xref: /openbmc/linux/drivers/net/wan/hdlc_cisco.c (revision 1da177e4c3f41524e886b7f1b8a0c1fc7321cac2)
1 /*
2  * Generic HDLC support routines for Linux
3  * Cisco HDLC support
4  *
5  * Copyright (C) 2000 - 2003 Krzysztof Halasa <khc@pm.waw.pl>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of version 2 of the GNU General Public License
9  * as published by the Free Software Foundation.
10  */
11 
12 #include <linux/module.h>
13 #include <linux/kernel.h>
14 #include <linux/slab.h>
15 #include <linux/poll.h>
16 #include <linux/errno.h>
17 #include <linux/if_arp.h>
18 #include <linux/init.h>
19 #include <linux/skbuff.h>
20 #include <linux/pkt_sched.h>
21 #include <linux/inetdevice.h>
22 #include <linux/lapb.h>
23 #include <linux/rtnetlink.h>
24 #include <linux/hdlc.h>
25 
26 #undef DEBUG_HARD_HEADER
27 
28 #define CISCO_MULTICAST		0x8F	/* Cisco multicast address */
29 #define CISCO_UNICAST		0x0F	/* Cisco unicast address */
30 #define CISCO_KEEPALIVE		0x8035	/* Cisco keepalive protocol */
31 #define CISCO_SYS_INFO		0x2000	/* Cisco interface/system info */
32 #define CISCO_ADDR_REQ		0	/* Cisco address request */
33 #define CISCO_ADDR_REPLY	1	/* Cisco address reply */
34 #define CISCO_KEEPALIVE_REQ	2	/* Cisco keepalive request */
35 
36 
37 static int cisco_hard_header(struct sk_buff *skb, struct net_device *dev,
38 			     u16 type, void *daddr, void *saddr,
39 			     unsigned int len)
40 {
41 	hdlc_header *data;
42 #ifdef DEBUG_HARD_HEADER
43 	printk(KERN_DEBUG "%s: cisco_hard_header called\n", dev->name);
44 #endif
45 
46 	skb_push(skb, sizeof(hdlc_header));
47 	data = (hdlc_header*)skb->data;
48 	if (type == CISCO_KEEPALIVE)
49 		data->address = CISCO_MULTICAST;
50 	else
51 		data->address = CISCO_UNICAST;
52 	data->control = 0;
53 	data->protocol = htons(type);
54 
55 	return sizeof(hdlc_header);
56 }
57 
58 
59 
60 static void cisco_keepalive_send(struct net_device *dev, u32 type,
61 				 u32 par1, u32 par2)
62 {
63 	struct sk_buff *skb;
64 	cisco_packet *data;
65 
66 	skb = dev_alloc_skb(sizeof(hdlc_header) + sizeof(cisco_packet));
67 	if (!skb) {
68 		printk(KERN_WARNING
69 		       "%s: Memory squeeze on cisco_keepalive_send()\n",
70 		       dev->name);
71 		return;
72 	}
73 	skb_reserve(skb, 4);
74 	cisco_hard_header(skb, dev, CISCO_KEEPALIVE, NULL, NULL, 0);
75 	data = (cisco_packet*)skb->tail;
76 
77 	data->type = htonl(type);
78 	data->par1 = htonl(par1);
79 	data->par2 = htonl(par2);
80 	data->rel = 0xFFFF;
81 	/* we will need do_div here if 1000 % HZ != 0 */
82 	data->time = htonl((jiffies - INITIAL_JIFFIES) * (1000 / HZ));
83 
84 	skb_put(skb, sizeof(cisco_packet));
85 	skb->priority = TC_PRIO_CONTROL;
86 	skb->dev = dev;
87 	skb->nh.raw = skb->data;
88 
89 	dev_queue_xmit(skb);
90 }
91 
92 
93 
94 static unsigned short cisco_type_trans(struct sk_buff *skb,
95 				       struct net_device *dev)
96 {
97 	hdlc_header *data = (hdlc_header*)skb->data;
98 
99 	if (skb->len < sizeof(hdlc_header))
100 		return __constant_htons(ETH_P_HDLC);
101 
102 	if (data->address != CISCO_MULTICAST &&
103 	    data->address != CISCO_UNICAST)
104 		return __constant_htons(ETH_P_HDLC);
105 
106 	switch(data->protocol) {
107 	case __constant_htons(ETH_P_IP):
108 	case __constant_htons(ETH_P_IPX):
109 	case __constant_htons(ETH_P_IPV6):
