xref: /openbmc/linux/drivers/net/wireless/ath/ath5k/eeprom.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
3  * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4  * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
5  *
6  * Permission to use, copy, modify, and distribute this software for any
7  * purpose with or without fee is hereby granted, provided that the above
8  * copyright notice and this permission notice appear in all copies.
9  *
10  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17  *
18  */
19 
20 /*************************************\
21 * EEPROM access functions and helpers *
22 \*************************************/
23 
24 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
25 
26 #include <linux/slab.h>
27 
28 #include "ath5k.h"
29 #include "reg.h"
30 #include "debug.h"
31 
32 
33 /******************\
34 * Helper functions *
35 \******************/
36 
37 /*
38  * Translate binary channel representation in EEPROM to frequency
39  */
40 static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
41 							unsigned int mode)
42 {
43 	u16 val;
44 
45 	if (bin == AR5K_EEPROM_CHANNEL_DIS)
46 		return bin;
47 
48 	if (mode == AR5K_EEPROM_MODE_11A) {
49 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
50 			val = (5 * bin) + 4800;
51 		else
52 			val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
53 				(bin * 10) + 5100;
54 	} else {
55 		if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
56 			val = bin + 2300;
57 		else
58 			val = bin + 2400;
59 	}
60 
61 	return val;
62 }
63 
64 
65 /*********\
66 * Parsers *
67 \*********/
68 
69 /*
70  * Initialize eeprom & capabilities structs
71  */
72 static int
73 ath5k_eeprom_init_header(struct ath5k_hw *ah)
74 {
75 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
76 	u16 val;
77 	u32 cksum, offset, eep_max = AR5K_EEPROM_INFO_MAX;
78 
79 	/*
80 	 * Read values from EEPROM and store them in the capability structure
81 	 */
82 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
83 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
84 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
85 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
86 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
87 
88 	/* Return if we have an old EEPROM */
89 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
90 		return 0;
91 
92 	/*
93 	 * Validate the checksum of the EEPROM date. There are some
94 	 * devices with invalid EEPROMs.
95 	 */
96 	AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_UPPER, val);
97 	if (val) {
98 		eep_max = (val & AR5K_EEPROM_SIZE_UPPER_MASK) <<
99 			   AR5K_EEPROM_SIZE_ENDLOC_SHIFT;
100 		AR5K_EEPROM_READ(AR5K_EEPROM_SIZE_LOWER, val);
101 		eep_max = (eep_max | val) - AR5K_EEPROM_INFO_BASE;
102 
103 		/*
104 		 * Fail safe check to prevent stupid loops due
105 		 * to busted EEPROMs. XXX: This value is likely too
106 		 * big still, waiting on a better value.
107 		 */
108 		if (eep_max > (3 * AR5K_EEPROM_INFO_MAX)) {
109 			ATH5K_ERR(ah, "Invalid max custom EEPROM size: "
110 				  "%d (0x%04x) max expected: %d (0x%04x)\n",
111 				  eep_max, eep_max,
112 				  3 * AR5K_EEPROM_INFO_MAX,
113 				  3 * AR5K_EEPROM_INFO_MAX);
114 			return -EIO;
115 		}
116 	}
117 
118 	for (cksum = 0, offset = 0; offset < eep_max; offset++) {
119 		AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
120 		cksum ^= val;
121 	}
122 	if (cksum != AR5K_EEPROM_INFO_CKSUM) {
123 		ATH5K_ERR(ah, "Invalid EEPROM "
124 			  "checksum: 0x%04x eep_max: 0x%04x (%s)\n",
125 			  cksum, eep_max,
126 			  eep_max == AR5K_EEPROM_INFO_MAX ?
127 				"default size" : "custom size");
128 		return -EIO;
129 	}
130 
131 	AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
132 	    ee_ant_gain);
133 
134 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
135 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
136 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
137 
138 		/* XXX: Don't know which versions include these two */
139 		AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
140 
141 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
142 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
143 
144 		if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
145 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
146 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
147 			AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
148 		}
149 	}
150 
151 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
152 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
153 		ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
154 		ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
155 
156 		AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
157 		ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
158 		ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
159 	}
160 
161 	AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
162 
163 	if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
164 		ee->ee_is_hb63 = true;
165 	else
166 		ee->ee_is_hb63 = false;
167 
168 	AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
169 	ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
170 	ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
171 
172 	/* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
173 	 * and enable serdes programming if needed.
174 	 *
175 	 * XXX: Serdes values seem to be fixed so
176 	 * no need to read them here, we write them
177 	 * during ath5k_hw_init */
178 	AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
179 	ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
180 							true : false;
181 
182 	return 0;
183 }
184 
185 
186 /*
187  * Read antenna infos from eeprom
188  */
189 static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
190 		unsigned int mode)
191 {
192 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
193 	u32 o = *offset;
194 	u16 val;
195 	int i = 0;
196 
197 	AR5K_EEPROM_READ(o++, val);
198 	ee->ee_switch_settling[mode]	= (val >> 8) & 0x7f;
199 	ee->ee_atn_tx_rx[mode]		= (val >> 2) & 0x3f;
200 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
201 
202 	AR5K_EEPROM_READ(o++, val);
203 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
204 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
205 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
206 
207 	AR5K_EEPROM_READ(o++, val);
208 	ee->ee_ant_control[mode][i++]	= (val >> 10) & 0x3f;
209 	ee->ee_ant_control[mode][i++]	= (val >> 4) & 0x3f;
210 	ee->ee_ant_control[mode][i]	= (val << 2) & 0x3f;
211 
212 	AR5K_EEPROM_READ(o++, val);
213 	ee->ee_ant_control[mode][i++]	|= (val >> 14) & 0x3;
214 	ee->ee_ant_control[mode][i++]	= (val >> 8) & 0x3f;
215 	ee->ee_ant_control[mode][i++]	= (val >> 2) & 0x3f;
216 	ee->ee_ant_control[mode][i]	= (val << 4) & 0x3f;
217 
218 	AR5K_EEPROM_READ(o++, val);
