xref: /openbmc/linux/drivers/net/vrf.c (revision 95f068b0fd3668672e34ebeb8416f57aef27058b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/sch_generic.h>
38 #include <net/netns/generic.h>
39 #include <net/netfilter/nf_conntrack.h>
40 
41 #define DRV_NAME	"vrf"
42 #define DRV_VERSION	"1.1"
43 
44 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
45 
46 #define HT_MAP_BITS	4
47 #define HASH_INITVAL	((u32)0xcafef00d)
48 
49 struct  vrf_map {
50 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
51 	spinlock_t vmap_lock;
52 
53 	/* shared_tables:
54 	 * count how many distinct tables do not comply with the strict mode
55 	 * requirement.
56 	 * shared_tables value must be 0 in order to enable the strict mode.
57 	 *
58 	 * example of the evolution of shared_tables:
59 	 *                                                        | time
60 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
61 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
62 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
63 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
64 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
65 	 *
66 	 * shared_tables is a "step function" (or "staircase function")
67 	 * and it is increased by one when the second vrf is associated to a
68 	 * table.
69 	 *
70 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
71 	 *
72 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
73 	 * value of shared_tables is still 1.
74 	 * This means that no matter how many new vrfs will register on the
75 	 * table 100, the shared_tables will not increase (considering only
76 	 * table 100).
77 	 *
78 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
79 	 *
80 	 * Looking at the value of shared_tables we can immediately know if
81 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
82 	 * can be enforced iff shared_tables = 0.
83 	 *
84 	 * Conversely, shared_tables is decreased when a vrf is de-associated
85 	 * from a table with exactly two associated vrfs.
86 	 */
87 	u32 shared_tables;
88 
89 	bool strict_mode;
90 };
91 
92 struct vrf_map_elem {
93 	struct hlist_node hnode;
94 	struct list_head vrf_list;  /* VRFs registered to this table */
95 
96 	u32 table_id;
97 	int users;
98 	int ifindex;
99 };
100 
101 static unsigned int vrf_net_id;
102 
103 /* per netns vrf data */
104 struct netns_vrf {
105 	/* protected by rtnl lock */
106 	bool add_fib_rules;
107 
108 	struct vrf_map vmap;
109 	struct ctl_table_header	*ctl_hdr;
110 };
111 
112 struct net_vrf {
113 	struct rtable __rcu	*rth;
114 	struct rt6_info	__rcu	*rt6;
115 #if IS_ENABLED(CONFIG_IPV6)
116 	struct fib6_table	*fib6_table;
117 #endif
118 	u32                     tb_id;
119 
120 	struct list_head	me_list;   /* entry in vrf_map_elem */
121 	int			ifindex;
122 };
123 
124 static void vrf_rx_stats(struct net_device *dev, int len)
125 {
126 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
127 
128 	u64_stats_update_begin(&dstats->syncp);
129 	dstats->rx_packets++;
130 	dstats->rx_bytes += len;
131 	u64_stats_update_end(&dstats->syncp);
132 }
133 
134 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
135 {
136 	vrf_dev->stats.tx_errors++;
137 	kfree_skb(skb);
138 }
139 
140 static void vrf_get_stats64(struct net_device *dev,
141 			    struct rtnl_link_stats64 *stats)
142 {
143 	int i;
144 
145 	for_each_possible_cpu(i) {
146 		const struct pcpu_dstats *dstats;
147 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
148 		unsigned int start;
149 
150 		dstats = per_cpu_ptr(dev->dstats, i);
151 		do {
152 			start = u64_stats_fetch_begin(&dstats->syncp);
153 			tbytes = dstats->tx_bytes;
154 			tpkts = dstats->tx_packets;
155 			tdrops = dstats->tx_drops;
156 			rbytes = dstats->rx_bytes;
157 			rpkts = dstats->rx_packets;
158 		} while (u64_stats_fetch_retry(&dstats->syncp, start));
159 		stats->tx_bytes += tbytes;
160 		stats->tx_packets += tpkts;
161 		stats->tx_dropped += tdrops;
162 		stats->rx_bytes += rbytes;
163 		stats->rx_packets += rpkts;
164 	}
165 }
166 
167 static struct vrf_map *netns_vrf_map(struct net *net)
168 {
169 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
170 
171 	return &nn_vrf->vmap;
172 }
173 
174 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
175 {
176 	return netns_vrf_map(dev_net(dev));
177 }
178 
179 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
180 {
181 	struct list_head *me_head = &me->vrf_list;
182 	struct net_vrf *vrf;
183 
184 	if (list_empty(me_head))
185 		return -ENODEV;
186 
187 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
188 
189 	return vrf->ifindex;
190 }
191 
192 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
193 {
194 	struct vrf_map_elem *me;
195 
196 	me = kmalloc(sizeof(*me), flags);
197 	if (!me)
198 		return NULL;
199 
200 	return me;
201 }
202 
203 static void vrf_map_elem_free(struct vrf_map_elem *me)
204 {
205 	kfree(me);
206 }
207 
208 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
209 			      int ifindex, int users)
210 {
211 	me->table_id = table_id;
212 	me->ifindex = ifindex;
213 	me->users = users;
214 	INIT_LIST_HEAD(&me->vrf_list);
215 }
216 
217 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
218 						u32 table_id)
219 {
220 	struct vrf_map_elem *me;
221 	u32 key;
222 
223 	key = jhash_1word(table_id, HASH_INITVAL);
224 	hash_for_each_possible(vmap->ht, me, hnode, key) {
225 		if (me->table_id == table_id)
226 			return me;
227 	}
228 
229 	return NULL;
230 }
231 
232 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
233 {
234 	u32 table_id = me->table_id;
235 	u32 key;
236 
237 	key = jhash_1word(table_id, HASH_INITVAL);
238 	hash_add(vmap->ht, &me->hnode, key);
239 }
240 
241 static void vrf_map_del_elem(struct vrf_map_elem *me)
242 {
243 	hash_del(&me->hnode);
244 }
245 
246 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
247 {
248 	spin_lock(&vmap->vmap_lock);
249 }
250 
251 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
252 {
253 	spin_unlock(&vmap->vmap_lock);
254 }
255 
256 /* called with rtnl lock held */
257 static int
258 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
259 {
260 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
261 	struct net_vrf *vrf = netdev_priv(dev);
262 	struct vrf_map_elem *new_me, *me;
263 	u32 table_id = vrf->tb_id;
264 	bool free_new_me = false;
265 	int users;
266 	int res;
267 
268 	/* we pre-allocate elements used in the spin-locked section (so that we
269 	 * keep the spinlock as short as possible).
270 	 */
271 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
272 	if (!new_me)
273 		return -ENOMEM;
274 
275 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
276 
277 	vrf_map_lock(vmap);
278 
279 	me = vrf_map_lookup_elem(vmap, table_id);
280 	if (!me) {
281 		me = new_me;
282 		vrf_map_add_elem(vmap, me);
283 		goto link_vrf;
284 	}
285 
286 	/* we already have an entry in the vrf_map, so it means there is (at
287 	 * least) a vrf registered on the specific table.