110 		skb_pull(skb, sizeof(hdlc_header));
111 		return data->protocol;
112 	default:
113 		return __constant_htons(ETH_P_HDLC);
114 	}
115 }
116 
117 
118 static int cisco_rx(struct sk_buff *skb)
119 {
120 	struct net_device *dev = skb->dev;
121 	hdlc_device *hdlc = dev_to_hdlc(dev);
122 	hdlc_header *data = (hdlc_header*)skb->data;
123 	cisco_packet *cisco_data;
124 	struct in_device *in_dev;
125 	u32 addr, mask;
126 
127 	if (skb->len < sizeof(hdlc_header))
128 		goto rx_error;
129 
130 	if (data->address != CISCO_MULTICAST &&
131 	    data->address != CISCO_UNICAST)
132 		goto rx_error;
133 
134 	switch(ntohs(data->protocol)) {
135 	case CISCO_SYS_INFO:
136 		/* Packet is not needed, drop it. */
137 		dev_kfree_skb_any(skb);
138 		return NET_RX_SUCCESS;
139 
140 	case CISCO_KEEPALIVE:
141 		if (skb->len != sizeof(hdlc_header) + CISCO_PACKET_LEN &&
142 		    skb->len != sizeof(hdlc_header) + CISCO_BIG_PACKET_LEN) {
143 			printk(KERN_INFO "%s: Invalid length of Cisco "
144 			       "control packet (%d bytes)\n",
145 			       dev->name, skb->len);
146 			goto rx_error;
147 		}
148 
149 		cisco_data = (cisco_packet*)(skb->data + sizeof(hdlc_header));
150 
151 		switch(ntohl (cisco_data->type)) {
152 		case CISCO_ADDR_REQ: /* Stolen from syncppp.c :-) */
153 			in_dev = dev->ip_ptr;
154 			addr = 0;
155 			mask = ~0; /* is the mask correct? */
156 
157 			if (in_dev != NULL) {
158 				struct in_ifaddr **ifap = &in_dev->ifa_list;
159 
160 				while (*ifap != NULL) {
161 					if (strcmp(dev->name,
162 						   (*ifap)->ifa_label) == 0) {
163 						addr = (*ifap)->ifa_local;
164 						mask = (*ifap)->ifa_mask;
165 						break;
166 					}
167 					ifap = &(*ifap)->ifa_next;
168 				}
169 
170 				cisco_keepalive_send(dev, CISCO_ADDR_REPLY,
171 						     addr, mask);
172 			}
173 			dev_kfree_skb_any(skb);
174 			return NET_RX_SUCCESS;
175 
176 		case CISCO_ADDR_REPLY:
177 			printk(KERN_INFO "%s: Unexpected Cisco IP address "
178 			       "reply\n", dev->name);
179 			goto rx_error;
180 
181 		case CISCO_KEEPALIVE_REQ:
182 			hdlc->state.cisco.rxseq = ntohl(cisco_data->par1);
183 			if (hdlc->state.cisco.request_sent &&
184 			    ntohl(cisco_data->par2)==hdlc->state.cisco.txseq) {
185 				hdlc->state.cisco.last_poll = jiffies;
186 				if (!hdlc->state.cisco.up) {
187 					u32 sec, min, hrs, days;
188 					sec = ntohl(cisco_data->time) / 1000;
189 					min = sec / 60; sec -= min * 60;
190 					hrs = min / 60; min -= hrs * 60;
191 					days = hrs / 24; hrs -= days * 24;
192 					printk(KERN_INFO "%s: Link up (peer "
193 					       "uptime %ud%uh%um%us)\n",
194 					       dev->name, days, hrs,
195 					       min, sec);
196 					netif_carrier_on(dev);
197 					hdlc->state.cisco.up = 1;
198 				}
199 			}
200 
201 			dev_kfree_skb_any(skb);
202 			return NET_RX_SUCCESS;
203 		} /* switch(keepalive type) */
204 	} /* switch(protocol) */
205 
206 	printk(KERN_INFO "%s: Unsupported protocol %x\n", dev->name,
207 	       data->protocol);
208 	dev_kfree_skb_any(skb);
209 	return NET_RX_DROP;
210 
211  rx_error:
212 	hdlc->stats.rx_errors++; /* Mark error */
213 	dev_kfree_skb_any(skb);
214 	return NET_RX_DROP;
215 }
216 
217 
218 
219 static void cisco_timer(unsigned long arg)
220 {
221 	struct net_device *dev = (struct net_device *)arg;