219 	ee->ee_ant_control[mode][i++]	|= (val >> 12) & 0xf;
220 	ee->ee_ant_control[mode][i++]	= (val >> 6) & 0x3f;
221 	ee->ee_ant_control[mode][i++]	= val & 0x3f;
222 
223 	/* Get antenna switch tables */
224 	ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
225 	    (ee->ee_ant_control[mode][0] << 4);
226 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
227 	     ee->ee_ant_control[mode][1]	|
228 	    (ee->ee_ant_control[mode][2] << 6)	|
229 	    (ee->ee_ant_control[mode][3] << 12) |
230 	    (ee->ee_ant_control[mode][4] << 18) |
231 	    (ee->ee_ant_control[mode][5] << 24);
232 	ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
233 	     ee->ee_ant_control[mode][6]	|
234 	    (ee->ee_ant_control[mode][7] << 6)	|
235 	    (ee->ee_ant_control[mode][8] << 12) |
236 	    (ee->ee_ant_control[mode][9] << 18) |
237 	    (ee->ee_ant_control[mode][10] << 24);
238 
239 	/* return new offset */
240 	*offset = o;
241 
242 	return 0;
243 }
244 
245 /*
246  * Read supported modes and some mode-specific calibration data
247  * from eeprom
248  */
249 static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
250 		unsigned int mode)
251 {
252 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
253 	u32 o = *offset;
254 	u16 val;
255 
256 	ee->ee_n_piers[mode] = 0;
257 	AR5K_EEPROM_READ(o++, val);
258 	ee->ee_adc_desired_size[mode]	= (s8)((val >> 8) & 0xff);
259 	switch (mode) {
260 	case AR5K_EEPROM_MODE_11A:
261 		ee->ee_ob[mode][3]	= (val >> 5) & 0x7;
262 		ee->ee_db[mode][3]	= (val >> 2) & 0x7;
263 		ee->ee_ob[mode][2]	= (val << 1) & 0x7;
264 
265 		AR5K_EEPROM_READ(o++, val);
266 		ee->ee_ob[mode][2]	|= (val >> 15) & 0x1;
267 		ee->ee_db[mode][2]	= (val >> 12) & 0x7;
268 		ee->ee_ob[mode][1]	= (val >> 9) & 0x7;
269 		ee->ee_db[mode][1]	= (val >> 6) & 0x7;
270 		ee->ee_ob[mode][0]	= (val >> 3) & 0x7;
271 		ee->ee_db[mode][0]	= val & 0x7;
272 		break;
273 	case AR5K_EEPROM_MODE_11G:
274 	case AR5K_EEPROM_MODE_11B:
275 		ee->ee_ob[mode][1]	= (val >> 4) & 0x7;
276 		ee->ee_db[mode][1]	= val & 0x7;
277 		break;
278 	}
279 
280 	AR5K_EEPROM_READ(o++, val);
281 	ee->ee_tx_end2xlna_enable[mode]	= (val >> 8) & 0xff;
282 	ee->ee_thr_62[mode]		= val & 0xff;
283 
284 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
285 		ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
286 
287 	AR5K_EEPROM_READ(o++, val);
288 	ee->ee_tx_end2xpa_disable[mode]	= (val >> 8) & 0xff;
289 	ee->ee_tx_frm2xpa_enable[mode]	= val & 0xff;
290 
291 	AR5K_EEPROM_READ(o++, val);
292 	ee->ee_pga_desired_size[mode]	= (val >> 8) & 0xff;
293 
294 	if ((val & 0xff) & 0x80)
295 		ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
296 	else
297 		ee->ee_noise_floor_thr[mode] = val & 0xff;
298 
299 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
300 		ee->ee_noise_floor_thr[mode] =
301 		    mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
302 
303 	AR5K_EEPROM_READ(o++, val);
304 	ee->ee_xlna_gain[mode]		= (val >> 5) & 0xff;
305 	ee->ee_x_gain[mode]		= (val >> 1) & 0xf;
306 	ee->ee_xpd[mode]		= val & 0x1;
307 
308 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
309 	    mode != AR5K_EEPROM_MODE_11B)
310 		ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
311 
312 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
313 		AR5K_EEPROM_READ(o++, val);
314 		ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
315 
316 		if (mode == AR5K_EEPROM_MODE_11A)
317 			ee->ee_xr_power[mode] = val & 0x3f;
318 		else {
319 			/* b_DB_11[bg] and b_OB_11[bg] */
320 			ee->ee_ob[mode][0] = val & 0x7;
321 			ee->ee_db[mode][0] = (val >> 3) & 0x7;
322 		}
323 	}
324 
325 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
326 		ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
327 		ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
328 	} else {
329 		ee->ee_i_gain[mode] = (val >> 13) & 0x7;
330 
331 		AR5K_EEPROM_READ(o++, val);
332 		ee->ee_i_gain[mode] |= (val << 3) & 0x38;
333 
334 		if (mode == AR5K_EEPROM_MODE_11G) {
335 			ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
336 			if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
337 				ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
338 		}
339 	}
340 
341 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
342 			mode == AR5K_EEPROM_MODE_11A) {
343 		ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
344 		ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
345 	}
346 
347 	if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
348 		goto done;
349 
350 	/* Note: >= v5 have bg freq piers on another location
351 	 * so these freq piers are ignored for >= v5 (should be 0xff
352 	 * anyway) */
353 	switch (mode) {
354 	case AR5K_EEPROM_MODE_11A:
355 		if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
356 			break;
357 
358 		AR5K_EEPROM_READ(o++, val);
359 		ee->ee_margin_tx_rx[mode] = val & 0x3f;
360 		break;
361 	case AR5K_EEPROM_MODE_11B:
362 		AR5K_EEPROM_READ(o++, val);
363 
364 		ee->ee_pwr_cal_b[0].freq =
365 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
366 		if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
367 			ee->ee_n_piers[mode]++;
368 
369 		ee->ee_pwr_cal_b[1].freq =
370 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
371 		if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
372 			ee->ee_n_piers[mode]++;
373 
374 		AR5K_EEPROM_READ(o++, val);
375 		ee->ee_pwr_cal_b[2].freq =
376 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
377 		if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
378 			ee->ee_n_piers[mode]++;
379 
380 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
381 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
382 		break;
383 	case AR5K_EEPROM_MODE_11G:
384 		AR5K_EEPROM_READ(o++, val);
385 
386 		ee->ee_pwr_cal_g[0].freq =
387 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
388 		if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
389 			ee->ee_n_piers[mode]++;
390 
391 		ee->ee_pwr_cal_g[1].freq =
392 			ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
393 		if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
394 			ee->ee_n_piers[mode]++;
395 
396 		AR5K_EEPROM_READ(o++, val);
397 		ee->ee_turbo_max_power[mode] = val & 0x7f;
398 		ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
399 
400 		AR5K_EEPROM_READ(o++, val);
401 		ee->ee_pwr_cal_g[2].freq =
402 			ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
403 		if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
404 			ee->ee_n_piers[mode]++;
405 
406 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
407 			ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
408 
409 		AR5K_EEPROM_READ(o++, val);
410 		ee->ee_i_cal[mode] = (val >> 5) & 0x3f;
411 		ee->ee_q_cal[mode] = val & 0x1f;
412 
413 		if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
414 			AR5K_EEPROM_READ(o++, val);
415 			ee->ee_cck_ofdm_gain_delta = val & 0xff;
416 		}
417 		break;
418 	}
419 
