xref: /openbmc/linux/drivers/net/vrf.c (revision 1f1517fafda598839a02e39968c5063ddcfa51fc)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * vrf.c: device driver to encapsulate a VRF space
4  *
5  * Copyright (c) 2015 Cumulus Networks. All rights reserved.
6  * Copyright (c) 2015 Shrijeet Mukherjee <shm@cumulusnetworks.com>
7  * Copyright (c) 2015 David Ahern <dsa@cumulusnetworks.com>
8  *
9  * Based on dummy, team and ipvlan drivers
10  */
11 
12 #include <linux/ethtool.h>
13 #include <linux/module.h>
14 #include <linux/kernel.h>
15 #include <linux/netdevice.h>
16 #include <linux/etherdevice.h>
17 #include <linux/ip.h>
18 #include <linux/init.h>
19 #include <linux/moduleparam.h>
20 #include <linux/netfilter.h>
21 #include <linux/rtnetlink.h>
22 #include <net/rtnetlink.h>
23 #include <linux/u64_stats_sync.h>
24 #include <linux/hashtable.h>
25 #include <linux/spinlock_types.h>
26 
27 #include <linux/inetdevice.h>
28 #include <net/arp.h>
29 #include <net/ip.h>
30 #include <net/ip_fib.h>
31 #include <net/ip6_fib.h>
32 #include <net/ip6_route.h>
33 #include <net/route.h>
34 #include <net/addrconf.h>
35 #include <net/l3mdev.h>
36 #include <net/fib_rules.h>
37 #include <net/netns/generic.h>
38 #include <net/netfilter/nf_conntrack.h>
39 
40 #define DRV_NAME	"vrf"
41 #define DRV_VERSION	"1.1"
42 
43 #define FIB_RULE_PREF  1000       /* default preference for FIB rules */
44 
45 #define HT_MAP_BITS	4
46 #define HASH_INITVAL	((u32)0xcafef00d)
47 
48 struct  vrf_map {
49 	DECLARE_HASHTABLE(ht, HT_MAP_BITS);
50 	spinlock_t vmap_lock;
51 
52 	/* shared_tables:
53 	 * count how many distinct tables do not comply with the strict mode
54 	 * requirement.
55 	 * shared_tables value must be 0 in order to enable the strict mode.
56 	 *
57 	 * example of the evolution of shared_tables:
58 	 *                                                        | time
59 	 * add  vrf0 --> table 100        shared_tables = 0       | t0
60 	 * add  vrf1 --> table 101        shared_tables = 0       | t1
61 	 * add  vrf2 --> table 100        shared_tables = 1       | t2
62 	 * add  vrf3 --> table 100        shared_tables = 1       | t3
63 	 * add  vrf4 --> table 101        shared_tables = 2       v t4
64 	 *
65 	 * shared_tables is a "step function" (or "staircase function")
66 	 * and it is increased by one when the second vrf is associated to a
67 	 * table.
68 	 *
69 	 * at t2, vrf0 and vrf2 are bound to table 100: shared_tables = 1.
70 	 *
71 	 * at t3, another dev (vrf3) is bound to the same table 100 but the
72 	 * value of shared_tables is still 1.
73 	 * This means that no matter how many new vrfs will register on the
74 	 * table 100, the shared_tables will not increase (considering only
75 	 * table 100).
76 	 *
77 	 * at t4, vrf4 is bound to table 101, and shared_tables = 2.
78 	 *
79 	 * Looking at the value of shared_tables we can immediately know if
80 	 * the strict_mode can or cannot be enforced. Indeed, strict_mode
81 	 * can be enforced iff shared_tables = 0.
82 	 *
83 	 * Conversely, shared_tables is decreased when a vrf is de-associated
84 	 * from a table with exactly two associated vrfs.
85 	 */
86 	u32 shared_tables;
87 
88 	bool strict_mode;
89 };
90 
91 struct vrf_map_elem {
92 	struct hlist_node hnode;
93 	struct list_head vrf_list;  /* VRFs registered to this table */
94 
95 	u32 table_id;
96 	int users;
97 	int ifindex;
98 };
99 
100 static unsigned int vrf_net_id;
101 
102 /* per netns vrf data */
103 struct netns_vrf {
104 	/* protected by rtnl lock */
105 	bool add_fib_rules;
106 
107 	struct vrf_map vmap;
108 	struct ctl_table_header	*ctl_hdr;
109 };
110 
111 struct net_vrf {
112 	struct rtable __rcu	*rth;
113 	struct rt6_info	__rcu	*rt6;
114 #if IS_ENABLED(CONFIG_IPV6)
115 	struct fib6_table	*fib6_table;
116 #endif
117 	u32                     tb_id;
118 
119 	struct list_head	me_list;   /* entry in vrf_map_elem */
120 	int			ifindex;
121 };
122 
123 struct pcpu_dstats {
124 	u64			tx_pkts;
125 	u64			tx_bytes;
126 	u64			tx_drps;
127 	u64			rx_pkts;
128 	u64			rx_bytes;
129 	u64			rx_drps;
130 	struct u64_stats_sync	syncp;
131 };
132 
133 static void vrf_rx_stats(struct net_device *dev, int len)
134 {
135 	struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
136 
137 	u64_stats_update_begin(&dstats->syncp);
138 	dstats->rx_pkts++;
139 	dstats->rx_bytes += len;
140 	u64_stats_update_end(&dstats->syncp);
141 }
142 
143 static void vrf_tx_error(struct net_device *vrf_dev, struct sk_buff *skb)
144 {
145 	vrf_dev->stats.tx_errors++;
146 	kfree_skb(skb);
147 }
148 
149 static void vrf_get_stats64(struct net_device *dev,
150 			    struct rtnl_link_stats64 *stats)
151 {
152 	int i;
153 
154 	for_each_possible_cpu(i) {
155 		const struct pcpu_dstats *dstats;
156 		u64 tbytes, tpkts, tdrops, rbytes, rpkts;
157 		unsigned int start;
158 
159 		dstats = per_cpu_ptr(dev->dstats, i);
160 		do {
161 			start = u64_stats_fetch_begin_irq(&dstats->syncp);
162 			tbytes = dstats->tx_bytes;
163 			tpkts = dstats->tx_pkts;
164 			tdrops = dstats->tx_drps;
165 			rbytes = dstats->rx_bytes;
166 			rpkts = dstats->rx_pkts;
167 		} while (u64_stats_fetch_retry_irq(&dstats->syncp, start));
168 		stats->tx_bytes += tbytes;
169 		stats->tx_packets += tpkts;
170 		stats->tx_dropped += tdrops;
171 		stats->rx_bytes += rbytes;
172 		stats->rx_packets += rpkts;
173 	}
174 }
175 
176 static struct vrf_map *netns_vrf_map(struct net *net)
177 {
178 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
179 
180 	return &nn_vrf->vmap;
181 }
182 
183 static struct vrf_map *netns_vrf_map_by_dev(struct net_device *dev)
184 {
185 	return netns_vrf_map(dev_net(dev));
186 }
187 
188 static int vrf_map_elem_get_vrf_ifindex(struct vrf_map_elem *me)
189 {
190 	struct list_head *me_head = &me->vrf_list;
191 	struct net_vrf *vrf;
192 
193 	if (list_empty(me_head))
194 		return -ENODEV;
195 
196 	vrf = list_first_entry(me_head, struct net_vrf, me_list);
197 
198 	return vrf->ifindex;
199 }
200 
201 static struct vrf_map_elem *vrf_map_elem_alloc(gfp_t flags)
202 {
203 	struct vrf_map_elem *me;
204 
205 	me = kmalloc(sizeof(*me), flags);
206 	if (!me)
207 		return NULL;
208 
209 	return me;
210 }
211 
212 static void vrf_map_elem_free(struct vrf_map_elem *me)
213 {
214 	kfree(me);
215 }
216 
217 static void vrf_map_elem_init(struct vrf_map_elem *me, int table_id,
218 			      int ifindex, int users)
219 {
220 	me->table_id = table_id;
221 	me->ifindex = ifindex;
222 	me->users = users;
223 	INIT_LIST_HEAD(&me->vrf_list);
224 }
225 
226 static struct vrf_map_elem *vrf_map_lookup_elem(struct vrf_map *vmap,
227 						u32 table_id)
228 {
229 	struct vrf_map_elem *me;
230 	u32 key;
231 
232 	key = jhash_1word(table_id, HASH_INITVAL);
233 	hash_for_each_possible(vmap->ht, me, hnode, key) {
234 		if (me->table_id == table_id)
235 			return me;
236 	}
237 
238 	return NULL;
239 }
240 
241 static void vrf_map_add_elem(struct vrf_map *vmap, struct vrf_map_elem *me)
242 {
243 	u32 table_id = me->table_id;
244 	u32 key;
245 
246 	key = jhash_1word(table_id, HASH_INITVAL);
247 	hash_add(vmap->ht, &me->hnode, key);
248 }
249 
250 static void vrf_map_del_elem(struct vrf_map_elem *me)
251 {
252 	hash_del(&me->hnode);
253 }
254 
255 static void vrf_map_lock(struct vrf_map *vmap) __acquires(&vmap->vmap_lock)
256 {
257 	spin_lock(&vmap->vmap_lock);
258 }
259 
260 static void vrf_map_unlock(struct vrf_map *vmap) __releases(&vmap->vmap_lock)
261 {
262 	spin_unlock(&vmap->vmap_lock);
263 }
264 
265 /* called with rtnl lock held */
266 static int
267 vrf_map_register_dev(struct net_device *dev, struct netlink_ext_ack *extack)
268 {
269 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
270 	struct net_vrf *vrf = netdev_priv(dev);
271 	struct vrf_map_elem *new_me, *me;
272 	u32 table_id = vrf->tb_id;
273 	bool free_new_me = false;
274 	int users;
275 	int res;
276 
277 	/* we pre-allocate elements used in the spin-locked section (so that we
278 	 * keep the spinlock as short as possible).
