AR5211)
1386 		q_coff = (i_pwr / q_coffd) - 64;
1387 	else
1388 		q_coff = (i_pwr / q_coffd) - 128;
1389 	q_coff = clamp(q_coff, -16, 15); /* signed 5 bit */
1390 
1391 	ATH5K_DBG_UNLIMIT(ah->ah_sc, ATH5K_DEBUG_CALIBRATE,
1392 			"new I:%d Q:%d (i_coffd:%x q_coffd:%x)",
1393 			i_coff, q_coff, i_coffd, q_coffd);
1394 
1395 	/* Commit new I/Q values (set enable bit last to match HAL sources) */
1396 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_I_COFF, i_coff);
1397 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_Q_Q_COFF, q_coff);
1398 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_CORR_ENABLE);
1399 
1400 	/* Re-enable calibration -if we don't we'll commit
1401 	 * the same values again and again */
1402 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_IQ,
1403 			AR5K_PHY_IQ_CAL_NUM_LOG_MAX, 15);
1404 	AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ, AR5K_PHY_IQ_RUN);
1405 
1406 	return 0;
1407 }
1408 
1409 /*
1410  * Perform a PHY calibration
1411  */
1412 int ath5k_hw_phy_calibrate(struct ath5k_hw *ah,
1413 		struct ieee80211_channel *channel)
1414 {
1415 	int ret;
1416 
1417 	if (ah->ah_radio == AR5K_RF5110)
1418 		ret = ath5k_hw_rf5110_calibrate(ah, channel);
1419 	else {
1420 		ret = ath5k_hw_rf511x_iq_calibrate(ah);
1421 		ath5k_hw_request_rfgain_probe(ah);
1422 	}
1423 
1424 	return ret;
1425 }
1426 
1427 /***************************\
1428 * Spur mitigation functions *
1429 \***************************/
1430 
1431 bool ath5k_hw_chan_has_spur_noise(struct ath5k_hw *ah,
1432 				struct ieee80211_channel *channel)
1433 {
1434 	u8 refclk_freq;
1435 
1436 	if ((ah->ah_radio == AR5K_RF5112) ||
1437 	(ah->ah_radio == AR5K_RF5413) ||
1438 	(ah->ah_mac_version == (AR5K_SREV_AR2417 >> 4)))
1439 		refclk_freq = 40;
1440 	else
1441 		refclk_freq = 32;
1442 
1443 	if ((channel->center_freq % refclk_freq != 0) &&
1444 	((channel->center_freq % refclk_freq < 10) ||
1445 	(channel->center_freq % refclk_freq > 22)))
1446 		return true;
1447 	else
1448 		return false;
1449 }
1450 
1451 void
1452 ath5k_hw_set_spur_mitigation_filter(struct ath5k_hw *ah,
1453 				struct ieee80211_channel *channel)
1454 {
1455 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1456 	u32 mag_mask[4] = {0, 0, 0, 0};
1457 	u32 pilot_mask[2] = {0, 0};
1458 	/* Note: fbin values are scaled up by 2 */
1459 	u16 spur_chan_fbin, chan_fbin, symbol_width, spur_detection_window;
1460 	s32 spur_delta_phase, spur_freq_sigma_delta;
1461 	s32 spur_offset, num_symbols_x16;
1462 	u8 num_symbol_offsets, i, freq_band;
1463 
1464 	/* Convert current frequency to fbin value (the same way channels
1465 	 * are stored on EEPROM, check out ath5k_eeprom_bin2freq) and scale
1466 	 * up by 2 so we can compare it later */
1467 	if (channel->hw_value & CHANNEL_2GHZ) {
1468 		chan_fbin = (channel->center_freq - 2300) * 10;
1469 		freq_band = AR5K_EEPROM_BAND_2GHZ;
1470 	} else {
1471 		chan_fbin = (channel->center_freq - 4900) * 10;
1472 		freq_band = AR5K_EEPROM_BAND_5GHZ;
1473 	}
1474 
1475 	/* Check if any spur_chan_fbin from EEPROM is
1476 	 * within our current channel's spur detection range */
1477 	spur_chan_fbin = AR5K_EEPROM_NO_SPUR;
1478 	spur_detection_window = AR5K_SPUR_CHAN_WIDTH;
1479 	/* XXX: Half/Quarter channels ?*/
1480 	if (channel->hw_value & CHANNEL_TURBO)
1481 		spur_detection_window *= 2;
1482 
1483 	for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1484 		spur_chan_fbin = ee->ee_spur_chans[i][freq_band];
1485 
1486 		/* Note: mask cleans AR5K_EEPROM_NO_SPUR flag
1487 		 * so it's zero if we got nothing from EEPROM */
1488 		if (spur_chan_fbin == AR5K_EEPROM_NO_SPUR) {
1489 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1490 			break;
1491 		}
1492 
1493 		if ((chan_fbin - spur_detection_window <=
1494 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK)) &&
1495 		(chan_fbin + spur_detection_window >=
1496 		(spur_chan_fbin & AR5K_EEPROM_SPUR_CHAN_MASK))) {
1497 			spur_chan_fbin &= AR5K_EEPROM_SPUR_CHAN_MASK;
1498 			break;
1499 		}
1500 	}
1501 
1502 	/* We need to enable spur filter for this channel */
1503 	if (spur_chan_fbin) {
1504 		spur_offset = spur_chan_fbin - chan_fbin;
1505 		/*
1506 		 * Calculate deltas:
1507 		 * spur_freq_sigma_delta -> spur_offset / sample_freq << 21
1508 		 * spur_delta_phase -> spur_offset / chip_freq << 11
1509 		 * Note: Both values have 100KHz resolution
1510 		 */
1511 		/* XXX: Half/Quarter rate channels ? */
1512 		switch (channel->hw_value) {
1513 		case CHANNEL_A:
1514 			/* Both sample_freq and chip_freq are 40MHz */
1515 			spur_delta_phase = (spur_offset << 17) / 25;
1516 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1517 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1518 			break;
1519 		case CHANNEL_G:
1520 			/* sample_freq -> 40MHz chip_freq -> 44MHz
1521 			 * (for b compatibility) */
1522 			spur_freq_sigma_delta = (spur_offset << 8) / 55;
1523 			spur_delta_phase = (spur_offset << 17) / 25;
1524 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_BASE_100Hz;
1525 			break;
1526 		case CHANNEL_T:
1527 		case CHANNEL_TG:
1528 			/* Both sample_freq and chip_freq are 80MHz */
1529 			spur_delta_phase = (spur_offset << 16) / 25;
1530 			spur_freq_sigma_delta = (spur_delta_phase >> 10);
1531 			symbol_width = AR5K_SPUR_SYMBOL_WIDTH_TURBO_100Hz;
1532 			break;
1533 		default:
1534 			return;
1535 		}
1536 
1537 		/* Calculate pilot and magnitude masks */
1538 
1539 		/* Scale up spur_offset by 1000 to switch to 100HZ resolution
1540 		 * and divide by symbol_width to find how many symbols we have
1541 		 * Note: number of symbols is scaled up by 16 */
1542 		num_symbols_x16 = ((spur_offset * 1000) << 4) / symbol_width;
1543 
1544 		/* Spur is on a symbol if num_symbols_x16 % 16 is zero */
1545 		if (!(num_symbols_x16 & 0xF))
1546 			/* _X_ */
1547 			num_symbol_offsets = 3;
1548 		else
1549 			/* _xx_ */
1550 			num_symbol_offsets = 4;
1551 
1552 		for (i = 0; i < num_symbol_offsets; i++) {
1553 
1554 			/* Calculate pilot mask */
1555 			s32 curr_sym_off =
1556 				(num_symbols_x16 / 16) + i + 25;
1557 
1558 			/* Pilot magnitude mask seems to be a way to
1559 			 * declare the boundaries for our detection
1560 			 * window or something, it's 2 for the middle
1561 			 * value(s) where the symbol is expected to be
1562 			 * and 1 on the boundary values */
1563 			u8 plt_mag_map =
1564 				(i == 0 || i == (num_symbol_offsets - 1))
1565 								? 1 : 2;
1566 
1567 			if (curr_sym_off >= 0 && curr_sym_off <= 32) {
1568 				if (curr_sym_off <= 25)
1569 					pilot_mask[0] |= 1 << curr_sym_off;
1570 				else if (curr_sym_off >= 27)
1571 					pilot_mask[0] |= 1 << (curr_sym_off - 1);
1572 			} else if (curr_sym_off >= 33 && curr_sym_off <= 52)
1573 				pilot_mask[1] |= 1 << (curr_sym_off - 33);
1574 
1575 			/* Calculate magnitude mask (for viterbi decoder) */
1576 			if (curr_sym_off >= -1 && curr_sym_off <= 14)
1577 				mag_mask[0] |=
1578 					plt_mag_map << (curr_sym_off + 1) * 2;
1579 			else if (curr_sym_off >= 15 && curr_sym_off <= 30)
1580 				mag_mask[1] |=
1581 					plt_mag_map << (curr_sym_off - 15) * 2;