420 	/*
421 	 * Read turbo mode information on newer EEPROM versions
422 	 */
423 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
424 		goto done;
425 
426 	switch (mode) {
427 	case AR5K_EEPROM_MODE_11A:
428 		ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
429 
430 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
431 		AR5K_EEPROM_READ(o++, val);
432 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
433 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
434 
435 		ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
436 		AR5K_EEPROM_READ(o++, val);
437 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
438 		ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
439 
440 		if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >= 2)
441 			ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
442 		break;
443 	case AR5K_EEPROM_MODE_11G:
444 		ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
445 
446 		ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
447 		AR5K_EEPROM_READ(o++, val);
448 		ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
449 		ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
450 
451 		ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
452 		AR5K_EEPROM_READ(o++, val);
453 		ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
454 		ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
455 		break;
456 	}
457 
458 done:
459 	/* return new offset */
460 	*offset = o;
461 
462 	return 0;
463 }
464 
465 /* Read mode-specific data (except power calibration data) */
466 static int
467 ath5k_eeprom_init_modes(struct ath5k_hw *ah)
468 {
469 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
470 	u32 mode_offset[3];
471 	unsigned int mode;
472 	u32 offset;
473 	int ret;
474 
475 	/*
476 	 * Get values for all modes
477 	 */
478 	mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
479 	mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
480 	mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
481 
482 	ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
483 		AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
484 
485 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
486 		offset = mode_offset[mode];
487 
488 		ret = ath5k_eeprom_read_ants(ah, &offset, mode);
489 		if (ret)
490 			return ret;
491 
492 		ret = ath5k_eeprom_read_modes(ah, &offset, mode);
493 		if (ret)
494 			return ret;
495 	}
496 
497 	/* override for older eeprom versions for better performance */
498 	if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
499 		ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
500 		ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
501 		ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
502 	}
503 
504 	return 0;
505 }
506 
507 /* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
508  * frequency mask) */
509 static inline int
510 ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
511 			struct ath5k_chan_pcal_info *pc, unsigned int mode)
512 {
513 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
514 	int o = *offset;
515 	int i = 0;
516 	u8 freq1, freq2;
517 	u16 val;
518 
519 	ee->ee_n_piers[mode] = 0;
520 	while (i < max) {
521 		AR5K_EEPROM_READ(o++, val);
522 
523 		freq1 = val & 0xff;
524 		if (!freq1)
525 			break;
526 
527 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
528 				freq1, mode);
529 		ee->ee_n_piers[mode]++;
530 
531 		freq2 = (val >> 8) & 0xff;
532 		if (!freq2)
533 			break;
534 
535 		pc[i++].freq = ath5k_eeprom_bin2freq(ee,
536 				freq2, mode);
537 		ee->ee_n_piers[mode]++;
538 	}
539 
540 	/* return new offset */
541 	*offset = o;
542 
543 	return 0;
544 }
545 
546 /* Read frequency piers for 802.11a */
547 static int
548 ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
549 {
550 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
551 	struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
552 	int i;
553 	u16 val;
554 	u8 mask;
555 
556 	if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
557 		ath5k_eeprom_read_freq_list(ah, &offset,
558 			AR5K_EEPROM_N_5GHZ_CHAN, pcal,
559 			AR5K_EEPROM_MODE_11A);
560 	} else {
561 		mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
562 
563 		AR5K_EEPROM_READ(offset++, val);
564 		pcal[0].freq  = (val >> 9) & mask;
565 		pcal[1].freq  = (val >> 2) & mask;
566 		pcal[2].freq  = (val << 5) & mask;
567 
568 		AR5K_EEPROM_READ(offset++, val);
569 		pcal[2].freq |= (val >> 11) & 0x1f;
570 		pcal[3].freq  = (val >> 4) & mask;
571 		pcal[4].freq  = (val << 3) & mask;
572 
573 		AR5K_EEPROM_READ(offset++, val);
574 		pcal[4].freq |= (val >> 13) & 0x7;
575 		pcal[5].freq  = (val >> 6) & mask;
576 		pcal[6].freq  = (val << 1) & mask;
577 
578 		AR5K_EEPROM_READ(offset++, val);
579 		pcal[6].freq |= (val >> 15) & 0x1;
580 		pcal[7].freq  = (val >> 8) & mask;
581 		pcal[8].freq  = (val >> 1) & mask;
582 		pcal[9].freq  = (val << 6) & mask;
583 
584 		AR5K_EEPROM_READ(offset++, val);
585 		pcal[9].freq |= (val >> 10) & 0x3f;
586 
587 		/* Fixed number of piers */
588 		ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
589 
590 		for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
591 			pcal[i].freq = ath5k_eeprom_bin2freq(ee,
592 				pcal[i].freq, AR5K_EEPROM_MODE_11A);
593 		}
594 	}
595 
596 	return 0;
597 }
598 
599 /* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
600 static inline int
601 ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
602 {
603 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
604 	struct ath5k_chan_pcal_info *pcal;
605 
606 	switch (mode) {
607 	case AR5K_EEPROM_MODE_11B:
608 		pcal = ee->ee_pwr_cal_b;
609 		break;
610 	case AR5K_EEPROM_MODE_11G:
611 		pcal = ee->ee_pwr_cal_g;
612 		break;
613 	default:
614 		return -EINVAL;
615 	}
616 
617 	ath5k_eeprom_read_freq_list(ah, &offset,
618 		AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
619 		mode);
620 
621 	return 0;
622 }
623 
624 
625 /*
626  * Read power calibration for RF5111 chips
627  *
628  * For RF5111 we have an XPD -eXternal Power Detector- curve
629  * for each calibrated channel. Each curve has 0,5dB Power steps
630  * on x axis and PCDAC steps (offsets) on y axis and looks like an
631  * exponential function. To recreate the curve we read 11 points
632  * here and interpolate later.
633  */
634 
635 /* Used to match PCDAC steps with power values on RF5111 chips
636  * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
637  * steps that match with the power values we read from eeprom. On
638  * older eeprom versions (< 3.2) these steps are equally spaced at
639  * 10% of the pcdac curve -until the curve reaches its maximum-
640  * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
641  * these 11 steps are spaced in a different way. This function returns
642  * the pcdac steps based on eeprom version and curve min/max so that we
643  * can have pcdac/pwr points.