279 	 */
280 	new_me = vrf_map_elem_alloc(GFP_KERNEL);
281 	if (!new_me)
282 		return -ENOMEM;
283 
284 	vrf_map_elem_init(new_me, table_id, dev->ifindex, 0);
285 
286 	vrf_map_lock(vmap);
287 
288 	me = vrf_map_lookup_elem(vmap, table_id);
289 	if (!me) {
290 		me = new_me;
291 		vrf_map_add_elem(vmap, me);
292 		goto link_vrf;
293 	}
294 
295 	/* we already have an entry in the vrf_map, so it means there is (at
296 	 * least) a vrf registered on the specific table.
297 	 */
298 	free_new_me = true;
299 	if (vmap->strict_mode) {
300 		/* vrfs cannot share the same table */
301 		NL_SET_ERR_MSG(extack, "Table is used by another VRF");
302 		res = -EBUSY;
303 		goto unlock;
304 	}
305 
306 link_vrf:
307 	users = ++me->users;
308 	if (users == 2)
309 		++vmap->shared_tables;
310 
311 	list_add(&vrf->me_list, &me->vrf_list);
312 
313 	res = 0;
314 
315 unlock:
316 	vrf_map_unlock(vmap);
317 
318 	/* clean-up, if needed */
319 	if (free_new_me)
320 		vrf_map_elem_free(new_me);
321 
322 	return res;
323 }
324 
325 /* called with rtnl lock held */
326 static void vrf_map_unregister_dev(struct net_device *dev)
327 {
328 	struct vrf_map *vmap = netns_vrf_map_by_dev(dev);
329 	struct net_vrf *vrf = netdev_priv(dev);
330 	u32 table_id = vrf->tb_id;
331 	struct vrf_map_elem *me;
332 	int users;
333 
334 	vrf_map_lock(vmap);
335 
336 	me = vrf_map_lookup_elem(vmap, table_id);
337 	if (!me)
338 		goto unlock;
339 
340 	list_del(&vrf->me_list);
341 
342 	users = --me->users;
343 	if (users == 1) {
344 		--vmap->shared_tables;
345 	} else if (users == 0) {
346 		vrf_map_del_elem(me);
347 
348 		/* no one will refer to this element anymore */
349 		vrf_map_elem_free(me);
350 	}
351 
352 unlock:
353 	vrf_map_unlock(vmap);
354 }
355 
356 /* return the vrf device index associated with the table_id */
357 static int vrf_ifindex_lookup_by_table_id(struct net *net, u32 table_id)
358 {
359 	struct vrf_map *vmap = netns_vrf_map(net);
360 	struct vrf_map_elem *me;
361 	int ifindex;
362 
363 	vrf_map_lock(vmap);
364 
365 	if (!vmap->strict_mode) {
366 		ifindex = -EPERM;
367 		goto unlock;
368 	}
369 
370 	me = vrf_map_lookup_elem(vmap, table_id);
371 	if (!me) {
372 		ifindex = -ENODEV;
373 		goto unlock;
374 	}
375 
376 	ifindex = vrf_map_elem_get_vrf_ifindex(me);
377 
378 unlock:
379 	vrf_map_unlock(vmap);
380 
381 	return ifindex;
382 }
383 
384 /* by default VRF devices do not have a qdisc and are expected
385  * to be created with only a single queue.
386  */
387 static bool qdisc_tx_is_default(const struct net_device *dev)
388 {
389 	struct netdev_queue *txq;
390 	struct Qdisc *qdisc;
391 
392 	if (dev->num_tx_queues > 1)
393 		return false;
394 
395 	txq = netdev_get_tx_queue(dev, 0);
396 	qdisc = rcu_access_pointer(txq->qdisc);
397 
398 	return !qdisc->enqueue;
399 }
400 
401 /* Local traffic destined to local address. Reinsert the packet to rx
402  * path, similar to loopback handling.
403  */
404 static int vrf_local_xmit(struct sk_buff *skb, struct net_device *dev,
405 			  struct dst_entry *dst)
406 {
407 	int len = skb->len;
408 
409 	skb_orphan(skb);
410 
411 	skb_dst_set(skb, dst);
412 
413 	/* set pkt_type to avoid skb hitting packet taps twice -
414 	 * once on Tx and again in Rx processing
415 	 */
416 	skb->pkt_type = PACKET_LOOPBACK;
417 
418 	skb->protocol = eth_type_trans(skb, dev);
419 
420 	if (likely(netif_rx(skb) == NET_RX_SUCCESS))
421 		vrf_rx_stats(dev, len);
422 	else
423 		this_cpu_inc(dev->dstats->rx_drps);
424 
425 	return NETDEV_TX_OK;
426 }
427 
428 static void vrf_nf_set_untracked(struct sk_buff *skb)
429 {
430 	if (skb_get_nfct(skb) == 0)
431 		nf_ct_set(skb, NULL, IP_CT_UNTRACKED);
432 }
433 
434 static void vrf_nf_reset_ct(struct sk_buff *skb)
435 {
436 	if (skb_get_nfct(skb) == IP_CT_UNTRACKED)
437 		nf_reset_ct(skb);
438 }
439 
440 #if IS_ENABLED(CONFIG_IPV6)
441 static int vrf_ip6_local_out(struct net *net, struct sock *sk,
442 			     struct sk_buff *skb)
443 {
444 	int err;
445 
446 	vrf_nf_reset_ct(skb);
447 
448 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net,
449 		      sk, skb, NULL, skb_dst(skb)->dev, dst_output);
450 
451 	if (likely(err == 1))
452 		err = dst_output(net, sk, skb);
453 
454 	return err;
455 }
456 
457 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
458 					   struct net_device *dev)
459 {
460 	const struct ipv6hdr *iph;
461 	struct net *net = dev_net(skb->dev);
462 	struct flowi6 fl6;
463 	int ret = NET_XMIT_DROP;
464 	struct dst_entry *dst;
465 	struct dst_entry *dst_null = &net->ipv6.ip6_null_entry->dst;
466 
467 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct ipv6hdr)))
468 		goto err;
469 
470 	iph = ipv6_hdr(skb);
471 
472 	memset(&fl6, 0, sizeof(fl6));
473 	/* needed to match OIF rule */
474 	fl6.flowi6_oif = dev->ifindex;
475 	fl6.flowi6_iif = LOOPBACK_IFINDEX;
476 	fl6.daddr = iph->daddr;
477 	fl6.saddr = iph->saddr;
478 	fl6.flowlabel = ip6_flowinfo(iph);
479 	fl6.flowi6_mark = skb->mark;
480 	fl6.flowi6_proto = iph->nexthdr;
481 	fl6.flowi6_flags = FLOWI_FLAG_SKIP_NH_OIF;
482 
483 	dst = ip6_dst_lookup_flow(net, NULL, &fl6, NULL);
484 	if (IS_ERR(dst) || dst == dst_null)
485 		goto err;
486 
487 	skb_dst_drop(skb);
488 
489 	/* if dst.dev is the VRF device again this is locally originated traffic
490 	 * destined to a local address. Short circuit to Rx path.
491 	 */
492 	if (dst->dev == dev)
493 		return vrf_local_xmit(skb, dev, dst);
494 
495 	skb_dst_set(skb, dst);
496 
497 	/* strip the ethernet header added for pass through VRF device */
498 	__skb_pull(skb, skb_network_offset(skb));
499 
500 	ret = vrf_ip6_local_out(net, skb->sk, skb);
501 	if (unlikely(net_xmit_eval(ret)))
502 		dev->stats.tx_errors++;
503 	else
504 		ret = NET_XMIT_SUCCESS;
505 
506 	return ret;
507 err:
508 	vrf_tx_error(dev, skb);
509 	return NET_XMIT_DROP;
510 }
511 #else
512 static netdev_tx_t vrf_process_v6_outbound(struct sk_buff *skb,
513 					   struct net_device *dev)
514 {
515 	vrf_tx_error(dev, skb);
516 	return NET_XMIT_DROP;
517 }
518 #endif
519 
520 /* based on ip_local_out; can't use it b/c the dst is switched pointing to us */
521 static int vrf_ip_local_out(struct net *net, struct sock *sk,
522 			    struct sk_buff *skb)
523 {
524 	int err;
525 
526 	vrf_nf_reset_ct(skb);
527 
528 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
529 		      skb, NULL, skb_dst(skb)->dev, dst_output);
530 	if (likely(err == 1))
531 		err = dst_output(net, sk, skb);
532 
533 	return err;
534 }
535 
536 static netdev_tx_t vrf_process_v4_outbound(struct sk_buff *skb,
537 					   struct net_device *vrf_dev)
538 {
539 	struct iphdr *ip4h;
540 	int ret = NET_XMIT_DROP;
541 	struct flowi4 fl4;
542 	struct net *net = dev_net(vrf_dev);
543 	struct rtable *rt;
544 
545 	if (!pskb_may_pull(skb, ETH_HLEN + sizeof(struct iphdr)))
546 		goto err;
547 
548 	ip4h = ip_hdr(skb);
549 
550 	memset(&fl4, 0, sizeof(fl4));
551 	/* needed to match OIF rule */
552 	fl4.flowi4_oif = vrf_dev->ifindex;
553 	fl4.flowi4_iif = LOOPBACK_IFINDEX;
554 	fl4.flowi4_tos = RT_TOS(ip4h->tos);
555 	fl4.flowi4_flags = FLOWI_FLAG_ANYSRC | FLOWI_FLAG_SKIP_NH_OIF;
556 	fl4.flowi4_proto = ip4h->protocol;
557 	fl4.daddr = ip4h->daddr;
558 	fl4.saddr = ip4h->saddr;
559 
560 	rt = ip_route_output_flow(net, &fl4, NULL);
561 	if (IS_ERR(rt))
562 		goto err;
563 
564 	skb_dst_drop(skb);
565 
566 	/* if dst.dev is the VRF device again this is locally originated traffic
567 	 * destined to a local address. Short circuit to Rx path.
