xref: /openbmc/linux/drivers/net/tap.c (revision ebc05ba7e8600b52a2a0c87a43105143368aca2a)
1 #include <linux/etherdevice.h>
2 #include <linux/if_macvlan.h>
3 #include <linux/if_vlan.h>
4 #include <linux/interrupt.h>
5 #include <linux/nsproxy.h>
6 #include <linux/compat.h>
7 #include <linux/if_tun.h>
8 #include <linux/module.h>
9 #include <linux/skbuff.h>
10 #include <linux/cache.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/wait.h>
15 #include <linux/cdev.h>
16 #include <linux/idr.h>
17 #include <linux/fs.h>
18 #include <linux/uio.h>
19 
20 #include <net/net_namespace.h>
21 #include <net/rtnetlink.h>
22 #include <net/sock.h>
23 #include <linux/virtio_net.h>
24 #include <linux/skb_array.h>
25 
26 /*
27  * A tap queue is the central object of this driver, it connects
28  * an open character device to a macvlan interface. There can be
29  * multiple queues on one interface, which map back to queues
30  * implemented in hardware on the underlying device.
31  *
32  * tap_proto is used to allocate queues through the sock allocation
33  * mechanism.
34  *
35  */
36 struct tap_queue {
37 	struct sock sk;
38 	struct socket sock;
39 	struct socket_wq wq;
40 	int vnet_hdr_sz;
41 	struct macvlan_dev __rcu *vlan;
42 	struct file *file;
43 	unsigned int flags;
44 	u16 queue_index;
45 	bool enabled;
46 	struct list_head next;
47 	struct skb_array skb_array;
48 };
49 
50 #define TAP_IFFEATURES (IFF_VNET_HDR | IFF_MULTI_QUEUE)
51 
52 #define TAP_VNET_LE 0x80000000
53 #define TAP_VNET_BE 0x40000000
54 
55 #ifdef CONFIG_TUN_VNET_CROSS_LE
56 static inline bool tap_legacy_is_little_endian(struct tap_queue *q)
57 {
58 	return q->flags & TAP_VNET_BE ? false :
59 		virtio_legacy_is_little_endian();
60 }
61 
62 static long tap_get_vnet_be(struct tap_queue *q, int __user *sp)
63 {
64 	int s = !!(q->flags & TAP_VNET_BE);
65 
66 	if (put_user(s, sp))
67 		return -EFAULT;
68 
69 	return 0;
70 }
71 
72 static long tap_set_vnet_be(struct tap_queue *q, int __user *sp)
73 {
74 	int s;
75 
76 	if (get_user(s, sp))
77 		return -EFAULT;
78 
79 	if (s)
80 		q->flags |= TAP_VNET_BE;
81 	else
82 		q->flags &= ~TAP_VNET_BE;
83 
84 	return 0;
85 }
86 #else
87 static inline bool tap_legacy_is_little_endian(struct tap_queue *q)
88 {
89 	return virtio_legacy_is_little_endian();
90 }
91 
92 static long tap_get_vnet_be(struct tap_queue *q, int __user *argp)
93 {
94 	return -EINVAL;
95 }
96 
97 static long tap_set_vnet_be(struct tap_queue *q, int __user *argp)
98 {
99 	return -EINVAL;
100 }
101 #endif /* CONFIG_TUN_VNET_CROSS_LE */
102 
103 static inline bool tap_is_little_endian(struct tap_queue *q)
104 {
105 	return q->flags & TAP_VNET_LE ||
106 		tap_legacy_is_little_endian(q);
107 }
108 
109 static inline u16 tap16_to_cpu(struct tap_queue *q, __virtio16 val)
110 {
111 	return __virtio16_to_cpu(tap_is_little_endian(q), val);
112 }
113 
114 static inline __virtio16 cpu_to_tap16(struct tap_queue *q, u16 val)
115 {
116 	return __cpu_to_virtio16(tap_is_little_endian(q), val);
117 }
118 
119 static struct proto tap_proto = {
120 	.name = "tap",
121 	.owner = THIS_MODULE,
122 	.obj_size = sizeof(struct tap_queue),
123 };
124 
125 #define TAP_NUM_DEVS (1U << MINORBITS)
126 struct major_info {
127 	dev_t major;
128 	struct idr minor_idr;
129 	struct mutex minor_lock;
130 	const char *device_name;
131 } macvtap_major;
132 
133 #define GOODCOPY_LEN 128
134 
135 static const struct proto_ops tap_socket_ops;
136 
137 #define RX_OFFLOADS (NETIF_F_GRO | NETIF_F_LRO)
138 #define TAP_FEATURES (NETIF_F_GSO | NETIF_F_SG | NETIF_F_FRAGLIST)
139 
140 static struct macvlan_dev *tap_get_vlan_rcu(const struct net_device *dev)
141 {
142 	return rcu_dereference(dev->rx_handler_data);
143 }
144 
145 /*
146  * RCU usage:
147  * The tap_queue and the macvlan_dev are loosely coupled, the
148  * pointers from one to the other can only be read while rcu_read_lock
149  * or rtnl is held.
150  *
151  * Both the file and the macvlan_dev hold a reference on the tap_queue
152  * through sock_hold(&q->sk). When the macvlan_dev goes away first,
153  * q->vlan becomes inaccessible. When the files gets closed,
154  * tap_get_queue() fails.
155  *
156  * There may still be references to the struct sock inside of the
157  * queue from outbound SKBs, but these never reference back to the
158  * file or the dev. The data structure is freed through __sk_free
159  * when both our references and any pending SKBs are gone.