644  */
645 static inline void
646 ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
647 {
648 	static const u16 intercepts3[] = {
649 		0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100
650 	};
651 	static const u16 intercepts3_2[] = {
652 		0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100
653 	};
654 	const u16 *ip;
655 	int i;
656 
657 	if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
658 		ip = intercepts3_2;
659 	else
660 		ip = intercepts3;
661 
662 	for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
663 		vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
664 }
665 
666 static int
667 ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
668 {
669 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
670 	struct ath5k_chan_pcal_info *chinfo;
671 	u8 pier, pdg;
672 
673 	switch (mode) {
674 	case AR5K_EEPROM_MODE_11A:
675 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
676 			return 0;
677 		chinfo = ee->ee_pwr_cal_a;
678 		break;
679 	case AR5K_EEPROM_MODE_11B:
680 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
681 			return 0;
682 		chinfo = ee->ee_pwr_cal_b;
683 		break;
684 	case AR5K_EEPROM_MODE_11G:
685 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
686 			return 0;
687 		chinfo = ee->ee_pwr_cal_g;
688 		break;
689 	default:
690 		return -EINVAL;
691 	}
692 
693 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
694 		if (!chinfo[pier].pd_curves)
695 			continue;
696 
697 		for (pdg = 0; pdg < AR5K_EEPROM_N_PD_CURVES; pdg++) {
698 			struct ath5k_pdgain_info *pd =
699 					&chinfo[pier].pd_curves[pdg];
700 
701 			kfree(pd->pd_step);
702 			kfree(pd->pd_pwr);
703 		}
704 
705 		kfree(chinfo[pier].pd_curves);
706 	}
707 
708 	return 0;
709 }
710 
711 /* Convert RF5111 specific data to generic raw data
712  * used by interpolation code */
713 static int
714 ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
715 				struct ath5k_chan_pcal_info *chinfo)
716 {
717 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
718 	struct ath5k_chan_pcal_info_rf5111 *pcinfo;
719 	struct ath5k_pdgain_info *pd;
720 	u8 pier, point, idx;
721 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
722 
723 	/* Fill raw data for each calibration pier */
724 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
725 
726 		pcinfo = &chinfo[pier].rf5111_info;
727 
728 		/* Allocate pd_curves for this cal pier */
729 		chinfo[pier].pd_curves =
730 			kcalloc(AR5K_EEPROM_N_PD_CURVES,
731 				sizeof(struct ath5k_pdgain_info),
732 				GFP_KERNEL);
733 
734 		if (!chinfo[pier].pd_curves)
735 			goto err_out;
736 
737 		/* Only one curve for RF5111
738 		 * find out which one and place
739 		 * in pd_curves.
740 		 * Note: ee_x_gain is reversed here */
741 		for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
742 
743 			if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
744 				pdgain_idx[0] = idx;
745 				break;
746 			}
747 		}
748 
749 		ee->ee_pd_gains[mode] = 1;
750 
751 		pd = &chinfo[pier].pd_curves[idx];
752 
753 		pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
754 
755 		/* Allocate pd points for this curve */
756 		pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
757 					sizeof(u8), GFP_KERNEL);
758 		if (!pd->pd_step)
759 			goto err_out;
760 
761 		pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
762 					sizeof(s16), GFP_KERNEL);
763 		if (!pd->pd_pwr)
764 			goto err_out;
765 
766 		/* Fill raw dataset
767 		 * (convert power to 0.25dB units
768 		 * for RF5112 compatibility) */
769 		for (point = 0; point < pd->pd_points; point++) {
770 
771 			/* Absolute values */
772 			pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
773 
774 			/* Already sorted */
775 			pd->pd_step[point] = pcinfo->pcdac[point];
776 		}
777 
778 		/* Set min/max pwr */
779 		chinfo[pier].min_pwr = pd->pd_pwr[0];
780 		chinfo[pier].max_pwr = pd->pd_pwr[10];
781 
782 	}
783 
784 	return 0;
785 
786 err_out:
787 	ath5k_eeprom_free_pcal_info(ah, mode);
788 	return -ENOMEM;
789 }
790 
791 /* Parse EEPROM data */
792 static int
793 ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
794 {
795 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
796 	struct ath5k_chan_pcal_info *pcal;
797 	int offset, ret;
798 	int i;
799 	u16 val;
800 
801 	offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
802 	switch (mode) {
803 	case AR5K_EEPROM_MODE_11A:
804 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
805 			return 0;
806 
807 		ret = ath5k_eeprom_init_11a_pcal_freq(ah,
808 			offset + AR5K_EEPROM_GROUP1_OFFSET);
809 		if (ret < 0)
810 			return ret;
811 
812 		offset += AR5K_EEPROM_GROUP2_OFFSET;
813 		pcal = ee->ee_pwr_cal_a;
814 		break;
815 	case AR5K_EEPROM_MODE_11B:
816 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
817 		    !AR5K_EEPROM_HDR_11G(ee->ee_header))
818 			return 0;
819 
820 		pcal = ee->ee_pwr_cal_b;
821 		offset += AR5K_EEPROM_GROUP3_OFFSET;
822 
823 		/* fixed piers */
824 		pcal[0].freq = 2412;
825 		pcal[1].freq = 2447;
826 		pcal[2].freq = 2484;
827 		ee->ee_n_piers[mode] = 3;
828 		break;
829 	case AR5K_EEPROM_MODE_11G:
830 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
831 			return 0;
832 
833 		pcal = ee->ee_pwr_cal_g;
834 		offset += AR5K_EEPROM_GROUP4_OFFSET;
835 
836 		/* fixed piers */
837 		pcal[0].freq = 2312;
838 		pcal[1].freq = 2412;
839 		pcal[2].freq = 2484;
840 		ee->ee_n_piers[mode] = 3;
841 		break;
842 	default:
843 		return -EINVAL;
844 	}
845 
846 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
847 		struct ath5k_chan_pcal_info_rf5111 *cdata =
848 			&pcal[i].rf5111_info;
849 
850 		AR5K_EEPROM_READ(offset++, val);
851 		cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
852 		cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
853 		cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
854 
855 		AR5K_EEPROM_READ(offset++, val);
856 		cdata->pwr[0] |= ((val >> 14) & 0x3);
857 		cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
858 		cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
859 		cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
860 
861 		AR5K_EEPROM_READ(offset++, val);
862 		cdata->pwr[3] |= ((val >> 12) & 0xf);
863 		cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
864 		cdata->pwr[5] = (val  & AR5K_EEPROM_POWER_M);
865 
866 		AR5K_EEPROM_READ(offset++, val);
867 		cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
868 		cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
869 		cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
870 
871 		AR5K_EEPROM_READ(offset++, val);
872 		cdata->pwr[8] |= ((val >> 14) & 0x3);
873 		cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
874 		cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
875 
876 		ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
877 			cdata->pcdac_max, cdata->pcdac);
878 	}
879 
880 	return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
881 }
882 
883 
884 /*
885  * Read power calibration for RF5112 chips
886  *
887  * For RF5112 we have 4 XPD -eXternal Power Detector- curves
888  * for each calibrated channel on 0, -6, -12 and -18dBm but we only
889  * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
890  * power steps on x axis and PCDAC steps on y axis and looks like a
891  * linear function. To recreate the curve and pass the power values
892  * on hw, we read 4 points for xpd 0 (lower gain -> max power)
893  * and 3 points for xpd 3 (higher gain -> lower power) here and
894  * interpolate later.