1582 			else if (curr_sym_off >= 31 && curr_sym_off <= 46)
1583 				mag_mask[2] |=
1584 					plt_mag_map << (curr_sym_off - 31) * 2;
1585 			else if (curr_sym_off >= 46 && curr_sym_off <= 53)
1586 				mag_mask[3] |=
1587 					plt_mag_map << (curr_sym_off - 47) * 2;
1588 
1589 		}
1590 
1591 		/* Write settings on hw to enable spur filter */
1592 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1593 					AR5K_PHY_BIN_MASK_CTL_RATE, 0xff);
1594 		/* XXX: Self correlator also ? */
1595 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_IQ,
1596 					AR5K_PHY_IQ_PILOT_MASK_EN |
1597 					AR5K_PHY_IQ_CHAN_MASK_EN |
1598 					AR5K_PHY_IQ_SPUR_FILT_EN);
1599 
1600 		/* Set delta phase and freq sigma delta */
1601 		ath5k_hw_reg_write(ah,
1602 				AR5K_REG_SM(spur_delta_phase,
1603 					AR5K_PHY_TIMING_11_SPUR_DELTA_PHASE) |
1604 				AR5K_REG_SM(spur_freq_sigma_delta,
1605 				AR5K_PHY_TIMING_11_SPUR_FREQ_SD) |
1606 				AR5K_PHY_TIMING_11_USE_SPUR_IN_AGC,
1607 				AR5K_PHY_TIMING_11);
1608 
1609 		/* Write pilot masks */
1610 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_7);
1611 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1612 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1613 					pilot_mask[1]);
1614 
1615 		ath5k_hw_reg_write(ah, pilot_mask[0], AR5K_PHY_TIMING_9);
1616 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1617 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1618 					pilot_mask[1]);
1619 
1620 		/* Write magnitude masks */
1621 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK_1);
1622 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK_2);
1623 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK_3);
1624 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1625 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1626 					mag_mask[3]);
1627 
1628 		ath5k_hw_reg_write(ah, mag_mask[0], AR5K_PHY_BIN_MASK2_1);
1629 		ath5k_hw_reg_write(ah, mag_mask[1], AR5K_PHY_BIN_MASK2_2);
1630 		ath5k_hw_reg_write(ah, mag_mask[2], AR5K_PHY_BIN_MASK2_3);
1631 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1632 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1633 					mag_mask[3]);
1634 
1635 	} else if (ath5k_hw_reg_read(ah, AR5K_PHY_IQ) &
1636 	AR5K_PHY_IQ_SPUR_FILT_EN) {
1637 		/* Clean up spur mitigation settings and disable fliter */
1638 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1639 					AR5K_PHY_BIN_MASK_CTL_RATE, 0);
1640 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_IQ,
1641 					AR5K_PHY_IQ_PILOT_MASK_EN |
1642 					AR5K_PHY_IQ_CHAN_MASK_EN |
1643 					AR5K_PHY_IQ_SPUR_FILT_EN);
1644 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_11);
1645 
1646 		/* Clear pilot masks */
1647 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_7);
1648 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_8,
1649 					AR5K_PHY_TIMING_8_PILOT_MASK_2,
1650 					0);
1651 
1652 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_TIMING_9);
1653 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_TIMING_10,
1654 					AR5K_PHY_TIMING_10_PILOT_MASK_2,
1655 					0);
1656 
1657 		/* Clear magnitude masks */
1658 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_1);
1659 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_2);
1660 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK_3);
1661 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK_CTL,
1662 					AR5K_PHY_BIN_MASK_CTL_MASK_4,
1663 					0);
1664 
1665 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_1);
1666 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_2);
1667 		ath5k_hw_reg_write(ah, 0, AR5K_PHY_BIN_MASK2_3);
1668 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_BIN_MASK2_4,
1669 					AR5K_PHY_BIN_MASK2_4_MASK_4,
1670 					0);
1671 	}
1672 }
1673 
1674 /********************\
1675   Misc PHY functions
1676 \********************/
1677 
1678 int ath5k_hw_phy_disable(struct ath5k_hw *ah)
1679 {
1680 	/*Just a try M.F.*/
1681 	ath5k_hw_reg_write(ah, AR5K_PHY_ACT_DISABLE, AR5K_PHY_ACT);
1682 
1683 	return 0;
1684 }
1685 
1686 /*
1687  * Get the PHY Chip revision
1688  */
1689 u16 ath5k_hw_radio_revision(struct ath5k_hw *ah, unsigned int chan)
1690 {
1691 	unsigned int i;
1692 	u32 srev;
1693 	u16 ret;
1694 
1695 	/*
1696 	 * Set the radio chip access register
1697 	 */
1698 	switch (chan) {
1699 	case CHANNEL_2GHZ:
1700 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_2GHZ, AR5K_PHY(0));
1701 		break;
1702 	case CHANNEL_5GHZ:
1703 		ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1704 		break;
1705 	default:
1706 		return 0;
1707 	}
1708 
1709 	mdelay(2);
1710 
1711 	/* ...wait until PHY is ready and read the selected radio revision */
1712 	ath5k_hw_reg_write(ah, 0x00001c16, AR5K_PHY(0x34));
1713 
1714 	for (i = 0; i < 8; i++)
1715 		ath5k_hw_reg_write(ah, 0x00010000, AR5K_PHY(0x20));
1716 
1717 	if (ah->ah_version == AR5K_AR5210) {
1718 		srev = ath5k_hw_reg_read(ah, AR5K_PHY(256) >> 28) & 0xf;
1719 		ret = (u16)ath5k_hw_bitswap(srev, 4) + 1;
1720 	} else {
1721 		srev = (ath5k_hw_reg_read(ah, AR5K_PHY(0x100)) >> 24) & 0xff;
1722 		ret = (u16)ath5k_hw_bitswap(((srev & 0xf0) >> 4) |
1723 				((srev & 0x0f) << 4), 8);
1724 	}
1725 
1726 	/* Reset to the 5GHz mode */
1727 	ath5k_hw_reg_write(ah, AR5K_PHY_SHIFT_5GHZ, AR5K_PHY(0));
1728 
1729 	return ret;
1730 }
1731 
1732 /*****************\
1733 * Antenna control *
1734 \*****************/
1735 
1736 static void /*TODO:Boundary check*/
1737 ath5k_hw_set_def_antenna(struct ath5k_hw *ah, u8 ant)
1738 {
1739 	if (ah->ah_version != AR5K_AR5210)
1740 		ath5k_hw_reg_write(ah, ant & 0x7, AR5K_DEFAULT_ANTENNA);
1741 }
1742 
1743 /*
1744  * Enable/disable fast rx antenna diversity
1745  */
1746 static void
1747 ath5k_hw_set_fast_div(struct ath5k_hw *ah, u8 ee_mode, bool enable)
1748 {
1749 	switch (ee_mode) {
1750 	case AR5K_EEPROM_MODE_11G:
1751 		/* XXX: This is set to
1752 		 * disabled on initvals !!! */
1753 	case AR5K_EEPROM_MODE_11A:
1754 		if (enable)
1755 			AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_AGCCTL,
1756 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1757 		else
1758 			AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1759 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1760 		break;
1761 	case AR5K_EEPROM_MODE_11B:
1762 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_AGCCTL,
1763 					AR5K_PHY_AGCCTL_OFDM_DIV_DIS);
1764 		break;
1765 	default:
1766 		return;
1767 	}
1768 
1769 	if (enable) {
1770 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1771 				AR5K_PHY_RESTART_DIV_GC, 4);
1772 
1773 		AR5K_REG_ENABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1774 					AR5K_PHY_FAST_ANT_DIV_EN);
1775 	} else {
1776 		AR5K_REG_WRITE_BITS(ah, AR5K_PHY_RESTART,
1777 				AR5K_PHY_RESTART_DIV_GC, 0);
1778 
1779 		AR5K_REG_DISABLE_BITS(ah, AR5K_PHY_FAST_ANT_DIV,
1780 					AR5K_PHY_FAST_ANT_DIV_EN);
1781 	}
1782 }
1783 
1784 void
1785 ath5k_hw_set_antenna_switch(struct ath5k_hw *ah, u8 ee_mode)
1786 {
1787 	u8 ant0, ant1;
1788 
1789 	/*
1790 	 * In case a fixed antenna was set as default
1791 	 * use the same switch table twice.