568 	 */
569 	if (rt->dst.dev == vrf_dev)
570 		return vrf_local_xmit(skb, vrf_dev, &rt->dst);
571 
572 	skb_dst_set(skb, &rt->dst);
573 
574 	/* strip the ethernet header added for pass through VRF device */
575 	__skb_pull(skb, skb_network_offset(skb));
576 
577 	if (!ip4h->saddr) {
578 		ip4h->saddr = inet_select_addr(skb_dst(skb)->dev, 0,
579 					       RT_SCOPE_LINK);
580 	}
581 
582 	ret = vrf_ip_local_out(dev_net(skb_dst(skb)->dev), skb->sk, skb);
583 	if (unlikely(net_xmit_eval(ret)))
584 		vrf_dev->stats.tx_errors++;
585 	else
586 		ret = NET_XMIT_SUCCESS;
587 
588 out:
589 	return ret;
590 err:
591 	vrf_tx_error(vrf_dev, skb);
592 	goto out;
593 }
594 
595 static netdev_tx_t is_ip_tx_frame(struct sk_buff *skb, struct net_device *dev)
596 {
597 	switch (skb->protocol) {
598 	case htons(ETH_P_IP):
599 		return vrf_process_v4_outbound(skb, dev);
600 	case htons(ETH_P_IPV6):
601 		return vrf_process_v6_outbound(skb, dev);
602 	default:
603 		vrf_tx_error(dev, skb);
604 		return NET_XMIT_DROP;
605 	}
606 }
607 
608 static netdev_tx_t vrf_xmit(struct sk_buff *skb, struct net_device *dev)
609 {
610 	int len = skb->len;
611 	netdev_tx_t ret = is_ip_tx_frame(skb, dev);
612 
613 	if (likely(ret == NET_XMIT_SUCCESS || ret == NET_XMIT_CN)) {
614 		struct pcpu_dstats *dstats = this_cpu_ptr(dev->dstats);
615 
616 		u64_stats_update_begin(&dstats->syncp);
617 		dstats->tx_pkts++;
618 		dstats->tx_bytes += len;
619 		u64_stats_update_end(&dstats->syncp);
620 	} else {
621 		this_cpu_inc(dev->dstats->tx_drps);
622 	}
623 
624 	return ret;
625 }
626 
627 static void vrf_finish_direct(struct sk_buff *skb)
628 {
629 	struct net_device *vrf_dev = skb->dev;
630 
631 	if (!list_empty(&vrf_dev->ptype_all) &&
632 	    likely(skb_headroom(skb) >= ETH_HLEN)) {
633 		struct ethhdr *eth = skb_push(skb, ETH_HLEN);
634 
635 		ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
636 		eth_zero_addr(eth->h_dest);
637 		eth->h_proto = skb->protocol;
638 
639 		rcu_read_lock_bh();
640 		dev_queue_xmit_nit(skb, vrf_dev);
641 		rcu_read_unlock_bh();
642 
643 		skb_pull(skb, ETH_HLEN);
644 	}
645 
646 	vrf_nf_reset_ct(skb);
647 }
648 
649 #if IS_ENABLED(CONFIG_IPV6)
650 /* modelled after ip6_finish_output2 */
651 static int vrf_finish_output6(struct net *net, struct sock *sk,
652 			      struct sk_buff *skb)
653 {
654 	struct dst_entry *dst = skb_dst(skb);
655 	struct net_device *dev = dst->dev;
656 	const struct in6_addr *nexthop;
657 	struct neighbour *neigh;
658 	int ret;
659 
660 	vrf_nf_reset_ct(skb);
661 
662 	skb->protocol = htons(ETH_P_IPV6);
663 	skb->dev = dev;
664 
665 	rcu_read_lock_bh();
666 	nexthop = rt6_nexthop((struct rt6_info *)dst, &ipv6_hdr(skb)->daddr);
667 	neigh = __ipv6_neigh_lookup_noref(dst->dev, nexthop);
668 	if (unlikely(!neigh))
669 		neigh = __neigh_create(&nd_tbl, nexthop, dst->dev, false);
670 	if (!IS_ERR(neigh)) {
671 		sock_confirm_neigh(skb, neigh);
672 		ret = neigh_output(neigh, skb, false);
673 		rcu_read_unlock_bh();
674 		return ret;
675 	}
676 	rcu_read_unlock_bh();
677 
678 	IP6_INC_STATS(dev_net(dst->dev),
679 		      ip6_dst_idev(dst), IPSTATS_MIB_OUTNOROUTES);
680 	kfree_skb(skb);
681 	return -EINVAL;
682 }
683 
684 /* modelled after ip6_output */
685 static int vrf_output6(struct net *net, struct sock *sk, struct sk_buff *skb)
686 {
687 	return NF_HOOK_COND(NFPROTO_IPV6, NF_INET_POST_ROUTING,
688 			    net, sk, skb, NULL, skb_dst(skb)->dev,
689 			    vrf_finish_output6,
690 			    !(IP6CB(skb)->flags & IP6SKB_REROUTED));
691 }
692 
693 /* set dst on skb to send packet to us via dev_xmit path. Allows
694  * packet to go through device based features such as qdisc, netfilter
695  * hooks and packet sockets with skb->dev set to vrf device.
696  */
697 static struct sk_buff *vrf_ip6_out_redirect(struct net_device *vrf_dev,
698 					    struct sk_buff *skb)
699 {
700 	struct net_vrf *vrf = netdev_priv(vrf_dev);
701 	struct dst_entry *dst = NULL;
702 	struct rt6_info *rt6;
703 
704 	rcu_read_lock();
705 
706 	rt6 = rcu_dereference(vrf->rt6);
707 	if (likely(rt6)) {
708 		dst = &rt6->dst;
709 		dst_hold(dst);
710 	}
711 
712 	rcu_read_unlock();
713 
714 	if (unlikely(!dst)) {
715 		vrf_tx_error(vrf_dev, skb);
716 		return NULL;
717 	}
718 
719 	skb_dst_drop(skb);
720 	skb_dst_set(skb, dst);
721 
722 	return skb;
723 }
724 
725 static int vrf_output6_direct_finish(struct net *net, struct sock *sk,
726 				     struct sk_buff *skb)
727 {
728 	vrf_finish_direct(skb);
729 
730 	return vrf_ip6_local_out(net, sk, skb);
731 }
732 
733 static int vrf_output6_direct(struct net *net, struct sock *sk,
734 			      struct sk_buff *skb)
735 {
736 	int err = 1;
737 
738 	skb->protocol = htons(ETH_P_IPV6);
739 
740 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
741 		err = nf_hook(NFPROTO_IPV6, NF_INET_POST_ROUTING, net, sk, skb,
742 			      NULL, skb->dev, vrf_output6_direct_finish);
743 
744 	if (likely(err == 1))
745 		vrf_finish_direct(skb);
746 
747 	return err;
748 }
749 
750 static int vrf_ip6_out_direct_finish(struct net *net, struct sock *sk,
751 				     struct sk_buff *skb)
752 {
753 	int err;
754 
755 	err = vrf_output6_direct(net, sk, skb);
756 	if (likely(err == 1))
757 		err = vrf_ip6_local_out(net, sk, skb);
758 
759 	return err;
760 }
761 
762 static struct sk_buff *vrf_ip6_out_direct(struct net_device *vrf_dev,
763 					  struct sock *sk,
764 					  struct sk_buff *skb)
765 {
766 	struct net *net = dev_net(vrf_dev);
767 	int err;
768 
769 	skb->dev = vrf_dev;
770 
771 	vrf_nf_set_untracked(skb);
772 
773 	err = nf_hook(NFPROTO_IPV6, NF_INET_LOCAL_OUT, net, sk,
774 		      skb, NULL, vrf_dev, vrf_ip6_out_direct_finish);
775 
776 	if (likely(err == 1))
777 		err = vrf_output6_direct(net, sk, skb);
778 
779 	if (likely(err == 1))
780 		return skb;
781 
782 	return NULL;
783 }
784 
785 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
786 				   struct sock *sk,
787 				   struct sk_buff *skb)
788 {
789 	/* don't divert link scope packets */
790 	if (rt6_need_strict(&ipv6_hdr(skb)->daddr))
791 		return skb;
792 
793 	if (qdisc_tx_is_default(vrf_dev) ||
794 	    IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
795 		return vrf_ip6_out_direct(vrf_dev, sk, skb);
796 
797 	return vrf_ip6_out_redirect(vrf_dev, skb);
798 }
799 
800 /* holding rtnl */
801 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
802 {
803 	struct rt6_info *rt6 = rtnl_dereference(vrf->rt6);
804 	struct net *net = dev_net(dev);
805 	struct dst_entry *dst;
806 
807 	RCU_INIT_POINTER(vrf->rt6, NULL);
808 	synchronize_rcu();
809 
810 	/* move dev in dst's to loopback so this VRF device can be deleted
811 	 * - based on dst_ifdown
812 	 */
813 	if (rt6) {
814 		dst = &rt6->dst;
815 		dev_put(dst->dev);
816 		dst->dev = net->loopback_dev;
817 		dev_hold(dst->dev);
818 		dst_release(dst);
819 	}
820 }
821 
822 static int vrf_rt6_create(struct net_device *dev)
823 {
824 	int flags = DST_NOPOLICY | DST_NOXFRM;
825 	struct net_vrf *vrf = netdev_priv(dev);
826 	struct net *net = dev_net(dev);
827 	struct rt6_info *rt6;
828 	int rc = -ENOMEM;
829 
830 	/* IPv6 can be CONFIG enabled and then disabled runtime */
831 	if (!ipv6_mod_enabled())
832 		return 0;
833 
834 	vrf->fib6_table = fib6_new_table(net, vrf->tb_id);
835 	if (!vrf->fib6_table)
836 		goto out;
837 
838 	/* create a dst for routing packets out a VRF device */