895  *
896  * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
897  */
898 
899 /* Convert RF5112 specific data to generic raw data
900  * used by interpolation code */
901 static int
902 ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
903 				struct ath5k_chan_pcal_info *chinfo)
904 {
905 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
906 	struct ath5k_chan_pcal_info_rf5112 *pcinfo;
907 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
908 	unsigned int pier, pdg, point;
909 
910 	/* Fill raw data for each calibration pier */
911 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
912 
913 		pcinfo = &chinfo[pier].rf5112_info;
914 
915 		/* Allocate pd_curves for this cal pier */
916 		chinfo[pier].pd_curves =
917 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
918 					sizeof(struct ath5k_pdgain_info),
919 					GFP_KERNEL);
920 
921 		if (!chinfo[pier].pd_curves)
922 			goto err_out;
923 
924 		/* Fill pd_curves */
925 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
926 
927 			u8 idx = pdgain_idx[pdg];
928 			struct ath5k_pdgain_info *pd =
929 					&chinfo[pier].pd_curves[idx];
930 
931 			/* Lowest gain curve (max power) */
932 			if (pdg == 0) {
933 				/* One more point for better accuracy */
934 				pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
935 
936 				/* Allocate pd points for this curve */
937 				pd->pd_step = kcalloc(pd->pd_points,
938 						sizeof(u8), GFP_KERNEL);
939 
940 				if (!pd->pd_step)
941 					goto err_out;
942 
943 				pd->pd_pwr = kcalloc(pd->pd_points,
944 						sizeof(s16), GFP_KERNEL);
945 
946 				if (!pd->pd_pwr)
947 					goto err_out;
948 
949 				/* Fill raw dataset
950 				 * (all power levels are in 0.25dB units) */
951 				pd->pd_step[0] = pcinfo->pcdac_x0[0];
952 				pd->pd_pwr[0] = pcinfo->pwr_x0[0];
953 
954 				for (point = 1; point < pd->pd_points;
955 				point++) {
956 					/* Absolute values */
957 					pd->pd_pwr[point] =
958 						pcinfo->pwr_x0[point];
959 
960 					/* Deltas */
961 					pd->pd_step[point] =
962 						pd->pd_step[point - 1] +
963 						pcinfo->pcdac_x0[point];
964 				}
965 
966 				/* Set min power for this frequency */
967 				chinfo[pier].min_pwr = pd->pd_pwr[0];
968 
969 			/* Highest gain curve (min power) */
970 			} else if (pdg == 1) {
971 
972 				pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
973 
974 				/* Allocate pd points for this curve */
975 				pd->pd_step = kcalloc(pd->pd_points,
976 						sizeof(u8), GFP_KERNEL);
977 
978 				if (!pd->pd_step)
979 					goto err_out;
980 
981 				pd->pd_pwr = kcalloc(pd->pd_points,
982 						sizeof(s16), GFP_KERNEL);
983 
984 				if (!pd->pd_pwr)
985 					goto err_out;
986 
987 				/* Fill raw dataset
988 				 * (all power levels are in 0.25dB units) */
989 				for (point = 0; point < pd->pd_points;
990 				point++) {
991 					/* Absolute values */
992 					pd->pd_pwr[point] =
993 						pcinfo->pwr_x3[point];
994 
995 					/* Fixed points */
996 					pd->pd_step[point] =
997 						pcinfo->pcdac_x3[point];
998 				}
999 
1000 				/* Since we have a higher gain curve
1001 				 * override min power */
1002 				chinfo[pier].min_pwr = pd->pd_pwr[0];
1003 			}
1004 		}
1005 	}
1006 
1007 	return 0;
1008 
1009 err_out:
1010 	ath5k_eeprom_free_pcal_info(ah, mode);
1011 	return -ENOMEM;
1012 }
1013 
1014 /* Parse EEPROM data */
1015 static int
1016 ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
1017 {
1018 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1019 	struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
1020 	struct ath5k_chan_pcal_info *gen_chan_info;
1021 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1022 	u32 offset;
1023 	u8 i, c;
1024 	u16 val;
1025 	u8 pd_gains = 0;
1026 
1027 	/* Count how many curves we have and
1028 	 * identify them (which one of the 4
1029 	 * available curves we have on each count).
1030 	 * Curves are stored from lower (x0) to
1031 	 * higher (x3) gain */
1032 	for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
1033 		/* ee_x_gain[mode] is x gain mask */
1034 		if ((ee->ee_x_gain[mode] >> i) & 0x1)
1035 			pdgain_idx[pd_gains++] = i;
1036 	}
1037 	ee->ee_pd_gains[mode] = pd_gains;
1038 
1039 	if (pd_gains == 0 || pd_gains > 2)
1040 		return -EINVAL;
1041 
1042 	switch (mode) {
1043 	case AR5K_EEPROM_MODE_11A:
1044 		/*
1045 		 * Read 5GHz EEPROM channels
1046 		 */
1047 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1048 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1049 
1050 		offset += AR5K_EEPROM_GROUP2_OFFSET;
1051 		gen_chan_info = ee->ee_pwr_cal_a;
1052 		break;
1053 	case AR5K_EEPROM_MODE_11B:
1054 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1055 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1056 			offset += AR5K_EEPROM_GROUP3_OFFSET;
1057 
1058 		/* NB: frequency piers parsed during mode init */
1059 		gen_chan_info = ee->ee_pwr_cal_b;
1060 		break;
1061 	case AR5K_EEPROM_MODE_11G:
1062 		offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1063 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1064 			offset += AR5K_EEPROM_GROUP4_OFFSET;
1065 		else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1066 			offset += AR5K_EEPROM_GROUP2_OFFSET;
1067 
1068 		/* NB: frequency piers parsed during mode init */
1069 		gen_chan_info = ee->ee_pwr_cal_g;
1070 		break;
1071 	default:
1072 		return -EINVAL;
1073 	}
1074 
1075 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1076 		chan_pcal_info = &gen_chan_info[i].rf5112_info;
1077 
1078 		/* Power values in quarter dB
1079 		 * for the lower xpd gain curve
1080 		 * (0 dBm -> higher output power) */
1081 		for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1082 			AR5K_EEPROM_READ(offset++, val);
1083 			chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1084 			chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1085 		}
1086 
1087 		/* PCDAC steps
1088 		 * corresponding to the above power
1089 		 * measurements */
1090 		AR5K_EEPROM_READ(offset++, val);
1091 		chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1092 		chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1093 		chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
1094 
1095 		/* Power values in quarter dB
1096 		 * for the higher xpd gain curve
1097 		 * (18 dBm -> lower output power) */
1098 		AR5K_EEPROM_READ(offset++, val);
1099 		chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1100 		chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
1101 
1102 		AR5K_EEPROM_READ(offset++, val);
1103 		chan_pcal_info->pwr_x3[2] = (val & 0xff);
1104 
1105 		/* PCDAC steps
1106 		 * corresponding to the above power
1107 		 * measurements (fixed) */
1108 		chan_pcal_info->pcdac_x3[0] = 20;
1109 		chan_pcal_info->pcdac_x3[1] = 35;
1110 		chan_pcal_info->pcdac_x3[2] = 63;
1111 
1112 		if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
1113 			chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1114 
1115 			/* Last xpd0 power level is also channel maximum */
1116 			gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1117 		} else {
1118 			chan_pcal_info->pcdac_x0[0] = 1;
1119 			gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1120 		}
1121 
1122 	}
1123 
1124 	return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1125 }
1126 
1127 
1128 /*
1129  * Read power calibration for RF2413 chips
1130  *
1131  * For RF2413 we have a Power to PDDAC table (Power Detector)
1132  * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1133  * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1134  * axis and looks like an exponential function like the RF5111 curve.
