1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * vrf.c: device driver to encapsulate a VRF space 4 * 5 * Copyright (c) 2015 Cumulus Networks. All rights reserved. 6 * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com> 7 * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com> 8 * 9 * Based on dummy, team and ipvlan drivers 10 */ 11 12 #include <linux/ethtool.h> 13 #include <linux/module.h> 14 #include <linux/kernel.h> 15 #include <linux/netdevice.h> 16 #include <linux/etherdevice.h> 17 #include <linux/ip.h> 18 #include <linux/init.h> 19 #include <linux/moduleparam.h> 20 #include <linux/netfilter.h> 21 #include <linux/rtnetlink.h> 22 #include <net/rtnetlink.h> 23 #include <linux/u64_stats_sync.h> 24 #include <linux/hashtable.h> 25 #include <linux/spinlock_types.h> 26 27 #include <linux/inetdevice.h> 28 #include <net/arp.h> 29 #include <net/ip.h> 30 #include <net/ip_fib.h> 31 #include <net/ip6_fib.h> 32 #include <net/ip6_route.h> 33 #include <net/route.h> 34 #include <net/addrconf.h> 35 #include <net/l3mdev.h> 36 #include <net/fib_rules.h> 37 #include <net/sch_generic.h> 38 #include <net/netns/generic.h> 39 #include <net/netfilter/nf_conntrack.h> 40 41 #define DRV_NAME "vrf" 42 #define DRV_VERSION "1.1" 43 44 #define FIB_RULE_PREF 1000 /* default preference for FIB rules */ 45 46 #define HT_MAP_BITS 4 47 #define HASH_INITVAL ((u32)0xcafef00d) 48 49 struct vrf_map { 50 DECLARE_HASHTABLE(ht, HT_MAP_BITS); 51 spinlock_t vmap_lock; 52 53 /* shared_tables: 54 * count how many distinct tables do not comply with the strict mode 55 * requirement. 56 * shared_tables value must be 0 in order to enable the strict mode. 57 * 58 * example of the evolution of shared_tables: 59 * | time 60 * add vrf0 --> table 100 shared_tables = 0 | t0 61 * add vrf1 --> table 101 shared_tables = 0 | t1 62 * add vrf2 --> table 100 shared_tables = 1 | t2 63 * add vrf3 --> table 100 shared_tables = 1 | t3 64 * add vrf4 --> table 101 shared_tables = 2 v t4 65 * 66 * shared_tables is a "step function" (or "staircase function") 67 * and it is increased by one when the second vrf is associated to a 68 * table. 69 * 70 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1. 71 * 72 * at t3, another dev (vrf3) is bound to the same table 100 but the 73 * value of shared_tables is still 1. 74 * This means that no matter how many new vrfs will register on the 75 * table 100, the shared_tables will not increase (considering only 76 * table 100). 77 * 78 * at t4, vrf4 is bound to table 101, and shared_tables = 2. 79 * 80 * Looking at the value of shared_tables we can immediately know if 81 * the strict_mode can or cannot be enforced. Indeed, strict_mode 82 * can be enforced iff shared_tables = 0. 83 * 84 * Conversely, shared_tables is decreased when a vrf is de-associated 85 * from a table with exactly two associated vrfs. 86 */ 87 u32 shared_tables; 88 89 bool strict_mode; 90 }; 91 92 struct vrf_map_elem { 93 struct hlist_node hnode; 94 struct list_head vrf_list; /* VRFs registered to this table */ 95 96 u32 table_id; 97 int users; 98 int ifindex; 99 }; 100 101 static unsigned int vrf_net_id; 102 103 /* per netns vrf data */ 104 struct netns_vrf { 105 /* protected by rtnl lock */ 106 bool add_fib_rules; 107 108 struct vrf_map vmap; 109 struct ctl_table_header *ctl_hdr; 110 }; 111 112 struct net_vrf { 113 struct rtable __rcu *rth; 114 struct rt6_info __rcu *rt6; 115 #if IS_ENABLED(CONFIG_IPV6) 116 struct fib6_table *fib6_table; 117 #endif 118 u32 tb_id; 119 120 struct list_head me_list; /* entry in vrf_map_elem */ 121 int ifindex; 122 }; 123 124 static void vrf_rx_stats(struct net_device *dev, int len) 125 { 126 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 127 128 u64_stats_update_begin(&dstats->syncp); 129 dstats->rx_packets++; 130 dstats->rx_bytes += len; 131 u64_stats_update_end(&dstats->syncp); 132 } 133 134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb) 135 { 136 vrf_dev->stats.tx_errors++; 137 kfree_skb(skb); 138 } 139 140 static void vrf_get_stats64(struct net_device *dev, 141 struct rtnl_link_stats64 *stats) 142 { 143 int i; 144 145 for_each_possible_cpu(i) { 146 const struct pcpu_dstats *dstats; 147 u64 tbytes, tpkts, tdrops, rbytes, rpkts; 148 unsigned int start; 149 150 dstats = per_cpu_ptr(dev->dstats, i); 151 do { 152 start = u64_stats_fetch_begin(&dstats->syncp); 153 tbytes = dstats->tx_bytes; 154 tpkts = dstats->tx_packets; 155 tdrops = dstats->tx_drops; 156 rbytes = dstats->rx_bytes; 157 rpkts = dstats->rx_packets; 158 } while (u64_stats_fetch_retry(&dstats->syncp, start)); 159 stats->tx_bytes += tbytes; 160 stats->tx_packets += tpkts; 161 stats->tx_dropped += tdrops; 162 stats->rx_bytes += rbytes; 163 stats->rx_packets += rpkts; 164 } 165 } 166 167 static struct vrf_map *netns_vrf_map(struct net *net) 168 { 169 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 170 171 return &nn_vrf->vmap; 172 } 173 174 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev) 175 { 176 return netns_vrf_map(dev_net(dev)); 177 } 178 179 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me) 180 { 181 struct list_head *me_head = &me->vrf_list; 182 struct net_vrf *vrf; 183 184 if (list_empty(me_head)) 185 return -ENODEV; 186 187 vrf = list_first_entry(me_head, struct net_vrf, me_list); 188 189 return vrf->ifindex; 190 } 191 192 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags) 193 { 194 struct vrf_map_elem *me; 195 196 me = kmalloc(sizeof(*me), flags); 197 if (!me) 198 return NULL; 199 200 return me; 201 } 202 203 static void vrf_map_elem_free(struct vrf_map_elem *me) 204 { 205 kfree(me); 206 } 207 208 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id, 209 int ifindex, int users) 210 { 211 me->table_id = table_id; 212 me->ifindex = ifindex; 213 me->users = users; 214 INIT_LIST_HEAD(&me->vrf_list); 215 } 216 217 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap, 218 u32 table_id) 219 { 220 struct vrf_map_elem *me; 221 u32 key; 222 223 key = jhash_1word(table_id, HASH_INITVAL); 224 hash_for_each_possible(vmap->ht, me, hnode, key) { 225 if (me->table_id == table_id) 226 return me; 227 } 228 229 return NULL; 230 } 231 232 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me) 233 { 234 u32 table_id = me->table_id; 235 u32 key; 236 237 key = jhash_1word(table_id, HASH_INITVAL); 238 hash_add(vmap->ht, &me->hnode, key); 239 } 240 241 static void vrf_map_del_elem(struct vrf_map_elem *me) 242 { 243 hash_del(&me->hnode); 244 } 245 246 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock) 247 { 248 spin_lock(&vmap->vmap_lock); 249 } 250 251 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock) 252 { 253 spin_unlock(&vmap->vmap_lock); 254 } 255 256 /* called with rtnl lock held */ 257 static int 258 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack) 259 { 260 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 261 struct net_vrf *vrf = netdev_priv(dev); 262 struct vrf_map_elem *new_me, *me; 263 u32 table_id = vrf->tb_id; 264 bool free_new_me = false; 265 int users; 266 int res; 267 268 /* we pre-allocate elements used in the spin-locked section (so that we 269 * keep the spinlock as short as possible). 