xref: /openbmc/linux/drivers/net/wan/fsl_ucc_hdlc.c (revision 0edabdfe89581669609eaac5f6a8d0ae6fe95e7f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Freescale QUICC Engine HDLC Device Driver
3  *
4  * Copyright 2016 Freescale Semiconductor Inc.
5  */
6 
7 #include <linux/delay.h>
8 #include <linux/dma-mapping.h>
9 #include <linux/hdlc.h>
10 #include <linux/init.h>
11 #include <linux/interrupt.h>
12 #include <linux/io.h>
13 #include <linux/irq.h>
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/netdevice.h>
17 #include <linux/of_address.h>
18 #include <linux/of_irq.h>
19 #include <linux/of_platform.h>
20 #include <linux/platform_device.h>
21 #include <linux/sched.h>
22 #include <linux/skbuff.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/stddef.h>
26 #include <soc/fsl/qe/qe_tdm.h>
27 #include <uapi/linux/if_arp.h>
28 
29 #include "fsl_ucc_hdlc.h"
30 
31 #define DRV_DESC "Freescale QE UCC HDLC Driver"
32 #define DRV_NAME "ucc_hdlc"
33 
34 #define TDM_PPPOHT_SLIC_MAXIN
35 #define RX_BD_ERRORS (R_CD_S | R_OV_S | R_CR_S | R_AB_S | R_NO_S | R_LG_S)
36 
37 static struct ucc_tdm_info utdm_primary_info = {
38 	.uf_info = {
39 		.tsa = 0,
40 		.cdp = 0,
41 		.cds = 1,
42 		.ctsp = 1,
43 		.ctss = 1,
44 		.revd = 0,
45 		.urfs = 256,
46 		.utfs = 256,
47 		.urfet = 128,
48 		.urfset = 192,
49 		.utfet = 128,
50 		.utftt = 0x40,
51 		.ufpt = 256,
52 		.mode = UCC_FAST_PROTOCOL_MODE_HDLC,
53 		.ttx_trx = UCC_FAST_GUMR_TRANSPARENT_TTX_TRX_NORMAL,
54 		.tenc = UCC_FAST_TX_ENCODING_NRZ,
55 		.renc = UCC_FAST_RX_ENCODING_NRZ,
56 		.tcrc = UCC_FAST_16_BIT_CRC,
57 		.synl = UCC_FAST_SYNC_LEN_NOT_USED,
58 	},
59 
60 	.si_info = {
61 #ifdef TDM_PPPOHT_SLIC_MAXIN
62 		.simr_rfsd = 1,
63 		.simr_tfsd = 2,
64 #else
65 		.simr_rfsd = 0,
66 		.simr_tfsd = 0,
67 #endif
68 		.simr_crt = 0,
69 		.simr_sl = 0,
70 		.simr_ce = 1,
71 		.simr_fe = 1,
72 		.simr_gm = 0,
73 	},
74 };
75 
76 static struct ucc_tdm_info utdm_info[UCC_MAX_NUM];
77 
78 static int uhdlc_init(struct ucc_hdlc_private *priv)
79 {
80 	struct ucc_tdm_info *ut_info;
81 	struct ucc_fast_info *uf_info;
82 	u32 cecr_subblock;
83 	u16 bd_status;
84 	int ret, i;
85 	void *bd_buffer;
86 	dma_addr_t bd_dma_addr;
87 	s32 riptr;
88 	s32 tiptr;
89 	u32 gumr;
90 
91 	ut_info = priv->ut_info;
92 	uf_info = &ut_info->uf_info;
93 
94 	if (priv->tsa) {
95 		uf_info->tsa = 1;
96 		uf_info->ctsp = 1;
97 		uf_info->cds = 1;
98 		uf_info->ctss = 1;
99 	} else {
100 		uf_info->cds = 0;
101 		uf_info->ctsp = 0;
102 		uf_info->ctss = 0;
103 	}
104 
105 	/* This sets HPM register in CMXUCR register which configures a
106 	 * open drain connected HDLC bus
107 	 */
108 	if (priv->hdlc_bus)
109 		uf_info->brkpt_support = 1;
110 
111 	uf_info->uccm_mask = ((UCC_HDLC_UCCE_RXB | UCC_HDLC_UCCE_RXF |
112 				UCC_HDLC_UCCE_TXB) << 16);
113 
114 	ret = ucc_fast_init(uf_info, &priv->uccf);
115 	if (ret) {
116 		dev_err(priv->dev, "Failed to init uccf.");
117 		return ret;
118 	}
119 
120 	priv->uf_regs = priv->uccf->uf_regs;
121 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
122 
123 	/* Loopback mode */
124 	if (priv->loopback) {
125 		dev_info(priv->dev, "Loopback Mode\n");
126 		/* use the same clock when work in loopback */
127 		qe_setbrg(ut_info->uf_info.rx_clock, 20000000, 1);
128 
129 		gumr = ioread32be(&priv->uf_regs->gumr);
130 		gumr |= (UCC_FAST_GUMR_LOOPBACK | UCC_FAST_GUMR_CDS |
131 			 UCC_FAST_GUMR_TCI);
132 		gumr &= ~(UCC_FAST_GUMR_CTSP | UCC_FAST_GUMR_RSYN);
133 		iowrite32be(gumr, &priv->uf_regs->gumr);
134 	}
135 
136 	/* Initialize SI */
137 	if (priv->tsa)
138 		ucc_tdm_init(priv->utdm, priv->ut_info);
139 
140 	/* Write to QE CECR, UCCx channel to Stop Transmission */
141 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
142 	ret = qe_issue_cmd(QE_STOP_TX, cecr_subblock,
143 			   QE_CR_PROTOCOL_UNSPECIFIED, 0);
144 
145 	/* Set UPSMR normal mode (need fixed)*/
146 	iowrite32be(0, &priv->uf_regs->upsmr);
147 
148 	/* hdlc_bus mode */
149 	if (priv->hdlc_bus) {
150 		u32 upsmr;
151 
152 		dev_info(priv->dev, "HDLC bus Mode\n");
153 		upsmr = ioread32be(&priv->uf_regs->upsmr);
154 
155 		/* bus mode and retransmit enable, with collision window
156 		 * set to 8 bytes
157 		 */
158 		upsmr |= UCC_HDLC_UPSMR_RTE | UCC_HDLC_UPSMR_BUS |
159 				UCC_HDLC_UPSMR_CW8;
160 		iowrite32be(upsmr, &priv->uf_regs->upsmr);
161 
162 		/* explicitly disable CDS & CTSP */
163 		gumr = ioread32be(&priv->uf_regs->gumr);
164 		gumr &= ~(UCC_FAST_GUMR_CDS | UCC_FAST_GUMR_CTSP);
165 		/* set automatic sync to explicitly ignore CD signal */
166 		gumr |= UCC_FAST_GUMR_SYNL_AUTO;
167 		iowrite32be(gumr, &priv->uf_regs->gumr);
168 	}
169 