839 	rt6 = ip6_dst_alloc(net, dev, flags);
840 	if (!rt6)
841 		goto out;
842 
843 	rt6->dst.output	= vrf_output6;
844 
845 	rcu_assign_pointer(vrf->rt6, rt6);
846 
847 	rc = 0;
848 out:
849 	return rc;
850 }
851 #else
852 static struct sk_buff *vrf_ip6_out(struct net_device *vrf_dev,
853 				   struct sock *sk,
854 				   struct sk_buff *skb)
855 {
856 	return skb;
857 }
858 
859 static void vrf_rt6_release(struct net_device *dev, struct net_vrf *vrf)
860 {
861 }
862 
863 static int vrf_rt6_create(struct net_device *dev)
864 {
865 	return 0;
866 }
867 #endif
868 
869 /* modelled after ip_finish_output2 */
870 static int vrf_finish_output(struct net *net, struct sock *sk, struct sk_buff *skb)
871 {
872 	struct dst_entry *dst = skb_dst(skb);
873 	struct rtable *rt = (struct rtable *)dst;
874 	struct net_device *dev = dst->dev;
875 	unsigned int hh_len = LL_RESERVED_SPACE(dev);
876 	struct neighbour *neigh;
877 	bool is_v6gw = false;
878 
879 	vrf_nf_reset_ct(skb);
880 
881 	/* Be paranoid, rather than too clever. */
882 	if (unlikely(skb_headroom(skb) < hh_len && dev->header_ops)) {
883 		skb = skb_expand_head(skb, hh_len);
884 		if (!skb) {
885 			dev->stats.tx_errors++;
886 			return -ENOMEM;
887 		}
888 	}
889 
890 	rcu_read_lock_bh();
891 
892 	neigh = ip_neigh_for_gw(rt, skb, &is_v6gw);
893 	if (!IS_ERR(neigh)) {
894 		int ret;
895 
896 		sock_confirm_neigh(skb, neigh);
897 		/* if crossing protocols, can not use the cached header */
898 		ret = neigh_output(neigh, skb, is_v6gw);
899 		rcu_read_unlock_bh();
900 		return ret;
901 	}
902 
903 	rcu_read_unlock_bh();
904 	vrf_tx_error(skb->dev, skb);
905 	return -EINVAL;
906 }
907 
908 static int vrf_output(struct net *net, struct sock *sk, struct sk_buff *skb)
909 {
910 	struct net_device *dev = skb_dst(skb)->dev;
911 
912 	IP_UPD_PO_STATS(net, IPSTATS_MIB_OUT, skb->len);
913 
914 	skb->dev = dev;
915 	skb->protocol = htons(ETH_P_IP);
916 
917 	return NF_HOOK_COND(NFPROTO_IPV4, NF_INET_POST_ROUTING,
918 			    net, sk, skb, NULL, dev,
919 			    vrf_finish_output,
920 			    !(IPCB(skb)->flags & IPSKB_REROUTED));
921 }
922 
923 /* set dst on skb to send packet to us via dev_xmit path. Allows
924  * packet to go through device based features such as qdisc, netfilter
925  * hooks and packet sockets with skb->dev set to vrf device.
926  */
927 static struct sk_buff *vrf_ip_out_redirect(struct net_device *vrf_dev,
928 					   struct sk_buff *skb)
929 {
930 	struct net_vrf *vrf = netdev_priv(vrf_dev);
931 	struct dst_entry *dst = NULL;
932 	struct rtable *rth;
933 
934 	rcu_read_lock();
935 
936 	rth = rcu_dereference(vrf->rth);
937 	if (likely(rth)) {
938 		dst = &rth->dst;
939 		dst_hold(dst);
940 	}
941 
942 	rcu_read_unlock();
943 
944 	if (unlikely(!dst)) {
945 		vrf_tx_error(vrf_dev, skb);
946 		return NULL;
947 	}
948 
949 	skb_dst_drop(skb);
950 	skb_dst_set(skb, dst);
951 
952 	return skb;
953 }
954 
955 static int vrf_output_direct_finish(struct net *net, struct sock *sk,
956 				    struct sk_buff *skb)
957 {
958 	vrf_finish_direct(skb);
959 
960 	return vrf_ip_local_out(net, sk, skb);
961 }
962 
963 static int vrf_output_direct(struct net *net, struct sock *sk,
964 			     struct sk_buff *skb)
965 {
966 	int err = 1;
967 
968 	skb->protocol = htons(ETH_P_IP);
969 
970 	if (!(IPCB(skb)->flags & IPSKB_REROUTED))
971 		err = nf_hook(NFPROTO_IPV4, NF_INET_POST_ROUTING, net, sk, skb,
972 			      NULL, skb->dev, vrf_output_direct_finish);
973 
974 	if (likely(err == 1))
975 		vrf_finish_direct(skb);
976 
977 	return err;
978 }
979 
980 static int vrf_ip_out_direct_finish(struct net *net, struct sock *sk,
981 				    struct sk_buff *skb)
982 {
983 	int err;
984 
985 	err = vrf_output_direct(net, sk, skb);
986 	if (likely(err == 1))
987 		err = vrf_ip_local_out(net, sk, skb);
988 
989 	return err;
990 }
991 
992 static struct sk_buff *vrf_ip_out_direct(struct net_device *vrf_dev,
993 					 struct sock *sk,
994 					 struct sk_buff *skb)
995 {
996 	struct net *net = dev_net(vrf_dev);
997 	int err;
998 
999 	skb->dev = vrf_dev;
1000 
1001 	vrf_nf_set_untracked(skb);
1002 
1003 	err = nf_hook(NFPROTO_IPV4, NF_INET_LOCAL_OUT, net, sk,
1004 		      skb, NULL, vrf_dev, vrf_ip_out_direct_finish);
1005 
1006 	if (likely(err == 1))
1007 		err = vrf_output_direct(net, sk, skb);
1008 
1009 	if (likely(err == 1))
1010 		return skb;
1011 
1012 	return NULL;
1013 }
1014 
1015 static struct sk_buff *vrf_ip_out(struct net_device *vrf_dev,
1016 				  struct sock *sk,
1017 				  struct sk_buff *skb)
1018 {
1019 	/* don't divert multicast or local broadcast */
1020 	if (ipv4_is_multicast(ip_hdr(skb)->daddr) ||
1021 	    ipv4_is_lbcast(ip_hdr(skb)->daddr))
1022 		return skb;
1023 
1024 	if (qdisc_tx_is_default(vrf_dev) ||
1025 	    IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
1026 		return vrf_ip_out_direct(vrf_dev, sk, skb);
1027 
1028 	return vrf_ip_out_redirect(vrf_dev, skb);
1029 }
1030 
1031 /* called with rcu lock held */
1032 static struct sk_buff *vrf_l3_out(struct net_device *vrf_dev,
1033 				  struct sock *sk,
1034 				  struct sk_buff *skb,
1035 				  u16 proto)
1036 {
1037 	switch (proto) {
1038 	case AF_INET:
1039 		return vrf_ip_out(vrf_dev, sk, skb);
1040 	case AF_INET6:
1041 		return vrf_ip6_out(vrf_dev, sk, skb);
1042 	}
1043 
1044 	return skb;
1045 }
1046 
1047 /* holding rtnl */
1048 static void vrf_rtable_release(struct net_device *dev, struct net_vrf *vrf)
1049 {
1050 	struct rtable *rth = rtnl_dereference(vrf->rth);
1051 	struct net *net = dev_net(dev);
1052 	struct dst_entry *dst;
1053 
1054 	RCU_INIT_POINTER(vrf->rth, NULL);
1055 	synchronize_rcu();
1056 
1057 	/* move dev in dst's to loopback so this VRF device can be deleted
1058 	 * - based on dst_ifdown
1059 	 */
1060 	if (rth) {
1061 		dst = &rth->dst;
1062 		dev_put(dst->dev);
1063 		dst->dev = net->loopback_dev;
1064 		dev_hold(dst->dev);
1065 		dst_release(dst);
1066 	}
1067 }
1068 
1069 static int vrf_rtable_create(struct net_device *dev)
1070 {
1071 	struct net_vrf *vrf = netdev_priv(dev);
1072 	struct rtable *rth;
1073 
1074 	if (!fib_new_table(dev_net(dev), vrf->tb_id))
1075 		return -ENOMEM;
1076 
1077 	/* create a dst for routing packets out through a VRF device */
1078 	rth = rt_dst_alloc(dev, 0, RTN_UNICAST, 1, 1);
1079 	if (!rth)
1080 		return -ENOMEM;
1081 
1082 	rth->dst.output	= vrf_output;
1083 
1084 	rcu_assign_pointer(vrf->rth, rth);
1085 
1086 	return 0;
1087 }
1088 
1089 /**************************** device handling ********************/
1090 
1091 /* cycle interface to flush neighbor cache and move routes across tables */
1092 static void cycle_netdev(struct net_device *dev,
1093 			 struct netlink_ext_ack *extack)
1094 {
1095 	unsigned int flags = dev->flags;
1096 	int ret;
1097 
1098 	if (!netif_running(dev))
1099 		return;
1100 
1101 	ret = dev_change_flags(dev, flags & ~IFF_UP, extack);
1102 	if (ret >= 0)
1103 		ret = dev_change_flags(dev, flags, extack);
1104 
1105 	if (ret < 0) {
1106 		netdev_err(dev,
1107 			   "Failed to cycle device %s; route tables might be wrong!\n",
1108 			   dev->name);
1109 	}
1110 }
1111 
1112 static int do_vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1113 			    struct netlink_ext_ack *extack)
1114 {
1115 	int ret;
1116 
1117 	/* do not allow loopback device to be enslaved to a VRF.