270 */ 271 new_me = vrf_map_elem_alloc(GFP_KERNEL); 272 if (!new_me) 273 return -ENOMEM; 274 275 vrf_map_elem_init(new_me, table_id, dev->ifindex, 0); 276 277 vrf_map_lock(vmap); 278 279 me = vrf_map_lookup_elem(vmap, table_id); 280 if (!me) { 281 me = new_me; 282 vrf_map_add_elem(vmap, me); 283 goto link_vrf; 284 } 285 286 /* we already have an entry in the vrf_map, so it means there is (at 287 * least) a vrf registered on the specific table. 288 */ 289 free_new_me = true; 290 if (vmap->strict_mode) { 291 /* vrfs cannot share the same table */ 292 NL_SET_ERR_MSG(extack, "Table is used by another VRF"); 293 res = -EBUSY; 294 goto unlock; 295 } 296 297 link_vrf: 298 users = ++me->users; 299 if (users == 2) 300 ++vmap->shared_tables; 301 302 list_add(&vrf->me_list, &me->vrf_list); 303 304 res = 0; 305 306 unlock: 307 vrf_map_unlock(vmap); 308 309 /* clean-up, if needed */ 310 if (free_new_me) 311 vrf_map_elem_free(new_me); 312 313 return res; 314 } 315 316 /* called with rtnl lock held */ 317 static void vrf_map_unregister_dev(struct net_device *dev) 318 { 319 struct vrf_map *vmap = netns_vrf_map_by_dev(dev); 320 struct net_vrf *vrf = netdev_priv(dev); 321 u32 table_id = vrf->tb_id; 322 struct vrf_map_elem *me; 323 int users; 324 325 vrf_map_lock(vmap); 326 327 me = vrf_map_lookup_elem(vmap, table_id); 328 if (!me) 329 goto unlock; 330 331 list_del(&vrf->me_list); 332 333 users = --me->users; 334 if (users == 1) { 335 --vmap->shared_tables; 336 } else if (users == 0) { 337 vrf_map_del_elem(me); 338 339 /* no one will refer to this element anymore */ 340 vrf_map_elem_free(me); 341 } 342 343 unlock: 344 vrf_map_unlock(vmap); 345 } 346 347 /* return the vrf device index associated with the table_id */ 348 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id) 349 { 350 struct vrf_map *vmap = netns_vrf_map(net); 351 struct vrf_map_elem *me; 352 int ifindex; 353 354 vrf_map_lock(vmap); 355 356 if (!vmap->strict_mode) { 357 ifindex = -EPERM; 358 goto unlock; 359 } 360 361 me = vrf_map_lookup_elem(vmap, table_id); 362 if (!me) { 363 ifindex = -ENODEV; 364 goto unlock; 365 } 366 367 ifindex = vrf_map_elem_get_vrf_ifindex(me); 368 369 unlock: 370 vrf_map_unlock(vmap); 371 372 return ifindex; 373 } 374 375 /* by default VRF devices do not have a qdisc and are expected 376 * to be created with only a single queue. 377 */ 378 static bool qdisc_tx_is_default(const struct net_device *dev) 379 { 380 struct netdev_queue *txq; 381 struct Qdisc *qdisc; 382 383 if (dev->num_tx_queues > 1) 384 return false; 385 386 txq = netdev_get_tx_queue(dev, 0); 387 qdisc = rcu_access_pointer(txq->qdisc); 388 389 return !qdisc->enqueue; 390 } 391 392 /* Local traffic destined to local address. Reinsert the packet to rx 393 * path, similar to loopback handling. 394 */ 395 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev, 396 struct dst_entry *dst) 397 { 398 int len = skb->len; 399 400 skb_orphan(skb); 401 402 skb_dst_set(skb, dst); 403 404 /* set pkt_type to avoid skb hitting packet taps twice - 405 * once on Tx and again in Rx processing 406 */ 407 skb->pkt_type = PACKET_LOOPBACK; 408 409 skb->protocol = eth_type_trans(skb, dev); 410 411 if (likely(__netif_rx(skb) == NET_RX_SUCCESS)) 412 vrf_rx_stats(dev, len); 413 else 414 this_cpu_inc(dev->dstats->rx_drops); 415 416 return NETDEV_TX_OK; 417 } 418 419 static void vrf_nf_set_untracked(struct sk_buff *skb) 420 { 421 if (skb_get_nfct(skb) == 0) 422 nf_ct_set(skb, NULL, IP_CT_UNTRACKED); 423 } 424 425 static void vrf_nf_reset_ct(struct sk_buff *skb) 426 { 427 if (skb_get_nfct(skb) == IP_CT_UNTRACKED) 428 nf_reset_ct(skb); 429 } 430 431 #if IS_ENABLED(CONFIG_IPV6) 432 static int vrf_ip6_local_out(struct net *net, struct sock *sk, 433 struct sk_buff *skb) 434 { 435 int err; 436 437 vrf_nf_reset_ct(skb); 438 439 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, 440 sk, skb, NULL, skb_dst(skb)->dev, dst_output); 441 442 if (likely(err == 1)) 443 err = dst_output(net, sk, skb); 444 445 return err; 446 } 447 448 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 449 struct net_device *dev) 450 { 451 const struct ipv6hdr *iph; 452 struct net *net = dev_net(skb->dev); 453 struct flowi6 fl6; 454 int ret = NET_XMIT_DROP; 455 struct dst_entry *dst; 456 struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst; 457 458 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr))) 459 goto err; 460 461 iph = ipv6_hdr(skb); 462 463 memset(&fl6, 0, sizeof(fl6)); 464 /* needed to match OIF rule */ 465 fl6.flowi6_l3mdev = dev->ifindex; 466 fl6.flowi6_iif = LOOPBACK_IFINDEX; 467 fl6.daddr = iph->daddr; 468 fl6.saddr = iph->saddr; 469 fl6.flowlabel = ip6_flowinfo(iph); 470 fl6.flowi6_mark = skb->mark; 471 fl6.flowi6_proto = iph->nexthdr; 472 473 dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL); 474 if (IS_ERR(dst) || dst == dst_null) 475 goto err; 476 477 skb_dst_drop(skb); 478 479 /* if dst.dev is the VRF device again this is locally originated traffic 480 * destined to a local address. Short circuit to Rx path. 481 */ 482 if (dst->dev == dev) 483 return vrf_local_xmit(skb, dev, dst); 484 485 skb_dst_set(skb, dst); 486 487 /* strip the ethernet header added for pass through VRF device */ 488 __skb_pull(skb, skb_network_offset(skb)); 489 490 memset(IP6CB(skb), 0, sizeof(*IP6CB(skb))); 491 ret = vrf_ip6_local_out(net, skb->sk, skb); 492 if (unlikely(net_xmit_eval(ret))) 493 dev->stats.tx_errors++; 494 else 495 ret = NET_XMIT_SUCCESS; 496 497 return ret; 498 err: 499 vrf_tx_error(dev, skb); 500 return NET_XMIT_DROP; 501 } 502 #else 503 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb, 504 struct net_device *dev) 505 { 506 vrf_tx_error(dev, skb); 507 return NET_XMIT_DROP; 508 } 509 #endif 510 511 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */ 512 static int vrf_ip_local_out(struct net *net, struct sock *sk, 513 struct sk_buff *skb) 514 { 515 int err; 516 517 vrf_nf_reset_ct(skb); 518 519 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 520 skb, NULL, skb_dst(skb)->dev, dst_output); 521 if (likely(err == 1)) 522 err = dst_output(net, sk, skb); 523 524 return err; 525 } 526 527 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb, 528 struct net_device *vrf_dev) 529 { 530 struct iphdr *ip4h; 