222 	hdlc_device *hdlc = dev_to_hdlc(dev);
223 
224 	if (hdlc->state.cisco.up &&
225 	    time_after(jiffies, hdlc->state.cisco.last_poll +
226 		       hdlc->state.cisco.settings.timeout * HZ)) {
227 		hdlc->state.cisco.up = 0;
228 		printk(KERN_INFO "%s: Link down\n", dev->name);
229 		netif_carrier_off(dev);
230 	}
231 
232 	cisco_keepalive_send(dev, CISCO_KEEPALIVE_REQ,
233 			     ++hdlc->state.cisco.txseq,
234 			     hdlc->state.cisco.rxseq);
235 	hdlc->state.cisco.request_sent = 1;
236 	hdlc->state.cisco.timer.expires = jiffies +
237 		hdlc->state.cisco.settings.interval * HZ;
238 	hdlc->state.cisco.timer.function = cisco_timer;
239 	hdlc->state.cisco.timer.data = arg;
240 	add_timer(&hdlc->state.cisco.timer);
241 }
242 
243 
244 
245 static void cisco_start(struct net_device *dev)
246 {
247 	hdlc_device *hdlc = dev_to_hdlc(dev);
248 	hdlc->state.cisco.up = 0;
249 	hdlc->state.cisco.request_sent = 0;
250 	hdlc->state.cisco.txseq = hdlc->state.cisco.rxseq = 0;
251 
252 	init_timer(&hdlc->state.cisco.timer);
253 	hdlc->state.cisco.timer.expires = jiffies + HZ; /*First poll after 1s*/
254 	hdlc->state.cisco.timer.function = cisco_timer;
255 	hdlc->state.cisco.timer.data = (unsigned long)dev;
256 	add_timer(&hdlc->state.cisco.timer);
257 }
258 
259 
260 
261 static void cisco_stop(struct net_device *dev)
262 {
263 	hdlc_device *hdlc = dev_to_hdlc(dev);
264 	del_timer_sync(&hdlc->state.cisco.timer);
265 	if (netif_carrier_ok(dev))
266 		netif_carrier_off(dev);
267 	hdlc->state.cisco.up = 0;
268 	hdlc->state.cisco.request_sent = 0;
269 }
270 
271 
272 
273 int hdlc_cisco_ioctl(struct net_device *dev, struct ifreq *ifr)
274 {
275 	cisco_proto __user *cisco_s = ifr->ifr_settings.ifs_ifsu.cisco;
276 	const size_t size = sizeof(cisco_proto);
277 	cisco_proto new_settings;
278 	hdlc_device *hdlc = dev_to_hdlc(dev);
279 	int result;
280 
281 	switch (ifr->ifr_settings.type) {
282 	case IF_GET_PROTO:
283 		ifr->ifr_settings.type = IF_PROTO_CISCO;
284 		if (ifr->ifr_settings.size < size) {
285 			ifr->ifr_settings.size = size; /* data size wanted */
286 			return -ENOBUFS;
287 		}
288 		if (copy_to_user(cisco_s, &hdlc->state.cisco.settings, size))
289 			return -EFAULT;
290 		return 0;
291 
292 	case IF_PROTO_CISCO:
293 		if(!capable(CAP_NET_ADMIN))
294 			return -EPERM;
295 
296 		if(dev->flags & IFF_UP)
297 			return -EBUSY;
298 
299 		if (copy_from_user(&new_settings, cisco_s, size))
300 			return -EFAULT;
301 
302 		if (new_settings.interval < 1 ||
303 		    new_settings.timeout < 2)
304 			return -EINVAL;
305 
306 		result=hdlc->attach(dev, ENCODING_NRZ,PARITY_CRC16_PR1_CCITT);
307 
308 		if (result)
309 			return result;
310 
311 		hdlc_proto_detach(hdlc);
312 		memcpy(&hdlc->state.cisco.settings, &new_settings, size);
313 		memset(&hdlc->proto, 0, sizeof(hdlc->proto));
314 
315 		hdlc->proto.start = cisco_start;
316 		hdlc->proto.stop = cisco_stop;
317 		hdlc->proto.netif_rx = cisco_rx;
318 		hdlc->proto.type_trans = cisco_type_trans;
319 		hdlc->proto.id = IF_PROTO_CISCO;
320 		dev->hard_start_xmit = hdlc->xmit;
321 		dev->hard_header = cisco_hard_header;
322 		dev->hard_header_cache = NULL;
323 		dev->type = ARPHRD_CISCO;
324 		dev->flags = IFF_POINTOPOINT | IFF_NOARP;
325 		dev->addr_len = 0;
326 		return 0;
327 	}
328 
329 	return -EINVAL;
330 }
331