1792 	 */
1793 	if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_A)
1794 		ant0 = ant1 = AR5K_ANT_SWTABLE_A;
1795 	else if (ah->ah_ant_mode == AR5K_ANTMODE_FIXED_B)
1796 		ant0 = ant1 = AR5K_ANT_SWTABLE_B;
1797 	else {
1798 		ant0 = AR5K_ANT_SWTABLE_A;
1799 		ant1 = AR5K_ANT_SWTABLE_B;
1800 	}
1801 
1802 	/* Set antenna idle switch table */
1803 	AR5K_REG_WRITE_BITS(ah, AR5K_PHY_ANT_CTL,
1804 			AR5K_PHY_ANT_CTL_SWTABLE_IDLE,
1805 			(ah->ah_ant_ctl[ee_mode][AR5K_ANT_CTL] |
1806 			AR5K_PHY_ANT_CTL_TXRX_EN));
1807 
1808 	/* Set antenna switch tables */
1809 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant0],
1810 		AR5K_PHY_ANT_SWITCH_TABLE_0);
1811 	ath5k_hw_reg_write(ah, ah->ah_ant_ctl[ee_mode][ant1],
1812 		AR5K_PHY_ANT_SWITCH_TABLE_1);
1813 }
1814 
1815 /*
1816  * Set antenna operating mode
1817  */
1818 void
1819 ath5k_hw_set_antenna_mode(struct ath5k_hw *ah, u8 ant_mode)
1820 {
1821 	struct ieee80211_channel *channel = ah->ah_current_channel;
1822 	bool use_def_for_tx, update_def_on_tx, use_def_for_rts, fast_div;
1823 	bool use_def_for_sg;
1824 	u8 def_ant, tx_ant, ee_mode;
1825 	u32 sta_id1 = 0;
1826 
1827 	/* if channel is not initialized yet we can't set the antennas
1828 	 * so just store the mode. it will be set on the next reset */
1829 	if (channel == NULL) {
1830 		ah->ah_ant_mode = ant_mode;
1831 		return;
1832 	}
1833 
1834 	def_ant = ah->ah_def_ant;
1835 
1836 	switch (channel->hw_value & CHANNEL_MODES) {
1837 	case CHANNEL_A:
1838 	case CHANNEL_T:
1839 	case CHANNEL_XR:
1840 		ee_mode = AR5K_EEPROM_MODE_11A;
1841 		break;
1842 	case CHANNEL_G:
1843 	case CHANNEL_TG:
1844 		ee_mode = AR5K_EEPROM_MODE_11G;
1845 		break;
1846 	case CHANNEL_B:
1847 		ee_mode = AR5K_EEPROM_MODE_11B;
1848 		break;
1849 	default:
1850 		ATH5K_ERR(ah->ah_sc,
1851 			"invalid channel: %d\n", channel->center_freq);
1852 		return;
1853 	}
1854 
1855 	switch (ant_mode) {
1856 	case AR5K_ANTMODE_DEFAULT:
1857 		tx_ant = 0;
1858 		use_def_for_tx = false;
1859 		update_def_on_tx = false;
1860 		use_def_for_rts = false;
1861 		use_def_for_sg = false;
1862 		fast_div = true;
1863 		break;
1864 	case AR5K_ANTMODE_FIXED_A:
1865 		def_ant = 1;
1866 		tx_ant = 1;
1867 		use_def_for_tx = true;
1868 		update_def_on_tx = false;
1869 		use_def_for_rts = true;
1870 		use_def_for_sg = true;
1871 		fast_div = false;
1872 		break;
1873 	case AR5K_ANTMODE_FIXED_B:
1874 		def_ant = 2;
1875 		tx_ant = 2;
1876 		use_def_for_tx = true;
1877 		update_def_on_tx = false;
1878 		use_def_for_rts = true;
1879 		use_def_for_sg = true;
1880 		fast_div = false;
1881 		break;
1882 	case AR5K_ANTMODE_SINGLE_AP:
1883 		def_ant = 1;	/* updated on tx */
1884 		tx_ant = 0;
1885 		use_def_for_tx = true;
1886 		update_def_on_tx = true;
1887 		use_def_for_rts = true;
1888 		use_def_for_sg = true;
1889 		fast_div = true;
1890 		break;
1891 	case AR5K_ANTMODE_SECTOR_AP:
1892 		tx_ant = 1;	/* variable */
1893 		use_def_for_tx = false;
1894 		update_def_on_tx = false;
1895 		use_def_for_rts = true;
1896 		use_def_for_sg = false;
1897 		fast_div = false;
1898 		break;
1899 	case AR5K_ANTMODE_SECTOR_STA:
1900 		tx_ant = 1;	/* variable */
1901 		use_def_for_tx = true;
1902 		update_def_on_tx = false;
1903 		use_def_for_rts = true;
1904 		use_def_for_sg = false;
1905 		fast_div = true;
1906 		break;
1907 	case AR5K_ANTMODE_DEBUG:
1908 		def_ant = 1;
1909 		tx_ant = 2;
1910 		use_def_for_tx = false;
1911 		update_def_on_tx = false;
1912 		use_def_for_rts = false;
1913 		use_def_for_sg = false;
1914 		fast_div = false;
1915 		break;
1916 	default:
1917 		return;
1918 	}
1919 
1920 	ah->ah_tx_ant = tx_ant;
1921 	ah->ah_ant_mode = ant_mode;
1922 	ah->ah_def_ant = def_ant;
1923 
1924 	sta_id1 |= use_def_for_tx ? AR5K_STA_ID1_DEFAULT_ANTENNA : 0;
1925 	sta_id1 |= update_def_on_tx ? AR5K_STA_ID1_DESC_ANTENNA : 0;
1926 	sta_id1 |= use_def_for_rts ? AR5K_STA_ID1_RTS_DEF_ANTENNA : 0;
1927 	sta_id1 |= use_def_for_sg ? AR5K_STA_ID1_SELFGEN_DEF_ANT : 0;
1928 
1929 	AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_ANTENNA_SETTINGS);
1930 
1931 	if (sta_id1)
1932 		AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, sta_id1);
1933 
1934 	ath5k_hw_set_antenna_switch(ah, ee_mode);
1935 	/* Note: set diversity before default antenna
1936 	 * because it won't work correctly */
1937 	ath5k_hw_set_fast_div(ah, ee_mode, fast_div);
1938 	ath5k_hw_set_def_antenna(ah, def_ant);
1939 }
1940 
1941 
1942 /****************\
1943 * TX power setup *
1944 \****************/
1945 
1946 /*
1947  * Helper functions
1948  */
1949 
1950 /*
1951  * Do linear interpolation between two given (x, y) points
1952  */
1953 static s16
1954 ath5k_get_interpolated_value(s16 target, s16 x_left, s16 x_right,
1955 					s16 y_left, s16 y_right)
1956 {
1957 	s16 ratio, result;
1958 
1959 	/* Avoid divide by zero and skip interpolation
1960 	 * if we have the same point */
1961 	if ((x_left == x_right) || (y_left == y_right))
1962 		return y_left;
1963 
1964 	/*
1965 	 * Since we use ints and not fps, we need to scale up in
1966 	 * order to get a sane ratio value (or else we 'll eg. get
1967 	 * always 1 instead of 1.25, 1.75 etc). We scale up by 100
1968 	 * to have some accuracy both for 0.5 and 0.25 steps.
1969 	 */
1970 	ratio = ((100 * y_right - 100 * y_left)/(x_right - x_left));
1971 
1972 	/* Now scale down to be in range */
1973 	result = y_left + (ratio * (target - x_left) / 100);
1974 
1975 	return result;
1976 }
1977 
1978 /*
1979  * Find vertical boundary (min pwr) for the linear PCDAC curve.
1980  *
1981  * Since we have the top of the curve and we draw the line below
1982  * until we reach 1 (1 pcdac step) we need to know which point
1983  * (x value) that is so that we don't go below y axis and have negative
1984  * pcdac values when creating the curve, or fill the table with zeroes.
1985  */
1986 static s16
1987 ath5k_get_linear_pcdac_min(const u8 *stepL, const u8 *stepR,
1988 				const s16 *pwrL, const s16 *pwrR)
1989 {
1990 	s8 tmp;
1991 	s16 min_pwrL, min_pwrR;
1992 	s16 pwr_i;
1993 
1994 	/* Some vendors write the same pcdac value twice !!! */
1995 	if (stepL[0] == stepL[1] || stepR[0] == stepR[1])
1996 		return max(pwrL[0], pwrR[0]);
1997 
1998 	if (pwrL[0] == pwrL[1])
1999 		min_pwrL = pwrL[0];
2000 	else {
2001 		pwr_i = pwrL[0];
2002 		do {
2003 			pwr_i--;
2004 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2005 							pwrL[0], pwrL[1],
2006 							stepL[0], stepL[1]);
2007 		} while (tmp > 1);
2008 
2009 		min_pwrL = pwr_i;
2010 	}
2011 
2012 	if (pwrR[0] == pwrR[1])
2013 		min_pwrR = pwrR[0];
2014 	else {
2015 		pwr_i = pwrR[0];
2016 		do {
2017 			pwr_i--;
2018 			tmp = (s8) ath5k_get_interpolated_value(pwr_i,
2019 							pwrR[0], pwrR[1],
2020 							stepR[0], stepR[1]);
2021 		} while (tmp > 1);
2022 
2023 		min_pwrR = pwr_i;
2024 	}
2025 
2026 	/* Keep the right boundary so that it works for both curves */
2027 	return max(min_pwrL, min_pwrR);
2028 }
2029 
2030 /*
2031  * Interpolate (pwr,vpd) points to create a Power to PDADC or a
2032  * Power to PCDAC curve.
2033  *
2034  * Each curve has power on x axis (in 0.5dB units) and PCDAC/PDADC
2035  * steps (offsets) on y axis. Power can go up to 31.5dB and max
2036  * PCDAC/PDADC step for each curve is 64 but we can write more than
2037  * one curves on hw so we can go up to 128 (which is the max step we
2038  * can write on the final table).
2039  *
2040  * We write y values (PCDAC/PDADC steps) on hw.