531 int ret = NET_XMIT_DROP; 532 struct flowi4 fl4; 533 struct net *net = dev_net(vrf_dev); 534 struct rtable *rt; 535 536 if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr))) 537 goto err; 538 539 ip4h = ip_hdr(skb); 540 541 memset(&fl4, 0, sizeof(fl4)); 542 /* needed to match OIF rule */ 543 fl4.flowi4_l3mdev = vrf_dev->ifindex; 544 fl4.flowi4_iif = LOOPBACK_IFINDEX; 545 fl4.flowi4_tos = RT_TOS(ip4h->tos); 546 fl4.flowi4_flags = FLOWI_FLAG_ANYSRC; 547 fl4.flowi4_proto = ip4h->protocol; 548 fl4.daddr = ip4h->daddr; 549 fl4.saddr = ip4h->saddr; 550 551 rt = ip_route_output_flow(net, &fl4, NULL); 552 if (IS_ERR(rt)) 553 goto err; 554 555 skb_dst_drop(skb); 556 557 /* if dst.dev is the VRF device again this is locally originated traffic 558 * destined to a local address. Short circuit to Rx path. 559 */ 560 if (rt->dst.dev == vrf_dev) 561 return vrf_local_xmit(skb, vrf_dev, &rt->dst); 562 563 skb_dst_set(skb, &rt->dst); 564 565 /* strip the ethernet header added for pass through VRF device */ 566 __skb_pull(skb, skb_network_offset(skb)); 567 568 if (!ip4h->saddr) { 569 ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0, 570 RT_SCOPE_LINK); 571 } 572 573 memset(IPCB(skb), 0, sizeof(*IPCB(skb))); 574 ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb); 575 if (unlikely(net_xmit_eval(ret))) 576 vrf_dev->stats.tx_errors++; 577 else 578 ret = NET_XMIT_SUCCESS; 579 580 out: 581 return ret; 582 err: 583 vrf_tx_error(vrf_dev, skb); 584 goto out; 585 } 586 587 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev) 588 { 589 switch (skb->protocol) { 590 case htons(ETH_P_IP): 591 return vrf_process_v4_outbound(skb, dev); 592 case htons(ETH_P_IPV6): 593 return vrf_process_v6_outbound(skb, dev); 594 default: 595 vrf_tx_error(dev, skb); 596 return NET_XMIT_DROP; 597 } 598 } 599 600 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev) 601 { 602 int len = skb->len; 603 netdev_tx_t ret = is_ip_tx_frame(skb, dev); 604 605 if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) { 606 struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats); 607 608 u64_stats_update_begin(&dstats->syncp); 609 dstats->tx_packets++; 610 dstats->tx_bytes += len; 611 u64_stats_update_end(&dstats->syncp); 612 } else { 613 this_cpu_inc(dev->dstats->tx_drops); 614 } 615 616 return ret; 617 } 618 619 static void vrf_finish_direct(struct sk_buff *skb) 620 { 621 struct net_device *vrf_dev = skb->dev; 622 623 if (!list_empty(&vrf_dev->ptype_all) && 624 likely(skb_headroom(skb) >= ETH_HLEN)) { 625 struct ethhdr *eth = skb_push(skb, ETH_HLEN); 626 627 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 628 eth_zero_addr(eth->h_dest); 629 eth->h_proto = skb->protocol; 630 631 dev_queue_xmit_nit(skb, vrf_dev); 632 633 skb_pull(skb, ETH_HLEN); 634 } 635 636 vrf_nf_reset_ct(skb); 637 } 638 639 #if IS_ENABLED(CONFIG_IPV6) 640 /* modelled after ip6_finish_output2 */ 641 static int vrf_finish_output6(struct net *net, struct sock *sk, 642 struct sk_buff *skb) 643 { 644 struct dst_entry *dst = skb_dst(skb); 645 struct net_device *dev = dst->dev; 646 const struct in6_addr *nexthop; 647 struct neighbour *neigh; 648 int ret; 649 650 vrf_nf_reset_ct(skb); 651 652 skb->protocol = htons(ETH_P_IPV6); 653 skb->dev = dev; 654 655 rcu_read_lock(); 656 nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr); 657 neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop); 658 if (unlikely(!neigh)) 659 neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false); 660 if (!IS_ERR(neigh)) { 661 sock_confirm_neigh(skb, neigh); 662 ret = neigh_output(neigh, skb, false); 663 rcu_read_unlock(); 664 return ret; 665 } 666 rcu_read_unlock(); 667 668 IP6_INC_STATS(dev_net(dst->dev), 669 ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES); 670 kfree_skb(skb); 671 return -EINVAL; 672 } 673 674 /* modelled after ip6_output */ 675 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb) 676 { 677 return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING, 678 net, sk, skb, NULL, skb_dst(skb)->dev, 679 vrf_finish_output6, 680 !(IP6CB(skb)->flags & IP6SKB_REROUTED)); 681 } 682 683 /* set dst on skb to send packet to us via dev_xmit path. Allows 684 * packet to go through device based features such as qdisc, netfilter 685 * hooks and packet sockets with skb->dev set to vrf device. 686 */ 687 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev, 688 struct sk_buff *skb) 689 { 690 struct net_vrf *vrf = netdev_priv(vrf_dev); 691 struct dst_entry *dst = NULL; 692 struct rt6_info *rt6; 693 694 rcu_read_lock(); 695 696 rt6 = rcu_dereference(vrf->rt6); 697 if (likely(rt6)) { 698 dst = &rt6->dst; 699 dst_hold(dst); 700 } 701 702 rcu_read_unlock(); 703 704 if (unlikely(!dst)) { 705 vrf_tx_error(vrf_dev, skb); 706 return NULL; 707 } 708 709 skb_dst_drop(skb); 710 skb_dst_set(skb, dst); 711 712 return skb; 713 } 714 715 static int vrf_output6_direct_finish(struct net *net, struct sock *sk, 716 struct sk_buff *skb) 717 { 718 vrf_finish_direct(skb); 719 720 return vrf_ip6_local_out(net, sk, skb); 721 } 722 723 static int vrf_output6_direct(struct net *net, struct sock *sk, 724 struct sk_buff *skb) 725 { 726 int err = 1; 727 728 skb->protocol = htons(ETH_P_IPV6); 729 730 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 731 err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb, 732 NULL, skb->dev, vrf_output6_direct_finish); 733 734 if (likely(err == 1)) 735 vrf_finish_direct(skb); 736 737 return err; 738 } 739 740 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk, 741 struct sk_buff *skb) 742 { 743 int err; 744 745 err = vrf_output6_direct(net, sk, skb); 746 if (likely(err == 1)) 747 err = vrf_ip6_local_out(net, sk, skb); 748 749 return err; 750 } 751 752 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev, 753 struct sock *sk, 754 struct sk_buff *skb) 755 { 756 struct net *net = dev_net(vrf_dev); 757 int err; 758 759 skb->dev = vrf_dev; 760 761 err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk, 762 skb, NULL, vrf_dev, vrf_ip6_out_direct_finish); 763 764 if (likely(err == 1)) 765 err = vrf_output6_direct(net, sk, skb); 766 767 if (likely(err == 1)) 768 return skb; 769 770 return NULL; 771 } 772 773 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 774 struct sock *sk, 775 struct sk_buff *skb) 776 { 777 /* don't divert link scope packets */ 778 if (rt6_need_strict(&ipv6_hdr(skb)->daddr)) 779 return skb; 780 781 vrf_nf_set_untracked(skb); 782 783 if (qdisc_tx_is_default(vrf_dev) || 784 IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 785 return vrf_ip6_out_direct(vrf_dev, sk, skb); 786 787 return vrf_ip6_out_redirect(vrf_dev, skb); 788 } 789 790 /* holding rtnl */ 791 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 