170 	priv->rx_ring_size = RX_BD_RING_LEN;
171 	priv->tx_ring_size = TX_BD_RING_LEN;
172 	/* Alloc Rx BD */
173 	priv->rx_bd_base = dma_alloc_coherent(priv->dev,
174 			RX_BD_RING_LEN * sizeof(struct qe_bd),
175 			&priv->dma_rx_bd, GFP_KERNEL);
176 
177 	if (!priv->rx_bd_base) {
178 		dev_err(priv->dev, "Cannot allocate MURAM memory for RxBDs\n");
179 		ret = -ENOMEM;
180 		goto free_uccf;
181 	}
182 
183 	/* Alloc Tx BD */
184 	priv->tx_bd_base = dma_alloc_coherent(priv->dev,
185 			TX_BD_RING_LEN * sizeof(struct qe_bd),
186 			&priv->dma_tx_bd, GFP_KERNEL);
187 
188 	if (!priv->tx_bd_base) {
189 		dev_err(priv->dev, "Cannot allocate MURAM memory for TxBDs\n");
190 		ret = -ENOMEM;
191 		goto free_rx_bd;
192 	}
193 
194 	/* Alloc parameter ram for ucc hdlc */
195 	priv->ucc_pram_offset = qe_muram_alloc(sizeof(struct ucc_hdlc_param),
196 				ALIGNMENT_OF_UCC_HDLC_PRAM);
197 
198 	if (priv->ucc_pram_offset < 0) {
199 		dev_err(priv->dev, "Can not allocate MURAM for hdlc parameter.\n");
200 		ret = -ENOMEM;
201 		goto free_tx_bd;
202 	}
203 
204 	priv->rx_skbuff = kcalloc(priv->rx_ring_size,
205 				  sizeof(*priv->rx_skbuff),
206 				  GFP_KERNEL);
207 	if (!priv->rx_skbuff) {
208 		ret = -ENOMEM;
209 		goto free_ucc_pram;
210 	}
211 
212 	priv->tx_skbuff = kcalloc(priv->tx_ring_size,
213 				  sizeof(*priv->tx_skbuff),
214 				  GFP_KERNEL);
215 	if (!priv->tx_skbuff) {
216 		ret = -ENOMEM;
217 		goto free_rx_skbuff;
218 	}
219 
220 	priv->skb_curtx = 0;
221 	priv->skb_dirtytx = 0;
222 	priv->curtx_bd = priv->tx_bd_base;
223 	priv->dirty_tx = priv->tx_bd_base;
224 	priv->currx_bd = priv->rx_bd_base;
225 	priv->currx_bdnum = 0;
226 
227 	/* init parameter base */
228 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
229 	ret = qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
230 			   QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
231 
232 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
233 					qe_muram_addr(priv->ucc_pram_offset);
234 
235 	/* Zero out parameter ram */
236 	memset_io(priv->ucc_pram, 0, sizeof(struct ucc_hdlc_param));
237 
238 	/* Alloc riptr, tiptr */
239 	riptr = qe_muram_alloc(32, 32);
240 	if (riptr < 0) {
241 		dev_err(priv->dev, "Cannot allocate MURAM mem for Receive internal temp data pointer\n");
242 		ret = -ENOMEM;
243 		goto free_tx_skbuff;
244 	}
245 
246 	tiptr = qe_muram_alloc(32, 32);
247 	if (tiptr < 0) {
248 		dev_err(priv->dev, "Cannot allocate MURAM mem for Transmit internal temp data pointer\n");
249 		ret = -ENOMEM;
250 		goto free_riptr;
251 	}
252 	if (riptr != (u16)riptr || tiptr != (u16)tiptr) {
253 		dev_err(priv->dev, "MURAM allocation out of addressable range\n");
254 		ret = -ENOMEM;
255 		goto free_tiptr;
256 	}
257 
258 	/* Set RIPTR, TIPTR */
259 	iowrite16be(riptr, &priv->ucc_pram->riptr);
260 	iowrite16be(tiptr, &priv->ucc_pram->tiptr);
261 
262 	/* Set MRBLR */
263 	iowrite16be(MAX_RX_BUF_LENGTH, &priv->ucc_pram->mrblr);
264 
265 	/* Set RBASE, TBASE */
266 	iowrite32be(priv->dma_rx_bd, &priv->ucc_pram->rbase);
267 	iowrite32be(priv->dma_tx_bd, &priv->ucc_pram->tbase);
268 
269 	/* Set RSTATE, TSTATE */
270 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->rstate);
271 	iowrite32be(BMR_GBL | BMR_BIG_ENDIAN, &priv->ucc_pram->tstate);
272 
273 	/* Set C_MASK, C_PRES for 16bit CRC */
274 	iowrite32be(CRC_16BIT_MASK, &priv->ucc_pram->c_mask);
275 	iowrite32be(CRC_16BIT_PRES, &priv->ucc_pram->c_pres);
276 
277 	iowrite16be(MAX_FRAME_LENGTH, &priv->ucc_pram->mflr);
278 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfthr);
279 	iowrite16be(DEFAULT_RFTHR, &priv->ucc_pram->rfcnt);
280 	iowrite16be(priv->hmask, &priv->ucc_pram->hmask);
281 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr1);
282 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr2);
283 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr3);
284 	iowrite16be(DEFAULT_HDLC_ADDR, &priv->ucc_pram->haddr4);
285 
286 	/* Get BD buffer */
287 	bd_buffer = dma_alloc_coherent(priv->dev,
288 				       (RX_BD_RING_LEN + TX_BD_RING_LEN) * MAX_RX_BUF_LENGTH,
289 				       &bd_dma_addr, GFP_KERNEL);
290 
291 	if (!bd_buffer) {
292 		dev_err(priv->dev, "Could not allocate buffer descriptors\n");
293 		ret = -ENOMEM;
294 		goto free_tiptr;
295 	}
296 
297 	priv->rx_buffer = bd_buffer;
298 	priv->tx_buffer = bd_buffer + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
299 
300 	priv->dma_rx_addr = bd_dma_addr;
301 	priv->dma_tx_addr = bd_dma_addr + RX_BD_RING_LEN * MAX_RX_BUF_LENGTH;
302 
303 	for (i = 0; i < RX_BD_RING_LEN; i++) {
304 		if (i < (RX_BD_RING_LEN - 1))
305 			bd_status = R_E_S | R_I_S;
306 		else