1135  *
1136  * To recreate the curves we read here the points and interpolate
1137  * later. Note that in most cases only 2 (higher and lower) curves are
1138  * used (like RF5112) but vendors have the opportunity to include all
1139  * 4 curves on eeprom. The final curve (higher power) has an extra
1140  * point for better accuracy like RF5112.
1141  */
1142 
1143 /* For RF2413 power calibration data doesn't start on a fixed location and
1144  * if a mode is not supported, its section is missing -not zeroed-.
1145  * So we need to calculate the starting offset for each section by using
1146  * these two functions */
1147 
1148 /* Return the size of each section based on the mode and the number of pd
1149  * gains available (maximum 4). */
1150 static inline unsigned int
1151 ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1152 {
1153 	static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1154 	unsigned int sz;
1155 
1156 	sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1157 	sz *= ee->ee_n_piers[mode];
1158 
1159 	return sz;
1160 }
1161 
1162 /* Return the starting offset for a section based on the modes supported
1163  * and each section's size. */
1164 static unsigned int
1165 ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1166 {
1167 	u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1168 
1169 	switch (mode) {
1170 	case AR5K_EEPROM_MODE_11G:
1171 		if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1172 			offset += ath5k_pdgains_size_2413(ee,
1173 					AR5K_EEPROM_MODE_11B) +
1174 					AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1175 		/* fall through */
1176 	case AR5K_EEPROM_MODE_11B:
1177 		if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1178 			offset += ath5k_pdgains_size_2413(ee,
1179 					AR5K_EEPROM_MODE_11A) +
1180 					AR5K_EEPROM_N_5GHZ_CHAN / 2;
1181 		/* fall through */
1182 	case AR5K_EEPROM_MODE_11A:
1183 		break;
1184 	default:
1185 		break;
1186 	}
1187 
1188 	return offset;
1189 }
1190 
1191 /* Convert RF2413 specific data to generic raw data
1192  * used by interpolation code */
1193 static int
1194 ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1195 				struct ath5k_chan_pcal_info *chinfo)
1196 {
1197 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1198 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1199 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1200 	unsigned int pier, pdg, point;
1201 
1202 	/* Fill raw data for each calibration pier */
1203 	for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1204 
1205 		pcinfo = &chinfo[pier].rf2413_info;
1206 
1207 		/* Allocate pd_curves for this cal pier */
1208 		chinfo[pier].pd_curves =
1209 				kcalloc(AR5K_EEPROM_N_PD_CURVES,
1210 					sizeof(struct ath5k_pdgain_info),
1211 					GFP_KERNEL);
1212 
1213 		if (!chinfo[pier].pd_curves)
1214 			goto err_out;
1215 
1216 		/* Fill pd_curves */
1217 		for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1218 
1219 			u8 idx = pdgain_idx[pdg];
1220 			struct ath5k_pdgain_info *pd =
1221 					&chinfo[pier].pd_curves[idx];
1222 
1223 			/* One more point for the highest power
1224 			 * curve (lowest gain) */
1225 			if (pdg == ee->ee_pd_gains[mode] - 1)
1226 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1227 			else
1228 				pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1229 
1230 			/* Allocate pd points for this curve */
1231 			pd->pd_step = kcalloc(pd->pd_points,
1232 					sizeof(u8), GFP_KERNEL);
1233 
1234 			if (!pd->pd_step)
1235 				goto err_out;
1236 
1237 			pd->pd_pwr = kcalloc(pd->pd_points,
1238 					sizeof(s16), GFP_KERNEL);
1239 
1240 			if (!pd->pd_pwr)
1241 				goto err_out;
1242 
1243 			/* Fill raw dataset
1244 			 * convert all pwr levels to
1245 			 * quarter dB for RF5112 compatibility */
1246 			pd->pd_step[0] = pcinfo->pddac_i[pdg];
1247 			pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1248 
1249 			for (point = 1; point < pd->pd_points; point++) {
1250 
1251 				pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1252 					2 * pcinfo->pwr[pdg][point - 1];
1253 
1254 				pd->pd_step[point] = pd->pd_step[point - 1] +
1255 						pcinfo->pddac[pdg][point - 1];
1256 
1257 			}
1258 
1259 			/* Highest gain curve -> min power */
1260 			if (pdg == 0)
1261 				chinfo[pier].min_pwr = pd->pd_pwr[0];
1262 
1263 			/* Lowest gain curve -> max power */
1264 			if (pdg == ee->ee_pd_gains[mode] - 1)
1265 				chinfo[pier].max_pwr =
1266 					pd->pd_pwr[pd->pd_points - 1];
1267 		}
1268 	}
1269 
1270 	return 0;
1271 
1272 err_out:
1273 	ath5k_eeprom_free_pcal_info(ah, mode);
1274 	return -ENOMEM;
1275 }
1276 
1277 /* Parse EEPROM data */
1278 static int
1279 ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1280 {
1281 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1282 	struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1283 	struct ath5k_chan_pcal_info *chinfo;
1284 	u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1285 	u32 offset;
1286 	int idx, i;
1287 	u16 val;
1288 	u8 pd_gains = 0;
1289 
1290 	/* Count how many curves we have and
1291 	 * identify them (which one of the 4
1292 	 * available curves we have on each count).
1293 	 * Curves are stored from higher to
1294 	 * lower gain so we go backwards */
1295 	for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1296 		/* ee_x_gain[mode] is x gain mask */
1297 		if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1298 			pdgain_idx[pd_gains++] = idx;
1299 
1300 	}
1301 	ee->ee_pd_gains[mode] = pd_gains;
1302 
1303 	if (pd_gains == 0)
1304 		return -EINVAL;
1305 
1306 	offset = ath5k_cal_data_offset_2413(ee, mode);
1307 	switch (mode) {
1308 	case AR5K_EEPROM_MODE_11A:
1309 		if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1310 			return 0;
1311 
1312 		ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1313 		offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
1314 		chinfo = ee->ee_pwr_cal_a;
1315 		break;
1316 	case AR5K_EEPROM_MODE_11B:
1317 		if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1318 			return 0;
1319 
1320 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1321 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1322 		chinfo = ee->ee_pwr_cal_b;
1323 		break;
1324 	case AR5K_EEPROM_MODE_11G:
1325 		if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1326 			return 0;
1327 
1328 		ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1329 		offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1330 		chinfo = ee->ee_pwr_cal_g;
1331 		break;
1332 	default:
1333 		return -EINVAL;
1334 	}
1335 
1336 	for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1337 		pcinfo = &chinfo[i].rf2413_info;
1338 
1339 		/*
1340 		 * Read pwr_i, pddac_i and the first
1341 		 * 2 pd points (pwr, pddac)
1342 		 */
1343 		AR5K_EEPROM_READ(offset++, val);
1344 		pcinfo->pwr_i[0] = val & 0x1f;
1345 		pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1346 		pcinfo->pwr[0][0] = (val >> 12) & 0xf;
1347 
1348 		AR5K_EEPROM_READ(offset++, val);
1349 		pcinfo->pddac[0][0] = val & 0x3f;
1350 		pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1351 		pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1352 
1353 		AR5K_EEPROM_READ(offset++, val);
1354 		pcinfo->pwr[0][2] = val & 0xf;
1355 		pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1356 
1357 		pcinfo->pwr[0][3] = 0;
1358 		pcinfo->pddac[0][3] = 0;
1359 
1360 		if (pd_gains > 1) {
1361 			/*
1362 			 * Pd gain 0 is not the last pd gain
1363 			 * so it only has 2 pd points.