792 { 793 struct rt6_info *rt6 = rtnl_dereference(vrf->rt6); 794 struct net *net = dev_net(dev); 795 struct dst_entry *dst; 796 797 RCU_INIT_POINTER(vrf->rt6, NULL); 798 synchronize_rcu(); 799 800 /* move dev in dst's to loopback so this VRF device can be deleted 801 * - based on dst_ifdown 802 */ 803 if (rt6) { 804 dst = &rt6->dst; 805 netdev_ref_replace(dst->dev, net->loopback_dev, 806 &dst->dev_tracker, GFP_KERNEL); 807 dst->dev = net->loopback_dev; 808 dst_release(dst); 809 } 810 } 811 812 static int vrf_rt6_create(struct net_device *dev) 813 { 814 int flags = DST_NOPOLICY | DST_NOXFRM; 815 struct net_vrf *vrf = netdev_priv(dev); 816 struct net *net = dev_net(dev); 817 struct rt6_info *rt6; 818 int rc = -ENOMEM; 819 820 /* IPv6 can be CONFIG enabled and then disabled runtime */ 821 if (!ipv6_mod_enabled()) 822 return 0; 823 824 vrf->fib6_table = fib6_new_table(net, vrf->tb_id); 825 if (!vrf->fib6_table) 826 goto out; 827 828 /* create a dst for routing packets out a VRF device */ 829 rt6 = ip6_dst_alloc(net, dev, flags); 830 if (!rt6) 831 goto out; 832 833 rt6->dst.output = vrf_output6; 834 835 rcu_assign_pointer(vrf->rt6, rt6); 836 837 rc = 0; 838 out: 839 return rc; 840 } 841 #else 842 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev, 843 struct sock *sk, 844 struct sk_buff *skb) 845 { 846 return skb; 847 } 848 849 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf) 850 { 851 } 852 853 static int vrf_rt6_create(struct net_device *dev) 854 { 855 return 0; 856 } 857 #endif 858 859 /* modelled after ip_finish_output2 */ 860 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb) 861 { 862 struct dst_entry *dst = skb_dst(skb); 863 struct rtable *rt = (struct rtable *)dst; 864 struct net_device *dev = dst->dev; 865 unsigned int hh_len = LL_RESERVED_SPACE(dev); 866 struct neighbour *neigh; 867 bool is_v6gw = false; 868 869 vrf_nf_reset_ct(skb); 870 871 /* Be paranoid, rather than too clever. */ 872 if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) { 873 skb = skb_expand_head(skb, hh_len); 874 if (!skb) { 875 dev->stats.tx_errors++; 876 return -ENOMEM; 877 } 878 } 879 880 rcu_read_lock(); 881 882 neigh = ip_neigh_for_gw(rt, skb, &is_v6gw); 883 if (!IS_ERR(neigh)) { 884 int ret; 885 886 sock_confirm_neigh(skb, neigh); 887 /* if crossing protocols, can not use the cached header */ 888 ret = neigh_output(neigh, skb, is_v6gw); 889 rcu_read_unlock(); 890 return ret; 891 } 892 893 rcu_read_unlock(); 894 vrf_tx_error(skb->dev, skb); 895 return -EINVAL; 896 } 897 898 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb) 899 { 900 struct net_device *dev = skb_dst(skb)->dev; 901 902 IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len); 903 904 skb->dev = dev; 905 skb->protocol = htons(ETH_P_IP); 906 907 return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING, 908 net, sk, skb, NULL, dev, 909 vrf_finish_output, 910 !(IPCB(skb)->flags & IPSKB_REROUTED)); 911 } 912 913 /* set dst on skb to send packet to us via dev_xmit path. Allows 914 * packet to go through device based features such as qdisc, netfilter 915 * hooks and packet sockets with skb->dev set to vrf device. 916 */ 917 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev, 918 struct sk_buff *skb) 919 { 920 struct net_vrf *vrf = netdev_priv(vrf_dev); 921 struct dst_entry *dst = NULL; 922 struct rtable *rth; 923 924 rcu_read_lock(); 925 926 rth = rcu_dereference(vrf->rth); 927 if (likely(rth)) { 928 dst = &rth->dst; 929 dst_hold(dst); 930 } 931 932 rcu_read_unlock(); 933 934 if (unlikely(!dst)) { 935 vrf_tx_error(vrf_dev, skb); 936 return NULL; 937 } 938 939 skb_dst_drop(skb); 940 skb_dst_set(skb, dst); 941 942 return skb; 943 } 944 945 static int vrf_output_direct_finish(struct net *net, struct sock *sk, 946 struct sk_buff *skb) 947 { 948 vrf_finish_direct(skb); 949 950 return vrf_ip_local_out(net, sk, skb); 951 } 952 953 static int vrf_output_direct(struct net *net, struct sock *sk, 954 struct sk_buff *skb) 955 { 956 int err = 1; 957 958 skb->protocol = htons(ETH_P_IP); 959 960 if (!(IPCB(skb)->flags & IPSKB_REROUTED)) 961 err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb, 962 NULL, skb->dev, vrf_output_direct_finish); 963 964 if (likely(err == 1)) 965 vrf_finish_direct(skb); 966 967 return err; 968 } 969 970 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk, 971 struct sk_buff *skb) 972 { 973 int err; 974 975 err = vrf_output_direct(net, sk, skb); 976 if (likely(err == 1)) 977 err = vrf_ip_local_out(net, sk, skb); 978 979 return err; 980 } 981 982 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev, 983 struct sock *sk, 984 struct sk_buff *skb) 985 { 986 struct net *net = dev_net(vrf_dev); 987 int err; 988 989 skb->dev = vrf_dev; 990 991 err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk, 992 skb, NULL, vrf_dev, vrf_ip_out_direct_finish); 993 994 if (likely(err == 1)) 995 err = vrf_output_direct(net, sk, skb); 996 997 if (likely(err == 1)) 998 return skb; 999 1000 return NULL; 1001 } 1002 1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev, 1004 struct sock *sk, 1005 struct sk_buff *skb) 1006 { 1007 /* don't divert multicast or local broadcast */ 1008 if (ipv4_is_multicast(ip_hdr(skb)->daddr) || 1009 ipv4_is_lbcast(ip_hdr(skb)->daddr)) 1010 return skb; 1011 1012 vrf_nf_set_untracked(skb); 1013 1014 if (qdisc_tx_is_default(vrf_dev) || 1015 IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 1016 return vrf_ip_out_direct(vrf_dev, sk, skb); 1017 1018 return vrf_ip_out_redirect(vrf_dev, skb); 1019 } 1020 1021 /* called with rcu lock held */ 1022 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev, 1023 struct sock *sk, 1024 struct sk_buff *skb, 1025 u16 proto) 1026 { 1027 switch (proto) { 1028 case AF_INET: 1029 return vrf_ip_out(vrf_dev, sk, skb); 1030 case AF_INET6: 1031 return vrf_ip6_out(vrf_dev, sk, skb); 1032 } 1033 1034 return skb; 1035 } 1036 1037 /* holding rtnl */ 1038 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf) 1039 { 1040 struct rtable *rth = rtnl_dereference(vrf->rth); 1041 struct net *net = dev_net(dev); 1042 struct dst_entry *dst; 1043 1044 RCU_INIT_POINTER(vrf->rth, NULL); 1045 synchronize_rcu(); 1046 1047 /* move dev in dst's to loopback so this VRF device can be deleted 1048 * - based on dst_ifdown 1049 */ 1050 if (rth) { 1051 dst = &rth->dst; 1052 netdev_ref_replace(dst->dev, net->loopback_dev, 1053 &dst->dev_tracker, GFP_KERNEL); 1054 dst->dev = net->loopback_dev; 1055 dst_release(dst); 1056 } 1057 } 1058 1059 static int vrf_rtable_create(struct net_device *dev) 1060 { 1061 struct net_vrf *vrf = netdev_priv(dev); 1062 struct rtable *rth; 1063 1064 if (!fib_new_table(dev_net(dev), vrf->tb_id)) 1065 return -ENOMEM; 1066 1067 /* create a dst for routing packets out through a VRF device */ 1068 rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1); 1069 if (!rth) 1070 return -ENOMEM; 1071 1072 rth->dst.output = vrf_output; 1073 1074 rcu_assign_pointer(vrf->rth, rth); 1075 1076 return 0; 1077 } 1078 1079 /**************************** device handling ********************/ 1080 1081 /* cycle interface to flush neighbor cache and move routes across tables */ 1082 static void cycle_netdev(struct net_device *dev, 1083 struct netlink_ext_ack *extack) 1084 { 1085 unsigned int flags = dev->flags; 1086 int ret; 1087 1088 if (!netif_running(dev)) 1089 return; 1090 1091 ret = dev_change_flags(dev, flags & ~IFF_UP, extack); 1092 if (ret >= 0) 1093 ret = dev_change_flags(dev, flags, extack); 1094 1095 if (ret < 0) { 1096 netdev_err(dev, 1097 "Failed to cycle device %s; route tables might be wrong!