1118 	 * The vrf device acts as the loopback for the vrf.
1119 	 */
1120 	if (port_dev == dev_net(dev)->loopback_dev) {
1121 		NL_SET_ERR_MSG(extack,
1122 			       "Can not enslave loopback device to a VRF");
1123 		return -EOPNOTSUPP;
1124 	}
1125 
1126 	port_dev->priv_flags |= IFF_L3MDEV_SLAVE;
1127 	ret = netdev_master_upper_dev_link(port_dev, dev, NULL, NULL, extack);
1128 	if (ret < 0)
1129 		goto err;
1130 
1131 	cycle_netdev(port_dev, extack);
1132 
1133 	return 0;
1134 
1135 err:
1136 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1137 	return ret;
1138 }
1139 
1140 static int vrf_add_slave(struct net_device *dev, struct net_device *port_dev,
1141 			 struct netlink_ext_ack *extack)
1142 {
1143 	if (netif_is_l3_master(port_dev)) {
1144 		NL_SET_ERR_MSG(extack,
1145 			       "Can not enslave an L3 master device to a VRF");
1146 		return -EINVAL;
1147 	}
1148 
1149 	if (netif_is_l3_slave(port_dev))
1150 		return -EINVAL;
1151 
1152 	return do_vrf_add_slave(dev, port_dev, extack);
1153 }
1154 
1155 /* inverse of do_vrf_add_slave */
1156 static int do_vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1157 {
1158 	netdev_upper_dev_unlink(port_dev, dev);
1159 	port_dev->priv_flags &= ~IFF_L3MDEV_SLAVE;
1160 
1161 	cycle_netdev(port_dev, NULL);
1162 
1163 	return 0;
1164 }
1165 
1166 static int vrf_del_slave(struct net_device *dev, struct net_device *port_dev)
1167 {
1168 	return do_vrf_del_slave(dev, port_dev);
1169 }
1170 
1171 static void vrf_dev_uninit(struct net_device *dev)
1172 {
1173 	struct net_vrf *vrf = netdev_priv(dev);
1174 
1175 	vrf_rtable_release(dev, vrf);
1176 	vrf_rt6_release(dev, vrf);
1177 
1178 	free_percpu(dev->dstats);
1179 	dev->dstats = NULL;
1180 }
1181 
1182 static int vrf_dev_init(struct net_device *dev)
1183 {
1184 	struct net_vrf *vrf = netdev_priv(dev);
1185 
1186 	dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
1187 	if (!dev->dstats)
1188 		goto out_nomem;
1189 
1190 	/* create the default dst which points back to us */
1191 	if (vrf_rtable_create(dev) != 0)
1192 		goto out_stats;
1193 
1194 	if (vrf_rt6_create(dev) != 0)
1195 		goto out_rth;
1196 
1197 	dev->flags = IFF_MASTER | IFF_NOARP;
1198 
1199 	/* similarly, oper state is irrelevant; set to up to avoid confusion */
1200 	dev->operstate = IF_OPER_UP;
1201 	netdev_lockdep_set_classes(dev);
1202 	return 0;
1203 
1204 out_rth:
1205 	vrf_rtable_release(dev, vrf);
1206 out_stats:
1207 	free_percpu(dev->dstats);
1208 	dev->dstats = NULL;
1209 out_nomem:
1210 	return -ENOMEM;
1211 }
1212 
1213 static const struct net_device_ops vrf_netdev_ops = {
1214 	.ndo_init		= vrf_dev_init,
1215 	.ndo_uninit		= vrf_dev_uninit,
1216 	.ndo_start_xmit		= vrf_xmit,
1217 	.ndo_set_mac_address	= eth_mac_addr,
1218 	.ndo_get_stats64	= vrf_get_stats64,
1219 	.ndo_add_slave		= vrf_add_slave,
1220 	.ndo_del_slave		= vrf_del_slave,
1221 };
1222 
1223 static u32 vrf_fib_table(const struct net_device *dev)
1224 {
1225 	struct net_vrf *vrf = netdev_priv(dev);
1226 
1227 	return vrf->tb_id;
1228 }
1229 
1230 static int vrf_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
1231 {
1232 	kfree_skb(skb);
1233 	return 0;
1234 }
1235 
1236 static struct sk_buff *vrf_rcv_nfhook(u8 pf, unsigned int hook,
1237 				      struct sk_buff *skb,
1238 				      struct net_device *dev)
1239 {
1240 	struct net *net = dev_net(dev);
1241 
1242 	if (nf_hook(pf, hook, net, NULL, skb, dev, NULL, vrf_rcv_finish) != 1)
1243 		skb = NULL;    /* kfree_skb(skb) handled by nf code */
1244 
1245 	return skb;
1246 }
1247 
1248 static int vrf_prepare_mac_header(struct sk_buff *skb,
1249 				  struct net_device *vrf_dev, u16 proto)
1250 {
1251 	struct ethhdr *eth;
1252 	int err;
1253 
1254 	/* in general, we do not know if there is enough space in the head of
1255 	 * the packet for hosting the mac header.
1256 	 */
1257 	err = skb_cow_head(skb, LL_RESERVED_SPACE(vrf_dev));
1258 	if (unlikely(err))
1259 		/* no space in the skb head */
1260 		return -ENOBUFS;
1261 
1262 	__skb_push(skb, ETH_HLEN);
1263 	eth = (struct ethhdr *)skb->data;
1264 
1265 	skb_reset_mac_header(skb);
1266 
1267 	/* we set the ethernet destination and the source addresses to the
1268 	 * address of the VRF device.
1269 	 */
1270 	ether_addr_copy(eth->h_dest, vrf_dev->dev_addr);
1271 	ether_addr_copy(eth->h_source, vrf_dev->dev_addr);
1272 	eth->h_proto = htons(proto);
1273 
1274 	/* the destination address of the Ethernet frame corresponds to the
1275 	 * address set on the VRF interface; therefore, the packet is intended
1276 	 * to be processed locally.
1277 	 */
1278 	skb->protocol = eth->h_proto;
1279 	skb->pkt_type = PACKET_HOST;
1280 
1281 	skb_postpush_rcsum(skb, skb->data, ETH_HLEN);
1282 
1283 	skb_pull_inline(skb, ETH_HLEN);
1284 
1285 	return 0;
1286 }
1287 
1288 /* prepare and add the mac header to the packet if it was not set previously.
1289  * In this way, packet sniffers such as tcpdump can parse the packet correctly.
1290  * If the mac header was already set, the original mac header is left
1291  * untouched and the function returns immediately.
1292  */
1293 static int vrf_add_mac_header_if_unset(struct sk_buff *skb,
1294 				       struct net_device *vrf_dev,
1295 				       u16 proto)
1296 {
1297 	if (skb_mac_header_was_set(skb))
1298 		return 0;
1299 
1300 	return vrf_prepare_mac_header(skb, vrf_dev, proto);
1301 }
1302 
1303 #if IS_ENABLED(CONFIG_IPV6)
1304 /* neighbor handling is done with actual device; do not want
1305  * to flip skb->dev for those ndisc packets. This really fails
1306  * for multiple next protocols (e.g., NEXTHDR_HOP). But it is
1307  * a start.