1364 			 * Continue with pd gain 1.
1365 			 */
1366 			pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1367 
1368 			pcinfo->pddac_i[1] = (val >> 15) & 0x1;
1369 			AR5K_EEPROM_READ(offset++, val);
1370 			pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1371 
1372 			pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1373 			pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1374 
1375 			AR5K_EEPROM_READ(offset++, val);
1376 			pcinfo->pwr[1][1] = val & 0xf;
1377 			pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1378 			pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1379 
1380 			pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1381 			AR5K_EEPROM_READ(offset++, val);
1382 			pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1383 
1384 			pcinfo->pwr[1][3] = 0;
1385 			pcinfo->pddac[1][3] = 0;
1386 		} else if (pd_gains == 1) {
1387 			/*
1388 			 * Pd gain 0 is the last one so
1389 			 * read the extra point.
1390 			 */
1391 			pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1392 
1393 			pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1394 			AR5K_EEPROM_READ(offset++, val);
1395 			pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1396 		}
1397 
1398 		/*
1399 		 * Proceed with the other pd_gains
1400 		 * as above.
1401 		 */
1402 		if (pd_gains > 2) {
1403 			pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1404 			pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1405 
1406 			AR5K_EEPROM_READ(offset++, val);
1407 			pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1408 			pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1409 			pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1410 
1411 			pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1412 			AR5K_EEPROM_READ(offset++, val);
1413 			pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1414 
1415 			pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1416 			pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1417 
1418 			pcinfo->pwr[2][3] = 0;
1419 			pcinfo->pddac[2][3] = 0;
1420 		} else if (pd_gains == 2) {
1421 			pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1422 			pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1423 		}
1424 
1425 		if (pd_gains > 3) {
1426 			pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1427 			AR5K_EEPROM_READ(offset++, val);
1428 			pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1429 
1430 			pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1431 			pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1432 			pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1433 
1434 			AR5K_EEPROM_READ(offset++, val);
1435 			pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1436 			pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1437 			pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1438 
1439 			pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1440 			AR5K_EEPROM_READ(offset++, val);
1441 			pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1442 
1443 			pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1444 			pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1445 
1446 			pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1447 			AR5K_EEPROM_READ(offset++, val);
1448 			pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1449 		} else if (pd_gains == 3) {
1450 			pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1451 			AR5K_EEPROM_READ(offset++, val);
1452 			pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1453 
1454 			pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
1455 		}
1456 	}
1457 
1458 	return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1459 }
1460 
1461 
1462 /*
1463  * Read per rate target power (this is the maximum tx power
1464  * supported by the card). This info is used when setting
1465  * tx power, no matter the channel.
1466  *
1467  * This also works for v5 EEPROMs.
1468  */
1469 static int
1470 ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1471 {
1472 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1473 	struct ath5k_rate_pcal_info *rate_pcal_info;
1474 	u8 *rate_target_pwr_num;
1475 	u32 offset;
1476 	u16 val;
1477 	int i;
1478 
1479 	offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1480 	rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1481 	switch (mode) {
1482 	case AR5K_EEPROM_MODE_11A:
1483 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1484 		rate_pcal_info = ee->ee_rate_tpwr_a;
1485 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_RATE_CHAN;
1486 		break;
1487 	case AR5K_EEPROM_MODE_11B:
1488 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1489 		rate_pcal_info = ee->ee_rate_tpwr_b;
1490 		ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1491 		break;
1492 	case AR5K_EEPROM_MODE_11G:
1493 		offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1494 		rate_pcal_info = ee->ee_rate_tpwr_g;
1495 		ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1496 		break;
1497 	default:
1498 		return -EINVAL;
1499 	}
1500 
1501 	/* Different freq mask for older eeproms (<= v3.2) */
1502 	if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1503 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1504 			AR5K_EEPROM_READ(offset++, val);
1505 			rate_pcal_info[i].freq =
1506 			    ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1507 
1508 			rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1509 			rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1510 
1511 			AR5K_EEPROM_READ(offset++, val);
1512 
1513 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1514 			    val == 0) {
1515 				(*rate_target_pwr_num) = i;
1516 				break;
1517 			}
1518 
1519 			rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1520 			rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1521 			rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1522 		}
1523 	} else {
1524 		for (i = 0; i < (*rate_target_pwr_num); i++) {
1525 			AR5K_EEPROM_READ(offset++, val);
1526 			rate_pcal_info[i].freq =
1527 			    ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1528 
1529 			rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1530 			rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1531 
1532 			AR5K_EEPROM_READ(offset++, val);
1533 
1534 			if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1535 			    val == 0) {
1536 				(*rate_target_pwr_num) = i;
1537 				break;
1538 			}
1539 
1540 			rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1541 			rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1542 			rate_pcal_info[i].target_power_54 = (val & 0x3f);
1543 		}
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 
1550 /*
1551  * Read per channel calibration info from EEPROM
1552  *
1553  * This info is used to calibrate the baseband power table. Imagine
1554  * that for each channel there is a power curve that's hw specific
1555  * (depends on amplifier etc) and we try to "correct" this curve using
1556  * offsets we pass on to phy chip (baseband -> before amplifier) so that
1557  * it can use accurate power values when setting tx power (takes amplifier's
1558  * performance on each channel into account).
1559  *
1560  * EEPROM provides us with the offsets for some pre-calibrated channels
1561  * and we have to interpolate to create the full table for these channels and
1562  * also the table for any channel.