\n", 1098 dev->name); 1099 } 1100 } 1101 1102 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1103 struct netlink_ext_ack *extack) 1104 { 1105 int ret; 1106 1107 /* do not allow loopback device to be enslaved to a VRF. 1108 * The vrf device acts as the loopback for the vrf. 1109 */ 1110 if (port_dev == dev_net(dev)->loopback_dev) { 1111 NL_SET_ERR_MSG(extack, 1112 "Can not enslave loopback device to a VRF"); 1113 return -EOPNOTSUPP; 1114 } 1115 1116 port_dev->priv_flags |= IFF_L3MDEV_SLAVE; 1117 ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack); 1118 if (ret < 0) 1119 goto err; 1120 1121 cycle_netdev(port_dev, extack); 1122 1123 return 0; 1124 1125 err: 1126 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1127 return ret; 1128 } 1129 1130 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev, 1131 struct netlink_ext_ack *extack) 1132 { 1133 if (netif_is_l3_master(port_dev)) { 1134 NL_SET_ERR_MSG(extack, 1135 "Can not enslave an L3 master device to a VRF"); 1136 return -EINVAL; 1137 } 1138 1139 if (netif_is_l3_slave(port_dev)) 1140 return -EINVAL; 1141 1142 return do_vrf_add_slave(dev, port_dev, extack); 1143 } 1144 1145 /* inverse of do_vrf_add_slave */ 1146 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1147 { 1148 netdev_upper_dev_unlink(port_dev, dev); 1149 port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE; 1150 1151 cycle_netdev(port_dev, NULL); 1152 1153 return 0; 1154 } 1155 1156 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev) 1157 { 1158 return do_vrf_del_slave(dev, port_dev); 1159 } 1160 1161 static void vrf_dev_uninit(struct net_device *dev) 1162 { 1163 struct net_vrf *vrf = netdev_priv(dev); 1164 1165 vrf_rtable_release(dev, vrf); 1166 vrf_rt6_release(dev, vrf); 1167 1168 free_percpu(dev->dstats); 1169 dev->dstats = NULL; 1170 } 1171 1172 static int vrf_dev_init(struct net_device *dev) 1173 { 1174 struct net_vrf *vrf = netdev_priv(dev); 1175 1176 dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats); 1177 if (!dev->dstats) 1178 goto out_nomem; 1179 1180 /* create the default dst which points back to us */ 1181 if (vrf_rtable_create(dev) != 0) 1182 goto out_stats; 1183 1184 if (vrf_rt6_create(dev) != 0) 1185 goto out_rth; 1186 1187 dev->flags = IFF_MASTER | IFF_NOARP; 1188 1189 /* similarly, oper state is irrelevant; set to up to avoid confusion */ 1190 dev->operstate = IF_OPER_UP; 1191 netdev_lockdep_set_classes(dev); 1192 return 0; 1193 1194 out_rth: 1195 vrf_rtable_release(dev, vrf); 1196 out_stats: 1197 free_percpu(dev->dstats); 1198 dev->dstats = NULL; 1199 out_nomem: 1200 return -ENOMEM; 1201 } 1202 1203 static const struct net_device_ops vrf_netdev_ops = { 1204 .ndo_init = vrf_dev_init, 1205 .ndo_uninit = vrf_dev_uninit, 1206 .ndo_start_xmit = vrf_xmit, 1207 .ndo_set_mac_address = eth_mac_addr, 1208 .ndo_get_stats64 = vrf_get_stats64, 1209 .ndo_add_slave = vrf_add_slave, 1210 .ndo_del_slave = vrf_del_slave, 1211 }; 1212 1213 static u32 vrf_fib_table(const struct net_device *dev) 1214 { 1215 struct net_vrf *vrf = netdev_priv(dev); 1216 1217 return vrf->tb_id; 1218 } 1219 1220 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb) 1221 { 1222 kfree_skb(skb); 1223 return 0; 1224 } 1225 1226 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook, 1227 struct sk_buff *skb, 1228 struct net_device *dev) 1229 { 1230 struct net *net = dev_net(dev); 1231 1232 if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1) 1233 skb = NULL; /* kfree_skb(skb) handled by nf code */ 1234 1235 return skb; 1236 } 1237 1238 static int vrf_prepare_mac_header(struct sk_buff *skb, 1239 struct net_device *vrf_dev, u16 proto) 1240 { 1241 struct ethhdr *eth; 1242 int err; 1243 1244 /* in general, we do not know if there is enough space in the head of 1245 * the packet for hosting the mac header. 1246 */ 1247 err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev)); 1248 if (unlikely(err)) 1249 /* no space in the skb head */ 1250 return -ENOBUFS; 1251 1252 __skb_push(skb, ETH_HLEN); 1253 eth = (struct ethhdr *)skb->data; 1254 1255 skb_reset_mac_header(skb); 1256 skb_reset_mac_len(skb); 1257 1258 /* we set the ethernet destination and the source addresses to the 1259 * address of the VRF device. 1260 */ 1261 ether_addr_copy(eth->h_dest, vrf_dev->dev_addr); 1262 ether_addr_copy(eth->h_source, vrf_dev->dev_addr); 1263 eth->h_proto = htons(proto); 1264 1265 /* the destination address of the Ethernet frame corresponds to the 1266 * address set on the VRF interface; therefore, the packet is intended 1267 * to be processed locally. 1268 */ 1269 skb->protocol = eth->h_proto; 1270 skb->pkt_type = PACKET_HOST; 1271 1272 skb_postpush_rcsum(skb, skb->data, ETH_HLEN); 1273 1274 skb_pull_inline(skb, ETH_HLEN); 1275 1276 return 0; 1277 } 1278 1279 /* prepare and add the mac header to the packet if it was not set previously. 1280 * In this way, packet sniffers such as tcpdump can parse the packet correctly. 1281 * If the mac header was already set, the original mac header is left 1282 * untouched and the function returns immediately. 1283 */ 1284 static int vrf_add_mac_header_if_unset(struct sk_buff *skb, 1285 struct net_device *vrf_dev, 1286 u16 proto, struct net_device *orig_dev) 1287 { 1288 if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev)) 1289 return 0; 1290 1291 return vrf_prepare_mac_header(skb, vrf_dev, proto); 1292 } 1293 1294 #if IS_ENABLED(CONFIG_IPV6) 1295 /* neighbor handling is done with actual device; do not want 1296 * to flip skb->dev for those ndisc packets. This really fails 1297 * for multiple next protocols (e.g., NEXTHDR_HOP). But it is 1298 * a start. 