307 			bd_status = R_E_S | R_I_S | R_W_S;
308 
309 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
310 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
311 			    &priv->rx_bd_base[i].buf);
312 	}
313 
314 	for (i = 0; i < TX_BD_RING_LEN; i++) {
315 		if (i < (TX_BD_RING_LEN - 1))
316 			bd_status =  T_I_S | T_TC_S;
317 		else
318 			bd_status =  T_I_S | T_TC_S | T_W_S;
319 
320 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
321 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
322 			    &priv->tx_bd_base[i].buf);
323 	}
324 
325 	return 0;
326 
327 free_tiptr:
328 	qe_muram_free(tiptr);
329 free_riptr:
330 	qe_muram_free(riptr);
331 free_tx_skbuff:
332 	kfree(priv->tx_skbuff);
333 free_rx_skbuff:
334 	kfree(priv->rx_skbuff);
335 free_ucc_pram:
336 	qe_muram_free(priv->ucc_pram_offset);
337 free_tx_bd:
338 	dma_free_coherent(priv->dev,
339 			  TX_BD_RING_LEN * sizeof(struct qe_bd),
340 			  priv->tx_bd_base, priv->dma_tx_bd);
341 free_rx_bd:
342 	dma_free_coherent(priv->dev,
343 			  RX_BD_RING_LEN * sizeof(struct qe_bd),
344 			  priv->rx_bd_base, priv->dma_rx_bd);
345 free_uccf:
346 	ucc_fast_free(priv->uccf);
347 
348 	return ret;
349 }
350 
351 static netdev_tx_t ucc_hdlc_tx(struct sk_buff *skb, struct net_device *dev)
352 {
353 	hdlc_device *hdlc = dev_to_hdlc(dev);
354 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)hdlc->priv;
355 	struct qe_bd __iomem *bd;
356 	u16 bd_status;
357 	unsigned long flags;
358 	u16 *proto_head;
359 
360 	switch (dev->type) {
361 	case ARPHRD_RAWHDLC:
362 		if (skb_headroom(skb) < HDLC_HEAD_LEN) {
363 			dev->stats.tx_dropped++;
364 			dev_kfree_skb(skb);
365 			netdev_err(dev, "No enough space for hdlc head\n");
366 			return -ENOMEM;
367 		}
368 
369 		skb_push(skb, HDLC_HEAD_LEN);
370 
371 		proto_head = (u16 *)skb->data;
372 		*proto_head = htons(DEFAULT_HDLC_HEAD);
373 
374 		dev->stats.tx_bytes += skb->len;
375 		break;
376 
377 	case ARPHRD_PPP:
378 		proto_head = (u16 *)skb->data;
379 		if (*proto_head != htons(DEFAULT_PPP_HEAD)) {
380 			dev->stats.tx_dropped++;
381 			dev_kfree_skb(skb);
382 			netdev_err(dev, "Wrong ppp header\n");
383 			return -ENOMEM;
384 		}
385 
386 		dev->stats.tx_bytes += skb->len;
387 		break;
388 
389 	case ARPHRD_ETHER:
390 		dev->stats.tx_bytes += skb->len;
391 		break;
392 
393 	default:
394 		dev->stats.tx_dropped++;
395 		dev_kfree_skb(skb);
396 		return -ENOMEM;
397 	}
398 	netdev_sent_queue(dev, skb->len);
399 	spin_lock_irqsave(&priv->lock, flags);
400 
401 	/* Start from the next BD that should be filled */
402 	bd = priv->curtx_bd;
403 	bd_status = ioread16be(&bd->status);
404 	/* Save the skb pointer so we can free it later */
405 	priv->tx_skbuff[priv->skb_curtx] = skb;
406 
407 	/* Update the current skb pointer (wrapping if this was the last) */
408 	priv->skb_curtx =
409 	    (priv->skb_curtx + 1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
410 
411 	/* copy skb data to tx buffer for sdma processing */
412 	memcpy(priv->tx_buffer + (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
413 	       skb->data, skb->len);
414 
415 	/* set bd status and length */
416 	bd_status = (bd_status & T_W_S) | T_R_S | T_I_S | T_L_S | T_TC_S;
417 
418 	iowrite16be(skb->len, &bd->length);
419 	iowrite16be(bd_status, &bd->status);
420 
421 	/* Move to next BD in the ring */
422 	if (!(bd_status & T_W_S))
423 		bd += 1;
424 	else
425 		bd = priv->tx_bd_base;
426 
427 	if (bd == priv->dirty_tx) {
428 		if (!netif_queue_stopped(dev))
429 			netif_stop_queue(dev);
430 	}
431 
432 	priv->curtx_bd = bd;
433 
434 	spin_unlock_irqrestore(&priv->lock, flags);
435 
436 	return NETDEV_TX_OK;
437 }
438 
439 static int hdlc_tx_restart(struct ucc_hdlc_private *priv)
440 {
441 	u32 cecr_subblock;
442 
443 	cecr_subblock =
444 		ucc_fast_get_qe_cr_subblock(priv->ut_info->uf_info.ucc_num);
445 
446 	qe_issue_cmd(QE_RESTART_TX, cecr_subblock,
447 		     QE_CR_PROTOCOL_UNSPECIFIED, 0);
448 	return 0;
449 }
450 
451 static int hdlc_tx_done(struct ucc_hdlc_private *priv)
452 {
453 	/* Start from the next BD that should be filled */
454 	struct net_device *dev = priv->ndev;
455 	unsigned int bytes_sent = 0;
456 	int howmany = 0;
457 	struct qe_bd *bd;		/* BD pointer */
458 	u16 bd_status;
459 	int tx_restart = 0;
460 
461 	bd = priv->dirty_tx;
462 	bd_status = ioread16be(&bd->status);
463 
464 	/* Normal processing. */
465 	while ((bd_status & T_R_S) == 0) {
466 		struct sk_buff *skb;
467 
468 		if (bd_status & T_UN_S) { /* Underrun */
469 			dev->stats.tx_fifo_errors++;
470 			tx_restart = 1;
471 		}
472 		if (bd_status & T_CT_S) { /* Carrier lost */
473 			dev->stats.tx_carrier_errors++;
474 			tx_restart = 1;