2041  */
2042 static void
2043 ath5k_create_power_curve(s16 pmin, s16 pmax,
2044 			const s16 *pwr, const u8 *vpd,
2045 			u8 num_points,
2046 			u8 *vpd_table, u8 type)
2047 {
2048 	u8 idx[2] = { 0, 1 };
2049 	s16 pwr_i = 2*pmin;
2050 	int i;
2051 
2052 	if (num_points < 2)
2053 		return;
2054 
2055 	/* We want the whole line, so adjust boundaries
2056 	 * to cover the entire power range. Note that
2057 	 * power values are already 0.25dB so no need
2058 	 * to multiply pwr_i by 2 */
2059 	if (type == AR5K_PWRTABLE_LINEAR_PCDAC) {
2060 		pwr_i = pmin;
2061 		pmin = 0;
2062 		pmax = 63;
2063 	}
2064 
2065 	/* Find surrounding turning points (TPs)
2066 	 * and interpolate between them */
2067 	for (i = 0; (i <= (u16) (pmax - pmin)) &&
2068 	(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2069 
2070 		/* We passed the right TP, move to the next set of TPs
2071 		 * if we pass the last TP, extrapolate above using the last
2072 		 * two TPs for ratio */
2073 		if ((pwr_i > pwr[idx[1]]) && (idx[1] < num_points - 1)) {
2074 			idx[0]++;
2075 			idx[1]++;
2076 		}
2077 
2078 		vpd_table[i] = (u8) ath5k_get_interpolated_value(pwr_i,
2079 						pwr[idx[0]], pwr[idx[1]],
2080 						vpd[idx[0]], vpd[idx[1]]);
2081 
2082 		/* Increase by 0.5dB
2083 		 * (0.25 dB units) */
2084 		pwr_i += 2;
2085 	}
2086 }
2087 
2088 /*
2089  * Get the surrounding per-channel power calibration piers
2090  * for a given frequency so that we can interpolate between
2091  * them and come up with an apropriate dataset for our current
2092  * channel.
2093  */
2094 static void
2095 ath5k_get_chan_pcal_surrounding_piers(struct ath5k_hw *ah,
2096 			struct ieee80211_channel *channel,
2097 			struct ath5k_chan_pcal_info **pcinfo_l,
2098 			struct ath5k_chan_pcal_info **pcinfo_r)
2099 {
2100 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2101 	struct ath5k_chan_pcal_info *pcinfo;
2102 	u8 idx_l, idx_r;
2103 	u8 mode, max, i;
2104 	u32 target = channel->center_freq;
2105 
2106 	idx_l = 0;
2107 	idx_r = 0;
2108 
2109 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2110 		pcinfo = ee->ee_pwr_cal_b;
2111 		mode = AR5K_EEPROM_MODE_11B;
2112 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2113 		pcinfo = ee->ee_pwr_cal_g;
2114 		mode = AR5K_EEPROM_MODE_11G;
2115 	} else {
2116 		pcinfo = ee->ee_pwr_cal_a;
2117 		mode = AR5K_EEPROM_MODE_11A;
2118 	}
2119 	max = ee->ee_n_piers[mode] - 1;
2120 
2121 	/* Frequency is below our calibrated
2122 	 * range. Use the lowest power curve
2123 	 * we have */
2124 	if (target < pcinfo[0].freq) {
2125 		idx_l = idx_r = 0;
2126 		goto done;
2127 	}
2128 
2129 	/* Frequency is above our calibrated
2130 	 * range. Use the highest power curve
2131 	 * we have */
2132 	if (target > pcinfo[max].freq) {
2133 		idx_l = idx_r = max;
2134 		goto done;
2135 	}
2136 
2137 	/* Frequency is inside our calibrated
2138 	 * channel range. Pick the surrounding
2139 	 * calibration piers so that we can
2140 	 * interpolate */
2141 	for (i = 0; i <= max; i++) {
2142 
2143 		/* Frequency matches one of our calibration
2144 		 * piers, no need to interpolate, just use
2145 		 * that calibration pier */
2146 		if (pcinfo[i].freq == target) {
2147 			idx_l = idx_r = i;
2148 			goto done;
2149 		}
2150 
2151 		/* We found a calibration pier that's above
2152 		 * frequency, use this pier and the previous
2153 		 * one to interpolate */
2154 		if (target < pcinfo[i].freq) {
2155 			idx_r = i;
2156 			idx_l = idx_r - 1;
2157 			goto done;
2158 		}
2159 	}
2160 
2161 done:
2162 	*pcinfo_l = &pcinfo[idx_l];
2163 	*pcinfo_r = &pcinfo[idx_r];
2164 }
2165 
2166 /*
2167  * Get the surrounding per-rate power calibration data
2168  * for a given frequency and interpolate between power
2169  * values to set max target power supported by hw for
2170  * each rate.
2171  */
2172 static void
2173 ath5k_get_rate_pcal_data(struct ath5k_hw *ah,
2174 			struct ieee80211_channel *channel,
2175 			struct ath5k_rate_pcal_info *rates)
2176 {
2177 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2178 	struct ath5k_rate_pcal_info *rpinfo;
2179 	u8 idx_l, idx_r;
2180 	u8 mode, max, i;
2181 	u32 target = channel->center_freq;
2182 
2183 	idx_l = 0;
2184 	idx_r = 0;
2185 
2186 	if (!(channel->hw_value & CHANNEL_OFDM)) {
2187 		rpinfo = ee->ee_rate_tpwr_b;
2188 		mode = AR5K_EEPROM_MODE_11B;
2189 	} else if (channel->hw_value & CHANNEL_2GHZ) {
2190 		rpinfo = ee->ee_rate_tpwr_g;
2191 		mode = AR5K_EEPROM_MODE_11G;
2192 	} else {
2193 		rpinfo = ee->ee_rate_tpwr_a;
2194 		mode = AR5K_EEPROM_MODE_11A;
2195 	}
2196 	max = ee->ee_rate_target_pwr_num[mode] - 1;
2197 
2198 	/* Get the surrounding calibration
2199 	 * piers - same as above */
2200 	if (target < rpinfo[0].freq) {
2201 		idx_l = idx_r = 0;
2202 		goto done;
2203 	}
2204 
2205 	if (target > rpinfo[max].freq) {
2206 		idx_l = idx_r = max;
2207 		goto done;
2208 	}
2209 
2210 	for (i = 0; i <= max; i++) {
2211 
2212 		if (rpinfo[i].freq == target) {
2213 			idx_l = idx_r = i;
2214 			goto done;
2215 		}
2216 
2217 		if (target < rpinfo[i].freq) {
2218 			idx_r = i;
2219 			idx_l = idx_r - 1;
2220 			goto done;
2221 		}
2222 	}
2223 
2224 done:
2225 	/* Now interpolate power value, based on the frequency */
2226 	rates->freq = target;
2227 
2228 	rates->target_power_6to24 =
2229 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2230 					rpinfo[idx_r].freq,
2231 					rpinfo[idx_l].target_power_6to24,
2232 					rpinfo[idx_r].target_power_6to24);
2233 
2234 	rates->target_power_36 =
2235 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2236 					rpinfo[idx_r].freq,
2237 					rpinfo[idx_l].target_power_36,
2238 					rpinfo[idx_r].target_power_36);
2239 
2240 	rates->target_power_48 =
2241 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2242 					rpinfo[idx_r].freq,
2243 					rpinfo[idx_l].target_power_48,
2244 					rpinfo[idx_r].target_power_48);
2245 
2246 	rates->target_power_54 =
2247 		ath5k_get_interpolated_value(target, rpinfo[idx_l].freq,
2248 					rpinfo[idx_r].freq,
2249 					rpinfo[idx_l].target_power_54,
2250 					rpinfo[idx_r].target_power_54);
2251 }
2252 
2253 /*
2254  * Get the max edge power for this channel if
2255  * we have such data from EEPROM's Conformance Test
2256  * Limits (CTL), and limit max power if needed.