1308  */
1309 static bool ipv6_ndisc_frame(const struct sk_buff *skb)
1310 {
1311 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1312 	bool rc = false;
1313 
1314 	if (iph->nexthdr == NEXTHDR_ICMP) {
1315 		const struct icmp6hdr *icmph;
1316 		struct icmp6hdr _icmph;
1317 
1318 		icmph = skb_header_pointer(skb, sizeof(*iph),
1319 					   sizeof(_icmph), &_icmph);
1320 		if (!icmph)
1321 			goto out;
1322 
1323 		switch (icmph->icmp6_type) {
1324 		case NDISC_ROUTER_SOLICITATION:
1325 		case NDISC_ROUTER_ADVERTISEMENT:
1326 		case NDISC_NEIGHBOUR_SOLICITATION:
1327 		case NDISC_NEIGHBOUR_ADVERTISEMENT:
1328 		case NDISC_REDIRECT:
1329 			rc = true;
1330 			break;
1331 		}
1332 	}
1333 
1334 out:
1335 	return rc;
1336 }
1337 
1338 static struct rt6_info *vrf_ip6_route_lookup(struct net *net,
1339 					     const struct net_device *dev,
1340 					     struct flowi6 *fl6,
1341 					     int ifindex,
1342 					     const struct sk_buff *skb,
1343 					     int flags)
1344 {
1345 	struct net_vrf *vrf = netdev_priv(dev);
1346 
1347 	return ip6_pol_route(net, vrf->fib6_table, ifindex, fl6, skb, flags);
1348 }
1349 
1350 static void vrf_ip6_input_dst(struct sk_buff *skb, struct net_device *vrf_dev,
1351 			      int ifindex)
1352 {
1353 	const struct ipv6hdr *iph = ipv6_hdr(skb);
1354 	struct flowi6 fl6 = {
1355 		.flowi6_iif     = ifindex,
1356 		.flowi6_mark    = skb->mark,
1357 		.flowi6_proto   = iph->nexthdr,
1358 		.daddr          = iph->daddr,
1359 		.saddr          = iph->saddr,
1360 		.flowlabel      = ip6_flowinfo(iph),
1361 	};
1362 	struct net *net = dev_net(vrf_dev);
1363 	struct rt6_info *rt6;
1364 
1365 	rt6 = vrf_ip6_route_lookup(net, vrf_dev, &fl6, ifindex, skb,
1366 				   RT6_LOOKUP_F_HAS_SADDR | RT6_LOOKUP_F_IFACE);
1367 	if (unlikely(!rt6))
1368 		return;
1369 
1370 	if (unlikely(&rt6->dst == &net->ipv6.ip6_null_entry->dst))
1371 		return;
1372 
1373 	skb_dst_set(skb, &rt6->dst);
1374 }
1375 
1376 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1377 				   struct sk_buff *skb)
1378 {
1379 	int orig_iif = skb->skb_iif;
1380 	bool need_strict = rt6_need_strict(&ipv6_hdr(skb)->daddr);
1381 	bool is_ndisc = ipv6_ndisc_frame(skb);
1382 
1383 	/* loopback, multicast & non-ND link-local traffic; do not push through
1384 	 * packet taps again. Reset pkt_type for upper layers to process skb.
1385 	 * For strict packets with a source LLA, determine the dst using the
1386 	 * original ifindex.
1387 	 */
1388 	if (skb->pkt_type == PACKET_LOOPBACK || (need_strict && !is_ndisc)) {
1389 		skb->dev = vrf_dev;
1390 		skb->skb_iif = vrf_dev->ifindex;
1391 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1392 
1393 		if (skb->pkt_type == PACKET_LOOPBACK)
1394 			skb->pkt_type = PACKET_HOST;
1395 		else if (ipv6_addr_type(&ipv6_hdr(skb)->saddr) & IPV6_ADDR_LINKLOCAL)
1396 			vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1397 
1398 		goto out;
1399 	}
1400 
1401 	/* if packet is NDISC then keep the ingress interface */
1402 	if (!is_ndisc) {
1403 		vrf_rx_stats(vrf_dev, skb->len);
1404 		skb->dev = vrf_dev;
1405 		skb->skb_iif = vrf_dev->ifindex;
1406 
1407 		if (!list_empty(&vrf_dev->ptype_all)) {
1408 			int err;
1409 
1410 			err = vrf_add_mac_header_if_unset(skb, vrf_dev,
1411 							  ETH_P_IPV6);
1412 			if (likely(!err)) {
1413 				skb_push(skb, skb->mac_len);
1414 				dev_queue_xmit_nit(skb, vrf_dev);
1415 				skb_pull(skb, skb->mac_len);
1416 			}
1417 		}
1418 
1419 		IP6CB(skb)->flags |= IP6SKB_L3SLAVE;
1420 	}
1421 
1422 	if (need_strict)
1423 		vrf_ip6_input_dst(skb, vrf_dev, orig_iif);
1424 
1425 	skb = vrf_rcv_nfhook(NFPROTO_IPV6, NF_INET_PRE_ROUTING, skb, vrf_dev);
1426 out:
1427 	return skb;
1428 }
1429 
1430 #else
1431 static struct sk_buff *vrf_ip6_rcv(struct net_device *vrf_dev,
1432 				   struct sk_buff *skb)
1433 {
1434 	return skb;
1435 }
1436 #endif
1437 
1438 static struct sk_buff *vrf_ip_rcv(struct net_device *vrf_dev,
1439 				  struct sk_buff *skb)
1440 {
1441 	skb->dev = vrf_dev;
1442 	skb->skb_iif = vrf_dev->ifindex;
1443 	IPCB(skb)->flags |= IPSKB_L3SLAVE;
1444 
1445 	if (ipv4_is_multicast(ip_hdr(skb)->daddr))
1446 		goto out;
1447 
1448 	/* loopback traffic; do not push through packet taps again.
1449 	 * Reset pkt_type for upper layers to process skb
1450 	 */
1451 	if (skb->pkt_type == PACKET_LOOPBACK) {
1452 		skb->pkt_type = PACKET_HOST;
1453 		goto out;
1454 	}
1455 
1456 	vrf_rx_stats(vrf_dev, skb->len);
1457 
1458 	if (!list_empty(&vrf_dev->ptype_all)) {
1459 		int err;
1460 
1461 		err = vrf_add_mac_header_if_unset(skb, vrf_dev, ETH_P_IP);
1462 		if (likely(!err)) {
1463 			skb_push(skb, skb->mac_len);
1464 			dev_queue_xmit_nit(skb, vrf_dev);
1465 			skb_pull(skb, skb->mac_len);
1466 		}
1467 	}
1468 
1469 	skb = vrf_rcv_nfhook(NFPROTO_IPV4, NF_INET_PRE_ROUTING, skb, vrf_dev);
1470 out:
1471 	return skb;
1472 }
1473 
1474 /* called with rcu lock held */
1475 static struct sk_buff *vrf_l3_rcv(struct net_device *vrf_dev,
1476 				  struct sk_buff *skb,
1477 				  u16 proto)
1478 {
1479 	switch (proto) {
1480 	case AF_INET:
1481 		return vrf_ip_rcv(vrf_dev, skb);
1482 	case AF_INET6:
1483 		return vrf_ip6_rcv(vrf_dev, skb);
1484 	}
1485 
1486 	return skb;
1487 }
1488 
1489 #if IS_ENABLED(CONFIG_IPV6)
1490 /* send to link-local or multicast address via interface enslaved to
1491  * VRF device. Force lookup to VRF table without changing flow struct
1492  * Note: Caller to this function must hold rcu_read_lock() and no refcnt
1493  * is taken on the dst by this function.