475 		}
476 
477 		/* BD contains already transmitted buffer.   */
478 		/* Handle the transmitted buffer and release */
479 		/* the BD to be used with the current frame  */
480 
481 		skb = priv->tx_skbuff[priv->skb_dirtytx];
482 		if (!skb)
483 			break;
484 		howmany++;
485 		bytes_sent += skb->len;
486 		dev->stats.tx_packets++;
487 		memset(priv->tx_buffer +
488 		       (be32_to_cpu(bd->buf) - priv->dma_tx_addr),
489 		       0, skb->len);
490 		dev_consume_skb_irq(skb);
491 
492 		priv->tx_skbuff[priv->skb_dirtytx] = NULL;
493 		priv->skb_dirtytx =
494 		    (priv->skb_dirtytx +
495 		     1) & TX_RING_MOD_MASK(TX_BD_RING_LEN);
496 
497 		/* We freed a buffer, so now we can restart transmission */
498 		if (netif_queue_stopped(dev))
499 			netif_wake_queue(dev);
500 
501 		/* Advance the confirmation BD pointer */
502 		if (!(bd_status & T_W_S))
503 			bd += 1;
504 		else
505 			bd = priv->tx_bd_base;
506 		bd_status = ioread16be(&bd->status);
507 	}
508 	priv->dirty_tx = bd;
509 
510 	if (tx_restart)
511 		hdlc_tx_restart(priv);
512 
513 	netdev_completed_queue(dev, howmany, bytes_sent);
514 	return 0;
515 }
516 
517 static int hdlc_rx_done(struct ucc_hdlc_private *priv, int rx_work_limit)
518 {
519 	struct net_device *dev = priv->ndev;
520 	struct sk_buff *skb = NULL;
521 	hdlc_device *hdlc = dev_to_hdlc(dev);
522 	struct qe_bd *bd;
523 	u16 bd_status;
524 	u16 length, howmany = 0;
525 	u8 *bdbuffer;
526 
527 	bd = priv->currx_bd;
528 	bd_status = ioread16be(&bd->status);
529 
530 	/* while there are received buffers and BD is full (~R_E) */
531 	while (!((bd_status & (R_E_S)) || (--rx_work_limit < 0))) {
532 		if (bd_status & (RX_BD_ERRORS)) {
533 			dev->stats.rx_errors++;
534 
535 			if (bd_status & R_CD_S)
536 				dev->stats.collisions++;
537 			if (bd_status & R_OV_S)
538 				dev->stats.rx_fifo_errors++;
539 			if (bd_status & R_CR_S)
540 				dev->stats.rx_crc_errors++;
541 			if (bd_status & R_AB_S)
542 				dev->stats.rx_over_errors++;
543 			if (bd_status & R_NO_S)
544 				dev->stats.rx_frame_errors++;
545 			if (bd_status & R_LG_S)
546 				dev->stats.rx_length_errors++;
547 
548 			goto recycle;
549 		}
550 		bdbuffer = priv->rx_buffer +
551 			(priv->currx_bdnum * MAX_RX_BUF_LENGTH);
552 		length = ioread16be(&bd->length);
553 
554 		switch (dev->type) {
555 		case ARPHRD_RAWHDLC:
556 			bdbuffer += HDLC_HEAD_LEN;
557 			length -= (HDLC_HEAD_LEN + HDLC_CRC_SIZE);
558 
559 			skb = dev_alloc_skb(length);
560 			if (!skb) {
561 				dev->stats.rx_dropped++;
562 				return -ENOMEM;
563 			}
564 
565 			skb_put(skb, length);
566 			skb->len = length;
567 			skb->dev = dev;
568 			memcpy(skb->data, bdbuffer, length);
569 			break;
570 
571 		case ARPHRD_PPP:
572 		case ARPHRD_ETHER:
573 			length -= HDLC_CRC_SIZE;
574 
575 			skb = dev_alloc_skb(length);
576 			if (!skb) {
577 				dev->stats.rx_dropped++;
578 				return -ENOMEM;
579 			}
580 
581 			skb_put(skb, length);
582 			skb->len = length;
583 			skb->dev = dev;
584 			memcpy(skb->data, bdbuffer, length);
585 			break;
586 		}
587 
588 		dev->stats.rx_packets++;
589 		dev->stats.rx_bytes += skb->len;
590 		howmany++;
591 		if (hdlc->proto)
592 			skb->protocol = hdlc_type_trans(skb, dev);
593 		netif_receive_skb(skb);
594 
595 recycle:
596 		iowrite16be((bd_status & R_W_S) | R_E_S | R_I_S, &bd->status);
597 
598 		/* update to point at the next bd */
599 		if (bd_status & R_W_S) {
600 			priv->currx_bdnum = 0;
601 			bd = priv->rx_bd_base;
602 		} else {
603 			if (priv->currx_bdnum < (RX_BD_RING_LEN - 1))
604 				priv->currx_bdnum += 1;
605 			else
606 				priv->currx_bdnum = RX_BD_RING_LEN - 1;
607 
608 			bd += 1;
609 		}
610 
611 		bd_status = ioread16be(&bd->status);
612 	}
613 
614 	priv->currx_bd = bd;
615 	return howmany;
616 }
617 
618 static int ucc_hdlc_poll(struct napi_struct *napi, int budget)
619 {
620 	struct ucc_hdlc_private *priv = container_of(napi,
621 						     struct ucc_hdlc_private,
622 						     napi);
623 	int howmany;
624 
625 	/* Tx event processing */
626 	spin_lock(&priv->lock);
627 	hdlc_tx_done(priv);
628 	spin_unlock(&priv->lock);
629 
630 	howmany = 0;
631 	howmany += hdlc_rx_done(priv, budget - howmany);
632 
633 	if (howmany < budget) {
634 		napi_complete_done(napi, howmany);
635 		qe_setbits_be32(priv->uccf->p_uccm,
636 				(UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS) << 16);
637 	}
638 
639 	return howmany;
640 }
641 
642 static irqreturn_t ucc_hdlc_irq_handler(int irq, void *dev_id)
643 {
644 	struct ucc_hdlc_private *priv = (struct ucc_hdlc_private *)dev_id;
645 	struct net_device *dev = priv->ndev;
646 	struct ucc_fast_private *uccf;