1299 */ 1300 static bool ipv6_ndisc_frame(const struct sk_buff *skb) 1301 { 1302 const struct ipv6hdr *iph = ipv6_hdr(skb); 1303 bool rc = false; 1304 1305 if (iph->nexthdr == NEXTHDR_ICMP) { 1306 const struct icmp6hdr *icmph; 1307 struct icmp6hdr _icmph; 1308 1309 icmph = skb_header_pointer(skb, sizeof(*iph), 1310 sizeof(_icmph), &_icmph); 1311 if (!icmph) 1312 goto out; 1313 1314 switch (icmph->icmp6_type) { 1315 case NDISC_ROUTER_SOLICITATION: 1316 case NDISC_ROUTER_ADVERTISEMENT: 1317 case NDISC_NEIGHBOUR_SOLICITATION: 1318 case NDISC_NEIGHBOUR_ADVERTISEMENT: 1319 case NDISC_REDIRECT: 1320 rc = true; 1321 break; 1322 } 1323 } 1324 1325 out: 1326 return rc; 1327 } 1328 1329 static struct rt6_info *vrf_ip6_route_lookup(struct net *net, 1330 const struct net_device *dev, 1331 struct flowi6 *fl6, 1332 int ifindex, 1333 const struct sk_buff *skb, 1334 int flags) 1335 { 1336 struct net_vrf *vrf = netdev_priv(dev); 1337 1338 return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags); 1339 } 1340 1341 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev, 1342 int ifindex) 1343 { 1344 const struct ipv6hdr *iph = ipv6_hdr(skb); 1345 struct flowi6 fl6 = { 1346 .flowi6_iif = ifindex, 1347 .flowi6_mark = skb->mark, 1348 .flowi6_proto = iph->nexthdr, 1349 .daddr = iph->daddr, 1350 .saddr = iph->saddr, 1351 .flowlabel = ip6_flowinfo(iph), 1352 }; 1353 struct net *net = dev_net(vrf_dev); 1354 struct rt6_info *rt6; 1355 1356 rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb, 1357 RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE); 1358 if (unlikely(!rt6)) 1359 return; 1360 1361 if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst)) 1362 return; 1363 1364 skb_dst_set(skb, &rt6->dst); 1365 } 1366 1367 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1368 struct sk_buff *skb) 1369 { 1370 int orig_iif = skb->skb_iif; 1371 bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr); 1372 bool is_ndisc = ipv6_ndisc_frame(skb); 1373 1374 /* loopback, multicast & non-ND link-local traffic; do not push through 1375 * packet taps again. Reset pkt_type for upper layers to process skb. 1376 * For non-loopback strict packets, determine the dst using the original 1377 * ifindex. 1378 */ 1379 if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) { 1380 skb->dev = vrf_dev; 1381 skb->skb_iif = vrf_dev->ifindex; 1382 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1383 1384 if (skb->pkt_type == PACKET_LOOPBACK) 1385 skb->pkt_type = PACKET_HOST; 1386 else 1387 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1388 1389 goto out; 1390 } 1391 1392 /* if packet is NDISC then keep the ingress interface */ 1393 if (!is_ndisc) { 1394 struct net_device *orig_dev = skb->dev; 1395 1396 vrf_rx_stats(vrf_dev, skb->len); 1397 skb->dev = vrf_dev; 1398 skb->skb_iif = vrf_dev->ifindex; 1399 1400 if (!list_empty(&vrf_dev->ptype_all)) { 1401 int err; 1402 1403 err = vrf_add_mac_header_if_unset(skb, vrf_dev, 1404 ETH_P_IPV6, 1405 orig_dev); 1406 if (likely(!err)) { 1407 skb_push(skb, skb->mac_len); 1408 dev_queue_xmit_nit(skb, vrf_dev); 1409 skb_pull(skb, skb->mac_len); 1410 } 1411 } 1412 1413 IP6CB(skb)->flags |= IP6SKB_L3SLAVE; 1414 } 1415 1416 if (need_strict) 1417 vrf_ip6_input_dst(skb, vrf_dev, orig_iif); 1418 1419 skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev); 1420 out: 1421 return skb; 1422 } 1423 1424 #else 1425 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev, 1426 struct sk_buff *skb) 1427 { 1428 return skb; 1429 } 1430 #endif 1431 1432 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev, 1433 struct sk_buff *skb) 1434 { 1435 struct net_device *orig_dev = skb->dev; 1436 1437 skb->dev = vrf_dev; 1438 skb->skb_iif = vrf_dev->ifindex; 1439 IPCB(skb)->flags |= IPSKB_L3SLAVE; 1440 1441 if (ipv4_is_multicast(ip_hdr(skb)->daddr)) 1442 goto out; 1443 1444 /* loopback traffic; do not push through packet taps again. 1445 * Reset pkt_type for upper layers to process skb 1446 */ 1447 if (skb->pkt_type == PACKET_LOOPBACK) { 1448 skb->pkt_type = PACKET_HOST; 1449 goto out; 1450 } 1451 1452 vrf_rx_stats(vrf_dev, skb->len); 1453 1454 if (!list_empty(&vrf_dev->ptype_all)) { 1455 int err; 1456 1457 err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP, 1458 orig_dev); 1459 if (likely(!err)) { 1460 skb_push(skb, skb->mac_len); 1461 dev_queue_xmit_nit(skb, vrf_dev); 1462 skb_pull(skb, skb->mac_len); 1463 } 1464 } 1465 1466 skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev); 1467 out: 1468 return skb; 1469 } 1470 1471 /* called with rcu lock held */ 1472 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev, 1473 struct sk_buff *skb, 1474 u16 proto) 1475 { 1476 switch (proto) { 1477 case AF_INET: 1478 return vrf_ip_rcv(vrf_dev, skb); 1479 case AF_INET6: 1480 return vrf_ip6_rcv(vrf_dev, skb); 1481 } 1482 1483 return skb; 1484 } 1485 1486 #if IS_ENABLED(CONFIG_IPV6) 1487 /* send to link-local or multicast address via interface enslaved to 1488 * VRF device. Force lookup to VRF table without changing flow struct 1489 * Note: Caller to this function must hold rcu_read_lock() and no refcnt 1490 * is taken on the dst by this function. 1491 */ 1492 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev, 1493 struct flowi6 *fl6) 1494 { 1495 struct net *net = dev_net(dev); 1496 int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF; 1497 struct dst_entry *dst = NULL; 1498 struct rt6_info *rt; 1499 1500 /* VRF device does not have a link-local address and 1501 * sending packets to link-local or mcast addresses over 1502 * a VRF device does not make sense 1503 */ 1504 if (fl6->flowi6_oif == dev->ifindex) { 1505 dst = &net->ipv6.ip6_null_entry->dst; 1506 return dst; 1507 } 1508 1509 if (!ipv6_addr_any(&fl6->saddr)) 1510 flags |= RT6_LOOKUP_F_HAS_SADDR; 1511 1512 rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags); 1513 if (rt) 1514 dst = &rt->dst; 1515 1516 return dst; 1517 } 1518 #endif 1519 1520 static const struct l3mdev_ops vrf_l3mdev_ops = { 1521 .l3mdev_fib_table = vrf_fib_table, 1522 .l3mdev_l3_rcv = vrf_l3_rcv, 1523 .l3mdev_l3_out = vrf_l3_out, 1524 #if IS_ENABLED(CONFIG_IPV6) 1525 .l3mdev_link_scope_lookup = vrf_link_scope_lookup, 1526 #endif 1527 }; 1528 1529 static void vrf_get_drvinfo(struct net_device *dev, 1530 struct ethtool_drvinfo *info) 1531 { 1532 strscpy(info->driver, DRV_NAME, sizeof(info->driver)); 1533 strscpy(info->version, DRV_VERSION, sizeof(info->version)); 1534 } 1535 1536 static const struct ethtool_ops vrf_ethtool_ops = { 1537 .get_drvinfo = vrf_get_drvinfo, 1538 }; 1539 1540 static inline size_t vrf_fib_rule_nl_size(void) 1541 { 1542 size_t sz; 1543 1544 sz = NLMSG_ALIGN(sizeof(struct fib_rule_hdr)); 1545 sz += nla_total_size(sizeof(u8)); /* FRA_L3MDEV */ 1546 sz += nla_total_size(sizeof(u32)); /* FRA_PRIORITY */ 1547 sz += nla_total_size(sizeof(u8)); /* FRA_PROTOCOL */ 1548 1549 return sz; 1550 } 1551 1552 