288 	 */
289 	free_new_me = true;
290 	if (vmap->strict_mode) {
291 		/* vrfs cannot share the same table */
292 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
293 		res = -EBUSY;
294 		goto unlock;
295 	}
296 
297 link_vrf:
298 	users = ++me->users;
299 	if (users == 2)
300 		++vmap->shared_tables;
301 
302 	list_add(&vrf->me_list, &me->vrf_list);
303 
304 	res = 0;
305 
306 unlock:
307 	vrf_map_unlock(vmap);
308 
309 	/* clean-up, if needed */
310 	if (free_new_me)
311 		vrf_map_elem_free(new_me);
312 
313 	return res;
314 }
315 
316 /* called with rtnl lock held */
317 static void vrf_map_unregister_dev(struct net_device *dev)
318 {
319 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
320 	struct net_vrf *vrf = netdev_priv(dev);
321 	u32 table_id = vrf->tb_id;
322 	struct vrf_map_elem *me;
323 	int users;
324 
325 	vrf_map_lock(vmap);
326 
327 	me = vrf_map_lookup_elem(vmap, table_id);
328 	if (!me)
329 		goto unlock;
330 
331 	list_del(&vrf->me_list);
332 
333 	users = --me->users;
334 	if (users == 1) {
335 		--vmap->shared_tables;
336 	} else if (users == 0) {
337 		vrf_map_del_elem(me);
338 
339 		/* no one will refer to this element anymore */
340 		vrf_map_elem_free(me);
341 	}
342 
343 unlock:
344 	vrf_map_unlock(vmap);
345 }
346 
347 /* return the vrf device index associated with the table_id */
348 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
349 {
350 	struct vrf_map *vmap = netns_vrf_map(net);
351 	struct vrf_map_elem *me;
352 	int ifindex;
353 
354 	vrf_map_lock(vmap);
355 
356 	if (!vmap->strict_mode) {
357 		ifindex = -EPERM;
358 		goto unlock;
359 	}
360 
361 	me = vrf_map_lookup_elem(vmap, table_id);
362 	if (!me) {
363 		ifindex = -ENODEV;
364 		goto unlock;
365 	}
366 
367 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
368 
369 unlock:
370 	vrf_map_unlock(vmap);
371 
372 	return ifindex;
373 }
374 
375 /* by default VRF devices do not have a qdisc and are expected
376  * to be created with only a single queue.
377  */
378 static bool qdisc_tx_is_default(const struct net_device *dev)
379 {
380 	struct netdev_queue *txq;
381 	struct Qdisc *qdisc;
382 
383 	if (dev->num_tx_queues > 1)
384 		return false;
385 
386 	txq = netdev_get_tx_queue(dev, 0);
387 	qdisc = rcu_access_pointer(txq->qdisc);
388 
389 	return !qdisc->enqueue;
390 }
391 
392 /* Local traffic destined to local address. Reinsert the packet to rx
393  * path, similar to loopback handling.
394  */
395 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
396 			  struct dst_entry *dst)
397 {
398 	int len = skb->len;
399 
400 	skb_orphan(skb);
401 
402 	skb_dst_set(skb, dst);
403 
404 	/* set pkt_type to avoid skb hitting packet taps twice -
405 	 * once on Tx and again in Rx processing
406 	 */
407 	skb->pkt_type = PACKET_LOOPBACK;
408 
409 	skb->protocol = eth_type_trans(skb, dev);
410 
411 	if (likely(__netif_rx(skb) == NET_RX_SUCCESS))
412 		vrf_rx_stats(dev, len);
413 	else
414 		this_cpu_inc(dev->dstats->rx_drops);
415 
416 	return NETDEV_TX_OK;
417 }
418 
419 static void vrf_nf_set_untracked(struct sk_buff *skb)
420 {
421 	if (skb_get_nfct(skb) == 0)
422 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
423 }
424 
425 static void vrf_nf_reset_ct(struct sk_buff *skb)
426 {
427 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
428 		nf_reset_ct(skb);
429 }
430 
431 #if IS_ENABLED(CONFIG_IPV6)
432 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
433 			     struct sk_buff *skb)
434 {
435 	int err;
436 
437 	vrf_nf_reset_ct(skb);
438 
439 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
440 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
441 
442 	if (likely(err == 1))
443 		err = dst_output(net, sk, skb);
444 
445 	return err;
446 }
447 
448 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
449 					   struct net_device *dev)
450 {
451 	const struct ipv6hdr *iph;
452 	struct net *net = dev_net(skb->dev);
453 	struct flowi6 fl6;
454 	int ret = NET_XMIT_DROP;
455 	struct dst_entry *dst;
456 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
457 
458 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
459 		goto err;
460 
461 	iph = ipv6_hdr(skb);
462 
463 	memset(&fl6, 0, sizeof(fl6));
464 	/* needed to match OIF rule */
465 	fl6.flowi6_l3mdev = dev->ifindex;
466 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
467 	fl6.daddr = iph->daddr;
468 	fl6.saddr = iph->saddr;
469 	fl6.flowlabel = ip6_flowinfo(iph);
470 	fl6.flowi6_mark = skb->mark;
471 	fl6.flowi6_proto = iph->nexthdr;
472 
473 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
474 	if (IS_ERR(dst) || dst == dst_null)
475 		goto err;
476 
477 	skb_dst_drop(skb);
478 
479 	/* if dst.dev is the VRF device again this is locally originated traffic
480 	 * destined to a local address. Short circuit to Rx path.
481 	 */
482 	if (dst->dev == dev)
483 		return vrf_local_xmit(skb, dev, dst);
484 
485 	skb_dst_set(skb, dst);
486 
487 	/* strip the ethernet header added for pass through VRF device */
488 	__skb_pull(skb, skb_network_offset(skb));
489 
490 	memset(IP6CB(skb), 0, sizeof(*IP6CB(skb)));
491 	ret = vrf_ip6_local_out(net, skb->sk, skb);
492 	if (unlikely(net_xmit_eval(ret)))
493 		dev->stats.tx_errors++;
494 	else
495 		ret = NET_XMIT_SUCCESS;
496 
497 	return ret;
498 err:
499 	vrf_tx_error(dev, skb);
500 	return NET_XMIT_DROP;
501 }
502 #else
503 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
504 					   struct net_device *dev)
505 {
506 	vrf_tx_error(dev, skb);
507 	return NET_XMIT_DROP;
508 }
509 #endif
510 
511 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
512 static int vrf_ip_local_out(struct net *net, struct sock *sk,
513 			    struct sk_buff *skb)
514 {
515 	int err;
516 
517 	vrf_nf_reset_ct(skb);
518 
519 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
520 		      skb, NULL, skb_dst(skb)->dev, dst_output);
521 	if (likely(err == 1))
522 		err = dst_output(net, sk, skb);
523 
524 	return err;
525 }
526 
527 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
528 					   struct net_device *vrf_dev)
529 {
530 	struct iphdr *ip4h;
531 	int ret = NET_XMIT_DROP;
532 	struct flowi4 fl4;
533 	struct net *net = dev_net(vrf_dev);
534 	struct rtable *rt;
535 
536 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
537 		goto err;
538 
539 	ip4h = ip_hdr(skb);
540 
541 	memset(&fl4, 0, sizeof(fl4));
542 	/* needed to match OIF rule */
543 	fl4.flowi4_l3mdev = vrf_dev->ifindex;
544 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
545 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
546 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC;
547 	fl4.flowi4_proto = ip4h->protocol;
548 	fl4.daddr = ip4h->daddr;
549 	fl4.saddr = ip4h->saddr;
550 
551 	rt = ip_route_output_flow(net, &fl4, NULL);
552 	if (IS_ERR(rt))
553 		goto err;
554 
555 	skb_dst_drop(skb);
556 
557 	/* if dst.dev is the VRF device again this is locally originated traffic
558 	 * destined to a local address. Short circuit to Rx path.