647 	u32 ucce;
648 	u32 uccm;
649 
650 	uccf = priv->uccf;
651 
652 	ucce = ioread32be(uccf->p_ucce);
653 	uccm = ioread32be(uccf->p_uccm);
654 	ucce &= uccm;
655 	iowrite32be(ucce, uccf->p_ucce);
656 	if (!ucce)
657 		return IRQ_NONE;
658 
659 	if ((ucce >> 16) & (UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)) {
660 		if (napi_schedule_prep(&priv->napi)) {
661 			uccm &= ~((UCCE_HDLC_RX_EVENTS | UCCE_HDLC_TX_EVENTS)
662 				  << 16);
663 			iowrite32be(uccm, uccf->p_uccm);
664 			__napi_schedule(&priv->napi);
665 		}
666 	}
667 
668 	/* Errors and other events */
669 	if (ucce >> 16 & UCC_HDLC_UCCE_BSY)
670 		dev->stats.rx_missed_errors++;
671 	if (ucce >> 16 & UCC_HDLC_UCCE_TXE)
672 		dev->stats.tx_errors++;
673 
674 	return IRQ_HANDLED;
675 }
676 
677 static int uhdlc_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
678 {
679 	const size_t size = sizeof(te1_settings);
680 	te1_settings line;
681 	struct ucc_hdlc_private *priv = netdev_priv(dev);
682 
683 	if (cmd != SIOCWANDEV)
684 		return hdlc_ioctl(dev, ifr, cmd);
685 
686 	switch (ifr->ifr_settings.type) {
687 	case IF_GET_IFACE:
688 		ifr->ifr_settings.type = IF_IFACE_E1;
689 		if (ifr->ifr_settings.size < size) {
690 			ifr->ifr_settings.size = size; /* data size wanted */
691 			return -ENOBUFS;
692 		}
693 		memset(&line, 0, sizeof(line));
694 		line.clock_type = priv->clocking;
695 
696 		if (copy_to_user(ifr->ifr_settings.ifs_ifsu.sync, &line, size))
697 			return -EFAULT;
698 		return 0;
699 
700 	default:
701 		return hdlc_ioctl(dev, ifr, cmd);
702 	}
703 }
704 
705 static int uhdlc_open(struct net_device *dev)
706 {
707 	u32 cecr_subblock;
708 	hdlc_device *hdlc = dev_to_hdlc(dev);
709 	struct ucc_hdlc_private *priv = hdlc->priv;
710 	struct ucc_tdm *utdm = priv->utdm;
711 
712 	if (priv->hdlc_busy != 1) {
713 		if (request_irq(priv->ut_info->uf_info.irq,
714 				ucc_hdlc_irq_handler, 0, "hdlc", priv))
715 			return -ENODEV;
716 
717 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
718 					priv->ut_info->uf_info.ucc_num);
719 
720 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
721 			     QE_CR_PROTOCOL_UNSPECIFIED, 0);
722 
723 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
724 
725 		/* Enable the TDM port */
726 		if (priv->tsa)
727 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
728 
729 		priv->hdlc_busy = 1;
730 		netif_device_attach(priv->ndev);
731 		napi_enable(&priv->napi);
732 		netdev_reset_queue(dev);
733 		netif_start_queue(dev);
734 		hdlc_open(dev);
735 	}
736 
737 	return 0;
738 }
739 
740 static void uhdlc_memclean(struct ucc_hdlc_private *priv)
741 {
742 	qe_muram_free(ioread16be(&priv->ucc_pram->riptr));
743 	qe_muram_free(ioread16be(&priv->ucc_pram->tiptr));
744 
745 	if (priv->rx_bd_base) {
746 		dma_free_coherent(priv->dev,
747 				  RX_BD_RING_LEN * sizeof(struct qe_bd),
748 				  priv->rx_bd_base, priv->dma_rx_bd);
749 
750 		priv->rx_bd_base = NULL;
751 		priv->dma_rx_bd = 0;
752 	}
753 
754 	if (priv->tx_bd_base) {
755 		dma_free_coherent(priv->dev,
756 				  TX_BD_RING_LEN * sizeof(struct qe_bd),
757 				  priv->tx_bd_base, priv->dma_tx_bd);
758 
759 		priv->tx_bd_base = NULL;
760 		priv->dma_tx_bd = 0;
761 	}
762 
763 	if (priv->ucc_pram) {
764 		qe_muram_free(priv->ucc_pram_offset);
765 		priv->ucc_pram = NULL;
766 		priv->ucc_pram_offset = 0;
767 	 }
768 
769 	kfree(priv->rx_skbuff);
770 	priv->rx_skbuff = NULL;
771 
772 	kfree(priv->tx_skbuff);
773 	priv->tx_skbuff = NULL;
774 
775 	if (priv->uf_regs) {
776 		iounmap(priv->uf_regs);
777 		priv->uf_regs = NULL;
778 	}
779 
780 	if (priv->uccf) {
781 		ucc_fast_free(priv->uccf);
782 		priv->uccf = NULL;
783 	}
784 
785 	if (priv->rx_buffer) {
786 		dma_free_coherent(priv->dev,
787 				  RX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
788 				  priv->rx_buffer, priv->dma_rx_addr);
789 		priv->rx_buffer = NULL;
790 		priv->dma_rx_addr = 0;
791 	}
792 
793 	if (priv->tx_buffer) {
794 		dma_free_coherent(priv->dev,
795 				  TX_BD_RING_LEN * MAX_RX_BUF_LENGTH,
796 				  priv->tx_buffer, priv->dma_tx_addr);
797 		priv->tx_buffer = NULL;
798 		priv->dma_tx_addr = 0;
799 	}
800 }
801 
802 static int uhdlc_close(struct net_device *dev)
803 {
804 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
805 	struct ucc_tdm *utdm = priv->utdm;
806 	u32 cecr_subblock;
807 
808 	napi_disable(&priv->napi);
809 	cecr_subblock = ucc_fast_get_qe_cr_subblock(
810 				priv->ut_info->uf_info.ucc_num);
811 
812 	qe_issue_cmd(QE_GRACEFUL_STOP_TX, cecr_subblock,
813 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
814 	qe_issue_cmd(QE_CLOSE_RX_BD, cecr_subblock,
815 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