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it) 1553 { 1554 struct fib_rule_hdr *frh; 1555 struct nlmsghdr *nlh; 1556 struct sk_buff *skb; 1557 int err; 1558 1559 if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) && 1560 !ipv6_mod_enabled()) 1561 return 0; 1562 1563 skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL); 1564 if (!skb) 1565 return -ENOMEM; 1566 1567 nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0); 1568 if (!nlh) 1569 goto nla_put_failure; 1570 1571 /* rule only needs to appear once */ 1572 nlh->nlmsg_flags |= NLM_F_EXCL; 1573 1574 frh = nlmsg_data(nlh); 1575 memset(frh, 0, sizeof(*frh)); 1576 frh->family = family; 1577 frh->action = FR_ACT_TO_TBL; 1578 1579 if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL)) 1580 goto nla_put_failure; 1581 1582 if (nla_put_u8(skb, FRA_L3MDEV, 1)) 1583 goto nla_put_failure; 1584 1585 if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF)) 1586 goto nla_put_failure; 1587 1588 nlmsg_end(skb, nlh); 1589 1590 /* fib_nl_{new,del}rule handling looks for net from skb->sk */ 1591 skb->sk = dev_net(dev)->rtnl; 1592 if (add_it) { 1593 err = fib_nl_newrule(skb, nlh, NULL); 1594 if (err == -EEXIST) 1595 err = 0; 1596 } else { 1597 err = fib_nl_delrule(skb, nlh, NULL); 1598 if (err == -ENOENT) 1599 err = 0; 1600 } 1601 nlmsg_free(skb); 1602 1603 return err; 1604 1605 nla_put_failure: 1606 nlmsg_free(skb); 1607 1608 return -EMSGSIZE; 1609 } 1610 1611 static int vrf_add_fib_rules(const struct net_device *dev) 1612 { 1613 int err; 1614 1615 err = vrf_fib_rule(dev, AF_INET, true); 1616 if (err < 0) 1617 goto out_err; 1618 1619 err = vrf_fib_rule(dev, AF_INET6, true); 1620 if (err < 0) 1621 goto ipv6_err; 1622 1623 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1624 err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true); 1625 if (err < 0) 1626 goto ipmr_err; 1627 #endif 1628 1629 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1630 err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true); 1631 if (err < 0) 1632 goto ip6mr_err; 1633 #endif 1634 1635 return 0; 1636 1637 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES) 1638 ip6mr_err: 1639 vrf_fib_rule(dev, RTNL_FAMILY_IPMR, false); 1640 #endif 1641 1642 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES) 1643 ipmr_err: 1644 vrf_fib_rule(dev, AF_INET6, false); 1645 #endif 1646 1647 ipv6_err: 1648 vrf_fib_rule(dev, AF_INET, false); 1649 1650 out_err: 1651 netdev_err(dev, "Failed to add FIB rules.\n"); 1652 return err; 1653 } 1654 1655 static void vrf_setup(struct net_device *dev) 1656 { 1657 ether_setup(dev); 1658 1659 /* Initialize the device structure. */ 1660 dev->netdev_ops = &vrf_netdev_ops; 1661 dev->l3mdev_ops = &vrf_l3mdev_ops; 1662 dev->ethtool_ops = &vrf_ethtool_ops; 1663 dev->needs_free_netdev = true; 1664 1665 /* Fill in device structure with ethernet-generic values. */ 1666 eth_hw_addr_random(dev); 1667 1668 /* don't acquire vrf device's netif_tx_lock when transmitting */ 1669 dev->features |= NETIF_F_LLTX; 1670 1671 /* don't allow vrf devices to change network namespaces. */ 1672 dev->features |= NETIF_F_NETNS_LOCAL; 1673 1674 /* does not make sense for a VLAN to be added to a vrf device */ 1675 dev->features |= NETIF_F_VLAN_CHALLENGED; 1676 1677 /* enable offload features */ 1678 dev->features |= NETIF_F_GSO_SOFTWARE; 1679 dev->features |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC; 1680 dev->features |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA; 1681 1682 dev->hw_features = dev->features; 1683 dev->hw_enc_features = dev->features; 1684 1685 /* default to no qdisc; user can add if desired */ 1686 dev->priv_flags |= IFF_NO_QUEUE; 1687 dev->priv_flags |= IFF_NO_RX_HANDLER; 1688 dev->priv_flags |= IFF_LIVE_ADDR_CHANGE; 1689 1690 /* VRF devices do not care about MTU, but if the MTU is set 1691 * too low then the ipv4 and ipv6 protocols are disabled 1692 * which breaks networking. 1693 */ 1694 dev->min_mtu = IPV6_MIN_MTU; 1695 dev->max_mtu = IP6_MAX_MTU; 1696 dev->mtu = dev->max_mtu; 1697 } 1698 1699 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[], 1700 struct netlink_ext_ack *extack) 1701 { 1702 if (tb[IFLA_ADDRESS]) { 1703 if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) { 1704 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1705 return -EINVAL; 1706 } 1707 if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) { 1708 NL_SET_ERR_MSG(extack, "Invalid hardware address"); 1709 return -EADDRNOTAVAIL; 1710 } 1711 } 1712 return 0; 1713 } 1714 1715 static void vrf_dellink(struct net_device *dev, struct list_head *head) 1716 { 1717 struct net_device *port_dev; 1718 struct list_head *iter; 1719 1720 netdev_for_each_lower_dev(dev, port_dev, iter) 1721 vrf_del_slave(dev, port_dev); 1722 1723 vrf_map_unregister_dev(dev); 1724 1725 unregister_netdevice_queue(dev, head); 1726 } 1727 1728 static int vrf_newlink(struct net *src_net, struct net_device *dev, 1729 struct nlattr *tb[], struct nlattr *data[], 1730 struct netlink_ext_ack *extack) 1731 { 1732 struct net_vrf *vrf = netdev_priv(dev); 1733 struct netns_vrf *nn_vrf; 1734 bool *add_fib_rules; 1735 struct net *net; 1736 int err; 1737 1738 if (!data || !data[IFLA_VRF_TABLE]) { 1739 NL_SET_ERR_MSG(extack, "VRF table id is missing"); 1740 return -EINVAL; 1741 } 1742 1743 vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]); 1744 if (vrf->tb_id == RT_TABLE_UNSPEC) { 1745 NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE], 1746 "Invalid VRF table id"); 1747 return -EINVAL; 1748 } 1749 1750 dev->priv_flags |= IFF_L3MDEV_MASTER; 1751 1752 err = register_netdevice(dev); 1753 if (err) 1754 goto out; 1755 1756 /* mapping between table_id and vrf; 1757 * note: such binding could not be done in the dev init function 1758 * because dev->ifindex id is not available yet. 1759 */ 1760 vrf->ifindex = dev->ifindex; 1761 1762 err = vrf_map_register_dev(dev, extack); 1763 if (err) { 1764 unregister_netdevice(dev); 1765 goto out; 1766 } 1767 1768 net = dev_net(dev); 1769 nn_vrf = net_generic(net, vrf_net_id); 1770 1771 add_fib_rules = &nn_vrf->add_fib_rules; 1772 if (*add_fib_rules) { 1773 err = vrf_add_fib_rules(dev); 1774 if (err) { 1775 vrf_map_unregister_dev(dev); 1776 unregister_netdevice(dev); 1777 goto out; 1778 } 1779 *add_fib_rules = false; 1780 } 1781 1782 out: 1783 return err; 1784 } 1785 1786 static size_t vrf_nl_getsize(const struct net_device *dev) 1787 { 1788 return nla_total_size(sizeof(u32)); /* IFLA_VRF_TABLE */ 1789 } 1790 1791 static int vrf_fillinfo(struct sk_buff *skb, 1792 const struct net_device *dev) 1793 { 1794 struct net_vrf *vrf = netdev_priv(dev); 1795 1796 return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id); 