1494  */
1495 static struct dst_entry *vrf_link_scope_lookup(const struct net_device *dev,
1496 					      struct flowi6 *fl6)
1497 {
1498 	struct net *net = dev_net(dev);
1499 	int flags = RT6_LOOKUP_F_IFACE | RT6_LOOKUP_F_DST_NOREF;
1500 	struct dst_entry *dst = NULL;
1501 	struct rt6_info *rt;
1502 
1503 	/* VRF device does not have a link-local address and
1504 	 * sending packets to link-local or mcast addresses over
1505 	 * a VRF device does not make sense
1506 	 */
1507 	if (fl6->flowi6_oif == dev->ifindex) {
1508 		dst = &net->ipv6.ip6_null_entry->dst;
1509 		return dst;
1510 	}
1511 
1512 	if (!ipv6_addr_any(&fl6->saddr))
1513 		flags |= RT6_LOOKUP_F_HAS_SADDR;
1514 
1515 	rt = vrf_ip6_route_lookup(net, dev, fl6, fl6->flowi6_oif, NULL, flags);
1516 	if (rt)
1517 		dst = &rt->dst;
1518 
1519 	return dst;
1520 }
1521 #endif
1522 
1523 static const struct l3mdev_ops vrf_l3mdev_ops = {
1524 	.l3mdev_fib_table	= vrf_fib_table,
1525 	.l3mdev_l3_rcv		= vrf_l3_rcv,
1526 	.l3mdev_l3_out		= vrf_l3_out,
1527 #if IS_ENABLED(CONFIG_IPV6)
1528 	.l3mdev_link_scope_lookup = vrf_link_scope_lookup,
1529 #endif
1530 };
1531 
1532 static void vrf_get_drvinfo(struct net_device *dev,
1533 			    struct ethtool_drvinfo *info)
1534 {
1535 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1536 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1537 }
1538 
1539 static const struct ethtool_ops vrf_ethtool_ops = {
1540 	.get_drvinfo	= vrf_get_drvinfo,
1541 };
1542 
1543 static inline size_t vrf_fib_rule_nl_size(void)
1544 {
1545 	size_t sz;
1546 
1547 	sz  = NLMSG_ALIGN(sizeof(struct fib_rule_hdr));
1548 	sz += nla_total_size(sizeof(u8));	/* FRA_L3MDEV */
1549 	sz += nla_total_size(sizeof(u32));	/* FRA_PRIORITY */
1550 	sz += nla_total_size(sizeof(u8));       /* FRA_PROTOCOL */
1551 
1552 	return sz;
1553 }
1554 
1555 static int vrf_fib_rule(const struct net_device *dev, __u8 family, bool add_it)
1556 {
1557 	struct fib_rule_hdr *frh;
1558 	struct nlmsghdr *nlh;
1559 	struct sk_buff *skb;
1560 	int err;
1561 
1562 	if ((family == AF_INET6 || family == RTNL_FAMILY_IP6MR) &&
1563 	    !ipv6_mod_enabled())
1564 		return 0;
1565 
1566 	skb = nlmsg_new(vrf_fib_rule_nl_size(), GFP_KERNEL);
1567 	if (!skb)
1568 		return -ENOMEM;
1569 
1570 	nlh = nlmsg_put(skb, 0, 0, 0, sizeof(*frh), 0);
1571 	if (!nlh)
1572 		goto nla_put_failure;
1573 
1574 	/* rule only needs to appear once */
1575 	nlh->nlmsg_flags |= NLM_F_EXCL;
1576 
1577 	frh = nlmsg_data(nlh);
1578 	memset(frh, 0, sizeof(*frh));
1579 	frh->family = family;
1580 	frh->action = FR_ACT_TO_TBL;
1581 
1582 	if (nla_put_u8(skb, FRA_PROTOCOL, RTPROT_KERNEL))
1583 		goto nla_put_failure;
1584 
1585 	if (nla_put_u8(skb, FRA_L3MDEV, 1))
1586 		goto nla_put_failure;
1587 
1588 	if (nla_put_u32(skb, FRA_PRIORITY, FIB_RULE_PREF))
1589 		goto nla_put_failure;
1590 
1591 	nlmsg_end(skb, nlh);
1592 
1593 	/* fib_nl_{new,del}rule handling looks for net from skb->sk */
1594 	skb->sk = dev_net(dev)->rtnl;
1595 	if (add_it) {
1596 		err = fib_nl_newrule(skb, nlh, NULL);
1597 		if (err == -EEXIST)
1598 			err = 0;
1599 	} else {
1600 		err = fib_nl_delrule(skb, nlh, NULL);
1601 		if (err == -ENOENT)
1602 			err = 0;
1603 	}
1604 	nlmsg_free(skb);
1605 
1606 	return err;
1607 
1608 nla_put_failure:
1609 	nlmsg_free(skb);
1610 
1611 	return -EMSGSIZE;
1612 }
1613 
1614 static int vrf_add_fib_rules(const struct net_device *dev)
1615 {
1616 	int err;
1617 
1618 	err = vrf_fib_rule(dev, AF_INET,  true);
1619 	if (err < 0)
1620 		goto out_err;
1621 
1622 	err = vrf_fib_rule(dev, AF_INET6, true);
1623 	if (err < 0)
1624 		goto ipv6_err;
1625 
1626 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1627 	err = vrf_fib_rule(dev, RTNL_FAMILY_IPMR, true);
1628 	if (err < 0)
1629 		goto ipmr_err;
1630 #endif
1631 
1632 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1633 	err = vrf_fib_rule(dev, RTNL_FAMILY_IP6MR, true);
1634 	if (err < 0)
1635 		goto ip6mr_err;
1636 #endif
1637 
1638 	return 0;
1639 
1640 #if IS_ENABLED(CONFIG_IPV6_MROUTE_MULTIPLE_TABLES)
1641 ip6mr_err:
1642 	vrf_fib_rule(dev, RTNL_FAMILY_IPMR,  false);
1643 #endif
1644 
1645 #if IS_ENABLED(CONFIG_IP_MROUTE_MULTIPLE_TABLES)
1646 ipmr_err:
1647 	vrf_fib_rule(dev, AF_INET6,  false);
1648 #endif
1649 
1650 ipv6_err:
1651 	vrf_fib_rule(dev, AF_INET,  false);
1652 
1653 out_err:
1654 	netdev_err(dev, "Failed to add FIB rules.\n");
1655 	return err;
1656 }
1657 
1658 static void vrf_setup(struct net_device *dev)
1659 {
1660 	ether_setup(dev);
1661 
1662 	/* Initialize the device structure. */
1663 	dev->netdev_ops = &vrf_netdev_ops;
1664 	dev->l3mdev_ops = &vrf_l3mdev_ops;
1665 	dev->ethtool_ops = &vrf_ethtool_ops;
1666 	dev->needs_free_netdev = true;
1667 
1668 	/* Fill in device structure with ethernet-generic values. */
1669 	eth_hw_addr_random(dev);
1670 
1671 	/* don't acquire vrf device's netif_tx_lock when transmitting */
1672 	dev->features |= NETIF_F_LLTX;
1673 
1674 	/* don't allow vrf devices to change network namespaces. */
1675 	dev->features |= NETIF_F_NETNS_LOCAL;
1676 
1677 	/* does not make sense for a VLAN to be added to a vrf device */
1678 	dev->features   |= NETIF_F_VLAN_CHALLENGED;
1679 
1680 	/* enable offload features */
1681 	dev->features   |= NETIF_F_GSO_SOFTWARE;
1682 	dev->features   |= NETIF_F_RXCSUM | NETIF_F_HW_CSUM | NETIF_F_SCTP_CRC;
1683 	dev->features   |= NETIF_F_SG | NETIF_F_FRAGLIST | NETIF_F_HIGHDMA;
1684 
1685 	dev->hw_features = dev->features;
1686 	dev->hw_enc_features = dev->features;
1687 
1688 	/* default to no qdisc; user can add if desired */
1689 	dev->priv_flags |= IFF_NO_QUEUE;
1690 	dev->priv_flags |= IFF_NO_RX_HANDLER;
1691 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
1692 
1693 	/* VRF devices do not care about MTU, but if the MTU is set
1694 	 * too low then the ipv4 and ipv6 protocols are disabled
1695 	 * which breaks networking.
1696 	 */
1697 	dev->min_mtu = IPV6_MIN_MTU;
1698 	dev->max_mtu = IP6_MAX_MTU;
1699 	dev->mtu = dev->max_mtu;
1700 }
1701 
1702 static int vrf_validate(struct nlattr *tb[], struct nlattr *data[],
1703 			struct netlink_ext_ack *extack)
1704 {
1705 	if (tb[IFLA_ADDRESS]) {
1706 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN) {
1707 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1708 			return -EINVAL;
1709 		}
1710 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS]))) {
1711 			NL_SET_ERR_MSG(extack, "Invalid hardware address");
1712 			return -EADDRNOTAVAIL;
1713 		}
1714 	}
1715 	return 0;
1716 }
1717 
1718 static void vrf_dellink(struct net_device *dev, struct list_head *head)
1719 {
1720 	struct net_device *port_dev;
1721 	struct list_head *iter;
1722 
1723 	netdev_for_each_lower_dev(dev, port_dev, iter)
1724 		vrf_del_slave(dev, port_dev);
1725 
1726 	vrf_map_unregister_dev(dev);
1727 
1728 	unregister_netdevice_queue(dev, head);
1729 }
1730 
1731 static int vrf_newlink(struct net *src_net, struct net_device *dev,
1732 		       struct nlattr *tb[], struct nlattr *data[],
1733 		       struct netlink_ext_ack *extack)
1734 {
1735 	struct net_vrf *vrf = netdev_priv(dev);
1736 	struct netns_vrf *nn_vrf;
1737 	bool *add_fib_rules;
1738 	struct net *net;
1739 	int err;
1740 
1741 	if (!data || !data[IFLA_VRF_TABLE]) {
1742 		NL_SET_ERR_MSG(extack, "VRF table id is missing");
1743 		return -EINVAL;
1744 	}
1745 
1746 	vrf->tb_id = nla_get_u32(data[IFLA_VRF_TABLE]);
1747 	if (vrf->tb_id == RT_TABLE_UNSPEC) {
1748 		NL_SET_ERR_MSG_ATTR(extack, data[IFLA_VRF_TABLE],
1749 				    "Invalid VRF table id");
1750 		return -EINVAL;
1751 	}
1752 
1753 	dev->priv_flags |= IFF_L3MDEV_MASTER;
1754 
1755 	err = register_netdevice(dev);
1756 	if (err)
1757 		goto out;
1758 
1759 	/* mapping between table_id and vrf;
1760 	 * note: such binding could not be done in the dev init function
1761 	 * because dev->ifindex id is not available yet.