559 	 */
560 	if (rt->dst.dev == vrf_dev)
561 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
562 
563 	skb_dst_set(skb, &rt->dst);
564 
565 	/* strip the ethernet header added for pass through VRF device */
566 	__skb_pull(skb, skb_network_offset(skb));
567 
568 	if (!ip4h->saddr) {
569 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
570 					       RT_SCOPE_LINK);
571 	}
572 
573 	memset(IPCB(skb), 0, sizeof(*IPCB(skb)));
574 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
575 	if (unlikely(net_xmit_eval(ret)))
576 		vrf_dev->stats.tx_errors++;
577 	else
578 		ret = NET_XMIT_SUCCESS;
579 
580 out:
581 	return ret;
582 err:
583 	vrf_tx_error(vrf_dev, skb);
584 	goto out;
585 }
586 
587 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
588 {
589 	switch (skb->protocol) {
590 	case htons(ETH_P_IP):
591 		return vrf_process_v4_outbound(skb, dev);
592 	case htons(ETH_P_IPV6):
593 		return vrf_process_v6_outbound(skb, dev);
594 	default:
595 		vrf_tx_error(dev, skb);
596 		return NET_XMIT_DROP;
597 	}
598 }
599 
600 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
601 {
602 	int len = skb->len;
603 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
604 
605 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
606 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
607 
608 		u64_stats_update_begin(&dstats->syncp);
609 		dstats->tx_packets++;
610 		dstats->tx_bytes += len;
611 		u64_stats_update_end(&dstats->syncp);
612 	} else {
613 		this_cpu_inc(dev->dstats->tx_drops);
614 	}
615 
616 	return ret;
617 }
618 
619 static void vrf_finish_direct(struct sk_buff *skb)
620 {
621 	struct net_device *vrf_dev = skb->dev;
622 
623 	if (!list_empty(&vrf_dev->ptype_all) &&
624 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
625 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
626 
627 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
628 		eth_zero_addr(eth->h_dest);
629 		eth->h_proto = skb->protocol;
630 
631 		dev_queue_xmit_nit(skb, vrf_dev);
632 
633 		skb_pull(skb, ETH_HLEN);
634 	}
635 
636 	vrf_nf_reset_ct(skb);
637 }
638 
639 #if IS_ENABLED(CONFIG_IPV6)
640 /* modelled after ip6_finish_output2 */
641 static int vrf_finish_output6(struct net *net, struct sock *sk,
642 			      struct sk_buff *skb)
643 {
644 	struct dst_entry *dst = skb_dst(skb);
645 	struct net_device *dev = dst->dev;
646 	const struct in6_addr *nexthop;
647 	struct neighbour *neigh;
648 	int ret;
649 
650 	vrf_nf_reset_ct(skb);
651 
652 	skb->protocol = htons(ETH_P_IPV6);
653 	skb->dev = dev;
654 
655 	rcu_read_lock();
656 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
657 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
658 	if (unlikely(!neigh))
659 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
660 	if (!IS_ERR(neigh)) {
661 		sock_confirm_neigh(skb, neigh);
662 		ret = neigh_output(neigh, skb, false);
663 		rcu_read_unlock();
664 		return ret;
665 	}
666 	rcu_read_unlock();
667 
668 	IP6_INC_STATS(dev_net(dst->dev),
669 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
670 	kfree_skb(skb);
671 	return -EINVAL;
672 }
673 
674 /* modelled after ip6_output */
675 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
676 {
677 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
678 			    net, sk, skb, NULL, skb_dst(skb)->dev,
679 			    vrf_finish_output6,
680 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
681 }
682 
683 /* set dst on skb to send packet to us via dev_xmit path. Allows
684  * packet to go through device based features such as qdisc, netfilter
685  * hooks and packet sockets with skb->dev set to vrf device.
686  */
687 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
688 					    struct sk_buff *skb)
689 {
690 	struct net_vrf *vrf = netdev_priv(vrf_dev);
691 	struct dst_entry *dst = NULL;
692 	struct rt6_info *rt6;
693 
694 	rcu_read_lock();
695 
696 	rt6 = rcu_dereference(vrf->rt6);
697 	if (likely(rt6)) {
698 		dst = &rt6->dst;
699 		dst_hold(dst);
700 	}
701 
702 	rcu_read_unlock();
703 
704 	if (unlikely(!dst)) {
705 		vrf_tx_error(vrf_dev, skb);
706 		return NULL;
707 	}
708 
709 	skb_dst_drop(skb);
710 	skb_dst_set(skb, dst);
711 
712 	return skb;
713 }
714 
715 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
716 				     struct sk_buff *skb)
717 {
718 	vrf_finish_direct(skb);
719 
720 	return vrf_ip6_local_out(net, sk, skb);
721 }
722 
723 static int vrf_output6_direct(struct net *net, struct sock *sk,
724 			      struct sk_buff *skb)
725 {
726 	int err = 1;
727 
728 	skb->protocol = htons(ETH_P_IPV6);
729 
730 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
731 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
732 			      NULL, skb->dev, vrf_output6_direct_finish);
733 
734 	if (likely(err == 1))
735 		vrf_finish_direct(skb);
736 
737 	return err;
738 }
739 
740 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
741 				     struct sk_buff *skb)
742 {
743 	int err;
744 
745 	err = vrf_output6_direct(net, sk, skb);
746 	if (likely(err == 1))
747 		err = vrf_ip6_local_out(net, sk, skb);
748 
749 	return err;
750 }
751 
752 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
753 					  struct sock *sk,
754 					  struct sk_buff *skb)
755 {
756 	struct net *net = dev_net(vrf_dev);
757 	int err;
758 
759 	skb->dev = vrf_dev;
760 
761 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
762 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
763 
764 	if (likely(err == 1))
765 		err = vrf_output6_direct(net, sk, skb);
766 
767 	if (likely(err == 1))
768 		return skb;
769 
770 	return NULL;
771 }
772 
773 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
774 				   struct sock *sk,
775 				   struct sk_buff *skb)
776 {
777 	/* don't divert link scope packets */
778 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
779 		return skb;
780 
781 	vrf_nf_set_untracked(skb);
782 
783 	if (qdisc_tx_is_default(vrf_dev) ||
784 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
785 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
786 
787 	return vrf_ip6_out_redirect(vrf_dev, skb);
788 }
789 
790 /* holding rtnl */
791 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
792 {
793 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
794 	struct net *net = dev_net(dev);
795 	struct dst_entry *dst;
796 
797 	RCU_INIT_POINTER(vrf->rt6, NULL);
798 	synchronize_rcu();
799 
800 	/* move dev in dst's to loopback so this VRF device can be deleted
801 	 * - based on dst_ifdown
802 	 */
803 	if (rt6) {
804 		dst = &rt6->dst;
805 		netdev_ref_replace(dst->dev, net->loopback_dev,
806 				   &dst->dev_tracker, GFP_KERNEL);
807 		dst->dev = net->loopback_dev;
808 		dst_release(dst);
809 	}
810 }
811 
812 static int vrf_rt6_create(struct net_device *dev)
813 {
814 	int flags = DST_NOPOLICY | DST_NOXFRM;
815 	struct net_vrf *vrf = netdev_priv(dev);
816 	struct net *net = dev_net(dev);
817 	struct rt6_info *rt6;
818 	int rc = -ENOMEM;
819 
820 	/* IPv6 can be CONFIG enabled and then disabled runtime */
821 	if (!ipv6_mod_enabled())
822 		return 0;
823 
824 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
825 	if (!vrf->fib6_table)
826 		goto out;
827 
828 	/* create a dst for routing packets out a VRF device */