816 
817 	if (priv->tsa)
818 		utdm->si_regs->siglmr1_h &= ~(0x1 << utdm->tdm_port);
819 
820 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
821 
822 	free_irq(priv->ut_info->uf_info.irq, priv);
823 	netif_stop_queue(dev);
824 	netdev_reset_queue(dev);
825 	priv->hdlc_busy = 0;
826 
827 	return 0;
828 }
829 
830 static int ucc_hdlc_attach(struct net_device *dev, unsigned short encoding,
831 			   unsigned short parity)
832 {
833 	struct ucc_hdlc_private *priv = dev_to_hdlc(dev)->priv;
834 
835 	if (encoding != ENCODING_NRZ &&
836 	    encoding != ENCODING_NRZI)
837 		return -EINVAL;
838 
839 	if (parity != PARITY_NONE &&
840 	    parity != PARITY_CRC32_PR1_CCITT &&
841 	    parity != PARITY_CRC16_PR0_CCITT &&
842 	    parity != PARITY_CRC16_PR1_CCITT)
843 		return -EINVAL;
844 
845 	priv->encoding = encoding;
846 	priv->parity = parity;
847 
848 	return 0;
849 }
850 
851 #ifdef CONFIG_PM
852 static void store_clk_config(struct ucc_hdlc_private *priv)
853 {
854 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
855 
856 	/* store si clk */
857 	priv->cmxsi1cr_h = ioread32be(&qe_mux_reg->cmxsi1cr_h);
858 	priv->cmxsi1cr_l = ioread32be(&qe_mux_reg->cmxsi1cr_l);
859 
860 	/* store si sync */
861 	priv->cmxsi1syr = ioread32be(&qe_mux_reg->cmxsi1syr);
862 
863 	/* store ucc clk */
864 	memcpy_fromio(priv->cmxucr, qe_mux_reg->cmxucr, 4 * sizeof(u32));
865 }
866 
867 static void resume_clk_config(struct ucc_hdlc_private *priv)
868 {
869 	struct qe_mux *qe_mux_reg = &qe_immr->qmx;
870 
871 	memcpy_toio(qe_mux_reg->cmxucr, priv->cmxucr, 4 * sizeof(u32));
872 
873 	iowrite32be(priv->cmxsi1cr_h, &qe_mux_reg->cmxsi1cr_h);
874 	iowrite32be(priv->cmxsi1cr_l, &qe_mux_reg->cmxsi1cr_l);
875 
876 	iowrite32be(priv->cmxsi1syr, &qe_mux_reg->cmxsi1syr);
877 }
878 
879 static int uhdlc_suspend(struct device *dev)
880 {
881 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
882 	struct ucc_fast __iomem *uf_regs;
883 
884 	if (!priv)
885 		return -EINVAL;
886 
887 	if (!netif_running(priv->ndev))
888 		return 0;
889 
890 	netif_device_detach(priv->ndev);
891 	napi_disable(&priv->napi);
892 
893 	uf_regs = priv->uf_regs;
894 
895 	/* backup gumr guemr*/
896 	priv->gumr = ioread32be(&uf_regs->gumr);
897 	priv->guemr = ioread8(&uf_regs->guemr);
898 
899 	priv->ucc_pram_bak = kmalloc(sizeof(*priv->ucc_pram_bak),
900 					GFP_KERNEL);
901 	if (!priv->ucc_pram_bak)
902 		return -ENOMEM;
903 
904 	/* backup HDLC parameter */
905 	memcpy_fromio(priv->ucc_pram_bak, priv->ucc_pram,
906 		      sizeof(struct ucc_hdlc_param));
907 
908 	/* store the clk configuration */
909 	store_clk_config(priv);
910 
911 	/* save power */
912 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
913 
914 	return 0;
915 }
916 
917 static int uhdlc_resume(struct device *dev)
918 {
919 	struct ucc_hdlc_private *priv = dev_get_drvdata(dev);
920 	struct ucc_tdm *utdm;
921 	struct ucc_tdm_info *ut_info;
922 	struct ucc_fast __iomem *uf_regs;
923 	struct ucc_fast_private *uccf;
924 	struct ucc_fast_info *uf_info;
925 	int i;
926 	u32 cecr_subblock;
927 	u16 bd_status;
928 
929 	if (!priv)
930 		return -EINVAL;
931 
932 	if (!netif_running(priv->ndev))
933 		return 0;
934 
935 	utdm = priv->utdm;
936 	ut_info = priv->ut_info;
937 	uf_info = &ut_info->uf_info;
938 	uf_regs = priv->uf_regs;
939 	uccf = priv->uccf;
940 
941 	/* restore gumr guemr */
942 	iowrite8(priv->guemr, &uf_regs->guemr);
943 	iowrite32be(priv->gumr, &uf_regs->gumr);
944 
945 	/* Set Virtual Fifo registers */
946 	iowrite16be(uf_info->urfs, &uf_regs->urfs);
947 	iowrite16be(uf_info->urfet, &uf_regs->urfet);
948 	iowrite16be(uf_info->urfset, &uf_regs->urfset);
949 	iowrite16be(uf_info->utfs, &uf_regs->utfs);
950 	iowrite16be(uf_info->utfet, &uf_regs->utfet);
951 	iowrite16be(uf_info->utftt, &uf_regs->utftt);
952 	/* utfb, urfb are offsets from MURAM base */
953 	iowrite32be(uccf->ucc_fast_tx_virtual_fifo_base_offset, &uf_regs->utfb);
954 	iowrite32be(uccf->ucc_fast_rx_virtual_fifo_base_offset, &uf_regs->urfb);
955 
956 	/* Rx Tx and sync clock routing */
957 	resume_clk_config(priv);
958 
959 	iowrite32be(uf_info->uccm_mask, &uf_regs->uccm);
960 	iowrite32be(0xffffffff, &uf_regs->ucce);
961 
962 	ucc_fast_disable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
963 
964 	/* rebuild SIRAM */
965 	if (priv->tsa)
966 		ucc_tdm_init(priv->utdm, priv->ut_info);
967 
968 	/* Write to QE CECR, UCCx channel to Stop Transmission */
969 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
970 	qe_issue_cmd(QE_STOP_TX, cecr_subblock,
971 		     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
972 
973 	/* Set UPSMR normal mode */