1797 } 1798 1799 static size_t vrf_get_slave_size(const struct net_device *bond_dev, 1800 const struct net_device *slave_dev) 1801 { 1802 return nla_total_size(sizeof(u32)); /* IFLA_VRF_PORT_TABLE */ 1803 } 1804 1805 static int vrf_fill_slave_info(struct sk_buff *skb, 1806 const struct net_device *vrf_dev, 1807 const struct net_device *slave_dev) 1808 { 1809 struct net_vrf *vrf = netdev_priv(vrf_dev); 1810 1811 if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id)) 1812 return -EMSGSIZE; 1813 1814 return 0; 1815 } 1816 1817 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = { 1818 [IFLA_VRF_TABLE] = { .type = NLA_U32 }, 1819 }; 1820 1821 static struct rtnl_link_ops vrf_link_ops __read_mostly = { 1822 .kind = DRV_NAME, 1823 .priv_size = sizeof(struct net_vrf), 1824 1825 .get_size = vrf_nl_getsize, 1826 .policy = vrf_nl_policy, 1827 .validate = vrf_validate, 1828 .fill_info = vrf_fillinfo, 1829 1830 .get_slave_size = vrf_get_slave_size, 1831 .fill_slave_info = vrf_fill_slave_info, 1832 1833 .newlink = vrf_newlink, 1834 .dellink = vrf_dellink, 1835 .setup = vrf_setup, 1836 .maxtype = IFLA_VRF_MAX, 1837 }; 1838 1839 static int vrf_device_event(struct notifier_block *unused, 1840 unsigned long event, void *ptr) 1841 { 1842 struct net_device *dev = netdev_notifier_info_to_dev(ptr); 1843 1844 /* only care about unregister events to drop slave references */ 1845 if (event == NETDEV_UNREGISTER) { 1846 struct net_device *vrf_dev; 1847 1848 if (!netif_is_l3_slave(dev)) 1849 goto out; 1850 1851 vrf_dev = netdev_master_upper_dev_get(dev); 1852 vrf_del_slave(vrf_dev, dev); 1853 } 1854 out: 1855 return NOTIFY_DONE; 1856 } 1857 1858 static struct notifier_block vrf_notifier_block __read_mostly = { 1859 .notifier_call = vrf_device_event, 1860 }; 1861 1862 static int vrf_map_init(struct vrf_map *vmap) 1863 { 1864 spin_lock_init(&vmap->vmap_lock); 1865 hash_init(vmap->ht); 1866 1867 vmap->strict_mode = false; 1868 1869 return 0; 1870 } 1871 1872 #ifdef CONFIG_SYSCTL 1873 static bool vrf_strict_mode(struct vrf_map *vmap) 1874 { 1875 bool strict_mode; 1876 1877 vrf_map_lock(vmap); 1878 strict_mode = vmap->strict_mode; 1879 vrf_map_unlock(vmap); 1880 1881 return strict_mode; 1882 } 1883 1884 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode) 1885 { 1886 bool *cur_mode; 1887 int res = 0; 1888 1889 vrf_map_lock(vmap); 1890 1891 cur_mode = &vmap->strict_mode; 1892 if (*cur_mode == new_mode) 1893 goto unlock; 1894 1895 if (*cur_mode) { 1896 /* disable strict mode */ 1897 *cur_mode = false; 1898 } else { 1899 if (vmap->shared_tables) { 1900 /* we cannot allow strict_mode because there are some 1901 * vrfs that share one or more tables. 1902 */ 1903 res = -EBUSY; 1904 goto unlock; 1905 } 1906 1907 /* no tables are shared among vrfs, so we can go back 1908 * to 1:1 association between a vrf with its table. 1909 */ 1910 *cur_mode = true; 1911 } 1912 1913 unlock: 1914 vrf_map_unlock(vmap); 1915 1916 return res; 1917 } 1918 1919 static int vrf_shared_table_handler(struct ctl_table *table, int write, 1920 void *buffer, size_t *lenp, loff_t *ppos) 1921 { 1922 struct net *net = (struct net *)table->extra1; 1923 struct vrf_map *vmap = netns_vrf_map(net); 1924 int proc_strict_mode = 0; 1925 struct ctl_table tmp = { 1926 .procname = table->procname, 1927 .data = &proc_strict_mode, 1928 .maxlen = sizeof(int), 1929 .mode = table->mode, 1930 .extra1 = SYSCTL_ZERO, 1931 .extra2 = SYSCTL_ONE, 1932 }; 1933 int ret; 1934 1935 if (!write) 1936 proc_strict_mode = vrf_strict_mode(vmap); 1937 1938 ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos); 1939 1940 if (write && ret == 0) 1941 ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode); 1942 1943 return ret; 1944 } 1945 1946 static const struct ctl_table vrf_table[] = { 1947 { 1948 .procname = "strict_mode", 1949 .data = NULL, 1950 .maxlen = sizeof(int), 1951 .mode = 0644, 1952 .proc_handler = vrf_shared_table_handler, 1953 /* set by the vrf_netns_init */ 1954 .extra1 = NULL, 1955 }, 1956 { }, 1957 }; 1958 1959 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1960 { 1961 struct ctl_table *table; 1962 1963 table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL); 1964 if (!table) 1965 return -ENOMEM; 1966 1967 /* init the extra1 parameter with the reference to current netns */ 1968 table[0].extra1 = net; 1969 1970 nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table, 1971 ARRAY_SIZE(vrf_table)); 1972 if (!nn_vrf->ctl_hdr) { 1973 kfree(table); 1974 return -ENOMEM; 1975 } 1976 1977 return 0; 1978 } 1979 1980 static void vrf_netns_exit_sysctl(struct net *net) 1981 { 1982 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 1983 struct ctl_table *table; 1984 1985 table = nn_vrf->ctl_hdr->ctl_table_arg; 1986 unregister_net_sysctl_table(nn_vrf->ctl_hdr); 1987 kfree(table); 1988 } 1989 #else 1990 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf) 1991 { 1992 return 0; 1993 } 1994 1995 static void vrf_netns_exit_sysctl(struct net *net) 1996 { 1997 } 1998 #endif 1999 2000 /* Initialize per network namespace state */ 2001 static int __net_init vrf_netns_init(struct net *net) 2002 { 2003 struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id); 2004 2005 nn_vrf->add_fib_rules = true; 2006 vrf_map_init(&nn_vrf->vmap); 2007 2008 return vrf_netns_init_sysctl(net, nn_vrf); 2009 } 2010 2011 static void __net_exit vrf_netns_exit(struct net *net) 2012 { 2013 vrf_netns_exit_sysctl(net); 2014 } 2015 2016 static struct pernet_operations vrf_net_ops __net_initdata = { 2017 .init = vrf_netns_init, 2018 .exit = vrf_netns_exit, 2019 .id = &vrf_net_id, 2020 .size = sizeof(struct netns_vrf), 2021 }; 2022 2023 static int __init vrf_init_module(void) 2024 { 2025 int rc; 2026 2027 register_netdevice_notifier(&vrf_notifier_block); 2028 2029 rc = register_pernet_subsys(&vrf_net_ops); 2030 if (rc < 0) 2031 goto error; 2032 2033 rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF, 2034 vrf_ifindex_lookup_by_table_id); 2035 if (rc < 0) 2036 goto unreg_pernet; 2037 2038 rc = rtnl_link_register(&vrf_link_ops); 2039 if (rc < 0) 2040 goto table_lookup_unreg; 2041 2042 return 0; 2043 2044 table_lookup_unreg: 2045 l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF, 2046 vrf_ifindex_lookup_by_table_id); 2047 2048 unreg_pernet: 2049 unregister_pernet_subsys(&vrf_net_ops); 2050 2051 error: 2052 unregister_netdevice_notifier(&vrf_notifier_block); 2053 return rc; 2054 } 2055 2056 module_init(vrf_init_module); 2057 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern"); 2058 MODULE_DESCRIPTION("Device driver to instantiate VRF domains"); 2059 MODULE_LICENSE("GPL"); 2060 MODULE_ALIAS_RTNL_LINK(DRV_NAME); 2061 MODULE_VERSION(DRV_VERSION); 2062