829 	rt6 = ip6_dst_alloc(net, dev, flags);
830 	if (!rt6)
831 		goto out;
832 
833 	rt6->dst.output	= vrf_output6;
834 
835 	rcu_assign_pointer(vrf->rt6, rt6);
836 
837 	rc = 0;
838 out:
839 	return rc;
840 }
841 #else
842 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
843 				   struct sock *sk,
844 				   struct sk_buff *skb)
845 {
846 	return skb;
847 }
848 
849 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
850 {
851 }
852 
853 static int vrf_rt6_create(struct net_device *dev)
854 {
855 	return 0;
856 }
857 #endif
858 
859 /* modelled after ip_finish_output2 */
860 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
861 {
862 	struct dst_entry *dst = skb_dst(skb);
863 	struct rtable *rt = (struct rtable *)dst;
864 	struct net_device *dev = dst->dev;
865 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
866 	struct neighbour *neigh;
867 	bool is_v6gw = false;
868 
869 	vrf_nf_reset_ct(skb);
870 
871 	/* Be paranoid, rather than too clever. */
872 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
873 		skb = skb_expand_head(skb, hh_len);
874 		if (!skb) {
875 			dev->stats.tx_errors++;
876 			return -ENOMEM;
877 		}
878 	}
879 
880 	rcu_read_lock();
881 
882 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
883 	if (!IS_ERR(neigh)) {
884 		int ret;
885 
886 		sock_confirm_neigh(skb, neigh);
887 		/* if crossing protocols, can not use the cached header */
888 		ret = neigh_output(neigh, skb, is_v6gw);
889 		rcu_read_unlock();
890 		return ret;
891 	}
892 
893 	rcu_read_unlock();
894 	vrf_tx_error(skb->dev, skb);
895 	return -EINVAL;
896 }
897 
898 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
899 {
900 	struct net_device *dev = skb_dst(skb)->dev;
901 
902 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
903 
904 	skb->dev = dev;
905 	skb->protocol = htons(ETH_P_IP);
906 
907 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
908 			    net, sk, skb, NULL, dev,
909 			    vrf_finish_output,
910 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
911 }
912 
913 /* set dst on skb to send packet to us via dev_xmit path. Allows
914  * packet to go through device based features such as qdisc, netfilter
915  * hooks and packet sockets with skb->dev set to vrf device.
916  */
917 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
918 					   struct sk_buff *skb)
919 {
920 	struct net_vrf *vrf = netdev_priv(vrf_dev);
921 	struct dst_entry *dst = NULL;
922 	struct rtable *rth;
923 
924 	rcu_read_lock();
925 
926 	rth = rcu_dereference(vrf->rth);
927 	if (likely(rth)) {
928 		dst = &rth->dst;
929 		dst_hold(dst);
930 	}
931 
932 	rcu_read_unlock();
933 
934 	if (unlikely(!dst)) {
935 		vrf_tx_error(vrf_dev, skb);
936 		return NULL;
937 	}
938 
939 	skb_dst_drop(skb);
940 	skb_dst_set(skb, dst);
941 
942 	return skb;
943 }
944 
945 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
946 				    struct sk_buff *skb)
947 {
948 	vrf_finish_direct(skb);
949 
950 	return vrf_ip_local_out(net, sk, skb);
951 }
952 
953 static int vrf_output_direct(struct net *net, struct sock *sk,
954 			     struct sk_buff *skb)
955 {
956 	int err = 1;
957 
958 	skb->protocol = htons(ETH_P_IP);
959 
960 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
961 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
962 			      NULL, skb->dev, vrf_output_direct_finish);
963 
964 	if (likely(err == 1))
965 		vrf_finish_direct(skb);
966 
967 	return err;
968 }
969 
970 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
971 				    struct sk_buff *skb)
972 {
973 	int err;
974 
975 	err = vrf_output_direct(net, sk, skb);
976 	if (likely(err == 1))
977 		err = vrf_ip_local_out(net, sk, skb);
978 
979 	return err;
980 }
981 
982 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
983 					 struct sock *sk,
984 					 struct sk_buff *skb)
985 {
986 	struct net *net = dev_net(vrf_dev);
987 	int err;
988 
989 	skb->dev = vrf_dev;
990 
991 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
992 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
993 
994 	if (likely(err == 1))
995 		err = vrf_output_direct(net, sk, skb);
996 
997 	if (likely(err == 1))
998 		return skb;
999 
1000 	return NULL;
1001 }
1002 
1003 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1004 				  struct sock *sk,
1005 				  struct sk_buff *skb)
1006 {
1007 	/* don't divert multicast or local broadcast */
1008 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1009 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1010 		return skb;
1011 
1012 	vrf_nf_set_untracked(skb);
1013 
1014 	if (qdisc_tx_is_default(vrf_dev) ||
1015 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1016 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1017 
1018 	return vrf_ip_out_redirect(vrf_dev, skb);
1019 }
1020 
1021 /* called with rcu lock held */
1022 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1023 				  struct sock *sk,
1024 				  struct sk_buff *skb,
1025 				  u16 proto)
1026 {
1027 	switch (proto) {
1028 	case AF_INET:
1029 		return vrf_ip_out(vrf_dev, sk, skb);
1030 	case AF_INET6:
1031 		return vrf_ip6_out(vrf_dev, sk, skb);
1032 	}
1033 
1034 	return skb;
1035 }
1036 
1037 /* holding rtnl */
1038 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1039 {
1040 	struct rtable *rth = rtnl_dereference(vrf->rth);
1041 	struct net *net = dev_net(dev);
1042 	struct dst_entry *dst;
1043 
1044 	RCU_INIT_POINTER(vrf->rth, NULL);
1045 	synchronize_rcu();
1046 
1047 	/* move dev in dst's to loopback so this VRF device can be deleted
1048 	 * - based on dst_ifdown
1049 	 */
1050 	if (rth) {
1051 		dst = &rth->dst;
1052 		netdev_ref_replace(dst->dev, net->loopback_dev,
1053 				   &dst->dev_tracker, GFP_KERNEL);
1054 		dst->dev = net->loopback_dev;
1055 		dst_release(dst);
1056 	}
1057 }
1058 
1059 static int vrf_rtable_create(struct net_device *dev)
1060 {
1061 	struct net_vrf *vrf = netdev_priv(dev);
1062 	struct rtable *rth;
1063 
1064 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1065 		return -ENOMEM;
1066 
1067 	/* create a dst for routing packets out through a VRF device */
1068 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1);
1069 	if (!rth)
1070 		return -ENOMEM;
1071 
1072 	rth->dst.output	= vrf_output;
1073 
1074 	rcu_assign_pointer(vrf->rth, rth);
1075 
1076 	return 0;
1077 }
1078 
1079 /**************************** device handling ********************/
1080 
1081 /* cycle interface to flush neighbor cache and move routes across tables */
1082 static void cycle_netdev(struct net_device *dev,
1083 			 struct netlink_ext_ack *extack)
1084 {
1085 	unsigned int flags = dev->flags;
1086 	int ret;
1087 
1088 	if (!netif_running(dev))
1089 		return;
1090 
1091 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1092 	if (ret >= 0)
1093 		ret = dev_change_flags(dev, flags, extack);
1094 
1095 	if (ret < 0) {
1096 		netdev_err(dev,
1097 			   "Failed to cycle device %s; route tables might be wrong!\n",
1098 			   dev->name);
1099 	}
1100 }
1101 
1102 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1103 			    struct netlink_ext_ack *extack)
1104 {
1105 	int ret;
1106 
1107 	/* do not allow loopback device to be enslaved to a VRF.