2257  */
2258 static void
2259 ath5k_get_max_ctl_power(struct ath5k_hw *ah,
2260 			struct ieee80211_channel *channel)
2261 {
2262 	struct ath_regulatory *regulatory = ath5k_hw_regulatory(ah);
2263 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2264 	struct ath5k_edge_power *rep = ee->ee_ctl_pwr;
2265 	u8 *ctl_val = ee->ee_ctl;
2266 	s16 max_chan_pwr = ah->ah_txpower.txp_max_pwr / 4;
2267 	s16 edge_pwr = 0;
2268 	u8 rep_idx;
2269 	u8 i, ctl_mode;
2270 	u8 ctl_idx = 0xFF;
2271 	u32 target = channel->center_freq;
2272 
2273 	ctl_mode = ath_regd_get_band_ctl(regulatory, channel->band);
2274 
2275 	switch (channel->hw_value & CHANNEL_MODES) {
2276 	case CHANNEL_A:
2277 		ctl_mode |= AR5K_CTL_11A;
2278 		break;
2279 	case CHANNEL_G:
2280 		ctl_mode |= AR5K_CTL_11G;
2281 		break;
2282 	case CHANNEL_B:
2283 		ctl_mode |= AR5K_CTL_11B;
2284 		break;
2285 	case CHANNEL_T:
2286 		ctl_mode |= AR5K_CTL_TURBO;
2287 		break;
2288 	case CHANNEL_TG:
2289 		ctl_mode |= AR5K_CTL_TURBOG;
2290 		break;
2291 	case CHANNEL_XR:
2292 		/* Fall through */
2293 	default:
2294 		return;
2295 	}
2296 
2297 	for (i = 0; i < ee->ee_ctls; i++) {
2298 		if (ctl_val[i] == ctl_mode) {
2299 			ctl_idx = i;
2300 			break;
2301 		}
2302 	}
2303 
2304 	/* If we have a CTL dataset available grab it and find the
2305 	 * edge power for our frequency */
2306 	if (ctl_idx == 0xFF)
2307 		return;
2308 
2309 	/* Edge powers are sorted by frequency from lower
2310 	 * to higher. Each CTL corresponds to 8 edge power
2311 	 * measurements. */
2312 	rep_idx = ctl_idx * AR5K_EEPROM_N_EDGES;
2313 
2314 	/* Don't do boundaries check because we
2315 	 * might have more that one bands defined
2316 	 * for this mode */
2317 
2318 	/* Get the edge power that's closer to our
2319 	 * frequency */
2320 	for (i = 0; i < AR5K_EEPROM_N_EDGES; i++) {
2321 		rep_idx += i;
2322 		if (target <= rep[rep_idx].freq)
2323 			edge_pwr = (s16) rep[rep_idx].edge;
2324 	}
2325 
2326 	if (edge_pwr)
2327 		ah->ah_txpower.txp_max_pwr = 4*min(edge_pwr, max_chan_pwr);
2328 }
2329 
2330 
2331 /*
2332  * Power to PCDAC table functions
2333  */
2334 
2335 /*
2336  * Fill Power to PCDAC table on RF5111
2337  *
2338  * No further processing is needed for RF5111, the only thing we have to
2339  * do is fill the values below and above calibration range since eeprom data
2340  * may not cover the entire PCDAC table.
2341  */
2342 static void
2343 ath5k_fill_pwr_to_pcdac_table(struct ath5k_hw *ah, s16* table_min,
2344 							s16 *table_max)
2345 {
2346 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2347 	u8	*pcdac_tmp = ah->ah_txpower.tmpL[0];
2348 	u8	pcdac_0, pcdac_n, pcdac_i, pwr_idx, i;
2349 	s16	min_pwr, max_pwr;
2350 
2351 	/* Get table boundaries */
2352 	min_pwr = table_min[0];
2353 	pcdac_0 = pcdac_tmp[0];
2354 
2355 	max_pwr = table_max[0];
2356 	pcdac_n = pcdac_tmp[table_max[0] - table_min[0]];
2357 
2358 	/* Extrapolate below minimum using pcdac_0 */
2359 	pcdac_i = 0;
2360 	for (i = 0; i < min_pwr; i++)
2361 		pcdac_out[pcdac_i++] = pcdac_0;
2362 
2363 	/* Copy values from pcdac_tmp */
2364 	pwr_idx = min_pwr;
2365 	for (i = 0 ; pwr_idx <= max_pwr &&
2366 	pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE; i++) {
2367 		pcdac_out[pcdac_i++] = pcdac_tmp[i];
2368 		pwr_idx++;
2369 	}
2370 
2371 	/* Extrapolate above maximum */
2372 	while (pcdac_i < AR5K_EEPROM_POWER_TABLE_SIZE)
2373 		pcdac_out[pcdac_i++] = pcdac_n;
2374 
2375 }
2376 
2377 /*
2378  * Combine available XPD Curves and fill Linear Power to PCDAC table
2379  * on RF5112
2380  *
2381  * RFX112 can have up to 2 curves (one for low txpower range and one for
2382  * higher txpower range). We need to put them both on pcdac_out and place
2383  * them in the correct location. In case we only have one curve available
2384  * just fit it on pcdac_out (it's supposed to cover the entire range of
2385  * available pwr levels since it's always the higher power curve). Extrapolate
2386  * below and above final table if needed.
2387  */
2388 static void
2389 ath5k_combine_linear_pcdac_curves(struct ath5k_hw *ah, s16* table_min,
2390 						s16 *table_max, u8 pdcurves)
2391 {
2392 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2393 	u8	*pcdac_low_pwr;
2394 	u8	*pcdac_high_pwr;
2395 	u8	*pcdac_tmp;
2396 	u8	pwr;
2397 	s16	max_pwr_idx;
2398 	s16	min_pwr_idx;
2399 	s16	mid_pwr_idx = 0;
2400 	/* Edge flag turs on the 7nth bit on the PCDAC
2401 	 * to delcare the higher power curve (force values
2402 	 * to be greater than 64). If we only have one curve
2403 	 * we don't need to set this, if we have 2 curves and
2404 	 * fill the table backwards this can also be used to
2405 	 * switch from higher power curve to lower power curve */
2406 	u8	edge_flag;
2407 	int	i;
2408 
2409 	/* When we have only one curve available
2410 	 * that's the higher power curve. If we have
2411 	 * two curves the first is the high power curve
2412 	 * and the next is the low power curve. */
2413 	if (pdcurves > 1) {
2414 		pcdac_low_pwr = ah->ah_txpower.tmpL[1];
2415 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2416 		mid_pwr_idx = table_max[1] - table_min[1] - 1;
2417 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2418 
2419 		/* If table size goes beyond 31.5dB, keep the
2420 		 * upper 31.5dB range when setting tx power.
2421 		 * Note: 126 = 31.5 dB in quarter dB steps */
2422 		if (table_max[0] - table_min[1] > 126)
2423 			min_pwr_idx = table_max[0] - 126;
2424 		else
2425 			min_pwr_idx = table_min[1];
2426 
2427 		/* Since we fill table backwards
2428 		 * start from high power curve */
2429 		pcdac_tmp = pcdac_high_pwr;
2430 
2431 		edge_flag = 0x40;
2432 	} else {
2433 		pcdac_low_pwr = ah->ah_txpower.tmpL[1]; /* Zeroed */
2434 		pcdac_high_pwr = ah->ah_txpower.tmpL[0];
2435 		min_pwr_idx = table_min[0];
2436 		max_pwr_idx = (table_max[0] - table_min[0]) / 2;
2437 		pcdac_tmp = pcdac_high_pwr;
2438 		edge_flag = 0;
2439 	}
2440 
2441 	/* This is used when setting tx power*/
2442 	ah->ah_txpower.txp_min_idx = min_pwr_idx/2;
2443 
2444 	/* Fill Power to PCDAC table backwards */
2445 	pwr = max_pwr_idx;
2446 	for (i = 63; i >= 0; i--) {
2447 		/* Entering lower power range, reset
2448 		 * edge flag and set pcdac_tmp to lower
2449 		 * power curve.*/
2450 		if (edge_flag == 0x40 &&
2451 		(2*pwr <= (table_max[1] - table_min[0]) || pwr == 0)) {
2452 			edge_flag = 0x00;
2453 			pcdac_tmp = pcdac_low_pwr;
2454 			pwr = mid_pwr_idx/2;
2455 		}
2456 
2457 		/* Don't go below 1, extrapolate below if we have
2458 		 * already swithced to the lower power curve -or
2459 		 * we only have one curve and edge_flag is zero
2460 		 * anyway */
2461 		if (pcdac_tmp[pwr] < 1 && (edge_flag == 0x00)) {
2462 			while (i >= 0) {
2463 				pcdac_out[i] = pcdac_out[i + 1];
2464 				i--;
2465 			}
2466 			break;
2467 		}
2468 
2469 		pcdac_out[i] = pcdac_tmp[pwr] | edge_flag;
2470 
2471 		/* Extrapolate above if pcdac is greater than
2472 		 * 126 -this can happen because we OR pcdac_out
2473 		 * value with edge_flag on high power curve */
2474 		if (pcdac_out[i] > 126)
2475 			pcdac_out[i] = 126;
2476 
2477 		/* Decrease by a 0.5dB step */
2478 		pwr--;
2479 	}
2480 }
2481 
2482 /* Write PCDAC values on hw */
2483 static void
2484 ath5k_setup_pcdac_table(struct ath5k_hw *ah)
2485 {
2486 	u8 	*pcdac_out = ah->ah_txpower.txp_pd_table;
2487 	int	i;
2488 
2489 	/*
2490 	 * Write TX power values
2491 	 */
2492 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2493 		ath5k_hw_reg_write(ah,
2494 			(((pcdac_out[2*i + 0] << 8 | 0xff) & 0xffff) << 0) |
2495 			(((pcdac_out[2*i + 1] << 8 | 0xff) & 0xffff) << 16),
2496 			AR5K_PHY_PCDAC_TXPOWER(i));
2497 	}
2498 }
2499 
2500 
2501 /*
2502  * Power to PDADC table functions
2503  */
2504 
2505 /*
2506  * Set the gain boundaries and create final Power to PDADC table
2507  *
2508  * We can have up to 4 pd curves, we need to do a simmilar process
2509  * as we do for RF5112. This time we don't have an edge_flag but we
2510  * set the gain boundaries on a separate register.