974 	iowrite32be(0, &uf_regs->upsmr);
975 
976 	/* init parameter base */
977 	cecr_subblock = ucc_fast_get_qe_cr_subblock(uf_info->ucc_num);
978 	qe_issue_cmd(QE_ASSIGN_PAGE_TO_DEVICE, cecr_subblock,
979 		     QE_CR_PROTOCOL_UNSPECIFIED, priv->ucc_pram_offset);
980 
981 	priv->ucc_pram = (struct ucc_hdlc_param __iomem *)
982 				qe_muram_addr(priv->ucc_pram_offset);
983 
984 	/* restore ucc parameter */
985 	memcpy_toio(priv->ucc_pram, priv->ucc_pram_bak,
986 		    sizeof(struct ucc_hdlc_param));
987 	kfree(priv->ucc_pram_bak);
988 
989 	/* rebuild BD entry */
990 	for (i = 0; i < RX_BD_RING_LEN; i++) {
991 		if (i < (RX_BD_RING_LEN - 1))
992 			bd_status = R_E_S | R_I_S;
993 		else
994 			bd_status = R_E_S | R_I_S | R_W_S;
995 
996 		iowrite16be(bd_status, &priv->rx_bd_base[i].status);
997 		iowrite32be(priv->dma_rx_addr + i * MAX_RX_BUF_LENGTH,
998 			    &priv->rx_bd_base[i].buf);
999 	}
1000 
1001 	for (i = 0; i < TX_BD_RING_LEN; i++) {
1002 		if (i < (TX_BD_RING_LEN - 1))
1003 			bd_status =  T_I_S | T_TC_S;
1004 		else
1005 			bd_status =  T_I_S | T_TC_S | T_W_S;
1006 
1007 		iowrite16be(bd_status, &priv->tx_bd_base[i].status);
1008 		iowrite32be(priv->dma_tx_addr + i * MAX_RX_BUF_LENGTH,
1009 			    &priv->tx_bd_base[i].buf);
1010 	}
1011 
1012 	/* if hdlc is busy enable TX and RX */
1013 	if (priv->hdlc_busy == 1) {
1014 		cecr_subblock = ucc_fast_get_qe_cr_subblock(
1015 					priv->ut_info->uf_info.ucc_num);
1016 
1017 		qe_issue_cmd(QE_INIT_TX_RX, cecr_subblock,
1018 			     (u8)QE_CR_PROTOCOL_UNSPECIFIED, 0);
1019 
1020 		ucc_fast_enable(priv->uccf, COMM_DIR_RX | COMM_DIR_TX);
1021 
1022 		/* Enable the TDM port */
1023 		if (priv->tsa)
1024 			utdm->si_regs->siglmr1_h |= (0x1 << utdm->tdm_port);
1025 	}
1026 
1027 	napi_enable(&priv->napi);
1028 	netif_device_attach(priv->ndev);
1029 
1030 	return 0;
1031 }
1032 
1033 static const struct dev_pm_ops uhdlc_pm_ops = {
1034 	.suspend = uhdlc_suspend,
1035 	.resume = uhdlc_resume,
1036 	.freeze = uhdlc_suspend,
1037 	.thaw = uhdlc_resume,
1038 };
1039 
1040 #define HDLC_PM_OPS (&uhdlc_pm_ops)
1041 
1042 #else
1043 
1044 #define HDLC_PM_OPS NULL
1045 
1046 #endif
1047 static void uhdlc_tx_timeout(struct net_device *ndev, unsigned int txqueue)
1048 {
1049 	netdev_err(ndev, "%s\n", __func__);
1050 }
1051 
1052 static const struct net_device_ops uhdlc_ops = {
1053 	.ndo_open       = uhdlc_open,
1054 	.ndo_stop       = uhdlc_close,
1055 	.ndo_start_xmit = hdlc_start_xmit,
1056 	.ndo_do_ioctl   = uhdlc_ioctl,
1057 	.ndo_tx_timeout	= uhdlc_tx_timeout,
1058 };
1059 
1060 static int hdlc_map_iomem(char *name, int init_flag, void __iomem **ptr)
1061 {
1062 	struct device_node *np;
1063 	struct platform_device *pdev;
1064 	struct resource *res;
1065 	static int siram_init_flag;
1066 	int ret = 0;
1067 
1068 	np = of_find_compatible_node(NULL, NULL, name);
1069 	if (!np)
1070 		return -EINVAL;
1071 
1072 	pdev = of_find_device_by_node(np);
1073 	if (!pdev) {
1074 		pr_err("%pOFn: failed to lookup pdev\n", np);
1075 		of_node_put(np);
1076 		return -EINVAL;
1077 	}
1078 
1079 	of_node_put(np);
1080 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1081 	if (!res) {
1082 		ret = -EINVAL;
1083 		goto error_put_device;
1084 	}
1085 	*ptr = ioremap(res->start, resource_size(res));
1086 	if (!*ptr) {
1087 		ret = -ENOMEM;
1088 		goto error_put_device;
1089 	}
1090 
1091 	/* We've remapped the addresses, and we don't need the device any
1092 	 * more, so we should release it.
1093 	 */
1094 	put_device(&pdev->dev);
1095 
1096 	if (init_flag && siram_init_flag == 0) {
1097 		memset_io(*ptr, 0, resource_size(res));
1098 		siram_init_flag = 1;
1099 	}
1100 	return  0;
1101 
1102 error_put_device:
1103 	put_device(&pdev->dev);
1104 
1105 	return ret;
1106 }
1107 
1108 static int ucc_hdlc_probe(struct platform_device *pdev)
1109 {
1110 	struct device_node *np = pdev->dev.of_node;
1111 	struct ucc_hdlc_private *uhdlc_priv = NULL;
1112 	struct ucc_tdm_info *ut_info;
1113 	struct ucc_tdm *utdm = NULL;
1114 	struct resource res;
1115 	struct net_device *dev;
1116 	hdlc_device *hdlc;
1117 	int ucc_num;
1118 	const char *sprop;
1119 	int ret;
1120 	u32 val;
1121 
1122 	ret = of_property_read_u32_index(np, "cell-index", 0, &val);
1123 	if (ret) {
1124 		dev_err(&pdev->dev, "Invalid ucc property\n");
1125 		return -ENODEV;
1126 	}
1127 
1128 	ucc_num = val - 1;
1129 	if (ucc_num > (UCC_MAX_NUM - 1) || ucc_num < 0) {
1130 		dev_err(&pdev->dev, ": Invalid UCC num\n");
1131 		return -EINVAL;
1132 	}
1133 
1134 	memcpy(&utdm_info[ucc_num], &utdm_primary_info,
1135 	       sizeof(utdm_primary_info));
1136 
1137 	ut_info = &utdm_info[ucc_num];