1108 	 * The vrf device acts as the loopback for the vrf.
1109 	 */
1110 	if (port_dev == dev_net(dev)->loopback_dev) {
1111 		NL_SET_ERR_MSG(extack,
1112 			       "Can not enslave loopback device to a VRF");
1113 		return -EOPNOTSUPP;
1114 	}
1115 
1116 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1117 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1118 	if (ret < 0)
1119 		goto err;
1120 
1121 	cycle_netdev(port_dev, extack);
1122 
1123 	return 0;
1124 
1125 err:
1126 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1127 	return ret;
1128 }
1129 
1130 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1131 			 struct netlink_ext_ack *extack)
1132 {
1133 	if (netif_is_l3_master(port_dev)) {
1134 		NL_SET_ERR_MSG(extack,
1135 			       "Can not enslave an L3 master device to a VRF");
1136 		return -EINVAL;
1137 	}
1138 
1139 	if (netif_is_l3_slave(port_dev))
1140 		return -EINVAL;
1141 
1142 	return do_vrf_add_slave(dev, port_dev, extack);
1143 }
1144 
1145 /* inverse of do_vrf_add_slave */
1146 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1147 {
1148 	netdev_upper_dev_unlink(port_dev, dev);
1149 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1150 
1151 	cycle_netdev(port_dev, NULL);
1152 
1153 	return 0;
1154 }
1155 
1156 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157 {
1158 	return do_vrf_del_slave(dev, port_dev);
1159 }
1160 
1161 static void vrf_dev_uninit(struct net_device *dev)
1162 {
1163 	struct net_vrf *vrf = netdev_priv(dev);
1164 
1165 	vrf_rtable_release(dev, vrf);
1166 	vrf_rt6_release(dev, vrf);
1167 
1168 	free_percpu(dev->dstats);
1169 	dev->dstats = NULL;
1170 }
1171 
1172 static int vrf_dev_init(struct net_device *dev)
1173 {
1174 	struct net_vrf *vrf = netdev_priv(dev);
1175 
1176 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1177 	if (!dev->dstats)
1178 		goto out_nomem;
1179 
1180 	/* create the default dst which points back to us */
1181 	if (vrf_rtable_create(dev) != 0)
1182 		goto out_stats;
1183 
1184 	if (vrf_rt6_create(dev) != 0)
1185 		goto out_rth;
1186 
1187 	dev->flags = IFF_MASTER | IFF_NOARP;
1188 
1189 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1190 	dev->operstate = IF_OPER_UP;
1191 	netdev_lockdep_set_classes(dev);
1192 	return 0;
1193 
1194 out_rth:
1195 	vrf_rtable_release(dev, vrf);
1196 out_stats:
1197 	free_percpu(dev->dstats);
1198 	dev->dstats = NULL;
1199 out_nomem:
1200 	return -ENOMEM;
1201 }
1202 
1203 static const struct net_device_ops vrf_netdev_ops = {
1204 	.ndo_init		= vrf_dev_init,
1205 	.ndo_uninit		= vrf_dev_uninit,
1206 	.ndo_start_xmit		= vrf_xmit,
1207 	.ndo_set_mac_address	= eth_mac_addr,
1208 	.ndo_get_stats64	= vrf_get_stats64,
1209 	.ndo_add_slave		= vrf_add_slave,
1210 	.ndo_del_slave		= vrf_del_slave,
1211 };
1212 
1213 static u32 vrf_fib_table(const struct net_device *dev)
1214 {
1215 	struct net_vrf *vrf = netdev_priv(dev);
1216 
1217 	return vrf->tb_id;
1218 }
1219 
1220 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1221 {
1222 	kfree_skb(skb);
1223 	return 0;
1224 }
1225 
1226 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1227 				      struct sk_buff *skb,
1228 				      struct net_device *dev)
1229 {
1230 	struct net *net = dev_net(dev);
1231 
1232 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1233 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1234 
1235 	return skb;
1236 }
1237 
1238 static int vrf_prepare_mac_header(struct sk_buff *skb,
1239 				  struct net_device *vrf_dev, u16 proto)
1240 {
1241 	struct ethhdr *eth;
1242 	int err;
1243 
1244 	/* in general, we do not know if there is enough space in the head of
1245 	 * the packet for hosting the mac header.
1246 	 */
1247 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1248 	if (unlikely(err))
1249 		/* no space in the skb head */
1250 		return -ENOBUFS;
1251 
1252 	__skb_push(skb, ETH_HLEN);
1253 	eth = (struct ethhdr *)skb->data;
1254 
1255 	skb_reset_mac_header(skb);
1256 	skb_reset_mac_len(skb);
1257 
1258 	/* we set the ethernet destination and the source addresses to the
1259 	 * address of the VRF device.
1260 	 */
1261 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1262 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1263 	eth->h_proto = htons(proto);
1264 
1265 	/* the destination address of the Ethernet frame corresponds to the
1266 	 * address set on the VRF interface; therefore, the packet is intended
1267 	 * to be processed locally.
1268 	 */
1269 	skb->protocol = eth->h_proto;
1270 	skb->pkt_type = PACKET_HOST;
1271 
1272 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1273 
1274 	skb_pull_inline(skb, ETH_HLEN);
1275 
1276 	return 0;
1277 }
1278 
1279 /* prepare and add the mac header to the packet if it was not set previously.
1280  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1281  * If the mac header was already set, the original mac header is left
1282  * untouched and the function returns immediately.
1283  */
1284 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1285 				       struct net_device *vrf_dev,
1286 				       u16 proto, struct net_device *orig_dev)
1287 {
1288 	if (skb_mac_header_was_set(skb) && dev_has_header(orig_dev))
1289 		return 0;
1290 
1291 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1292 }
1293 
1294 #if IS_ENABLED(CONFIG_IPV6)
1295 /* neighbor handling is done with actual device; do not want
1296  * to flip skb->dev for those ndisc packets. This really fails
1297  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1298  * a start.