1563  */
1564 static int
1565 ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1566 {
1567 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1568 	int (*read_pcal)(struct ath5k_hw *hw, int mode);
1569 	int mode;
1570 	int err;
1571 
1572 	if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1573 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1574 		read_pcal = ath5k_eeprom_read_pcal_info_5112;
1575 	else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1576 			(AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1577 		read_pcal = ath5k_eeprom_read_pcal_info_2413;
1578 	else
1579 		read_pcal = ath5k_eeprom_read_pcal_info_5111;
1580 
1581 
1582 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1583 	mode++) {
1584 		err = read_pcal(ah, mode);
1585 		if (err)
1586 			return err;
1587 
1588 		err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1589 		if (err < 0)
1590 			return err;
1591 	}
1592 
1593 	return 0;
1594 }
1595 
1596 /* Read conformance test limits used for regulatory control */
1597 static int
1598 ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1599 {
1600 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1601 	struct ath5k_edge_power *rep;
1602 	unsigned int fmask, pmask;
1603 	unsigned int ctl_mode;
1604 	int i, j;
1605 	u32 offset;
1606 	u16 val;
1607 
1608 	pmask = AR5K_EEPROM_POWER_M;
1609 	fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1610 	offset = AR5K_EEPROM_CTL(ee->ee_version);
1611 	ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1612 	for (i = 0; i < ee->ee_ctls; i += 2) {
1613 		AR5K_EEPROM_READ(offset++, val);
1614 		ee->ee_ctl[i] = (val >> 8) & 0xff;
1615 		ee->ee_ctl[i + 1] = val & 0xff;
1616 	}
1617 
1618 	offset = AR5K_EEPROM_GROUP8_OFFSET;
1619 	if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1620 		offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1621 			AR5K_EEPROM_GROUP5_OFFSET;
1622 	else
1623 		offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1624 
1625 	rep = ee->ee_ctl_pwr;
1626 	for (i = 0; i < ee->ee_ctls; i++) {
1627 		switch (ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1628 		case AR5K_CTL_11A:
1629 		case AR5K_CTL_TURBO:
1630 			ctl_mode = AR5K_EEPROM_MODE_11A;
1631 			break;
1632 		default:
1633 			ctl_mode = AR5K_EEPROM_MODE_11G;
1634 			break;
1635 		}
1636 		if (ee->ee_ctl[i] == 0) {
1637 			if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1638 				offset += 8;
1639 			else
1640 				offset += 7;
1641 			rep += AR5K_EEPROM_N_EDGES;
1642 			continue;
1643 		}
1644 		if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1645 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646 				AR5K_EEPROM_READ(offset++, val);
1647 				rep[j].freq = (val >> 8) & fmask;
1648 				rep[j + 1].freq = val & fmask;
1649 			}
1650 			for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1651 				AR5K_EEPROM_READ(offset++, val);
1652 				rep[j].edge = (val >> 8) & pmask;
1653 				rep[j].flag = (val >> 14) & 1;
1654 				rep[j + 1].edge = val & pmask;
1655 				rep[j + 1].flag = (val >> 6) & 1;
1656 			}
1657 		} else {
1658 			AR5K_EEPROM_READ(offset++, val);
1659 			rep[0].freq = (val >> 9) & fmask;
1660 			rep[1].freq = (val >> 2) & fmask;
1661 			rep[2].freq = (val << 5) & fmask;
1662 
1663 			AR5K_EEPROM_READ(offset++, val);
1664 			rep[2].freq |= (val >> 11) & 0x1f;
1665 			rep[3].freq = (val >> 4) & fmask;
1666 			rep[4].freq = (val << 3) & fmask;
1667 
1668 			AR5K_EEPROM_READ(offset++, val);
1669 			rep[4].freq |= (val >> 13) & 0x7;
1670 			rep[5].freq = (val >> 6) & fmask;
1671 			rep[6].freq = (val << 1) & fmask;
1672 
1673 			AR5K_EEPROM_READ(offset++, val);
1674 			rep[6].freq |= (val >> 15) & 0x1;
1675 			rep[7].freq = (val >> 8) & fmask;
1676 
1677 			rep[0].edge = (val >> 2) & pmask;
1678 			rep[1].edge = (val << 4) & pmask;
1679 
1680 			AR5K_EEPROM_READ(offset++, val);
1681 			rep[1].edge |= (val >> 12) & 0xf;
1682 			rep[2].edge = (val >> 6) & pmask;
1683 			rep[3].edge = val & pmask;
1684 
1685 			AR5K_EEPROM_READ(offset++, val);
1686 			rep[4].edge = (val >> 10) & pmask;
1687 			rep[5].edge = (val >> 4) & pmask;
1688 			rep[6].edge = (val << 2) & pmask;
1689 
1690 			AR5K_EEPROM_READ(offset++, val);
1691 			rep[6].edge |= (val >> 14) & 0x3;
1692 			rep[7].edge = (val >> 8) & pmask;
1693 		}
1694 		for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1695 			rep[j].freq = ath5k_eeprom_bin2freq(ee,
1696 				rep[j].freq, ctl_mode);
1697 		}
1698 		rep += AR5K_EEPROM_N_EDGES;
1699 	}
1700 
1701 	return 0;
1702 }
1703 
1704 static int
1705 ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1706 {
1707 	struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1708 	u32 offset;
1709 	u16 val;
1710 	int ret = 0, i;
1711 
1712 	offset = AR5K_EEPROM_CTL(ee->ee_version) +
1713 				AR5K_EEPROM_N_CTLS(ee->ee_version);
1714 
1715 	if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1716 		/* No spur info for 5GHz */
1717 		ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1718 		/* 2 channels for 2GHz (2464/2420) */
1719 		ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1720 		ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1721 		ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1722 	} else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1723 		for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1724 			AR5K_EEPROM_READ(offset, val);
1725 			ee->ee_spur_chans[i][0] = val;
1726 			AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1727 									val);
1728 			ee->ee_spur_chans[i][1] = val;
1729 			offset++;
1730 		}
1731 	}
1732 
1733 	return ret;
1734 }
1735 
1736 
1737 /***********************\
1738 * Init/Detach functions *
1739 \***********************/
1740 
1741 /*
1742  * Initialize eeprom data structure
1743  */
1744 int
1745 ath5k_eeprom_init(struct ath5k_hw *ah)
1746 {
1747 	int err;
1748 
1749 	err = ath5k_eeprom_init_header(ah);
1750 	if (err < 0)
1751 		return err;
1752 
1753 	err = ath5k_eeprom_init_modes(ah);
1754 	if (err < 0)
1755 		return err;
1756 
1757 	err = ath5k_eeprom_read_pcal_info(ah);
1758 	if (err < 0)
1759 		return err;
1760 
1761 	err = ath5k_eeprom_read_ctl_info(ah);
1762 	if (err < 0)
1763 		return err;
1764 
1765 	err = ath5k_eeprom_read_spur_chans(ah);
1766 	if (err < 0)
1767 		return err;
1768 
1769 	return 0;
1770 }
1771 
1772 void
1773 ath5k_eeprom_detach(struct ath5k_hw *ah)
1774 {
1775 	u8 mode;
1776 
1777 	for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1778 		ath5k_eeprom_free_pcal_info(ah, mode);
1779 }
1780 
1781 int
1782 ath5k_eeprom_mode_from_channel(struct ath5k_hw *ah,
1783 		struct ieee80211_channel *channel)
1784 {
1785 	switch (channel->hw_value) {
1786 	case AR5K_MODE_11A:
1787 		return AR5K_EEPROM_MODE_11A;
1788 	case AR5K_MODE_11G:
1789 		return AR5K_EEPROM_MODE_11G;
1790 	case AR5K_MODE_11B:
1791 		return AR5K_EEPROM_MODE_11B;
1792 	default:
1793 		ATH5K_WARN(ah, "channel is not A/B/G!");
1794 		return AR5K_EEPROM_MODE_11A;
1795 	}
1796 }
1797