2511  */
2512 static void
2513 ath5k_combine_pwr_to_pdadc_curves(struct ath5k_hw *ah,
2514 			s16 *pwr_min, s16 *pwr_max, u8 pdcurves)
2515 {
2516 	u8 gain_boundaries[AR5K_EEPROM_N_PD_GAINS];
2517 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2518 	u8 *pdadc_tmp;
2519 	s16 pdadc_0;
2520 	u8 pdadc_i, pdadc_n, pwr_step, pdg, max_idx, table_size;
2521 	u8 pd_gain_overlap;
2522 
2523 	/* Note: Register value is initialized on initvals
2524 	 * there is no feedback from hw.
2525 	 * XXX: What about pd_gain_overlap from EEPROM ? */
2526 	pd_gain_overlap = (u8) ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG5) &
2527 		AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP;
2528 
2529 	/* Create final PDADC table */
2530 	for (pdg = 0, pdadc_i = 0; pdg < pdcurves; pdg++) {
2531 		pdadc_tmp = ah->ah_txpower.tmpL[pdg];
2532 
2533 		if (pdg == pdcurves - 1)
2534 			/* 2 dB boundary stretch for last
2535 			 * (higher power) curve */
2536 			gain_boundaries[pdg] = pwr_max[pdg] + 4;
2537 		else
2538 			/* Set gain boundary in the middle
2539 			 * between this curve and the next one */
2540 			gain_boundaries[pdg] =
2541 				(pwr_max[pdg] + pwr_min[pdg + 1]) / 2;
2542 
2543 		/* Sanity check in case our 2 db stretch got out of
2544 		 * range. */
2545 		if (gain_boundaries[pdg] > AR5K_TUNE_MAX_TXPOWER)
2546 			gain_boundaries[pdg] = AR5K_TUNE_MAX_TXPOWER;
2547 
2548 		/* For the first curve (lower power)
2549 		 * start from 0 dB */
2550 		if (pdg == 0)
2551 			pdadc_0 = 0;
2552 		else
2553 			/* For the other curves use the gain overlap */
2554 			pdadc_0 = (gain_boundaries[pdg - 1] - pwr_min[pdg]) -
2555 							pd_gain_overlap;
2556 
2557 		/* Force each power step to be at least 0.5 dB */
2558 		if ((pdadc_tmp[1] - pdadc_tmp[0]) > 1)
2559 			pwr_step = pdadc_tmp[1] - pdadc_tmp[0];
2560 		else
2561 			pwr_step = 1;
2562 
2563 		/* If pdadc_0 is negative, we need to extrapolate
2564 		 * below this pdgain by a number of pwr_steps */
2565 		while ((pdadc_0 < 0) && (pdadc_i < 128)) {
2566 			s16 tmp = pdadc_tmp[0] + pdadc_0 * pwr_step;
2567 			pdadc_out[pdadc_i++] = (tmp < 0) ? 0 : (u8) tmp;
2568 			pdadc_0++;
2569 		}
2570 
2571 		/* Set last pwr level, using gain boundaries */
2572 		pdadc_n = gain_boundaries[pdg] + pd_gain_overlap - pwr_min[pdg];
2573 		/* Limit it to be inside pwr range */
2574 		table_size = pwr_max[pdg] - pwr_min[pdg];
2575 		max_idx = (pdadc_n < table_size) ? pdadc_n : table_size;
2576 
2577 		/* Fill pdadc_out table */
2578 		while (pdadc_0 < max_idx && pdadc_i < 128)
2579 			pdadc_out[pdadc_i++] = pdadc_tmp[pdadc_0++];
2580 
2581 		/* Need to extrapolate above this pdgain? */
2582 		if (pdadc_n <= max_idx)
2583 			continue;
2584 
2585 		/* Force each power step to be at least 0.5 dB */
2586 		if ((pdadc_tmp[table_size - 1] - pdadc_tmp[table_size - 2]) > 1)
2587 			pwr_step = pdadc_tmp[table_size - 1] -
2588 						pdadc_tmp[table_size - 2];
2589 		else
2590 			pwr_step = 1;
2591 
2592 		/* Extrapolate above */
2593 		while ((pdadc_0 < (s16) pdadc_n) &&
2594 		(pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2)) {
2595 			s16 tmp = pdadc_tmp[table_size - 1] +
2596 					(pdadc_0 - max_idx) * pwr_step;
2597 			pdadc_out[pdadc_i++] = (tmp > 127) ? 127 : (u8) tmp;
2598 			pdadc_0++;
2599 		}
2600 	}
2601 
2602 	while (pdg < AR5K_EEPROM_N_PD_GAINS) {
2603 		gain_boundaries[pdg] = gain_boundaries[pdg - 1];
2604 		pdg++;
2605 	}
2606 
2607 	while (pdadc_i < AR5K_EEPROM_POWER_TABLE_SIZE * 2) {
2608 		pdadc_out[pdadc_i] = pdadc_out[pdadc_i - 1];
2609 		pdadc_i++;
2610 	}
2611 
2612 	/* Set gain boundaries */
2613 	ath5k_hw_reg_write(ah,
2614 		AR5K_REG_SM(pd_gain_overlap,
2615 			AR5K_PHY_TPC_RG5_PD_GAIN_OVERLAP) |
2616 		AR5K_REG_SM(gain_boundaries[0],
2617 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_1) |
2618 		AR5K_REG_SM(gain_boundaries[1],
2619 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_2) |
2620 		AR5K_REG_SM(gain_boundaries[2],
2621 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_3) |
2622 		AR5K_REG_SM(gain_boundaries[3],
2623 			AR5K_PHY_TPC_RG5_PD_GAIN_BOUNDARY_4),
2624 		AR5K_PHY_TPC_RG5);
2625 
2626 	/* Used for setting rate power table */
2627 	ah->ah_txpower.txp_min_idx = pwr_min[0];
2628 
2629 }
2630 
2631 /* Write PDADC values on hw */
2632 static void
2633 ath5k_setup_pwr_to_pdadc_table(struct ath5k_hw *ah,
2634 			u8 pdcurves, u8 *pdg_to_idx)
2635 {
2636 	u8 *pdadc_out = ah->ah_txpower.txp_pd_table;
2637 	u32 reg;
2638 	u8 i;
2639 
2640 	/* Select the right pdgain curves */
2641 
2642 	/* Clear current settings */
2643 	reg = ath5k_hw_reg_read(ah, AR5K_PHY_TPC_RG1);
2644 	reg &= ~(AR5K_PHY_TPC_RG1_PDGAIN_1 |
2645 		AR5K_PHY_TPC_RG1_PDGAIN_2 |
2646 		AR5K_PHY_TPC_RG1_PDGAIN_3 |
2647 		AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2648 
2649 	/*
2650 	 * Use pd_gains curve from eeprom
2651 	 *
2652 	 * This overrides the default setting from initvals
2653 	 * in case some vendors (e.g. Zcomax) don't use the default
2654 	 * curves. If we don't honor their settings we 'll get a
2655 	 * 5dB (1 * gain overlap ?) drop.
2656 	 */
2657 	reg |= AR5K_REG_SM(pdcurves, AR5K_PHY_TPC_RG1_NUM_PD_GAIN);
2658 
2659 	switch (pdcurves) {
2660 	case 3:
2661 		reg |= AR5K_REG_SM(pdg_to_idx[2], AR5K_PHY_TPC_RG1_PDGAIN_3);
2662 		/* Fall through */
2663 	case 2:
2664 		reg |= AR5K_REG_SM(pdg_to_idx[1], AR5K_PHY_TPC_RG1_PDGAIN_2);
2665 		/* Fall through */
2666 	case 1:
2667 		reg |= AR5K_REG_SM(pdg_to_idx[0], AR5K_PHY_TPC_RG1_PDGAIN_1);
2668 		break;
2669 	}
2670 	ath5k_hw_reg_write(ah, reg, AR5K_PHY_TPC_RG1);
2671 
2672 	/*
2673 	 * Write TX power values
2674 	 */
2675 	for (i = 0; i < (AR5K_EEPROM_POWER_TABLE_SIZE / 2); i++) {
2676 		ath5k_hw_reg_write(ah,
2677 			((pdadc_out[4*i + 0] & 0xff) << 0) |
2678 			((pdadc_out[4*i + 1] & 0xff) << 8) |
2679 			((pdadc_out[4*i + 2] & 0xff) << 16) |
2680 			((pdadc_out[4*i + 3] & 0xff) << 24),
2681 			AR5K_PHY_PDADC_TXPOWER(i));
2682 	}
2683 }
2684 
2685 
2686 /*
2687  * Common code for PCDAC/PDADC tables
2688  */
2689 
2690 /*
2691  * This is the main function that uses all of the above
2692  * to set PCDAC/PDADC table on hw for the current channel.