1299  */
1300 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1301 {
1302 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1303 	bool rc = false;
1304 
1305 	if (iph->nexthdr == NEXTHDR_ICMP) {
1306 		const struct icmp6hdr *icmph;
1307 		struct icmp6hdr _icmph;
1308 
1309 		icmph = skb_header_pointer(skb, sizeof(*iph),
1310 					   sizeof(_icmph), &_icmph);
1311 		if (!icmph)
1312 			goto out;
1313 
1314 		switch (icmph->icmp6_type) {
1315 		case NDISC_ROUTER_SOLICITATION:
1316 		case NDISC_ROUTER_ADVERTISEMENT:
1317 		case NDISC_NEIGHBOUR_SOLICITATION:
1318 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1319 		case NDISC_REDIRECT:
1320 			rc = true;
1321 			break;
1322 		}
1323 	}
1324 
1325 out:
1326 	return rc;
1327 }
1328 
1329 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1330 					     const struct net_device *dev,
1331 					     struct flowi6 *fl6,
1332 					     int ifindex,
1333 					     const struct sk_buff *skb,
1334 					     int flags)
1335 {
1336 	struct net_vrf *vrf = netdev_priv(dev);
1337 
1338 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1339 }
1340 
1341 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1342 			      int ifindex)
1343 {
1344 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1345 	struct flowi6 fl6 = {
1346 		.flowi6_iif     = ifindex,
1347 		.flowi6_mark    = skb->mark,
1348 		.flowi6_proto   = iph->nexthdr,
1349 		.daddr          = iph->daddr,
1350 		.saddr          = iph->saddr,
1351 		.flowlabel      = ip6_flowinfo(iph),
1352 	};
1353 	struct net *net = dev_net(vrf_dev);
1354 	struct rt6_info *rt6;
1355 
1356 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1357 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1358 	if (unlikely(!rt6))
1359 		return;
1360 
1361 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1362 		return;
1363 
1364 	skb_dst_set(skb, &rt6->dst);
1365 }
1366 
1367 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1368 				   struct sk_buff *skb)
1369 {
1370 	int orig_iif = skb->skb_iif;
1371 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1372 	bool is_ndisc = ipv6_ndisc_frame(skb);
1373 
1374 	/* loopback, multicast & non-ND link-local traffic; do not push through
1375 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1376 	 * For non-loopback strict packets, determine the dst using the original
1377 	 * ifindex.
1378 	 */
1379 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1380 		skb->dev = vrf_dev;
1381 		skb->skb_iif = vrf_dev->ifindex;
1382 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1383 
1384 		if (skb->pkt_type == PACKET_LOOPBACK)
1385 			skb->pkt_type = PACKET_HOST;
1386 		else
1387 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1388 
1389 		goto out;
1390 	}
1391 
1392 	/* if packet is NDISC then keep the ingress interface */
1393 	if (!is_ndisc) {
1394 		struct net_device *orig_dev = skb->dev;
1395 
1396 		vrf_rx_stats(vrf_dev, skb->len);
1397 		skb->dev = vrf_dev;
1398 		skb->skb_iif = vrf_dev->ifindex;
1399 
1400 		if (!list_empty(&vrf_dev->ptype_all)) {
1401 			int err;
1402 
1403 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1404 							  ETH_P_IPV6,
1405 							  orig_dev);
1406 			if (likely(!err)) {
1407 				skb_push(skb, skb->mac_len);
1408 				dev_queue_xmit_nit(skb, vrf_dev);
1409 				skb_pull(skb, skb->mac_len);
1410 			}
1411 		}
1412 
1413 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1414 	}
1415 
1416 	if (need_strict)
1417 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1418 
1419 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1420 out:
1421 	return skb;
1422 }
1423 
1424 #else
1425 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1426 				   struct sk_buff *skb)
1427 {
1428 	return skb;
1429 }
1430 #endif
1431 
1432 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1433 				  struct sk_buff *skb)
1434 {
1435 	struct net_device *orig_dev = skb->dev;
1436 
1437 	skb->dev = vrf_dev;
1438 	skb->skb_iif = vrf_dev->ifindex;
1439 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1440 
1441 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1442 		goto out;
1443 
1444 	/* loopback traffic; do not push through packet taps again.
1445 	 * Reset pkt_type for upper layers to process skb
1446 	 */
1447 	if (skb->pkt_type == PACKET_LOOPBACK) {
1448 		skb->pkt_type = PACKET_HOST;
1449 		goto out;
1450 	}
1451 
1452 	vrf_rx_stats(vrf_dev, skb->len);
1453 
1454 	if (!list_empty(&vrf_dev->ptype_all)) {
1455 		int err;
1456 
1457 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP,
1458 						  orig_dev);
1459 		if (likely(!err)) {
1460 			skb_push(skb, skb->mac_len);
1461 			dev_queue_xmit_nit(skb, vrf_dev);
1462 			skb_pull(skb, skb->mac_len);
1463 		}
1464 	}
1465 
1466 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1467 out:
1468 	return skb;
1469 }
1470 
1471 /* called with rcu lock held */
1472 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1473 				  struct sk_buff *skb,
1474 				  u16 proto)
1475 {
1476 	switch (proto) {
1477 	case AF_INET:
1478 		return vrf_ip_rcv(vrf_dev, skb);
1479 	case AF_INET6:
1480 		return vrf_ip6_rcv(vrf_dev, skb);
1481 	}
1482 
1483 	return skb;
1484 }
1485 
1486 #if IS_ENABLED(CONFIG_IPV6)
1487 /* send to link-local or multicast address via interface enslaved to
1488  * VRF device. Force lookup to VRF table without changing flow struct
1489  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1490  * is taken on the dst by this function.