1762 	 */
1763 	vrf->ifindex = dev->ifindex;
1764 
1765 	err = vrf_map_register_dev(dev, extack);
1766 	if (err) {
1767 		unregister_netdevice(dev);
1768 		goto out;
1769 	}
1770 
1771 	net = dev_net(dev);
1772 	nn_vrf = net_generic(net, vrf_net_id);
1773 
1774 	add_fib_rules = &nn_vrf->add_fib_rules;
1775 	if (*add_fib_rules) {
1776 		err = vrf_add_fib_rules(dev);
1777 		if (err) {
1778 			vrf_map_unregister_dev(dev);
1779 			unregister_netdevice(dev);
1780 			goto out;
1781 		}
1782 		*add_fib_rules = false;
1783 	}
1784 
1785 out:
1786 	return err;
1787 }
1788 
1789 static size_t vrf_nl_getsize(const struct net_device *dev)
1790 {
1791 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_TABLE */
1792 }
1793 
1794 static int vrf_fillinfo(struct sk_buff *skb,
1795 			const struct net_device *dev)
1796 {
1797 	struct net_vrf *vrf = netdev_priv(dev);
1798 
1799 	return nla_put_u32(skb, IFLA_VRF_TABLE, vrf->tb_id);
1800 }
1801 
1802 static size_t vrf_get_slave_size(const struct net_device *bond_dev,
1803 				 const struct net_device *slave_dev)
1804 {
1805 	return nla_total_size(sizeof(u32));  /* IFLA_VRF_PORT_TABLE */
1806 }
1807 
1808 static int vrf_fill_slave_info(struct sk_buff *skb,
1809 			       const struct net_device *vrf_dev,
1810 			       const struct net_device *slave_dev)
1811 {
1812 	struct net_vrf *vrf = netdev_priv(vrf_dev);
1813 
1814 	if (nla_put_u32(skb, IFLA_VRF_PORT_TABLE, vrf->tb_id))
1815 		return -EMSGSIZE;
1816 
1817 	return 0;
1818 }
1819 
1820 static const struct nla_policy vrf_nl_policy[IFLA_VRF_MAX + 1] = {
1821 	[IFLA_VRF_TABLE] = { .type = NLA_U32 },
1822 };
1823 
1824 static struct rtnl_link_ops vrf_link_ops __read_mostly = {
1825 	.kind		= DRV_NAME,
1826 	.priv_size	= sizeof(struct net_vrf),
1827 
1828 	.get_size	= vrf_nl_getsize,
1829 	.policy		= vrf_nl_policy,
1830 	.validate	= vrf_validate,
1831 	.fill_info	= vrf_fillinfo,
1832 
1833 	.get_slave_size  = vrf_get_slave_size,
1834 	.fill_slave_info = vrf_fill_slave_info,
1835 
1836 	.newlink	= vrf_newlink,
1837 	.dellink	= vrf_dellink,
1838 	.setup		= vrf_setup,
1839 	.maxtype	= IFLA_VRF_MAX,
1840 };
1841 
1842 static int vrf_device_event(struct notifier_block *unused,
1843 			    unsigned long event, void *ptr)
1844 {
1845 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1846 
1847 	/* only care about unregister events to drop slave references */
1848 	if (event == NETDEV_UNREGISTER) {
1849 		struct net_device *vrf_dev;
1850 
1851 		if (!netif_is_l3_slave(dev))
1852 			goto out;
1853 
1854 		vrf_dev = netdev_master_upper_dev_get(dev);
1855 		vrf_del_slave(vrf_dev, dev);
1856 	}
1857 out:
1858 	return NOTIFY_DONE;
1859 }
1860 
1861 static struct notifier_block vrf_notifier_block __read_mostly = {
1862 	.notifier_call = vrf_device_event,
1863 };
1864 
1865 static int vrf_map_init(struct vrf_map *vmap)
1866 {
1867 	spin_lock_init(&vmap->vmap_lock);
1868 	hash_init(vmap->ht);
1869 
1870 	vmap->strict_mode = false;
1871 
1872 	return 0;
1873 }
1874 
1875 #ifdef CONFIG_SYSCTL
1876 static bool vrf_strict_mode(struct vrf_map *vmap)
1877 {
1878 	bool strict_mode;
1879 
1880 	vrf_map_lock(vmap);
1881 	strict_mode = vmap->strict_mode;
1882 	vrf_map_unlock(vmap);
1883 
1884 	return strict_mode;
1885 }
1886 
1887 static int vrf_strict_mode_change(struct vrf_map *vmap, bool new_mode)
1888 {
1889 	bool *cur_mode;
1890 	int res = 0;
1891 
1892 	vrf_map_lock(vmap);
1893 
1894 	cur_mode = &vmap->strict_mode;
1895 	if (*cur_mode == new_mode)
1896 		goto unlock;
1897 
1898 	if (*cur_mode) {
1899 		/* disable strict mode */
1900 		*cur_mode = false;
1901 	} else {
1902 		if (vmap->shared_tables) {
1903 			/* we cannot allow strict_mode because there are some
1904 			 * vrfs that share one or more tables.
1905 			 */
1906 			res = -EBUSY;
1907 			goto unlock;
1908 		}
1909 
1910 		/* no tables are shared among vrfs, so we can go back
1911 		 * to 1:1 association between a vrf with its table.
1912 		 */
1913 		*cur_mode = true;
1914 	}
1915 
1916 unlock:
1917 	vrf_map_unlock(vmap);
1918 
1919 	return res;
1920 }
1921 
1922 static int vrf_shared_table_handler(struct ctl_table *table, int write,
1923 				    void *buffer, size_t *lenp, loff_t *ppos)
1924 {
1925 	struct net *net = (struct net *)table->extra1;
1926 	struct vrf_map *vmap = netns_vrf_map(net);
1927 	int proc_strict_mode = 0;
1928 	struct ctl_table tmp = {
1929 		.procname	= table->procname,
1930 		.data		= &proc_strict_mode,
1931 		.maxlen		= sizeof(int),
1932 		.mode		= table->mode,
1933 		.extra1		= SYSCTL_ZERO,
1934 		.extra2		= SYSCTL_ONE,
1935 	};
1936 	int ret;
1937 
1938 	if (!write)
1939 		proc_strict_mode = vrf_strict_mode(vmap);
1940 
1941 	ret = proc_dointvec_minmax(&tmp, write, buffer, lenp, ppos);
1942 
1943 	if (write && ret == 0)
1944 		ret = vrf_strict_mode_change(vmap, (bool)proc_strict_mode);
1945 
1946 	return ret;
1947 }
1948 
1949 static const struct ctl_table vrf_table[] = {
1950 	{
1951 		.procname	= "strict_mode",
1952 		.data		= NULL,
1953 		.maxlen		= sizeof(int),
1954 		.mode		= 0644,
1955 		.proc_handler	= vrf_shared_table_handler,
1956 		/* set by the vrf_netns_init */
1957 		.extra1		= NULL,
1958 	},
1959 	{ },
1960 };
1961 
1962 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1963 {
1964 	struct ctl_table *table;
1965 
1966 	table = kmemdup(vrf_table, sizeof(vrf_table), GFP_KERNEL);
1967 	if (!table)
1968 		return -ENOMEM;
1969 
1970 	/* init the extra1 parameter with the reference to current netns */
1971 	table[0].extra1 = net;
1972 
1973 	nn_vrf->ctl_hdr = register_net_sysctl(net, "net/vrf", table);
1974 	if (!nn_vrf->ctl_hdr) {
1975 		kfree(table);
1976 		return -ENOMEM;
1977 	}
1978 
1979 	return 0;
1980 }
1981 
1982 static void vrf_netns_exit_sysctl(struct net *net)
1983 {
1984 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
1985 	struct ctl_table *table;
1986 
1987 	table = nn_vrf->ctl_hdr->ctl_table_arg;
1988 	unregister_net_sysctl_table(nn_vrf->ctl_hdr);
1989 	kfree(table);
1990 }
1991 #else
1992 static int vrf_netns_init_sysctl(struct net *net, struct netns_vrf *nn_vrf)
1993 {
1994 	return 0;
1995 }
1996 
1997 static void vrf_netns_exit_sysctl(struct net *net)
1998 {
1999 }
2000 #endif
2001 
2002 /* Initialize per network namespace state */
2003 static int __net_init vrf_netns_init(struct net *net)
2004 {
2005 	struct netns_vrf *nn_vrf = net_generic(net, vrf_net_id);
2006 
2007 	nn_vrf->add_fib_rules = true;
2008 	vrf_map_init(&nn_vrf->vmap);
2009 
2010 	return vrf_netns_init_sysctl(net, nn_vrf);
2011 }
2012 
2013 static void __net_exit vrf_netns_exit(struct net *net)
2014 {
2015 	vrf_netns_exit_sysctl(net);
2016 }
2017 
2018 static struct pernet_operations vrf_net_ops __net_initdata = {
2019 	.init = vrf_netns_init,
2020 	.exit = vrf_netns_exit,
2021 	.id   = &vrf_net_id,
2022 	.size = sizeof(struct netns_vrf),
2023 };
2024 
2025 static int __init vrf_init_module(void)
2026 {
2027 	int rc;
2028 
2029 	register_netdevice_notifier(&vrf_notifier_block);
2030 
2031 	rc = register_pernet_subsys(&vrf_net_ops);
2032 	if (rc < 0)
2033 		goto error;
2034 
2035 	rc = l3mdev_table_lookup_register(L3MDEV_TYPE_VRF,
2036 					  vrf_ifindex_lookup_by_table_id);
2037 	if (rc < 0)
2038 		goto unreg_pernet;
2039 
2040 	rc = rtnl_link_register(&vrf_link_ops);
2041 	if (rc < 0)
2042 		goto table_lookup_unreg;
2043 
2044 	return 0;
2045 
2046 table_lookup_unreg:
2047 	l3mdev_table_lookup_unregister(L3MDEV_TYPE_VRF,
2048 				       vrf_ifindex_lookup_by_table_id);
2049 
2050 unreg_pernet:
2051 	unregister_pernet_subsys(&vrf_net_ops);
2052 
2053 error:
2054 	unregister_netdevice_notifier(&vrf_notifier_block);
2055 	return rc;
2056 }
2057 
2058 module_init(vrf_init_module);
2059 MODULE_AUTHOR("Shrijeet Mukherjee, David Ahern");
2060 MODULE_DESCRIPTION("Device driver to instantiate VRF domains");
2061 MODULE_LICENSE("GPL");
2062 MODULE_ALIAS_RTNL_LINK(DRV_NAME);
2063 MODULE_VERSION(DRV_VERSION);
2064