1138 	ut_info->uf_info.ucc_num = ucc_num;
1139 
1140 	sprop = of_get_property(np, "rx-clock-name", NULL);
1141 	if (sprop) {
1142 		ut_info->uf_info.rx_clock = qe_clock_source(sprop);
1143 		if ((ut_info->uf_info.rx_clock < QE_CLK_NONE) ||
1144 		    (ut_info->uf_info.rx_clock > QE_CLK24)) {
1145 			dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1146 			return -EINVAL;
1147 		}
1148 	} else {
1149 		dev_err(&pdev->dev, "Invalid rx-clock-name property\n");
1150 		return -EINVAL;
1151 	}
1152 
1153 	sprop = of_get_property(np, "tx-clock-name", NULL);
1154 	if (sprop) {
1155 		ut_info->uf_info.tx_clock = qe_clock_source(sprop);
1156 		if ((ut_info->uf_info.tx_clock < QE_CLK_NONE) ||
1157 		    (ut_info->uf_info.tx_clock > QE_CLK24)) {
1158 			dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1159 			return -EINVAL;
1160 		}
1161 	} else {
1162 		dev_err(&pdev->dev, "Invalid tx-clock-name property\n");
1163 		return -EINVAL;
1164 	}
1165 
1166 	ret = of_address_to_resource(np, 0, &res);
1167 	if (ret)
1168 		return -EINVAL;
1169 
1170 	ut_info->uf_info.regs = res.start;
1171 	ut_info->uf_info.irq = irq_of_parse_and_map(np, 0);
1172 
1173 	uhdlc_priv = kzalloc(sizeof(*uhdlc_priv), GFP_KERNEL);
1174 	if (!uhdlc_priv) {
1175 		return -ENOMEM;
1176 	}
1177 
1178 	dev_set_drvdata(&pdev->dev, uhdlc_priv);
1179 	uhdlc_priv->dev = &pdev->dev;
1180 	uhdlc_priv->ut_info = ut_info;
1181 
1182 	if (of_get_property(np, "fsl,tdm-interface", NULL))
1183 		uhdlc_priv->tsa = 1;
1184 
1185 	if (of_get_property(np, "fsl,ucc-internal-loopback", NULL))
1186 		uhdlc_priv->loopback = 1;
1187 
1188 	if (of_get_property(np, "fsl,hdlc-bus", NULL))
1189 		uhdlc_priv->hdlc_bus = 1;
1190 
1191 	if (uhdlc_priv->tsa == 1) {
1192 		utdm = kzalloc(sizeof(*utdm), GFP_KERNEL);
1193 		if (!utdm) {
1194 			ret = -ENOMEM;
1195 			dev_err(&pdev->dev, "No mem to alloc ucc tdm data\n");
1196 			goto free_uhdlc_priv;
1197 		}
1198 		uhdlc_priv->utdm = utdm;
1199 		ret = ucc_of_parse_tdm(np, utdm, ut_info);
1200 		if (ret)
1201 			goto free_utdm;
1202 
1203 		ret = hdlc_map_iomem("fsl,t1040-qe-si", 0,
1204 				     (void __iomem **)&utdm->si_regs);
1205 		if (ret)
1206 			goto free_utdm;
1207 		ret = hdlc_map_iomem("fsl,t1040-qe-siram", 1,
1208 				     (void __iomem **)&utdm->siram);
1209 		if (ret)
1210 			goto unmap_si_regs;
1211 	}
1212 
1213 	if (of_property_read_u16(np, "fsl,hmask", &uhdlc_priv->hmask))
1214 		uhdlc_priv->hmask = DEFAULT_ADDR_MASK;
1215 
1216 	ret = uhdlc_init(uhdlc_priv);
1217 	if (ret) {
1218 		dev_err(&pdev->dev, "Failed to init uhdlc\n");
1219 		goto undo_uhdlc_init;
1220 	}
1221 
1222 	dev = alloc_hdlcdev(uhdlc_priv);
1223 	if (!dev) {
1224 		ret = -ENOMEM;
1225 		pr_err("ucc_hdlc: unable to allocate memory\n");
1226 		goto undo_uhdlc_init;
1227 	}
1228 
1229 	uhdlc_priv->ndev = dev;
1230 	hdlc = dev_to_hdlc(dev);
1231 	dev->tx_queue_len = 16;
1232 	dev->netdev_ops = &uhdlc_ops;
1233 	dev->watchdog_timeo = 2 * HZ;
1234 	hdlc->attach = ucc_hdlc_attach;
1235 	hdlc->xmit = ucc_hdlc_tx;
1236 	netif_napi_add(dev, &uhdlc_priv->napi, ucc_hdlc_poll, 32);
1237 	if (register_hdlc_device(dev)) {
1238 		ret = -ENOBUFS;
1239 		pr_err("ucc_hdlc: unable to register hdlc device\n");
1240 		goto free_dev;
1241 	}
1242 
1243 	return 0;
1244 
1245 free_dev:
1246 	free_netdev(dev);
1247 undo_uhdlc_init:
1248 	iounmap(utdm->siram);
1249 unmap_si_regs:
1250 	iounmap(utdm->si_regs);
1251 free_utdm:
1252 	if (uhdlc_priv->tsa)
1253 		kfree(utdm);
1254 free_uhdlc_priv:
1255 	kfree(uhdlc_priv);
1256 	return ret;
1257 }
1258 
1259 static int ucc_hdlc_remove(struct platform_device *pdev)
1260 {
1261 	struct ucc_hdlc_private *priv = dev_get_drvdata(&pdev->dev);
1262 
1263 	uhdlc_memclean(priv);
1264 
1265 	if (priv->utdm->si_regs) {
1266 		iounmap(priv->utdm->si_regs);
1267 		priv->utdm->si_regs = NULL;
1268 	}
1269 
1270 	if (priv->utdm->siram) {
1271 		iounmap(priv->utdm->siram);
1272 		priv->utdm->siram = NULL;
1273 	}
1274 	kfree(priv);
1275 
1276 	dev_info(&pdev->dev, "UCC based hdlc module removed\n");
1277 
1278 	return 0;
1279 }
1280 
1281 static const struct of_device_id fsl_ucc_hdlc_of_match[] = {
1282 	{
1283 	.compatible = "fsl,ucc-hdlc",
1284 	},
1285 	{},
1286 };
1287 
1288 MODULE_DEVICE_TABLE(of, fsl_ucc_hdlc_of_match);
1289 
1290 static struct platform_driver ucc_hdlc_driver = {
1291 	.probe	= ucc_hdlc_probe,
1292 	.remove	= ucc_hdlc_remove,
1293 	.driver	= {
1294 		.name		= DRV_NAME,
1295 		.pm		= HDLC_PM_OPS,
1296 		.of_match_table	= fsl_ucc_hdlc_of_match,
1297 	},
1298 };
1299 
1300 module_platform_driver(ucc_hdlc_driver);
1301 MODULE_LICENSE("GPL");
1302 MODULE_DESCRIPTION(DRV_DESC);
1303