1491  */
1492 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1493 					      struct flowi6 *fl6)
1494 {
1495 	struct net *net = dev_net(dev);
1496 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1497 	struct dst_entry *dst = NULL;
1498 	struct rt6_info *rt;
1499 
1500 	/* VRF device does not have a link-local address and
1501 	 * sending packets to link-local or mcast addresses over
1502 	 * a VRF device does not make sense
1503 	 */
1504 	if (fl6->flowi6_oif == dev->ifindex) {
1505 		dst = &net->ipv6.ip6_null_entry->dst;
1506 		return dst;
1507 	}
1508 
1509 	if (!ipv6_addr_any(&fl6->saddr))
1510 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1511 
1512 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1513 	if (rt)
1514 		dst = &rt->dst;
1515 
1516 	return dst;
1517 }
1518 #endif
1519 
1520 static const struct l3mdev_ops vrf_l3mdev_ops = {
1521 	.l3mdev_fib_table	= vrf_fib_table,
1522 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1523 	.l3mdev_l3_out		= vrf_l3_out,
1524 #if IS_ENABLED(CONFIG_IPV6)
1525 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1526 #endif
1527 };
1528 
1529 static void vrf_get_drvinfo(struct net_device *dev,
1530 			    struct ethtool_drvinfo *info)
1531 {
1532 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
1533 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
1534 }
1535 
1536 static const struct ethtool_ops vrf_ethtool_ops = {
1537 	.get_drvinfo	= vrf_get_drvinfo,
1538 };
1539 
1540 static inline size_t vrf_fib_rule_nl_size(void)
1541 {
1542 	size_t sz;
1543 
1544 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1545 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1546 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1547 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1548 
1549 	return sz;
1550 }
1551 
1552 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1553 {
1554 	struct fib_rule_hdr *frh;
1555 	struct nlmsghdr *nlh;
1556 	struct sk_buff *skb;
1557 	int err;
1558 
1559 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1560 	    !ipv6_mod_enabled())
1561 		return 0;
1562 
1563 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1564 	if (!skb)
1565 		return -ENOMEM;
1566 
1567 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1568 	if (!nlh)
1569 		goto nla_put_failure;
1570 
1571 	/* rule only needs to appear once */
1572 	nlh->nlmsg_flags |= NLM_F_EXCL;
1573 
1574 	frh = nlmsg_data(nlh);
1575 	memset(frh, 0, sizeof(*frh));
1576 	frh->family = family;
1577 	frh->action = FR_ACT_TO_TBL;
1578 
1579 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1580 		goto nla_put_failure;
1581 
1582 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1583 		goto nla_put_failure;
1584 
1585 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1586 		goto nla_put_failure;
1587 
1588 	nlmsg_end(skb, nlh);
1589 
1590 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1591 	skb->sk = dev_net(dev)->rtnl;
1592 	if (add_it) {
1593 		err = fib_nl_newrule(skb, nlh, NULL);
1594 		if (err == -EEXIST)
1595 			err = 0;
1596 	} else {
1597 		err = fib_nl_delrule(skb, nlh, NULL);
1598 		if (err == -ENOENT)
1599 			err = 0;
1600 	}
1601 	nlmsg_free(skb);
1602 
1603 	return err;
1604 
1605 nla_put_failure:
1606 	nlmsg_free(skb);
1607 
1608 	return -EMSGSIZE;
1609 }
1610 
1611 static int vrf_add_fib_rules(const struct net_device *dev)
1612 {
1613 	int err;
1614 
1615 	err = vrf_fib_rule(dev, AF_INET,  true);
1616 	if (err < 0)
1617 		goto out_err;
1618 
1619 	err = vrf_fib_rule(dev, AF_INET6, true);
1620 	if (err < 0)
1621 		goto ipv6_err;
1622 
1623 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1624 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1625 	if (err < 0)
1626 		goto ipmr_err;
1627 #endif
1628 
1629 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1630 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1631 	if (err < 0)
1632 		goto ip6mr_err;
1633 #endif
1634 
1635 	return 0;
1636 
1637 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1638 ip6mr_err:
1639 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1640 #endif
1641 
1642 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1643 ipmr_err:
1644 	vrf_fib_rule(dev, AF_INET6,  false);
1645 #endif
1646 
1647 ipv6_err:
1648 	vrf_fib_rule(dev, AF_INET,  false);
1649 
1650 out_err:
1651 	netdev_err(dev, "Failed to add FIB rules.\n");
1652 	return err;
1653 }
1654 
1655 static void vrf_setup(struct net_device *dev)
1656 {
1657 	ether_setup(dev);
1658 
1659 	/* Initialize the device structure. */
1660 	dev->netdev_ops = &vrf_netdev_ops;
1661 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1662 	dev->ethtool_ops = &vrf_ethtool_ops;
1663 	dev->needs_free_netdev = true;
1664 
1665 	/* Fill in device structure with ethernet-generic values. */
1666 	eth_hw_addr_random(dev);
1667 
1668 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1669 	dev->features |= NETIF_F_LLTX;
1670 
1671 	/* don't allow vrf devices to change network namespaces. */
1672 	dev->features |= NETIF_F_NETNS_LOCAL;
1673 
1674 	/* does not make sense for a VLAN to be added to a vrf device */
1675 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1676 
1677 	/* enable offload features */
1678 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1679 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1680 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1681 
1682 	dev->hw_features = dev->features;
1683 	dev->hw_enc_features = dev->features;
1684 
1685 	/* default to no qdisc; user can add if desired */
1686 	dev->priv_flags |= IFF_NO_QUEUE;
1687 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1688 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1689 
1690 	/* VRF devices do not care about MTU, but if the MTU is set
1691 	 * too low then the ipv4 and ipv6 protocols are disabled
1692 	 * which breaks networking.
1693 	 */
1694 	dev->min_mtu = IPV6_MIN_MTU;
1695 	dev->max_mtu = IP6_MAX_MTU;
1696 	dev->mtu = dev->max_mtu;
1697 }
1698 
1699 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1700 			struct netlink_ext_ack *extack)
1701 {
1702 	if (tb[IFLA_ADDRESS]) {
1703 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1704 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1705 			return -EINVAL;
1706 		}
1707 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1708 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1709 			return -EADDRNOTAVAIL;
1710 		}
1711 	}
1712 	return 0;
1713 }
1714 
1715 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1716 {
1717 	struct net_device *port_dev;
1718 	struct list_head *iter;
1719 
1720 	netdev_for_each_lower_dev(dev, port_dev, iter)
1721 		vrf_del_slave(dev, port_dev);
1722 
1723 	vrf_map_unregister_dev(dev);
1724 
1725 	unregister_netdevice_queue(dev, head);
1726 }
1727 
1728 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1729 		       struct nlattr *tb[], struct nlattr *data[],
1730 		       struct netlink_ext_ack *extack)
1731 {
1732 	struct net_vrf *vrf = netdev_priv(dev);
1733 	struct netns_vrf *nn_vrf;
1734 	bool *add_fib_rules;
1735 	struct net *net;
1736 	int err;
1737 
1738 	if (!data || !data[IFLA_VRF_TABLE]) {
1739 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1740 		return -EINVAL;
1741 	}
1742 
1743 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1744 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1745 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1746 				    "Invalid VRF table id");
1747 		return -EINVAL;
1748 	}
1749 
1750 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1751 
1752 	err = register_netdevice(dev);
1753 	if (err)
1754 		goto out;
1755 
1756 	/* mapping between table_id and vrf;
1757 	 * note: such binding could not be done in the dev init function
1758 	 * because dev->ifindex id is not available yet.