2693  * This table is used for tx power calibration on the basband,
2694  * without it we get weird tx power levels and in some cases
2695  * distorted spectral mask
2696  */
2697 static int
2698 ath5k_setup_channel_powertable(struct ath5k_hw *ah,
2699 			struct ieee80211_channel *channel,
2700 			u8 ee_mode, u8 type)
2701 {
2702 	struct ath5k_pdgain_info *pdg_L, *pdg_R;
2703 	struct ath5k_chan_pcal_info *pcinfo_L;
2704 	struct ath5k_chan_pcal_info *pcinfo_R;
2705 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
2706 	u8 *pdg_curve_to_idx = ee->ee_pdc_to_idx[ee_mode];
2707 	s16 table_min[AR5K_EEPROM_N_PD_GAINS];
2708 	s16 table_max[AR5K_EEPROM_N_PD_GAINS];
2709 	u8 *tmpL;
2710 	u8 *tmpR;
2711 	u32 target = channel->center_freq;
2712 	int pdg, i;
2713 
2714 	/* Get surounding freq piers for this channel */
2715 	ath5k_get_chan_pcal_surrounding_piers(ah, channel,
2716 						&pcinfo_L,
2717 						&pcinfo_R);
2718 
2719 	/* Loop over pd gain curves on
2720 	 * surounding freq piers by index */
2721 	for (pdg = 0; pdg < ee->ee_pd_gains[ee_mode]; pdg++) {
2722 
2723 		/* Fill curves in reverse order
2724 		 * from lower power (max gain)
2725 		 * to higher power. Use curve -> idx
2726 		 * backmapping we did on eeprom init */
2727 		u8 idx = pdg_curve_to_idx[pdg];
2728 
2729 		/* Grab the needed curves by index */
2730 		pdg_L = &pcinfo_L->pd_curves[idx];
2731 		pdg_R = &pcinfo_R->pd_curves[idx];
2732 
2733 		/* Initialize the temp tables */
2734 		tmpL = ah->ah_txpower.tmpL[pdg];
2735 		tmpR = ah->ah_txpower.tmpR[pdg];
2736 
2737 		/* Set curve's x boundaries and create
2738 		 * curves so that they cover the same
2739 		 * range (if we don't do that one table
2740 		 * will have values on some range and the
2741 		 * other one won't have any so interpolation
2742 		 * will fail) */
2743 		table_min[pdg] = min(pdg_L->pd_pwr[0],
2744 					pdg_R->pd_pwr[0]) / 2;
2745 
2746 		table_max[pdg] = max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2747 				pdg_R->pd_pwr[pdg_R->pd_points - 1]) / 2;
2748 
2749 		/* Now create the curves on surrounding channels
2750 		 * and interpolate if needed to get the final
2751 		 * curve for this gain on this channel */
2752 		switch (type) {
2753 		case AR5K_PWRTABLE_LINEAR_PCDAC:
2754 			/* Override min/max so that we don't loose
2755 			 * accuracy (don't divide by 2) */
2756 			table_min[pdg] = min(pdg_L->pd_pwr[0],
2757 						pdg_R->pd_pwr[0]);
2758 
2759 			table_max[pdg] =
2760 				max(pdg_L->pd_pwr[pdg_L->pd_points - 1],
2761 					pdg_R->pd_pwr[pdg_R->pd_points - 1]);
2762 
2763 			/* Override minimum so that we don't get
2764 			 * out of bounds while extrapolating
2765 			 * below. Don't do this when we have 2
2766 			 * curves and we are on the high power curve
2767 			 * because table_min is ok in this case */
2768 			if (!(ee->ee_pd_gains[ee_mode] > 1 && pdg == 0)) {
2769 
2770 				table_min[pdg] =
2771 					ath5k_get_linear_pcdac_min(pdg_L->pd_step,
2772 								pdg_R->pd_step,
2773 								pdg_L->pd_pwr,
2774 								pdg_R->pd_pwr);
2775 
2776 				/* Don't go too low because we will
2777 				 * miss the upper part of the curve.
2778 				 * Note: 126 = 31.5dB (max power supported)
2779 				 * in 0.25dB units */
2780 				if (table_max[pdg] - table_min[pdg] > 126)
2781 					table_min[pdg] = table_max[pdg] - 126;
2782 			}
2783 
2784 			/* Fall through */
2785 		case AR5K_PWRTABLE_PWR_TO_PCDAC:
2786 		case AR5K_PWRTABLE_PWR_TO_PDADC:
2787 
2788 			ath5k_create_power_curve(table_min[pdg],
2789 						table_max[pdg],
2790 						pdg_L->pd_pwr,
2791 						pdg_L->pd_step,
2792 						pdg_L->pd_points, tmpL, type);
2793 
2794 			/* We are in a calibration
2795 			 * pier, no need to interpolate
2796 			 * between freq piers */
2797 			if (pcinfo_L == pcinfo_R)
2798 				continue;
2799 
2800 			ath5k_create_power_curve(table_min[pdg],
2801 						table_max[pdg],
2802 						pdg_R->pd_pwr,
2803 						pdg_R->pd_step,
2804 						pdg_R->pd_points, tmpR, type);
2805 			break;
2806 		default:
2807 			return -EINVAL;
2808 		}
2809 
2810 		/* Interpolate between curves
2811 		 * of surounding freq piers to
2812 		 * get the final curve for this
2813 		 * pd gain. Re-use tmpL for interpolation
2814 		 * output */
2815 		for (i = 0; (i < (u16) (table_max[pdg] - table_min[pdg])) &&
2816 		(i < AR5K_EEPROM_POWER_TABLE_SIZE); i++) {
2817 			tmpL[i] = (u8) ath5k_get_interpolated_value(target,
2818 							(s16) pcinfo_L->freq,
2819 							(s16) pcinfo_R->freq,
2820 							(s16) tmpL[i],
2821 							(s16) tmpR[i]);
2822 		}
2823 	}
2824 
2825 	/* Now we have a set of curves for this
2826 	 * channel on tmpL (x range is table_max - table_min
2827 	 * and y values are tmpL[pdg][]) sorted in the same
2828 	 * order as EEPROM (because we've used the backmapping).
2829 	 * So for RF5112 it's from higher power to lower power
2830 	 * and for RF2413 it's from lower power to higher power.
2831 	 * For RF5111 we only have one curve. */
2832 
2833 	/* Fill min and max power levels for this
2834 	 * channel by interpolating the values on
2835 	 * surounding channels to complete the dataset */
2836 	ah->ah_txpower.txp_min_pwr = ath5k_get_interpolated_value(target,
2837 					(s16) pcinfo_L->freq,
2838 					(s16) pcinfo_R->freq,
2839 					pcinfo_L->min_pwr, pcinfo_R->min_pwr);
2840 
2841 	ah->ah_txpower.txp_max_pwr = ath5k_get_interpolated_value(target,
2842 					(s16) pcinfo_L->freq,
2843 					(s16) pcinfo_R->freq,
2844 					pcinfo_L->max_pwr, pcinfo_R->max_pwr);
2845 
2846 	/* We are ready to go, fill PCDAC/PDADC
2847 	 * table and write settings on hardware */
2848 	switch (type) {
2849 	case AR5K_PWRTABLE_LINEAR_PCDAC:
2850 		/* For RF5112 we can have one or two curves
2851 		 * and each curve covers a certain power lvl
2852 		 * range so we need to do some more processing */
2853 		ath5k_combine_linear_pcdac_curves(ah, table_min, table_max,
2854 						ee->ee_pd_gains[ee_mode]);
2855 
2856 		/* Set txp.offset so that we can
2857 		 * match max power value with max
2858 		 * table index */
2859 		ah->ah_txpower.txp_offset = 64 - (table_max[0] / 2);
2860 
2861 		/* Write settings on hw */
2862 		ath5k_setup_pcdac_table(ah);
2863 		break;
2864 	case AR5K_PWRTABLE_PWR_TO_PCDAC:
2865 		/* We are done for RF5111 since it has only
2866 		 * one curve, just fit the curve on the table */
2867 		ath5k_fill_pwr_to_pcdac_table(ah, table_min, table_max);
2868 
2869 		/* No rate powertable adjustment for RF5111 */
2870 		ah->ah_txpower.txp_min_idx = 0;
2871 		ah->ah_txpower.txp_offset = 0;
2872 
2873 		/* Write settings on hw */
2874 		ath5k_setup_pcdac_table(ah);
2875 		break;
2876 	case AR5K_PWRTABLE_PWR_TO_PDADC:
2877 		/* Set PDADC boundaries and fill
2878 		 * final PDADC table */
2879 		ath5k_combine_pwr_to_pdadc_curves(ah, table_min, table_max,
2880 						ee->ee_pd_gains[ee_mode]);
2881 
2882 		/* Write settings on hw */
2883 		ath5k_setup_pwr_to_pdadc_table(ah, pdg, pdg_curve_to_idx);
2884 
2885 		/* Set txp.offset, note that table_min
2886 		 * can be negative */
2887 		ah->ah_txpower.txp_offset = table_min[0];
2888 		break;
2889 	default:
2890 		return -EINVAL;
2891 	}
2892 
2893 	return 0;
2894 }
2895 
2896 
2897 /*
2898  * Per-rate tx power setting
2899  *
2900  * This is the code that sets the desired tx power (below
2901  * maximum) on hw for each rate (we also have TPC that sets
2902  * power per packet). We do that by providing an index on the
2903  * PCDAC/PDADC table we set up.
2904  */
2905 
2906 /*
2907  * Set rate power table
2908  *
2909  * For now we only limit txpower based on maximum tx power
2910  * supported by hw (what's inside rate_info). We need to limit
2911  * this even more, based on regulatory domain etc.
2912  *
2913  * Rate power table contains indices to PCDAC/PDADC table (0.5dB steps)
2914  * and is indexed as follows:
2915  * rates[0] - rates[7] -> OFDM rates
2916  * rates[8] - rates[14] -> CCK rates
2917  * rates[15] -> XR rates (they all have the same power)
2918  */
2919 static void
2920 ath5k_setup_rate_powertable(struct ath5k_hw *ah, u16 max_pwr,
2921 			struct ath5k_rate_pcal_info *rate_info,
2922 			u8 ee_mode)
2923 {
2924 	unsigned int i;
2925 	u16 *rates;
2926 
2927 	/* max_pwr is power level we got from driver/user in 0.5dB
2928 	 * units, switch to 0.25dB units so we can compare */
2929 	max_pwr *= 2;
2930 	max_pwr = min(max_pwr, (u16) ah->ah_txpower.txp_max_pwr) / 2;
2931 
2932 	/* apply rate limits */
2933 	rates = ah->ah_txpower.txp_rates_power_table;
2934 
2935 	/* OFDM rates 6 to 24Mb/s */
2936 	for (i = 0; i < 5; i++)
2937 		rates[i] = min(max_pwr, rate_info->target_power_6to24);
2938 
2939 	/* Rest OFDM rates */
2940 	rates[5] = min(rates[0], rate_info->target_power_36);
2941 	rates[6] = min(rates[0], rate_info->target_power_48);
2942 	rates[7] = min(rates[0], rate_info->target_power_54);
2943 
2944 	/* CCK rates */
2945 	/* 1L */
2946 	rates[8] = min(rates[0], rate_info->target_power_6to24);
2947 	/* 2L */
2948 	rates[9] = min(rates[0], rate_info->target_power_36);
2949 	/* 2S */
2950 	rates[10] = min(rates[0], rate_info->target_power_36);
2951 	/* 5L */
2952 	rates[11] = min(rates[0], rate_info->target_power_48);
2953 	/* 5S */
2954 	rates[12] = min(rates[0], rate_info->target_power_48);
2955 	/* 11L */
2956 	rates[13] = min(rates[0], rate_info->target_power_54);
2957 	/* 11S */
2958 	rates[14] = min(rates[0], rate_info->target_power_54);
2959 
2960 	/* XR rates */
2961 	rates[15] = min(rates[0], rate_info->target_power_6to24);
2962 
2963 	/* CCK rates have different peak to average ratio
2964 	 * so we have to tweak their power so that gainf
2965 	 * correction works ok. For this we use OFDM to
2966 	 * CCK delta from eeprom */
2967 	if ((ee_mode == AR5K_EEPROM_MODE_11G) &&
2968 	(ah->ah_phy_revision < AR5K_SREV_PHY_5212A))
2969 		for (i = 8; i <= 15; i++)
2970 			rates[i] -= ah->ah_txpower.txp_cck_ofdm_gainf_delta;
2971 
2972 	/* Now that we have all rates setup use table offset to
2973 	 * match the power range set by user with the power indices
2974 	 * on PCDAC/PDADC table */
2975 	for (i = 0; i < 16; i++) {
2976 		rates[i] += ah->ah_txpower.txp_offset;
2977 		/* Don't get out of bounds */
2978 		if (rates[i] > 63)
2979 			rates[i] = 63;
2980 	}
2981 
2982 	/* Min/max in 0.25dB units */
2983 	ah->ah_txpower.txp_min_pwr = 2 * rates[7];
2984 	ah->ah_txpower.txp_max_pwr = 2 * rates[0];
2985 	ah->ah_txpower.txp_ofdm = rates[7];
2986 }
2987 
2988 
2989 /*
2990  * Set transmition power
2991  */
2992 int
2993 ath5k_hw_txpower(struct ath5k_hw *ah, struct ieee80211_channel *channel,
2994 		u8 ee_mode, u8 txpower)
2995 {
2996 	struct ath5k_rate_pcal_info rate_info;
2997 	u8 type;
2998 	int ret;
2999 
3000 	if (txpower > AR5K_TUNE_MAX_TXPOWER) {
3001 		ATH5K_ERR(ah->ah_sc, "invalid tx power: %u\n", txpower);
3002 		return -EINVAL;
3003 	}
3004 
3005 	/* Reset TX power values */
3006 	memset(&ah->ah_txpower, 0, sizeof(ah->ah_txpower));
3007 	ah->ah_txpower.txp_tpc = AR5K_TUNE_TPC_TXPOWER;
3008 	ah->ah_txpower.txp_min_pwr = 0;
3009 	ah->ah_txpower.txp_max_pwr = AR5K_TUNE_MAX_TXPOWER;
3010 
3011 	/* Initialize TX power table */
3012 	switch (ah->ah_radio) {
3013 	case AR5K_RF5111:
3014 		type = AR5K_PWRTABLE_PWR_TO_PCDAC;
3015 		break;
3016 	case AR5K_RF5112:
3017 		type = AR5K_PWRTABLE_LINEAR_PCDAC;
3018 		break;
3019 	case AR5K_RF2413:
3020 	case AR5K_RF5413:
3021 	case AR5K_RF2316:
3022 	case AR5K_RF2317:
3023 	case AR5K_RF2425:
3024 		type = AR5K_PWRTABLE_PWR_TO_PDADC;
3025 		break;
3026 	default:
3027 		return -EINVAL;
3028 	}
3029 
3030 	/* FIXME: Only on channel/mode change */
3031 	ret = ath5k_setup_channel_powertable(ah, channel, ee_mode, type);
3032 	if (ret)
3033 		return ret;
3034 
3035 	/* Limit max power if we have a CTL available */
3036 	ath5k_get_max_ctl_power(ah, channel);
3037 
3038 	/* FIXME: Antenna reduction stuff */
3039 
3040 	/* FIXME: Limit power on turbo modes */
3041 
3042 	/* FIXME: TPC scale reduction */
3043 
3044 	/* Get surounding channels for per-rate power table
3045 	 * calibration */
3046 	ath5k_get_rate_pcal_data(ah, channel, &rate_info);
3047 
3048 	/* Setup rate power table */
3049 	ath5k_setup_rate_powertable(ah, txpower, &rate_info, ee_mode);
3050 
3051 	/* Write rate power table on hw */
3052 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(3, 24) |
3053 		AR5K_TXPOWER_OFDM(2, 16) | AR5K_TXPOWER_OFDM(1, 8) |
3054 		AR5K_TXPOWER_OFDM(0, 0), AR5K_PHY_TXPOWER_RATE1);
3055 
3056 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_OFDM(7, 24) |
3057 		AR5K_TXPOWER_OFDM(6, 16) | AR5K_TXPOWER_OFDM(5, 8) |
3058 		AR5K_TXPOWER_OFDM(4, 0), AR5K_PHY_TXPOWER_RATE2);
3059 
3060 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(10, 24) |
3061 		AR5K_TXPOWER_CCK(9, 16) | AR5K_TXPOWER_CCK(15, 8) |
3062 		AR5K_TXPOWER_CCK(8, 0), AR5K_PHY_TXPOWER_RATE3);
3063 
3064 	ath5k_hw_reg_write(ah, AR5K_TXPOWER_CCK(14, 24) |
3065 		AR5K_TXPOWER_CCK(13, 16) | AR5K_TXPOWER_CCK(12, 8) |
3066 		AR5K_TXPOWER_CCK(11, 0), AR5K_PHY_TXPOWER_RATE4);
3067 
3068 	/* FIXME: TPC support */
3069 	if (ah->ah_txpower.txp_tpc) {
3070 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX_TPC_ENABLE |
3071 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3072 
3073 		ath5k_hw_reg_write(ah,
3074 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_ACK) |
3075 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CTS) |
3076 			AR5K_REG_MS(AR5K_TUNE_MAX_TXPOWER, AR5K_TPC_CHIRP),
3077 			AR5K_TPC);
3078 	} else {
3079 		ath5k_hw_reg_write(ah, AR5K_PHY_TXPOWER_RATE_MAX |
3080 			AR5K_TUNE_MAX_TXPOWER, AR5K_PHY_TXPOWER_RATE_MAX);
3081 	}
3082 
3083 	return 0;
3084 }
3085 
3086 int ath5k_hw_set_txpower_limit(struct ath5k_hw *ah, u8 txpower)
3087 {
3088 	/*Just a try M.F.*/
3089 	struct ieee80211_channel *channel = ah->ah_current_channel;
3090 	u8 ee_mode;
3091 
3092 	switch (channel->hw_value & CHANNEL_MODES) {
3093 	case CHANNEL_A:
3094 	case CHANNEL_T:
3095 	case CHANNEL_XR:
3096 		ee_mode = AR5K_EEPROM_MODE_11A;
3097 		break;
3098 	case CHANNEL_G:
3099 	case CHANNEL_TG:
3100 		ee_mode = AR5K_EEPROM_MODE_11G;
3101 		break;
3102 	case CHANNEL_B:
3103 		ee_mode = AR5K_EEPROM_MODE_11B;
3104 		break;
3105 	default:
3106 		ATH5K_ERR(ah->ah_sc,
3107 			"invalid channel: %d\n", channel->center_freq);
3108 		return -EINVAL;
3109 	}
3110 
3111 	ATH5K_DBG(ah->ah_sc, ATH5K_DEBUG_TXPOWER,
3112 		"changing txpower to %d\n", txpower);
3113 
3114 	return ath5k_hw_txpower(ah, channel, ee_mode, txpower);
3115 }
3116