1759 	 */
1760 	vrf->ifindex = dev->ifindex;
1761 
1762 	err = vrf_map_register_dev(dev, extack);
1763 	if (err) {
1764 		unregister_netdevice(dev);
1765 		goto out;
1766 	}
1767 
1768 	net = dev_net(dev);
1769 	nn_vrf = net_generic(net, vrf_net_id);
1770 
1771 	add_fib_rules = &nn_vrf->add_fib_rules;
1772 	if (*add_fib_rules) {
1773 		err = vrf_add_fib_rules(dev);
1774 		if (err) {
1775 			vrf_map_unregister_dev(dev);
1776 			unregister_netdevice(dev);
1777 			goto out;
1778 		}
1779 		*add_fib_rules = false;
1780 	}
1781 
1782 out:
1783 	return err;
1784 }
1785 
1786 static size_t vrf_nl_getsize(const struct net_device *dev)
1787 {
1788 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1789 }
1790 
1791 static int vrf_fillinfo(struct sk_buff *skb,
1792 			const struct net_device *dev)
1793 {
1794 	struct net_vrf *vrf = netdev_priv(dev);
1795 
1796 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1797 }
1798 
1799 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1800 				 const struct net_device *slave_dev)
1801 {
1802 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1803 }
1804 
1805 static int vrf_fill_slave_info(struct sk_buff *skb,
1806 			       const struct net_device *vrf_dev,
1807 			       const struct net_device *slave_dev)
1808 {
1809 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1810 
1811 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1812 		return -EMSGSIZE;
1813 
1814 	return 0;
1815 }
1816 
1817 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1818 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1819 };
1820 
1821 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1822 	.kind		= DRV_NAME,
1823 	.priv_size	= sizeof(struct net_vrf),
1824 
1825 	.get_size	= vrf_nl_getsize,
1826 	.policy		= vrf_nl_policy,
1827 	.validate	= vrf_validate,
1828 	.fill_info	= vrf_fillinfo,
1829 
1830 	.get_slave_size  = vrf_get_slave_size,
1831 	.fill_slave_info = vrf_fill_slave_info,
1832 
1833 	.newlink	= vrf_newlink,
1834 	.dellink	= vrf_dellink,
1835 	.setup		= vrf_setup,
1836 	.maxtype	= IFLA_VRF_MAX,
1837 };
1838 
1839 static int vrf_device_event(struct notifier_block *unused,
1840 			    unsigned long event, void *ptr)
1841 {
1842 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1843 
1844 	/* only care about unregister events to drop slave references */
1845 	if (event == NETDEV_UNREGISTER) {
1846 		struct net_device *vrf_dev;
1847 
1848 		if (!netif_is_l3_slave(dev))
1849 			goto out;
1850 
1851 		vrf_dev = netdev_master_upper_dev_get(dev);
1852 		vrf_del_slave(vrf_dev, dev);
1853 	}
1854 out:
1855 	return NOTIFY_DONE;
1856 }
1857 
1858 static struct notifier_block vrf_notifier_block __read_mostly = {
1859 	.notifier_call = vrf_device_event,
1860 };
1861 
1862 static int vrf_map_init(struct vrf_map *vmap)
1863 {
1864 	spin_lock_init(&vmap->vmap_lock);
1865 	hash_init(vmap->ht);
1866 
1867 	vmap->strict_mode = false;
1868 
1869 	return 0;
1870 }
1871 
1872 #ifdef CONFIG_SYSCTL
1873 static bool vrf_strict_mode(struct vrf_map *vmap)
1874 {
1875 	bool strict_mode;
1876 
1877 	vrf_map_lock(vmap);
1878 	strict_mode = vmap->strict_mode;
1879 	vrf_map_unlock(vmap);
1880 
1881 	return strict_mode;
1882 }
1883 
1884 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1885 {
1886 	bool *cur_mode;
1887 	int res = 0;
1888 
1889 	vrf_map_lock(vmap);
1890 
1891 	cur_mode = &vmap->strict_mode;
1892 	if (*cur_mode == new_mode)
1893 		goto unlock;
1894 
1895 	if (*cur_mode) {
1896 		/* disable strict mode */
1897 		*cur_mode = false;
1898 	} else {
1899 		if (vmap->shared_tables) {
1900 			/* we cannot allow strict_mode because there are some
1901 			 * vrfs that share one or more tables.
1902 			 */
1903 			res = -EBUSY;
1904 			goto unlock;
1905 		}
1906 
1907 		/* no tables are shared among vrfs, so we can go back
1908 		 * to 1:1 association between a vrf with its table.
1909 		 */
1910 		*cur_mode = true;
1911 	}
1912 
1913 unlock:
1914 	vrf_map_unlock(vmap);
1915 
1916 	return res;
1917 }
1918 
1919 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1920 				    void *buffer, size_t *lenp, loff_t *ppos)
1921 {
1922 	struct net *net = (struct net *)table->extra1;
1923 	struct vrf_map *vmap = netns_vrf_map(net);
1924 	int proc_strict_mode = 0;
1925 	struct ctl_table tmp = {
1926 		.procname	= table->procname,
1927 		.data		= &proc_strict_mode,
1928 		.maxlen		= sizeof(int),
1929 		.mode		= table->mode,
1930 		.extra1		= SYSCTL_ZERO,
1931 		.extra2		= SYSCTL_ONE,
1932 	};
1933 	int ret;
1934 
1935 	if (!write)
1936 		proc_strict_mode = vrf_strict_mode(vmap);
1937 
1938 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1939 
1940 	if (write && ret == 0)
1941 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1942 
1943 	return ret;
1944 }
1945 
1946 static const struct ctl_table vrf_table[] = {
1947 	{
1948 		.procname	= "strict_mode",
1949 		.data		= NULL,
1950 		.maxlen		= sizeof(int),
1951 		.mode		= 0644,
1952 		.proc_handler	= vrf_shared_table_handler,
1953 		/* set by the vrf_netns_init */
1954 		.extra1		= NULL,
1955 	},
1956 	{ },
1957 };
1958 
1959 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1960 {
1961 	struct ctl_table *table;
1962 
1963 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1964 	if (!table)
1965 		return -ENOMEM;
1966 
1967 	/* init the extra1 parameter with the reference to current netns */
1968 	table[0].extra1 = net;
1969 
1970 	nn_vrf->ctl_hdr = register_net_sysctl_sz(net, "net/vrf", table,
1971 						 ARRAY_SIZE(vrf_table));
1972 	if (!nn_vrf->ctl_hdr) {
1973 		kfree(table);
1974 		return -ENOMEM;
1975 	}
1976 
1977 	return 0;
1978 }
1979 
1980 static void vrf_netns_exit_sysctl(struct net *net)
1981 {
1982 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1983 	struct ctl_table *table;
1984 
1985 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1986 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1987 	kfree(table);
1988 }
1989 #else
1990 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1991 {
1992 	return 0;
1993 }
1994 
1995 static void vrf_netns_exit_sysctl(struct net *net)
1996 {
1997 }
1998 #endif
1999 
2000 /* Initialize per network namespace state */
2001 static int __net_init vrf_netns_init(struct net *net)
2002 {
2003 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2004 
2005 	nn_vrf->add_fib_rules = true;
2006 	vrf_map_init(&nn_vrf->vmap);
2007 
2008 	return vrf_netns_init_sysctl(net, nn_vrf);
2009 }
2010 
2011 static void __net_exit vrf_netns_exit(struct net *net)
2012 {
2013 	vrf_netns_exit_sysctl(net);
2014 }
2015 
2016 static struct pernet_operations vrf_net_ops __net_initdata = {
2017 	.init = vrf_netns_init,
2018 	.exit = vrf_netns_exit,
2019 	.id   = &vrf_net_id,
2020 	.size = sizeof(struct netns_vrf),
2021 };
2022 
2023 static int __init vrf_init_module(void)
2024 {
2025 	int rc;
2026 
2027 	register_netdevice_notifier(&vrf_notifier_block);
2028 
2029 	rc = register_pernet_subsys(&vrf_net_ops);
2030 	if (rc < 0)
2031 		goto error;
2032 
2033 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2034 					  vrf_ifindex_lookup_by_table_id);
2035 	if (rc < 0)
2036 		goto unreg_pernet;
2037 
2038 	rc = rtnl_link_register(&vrf_link_ops);
2039 	if (rc < 0)
2040 		goto table_lookup_unreg;
2041 
2042 	return 0;
2043 
2044 table_lookup_unreg:
2045 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2046 				       vrf_ifindex_lookup_by_table_id);
2047 
2048 unreg_pernet:
2049 	unregister_pernet_subsys(&vrf_net_ops);
2050 
2051 error:
2052 	unregister_netdevice_notifier(&vrf_notifier_block);
2053 	return rc;
2054 }
2055 
2056 module_init(vrf_init_module);
2057 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2058 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2059 MODULE_LICENSE("GPL");
2060 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2061 MODULE_VERSION(DRV_VERSION);
2062