160  */
161 
162 static int tap_enable_queue(struct net_device *dev, struct file *file,
163 			    struct tap_queue *q)
164 {
165 	struct macvlan_dev *vlan = netdev_priv(dev);
166 	int err = -EINVAL;
167 
168 	ASSERT_RTNL();
169 
170 	if (q->enabled)
171 		goto out;
172 
173 	err = 0;
174 	rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
175 	q->queue_index = vlan->numvtaps;
176 	q->enabled = true;
177 
178 	vlan->numvtaps++;
179 out:
180 	return err;
181 }
182 
183 /* Requires RTNL */
184 static int tap_set_queue(struct net_device *dev, struct file *file,
185 			 struct tap_queue *q)
186 {
187 	struct macvlan_dev *vlan = netdev_priv(dev);
188 
189 	if (vlan->numqueues == MAX_TAP_QUEUES)
190 		return -EBUSY;
191 
192 	rcu_assign_pointer(q->vlan, vlan);
193 	rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
194 	sock_hold(&q->sk);
195 
196 	q->file = file;
197 	q->queue_index = vlan->numvtaps;
198 	q->enabled = true;
199 	file->private_data = q;
200 	list_add_tail(&q->next, &vlan->queue_list);
201 
202 	vlan->numvtaps++;
203 	vlan->numqueues++;
204 
205 	return 0;
206 }
207 
208 static int tap_disable_queue(struct tap_queue *q)
209 {
210 	struct macvlan_dev *vlan;
211 	struct tap_queue *nq;
212 
213 	ASSERT_RTNL();
214 	if (!q->enabled)
215 		return -EINVAL;
216 
217 	vlan = rtnl_dereference(q->vlan);
218 
219 	if (vlan) {
220 		int index = q->queue_index;
221 		BUG_ON(index >= vlan->numvtaps);
222 		nq = rtnl_dereference(vlan->taps[vlan->numvtaps - 1]);
223 		nq->queue_index = index;
224 
225 		rcu_assign_pointer(vlan->taps[index], nq);
226 		RCU_INIT_POINTER(vlan->taps[vlan->numvtaps - 1], NULL);
227 		q->enabled = false;
228 
229 		vlan->numvtaps--;
230 	}
231 
232 	return 0;
233 }
234 
235 /*
236  * The file owning the queue got closed, give up both
237  * the reference that the files holds as well as the
238  * one from the macvlan_dev if that still exists.
239  *
240  * Using the spinlock makes sure that we don't get
241  * to the queue again after destroying it.
242  */
243 static void tap_put_queue(struct tap_queue *q)
244 {
245 	struct macvlan_dev *vlan;
246 
247 	rtnl_lock();
248 	vlan = rtnl_dereference(q->vlan);
249 
250 	if (vlan) {
251 		if (q->enabled)
252 			BUG_ON(tap_disable_queue(q));
253 
254 		vlan->numqueues--;
255 		RCU_INIT_POINTER(q->vlan, NULL);
256 		sock_put(&q->sk);
257 		list_del_init(&q->next);
258 	}
259 
260 	rtnl_unlock();
261 
262 	synchronize_rcu();
263 	sock_put(&q->sk);
264 }
265 
266 /*
267  * Select a queue based on the rxq of the device on which this packet
268  * arrived. If the incoming device is not mq, calculate a flow hash
269  * to select a queue. If all fails, find the first available queue.
270  * Cache vlan->numvtaps since it can become zero during the execution
271  * of this function.
272  */
273 static struct tap_queue *tap_get_queue(struct net_device *dev,
274 				       struct sk_buff *skb)
275 {
276 	struct macvlan_dev *vlan = netdev_priv(dev);
277 	struct tap_queue *tap = NULL;
278 	/* Access to taps array is protected by rcu, but access to numvtaps
279 	 * isn't. Below we use it to lookup a queue, but treat it as a hint
280 	 * and validate that the result isn't NULL - in case we are
281 	 * racing against queue removal.
282 	 */
283 	int numvtaps = ACCESS_ONCE(vlan->numvtaps);
284 	__u32 rxq;
285 
286 	if (!numvtaps)
287 		goto out;
288 
289 	if (numvtaps == 1)
290 		goto single;
291 
292 	/* Check if we can use flow to select a queue */
293 	rxq = skb_get_hash(skb);
294 	if (rxq) {
295 		tap = rcu_dereference(vlan->taps[rxq % numvtaps]);
296 		goto out;
297 	}
298 
299 	if (likely(skb_rx_queue_recorded(skb))) {
300 		rxq = skb_get_rx_queue(skb);
301 
302 		while (unlikely(rxq >= numvtaps))
303 			rxq -= numvtaps;
304 
305 		tap = rcu_dereference(vlan->taps[rxq]);
306 		goto out;
307 	}
308 
309 single:
310 	tap = rcu_dereference(vlan->taps[0]);
311 out:
312 	return tap;
313 }
314 
315 /*
316  * The net_device is going away, give up the reference
317  * that it holds on all queues and safely set the pointer
318  * from the queues to NULL.
319  */
320 void tap_del_queues(struct net_device *dev)
321 {
322 	struct macvlan_dev *vlan = netdev_priv(dev);
323 	struct tap_queue *q, *tmp;
324 
325 	ASSERT_RTNL();
326 	list_for_each_entry_safe(q, tmp, &vlan->queue_list, next) {
327 		list_del_init(&q->next);
328 		RCU_INIT_POINTER(q->vlan, NULL);
329 		if (q->enabled)
330 			vlan->numvtaps--;
331 		vlan->numqueues--;
332 		sock_put(&q->sk);
333 	}
334 	BUG_ON(vlan->numvtaps);
335 	BUG_ON(vlan->numqueues);
336 	/* guarantee that any future tap_set_queue will fail */
337 	vlan->numvtaps = MAX_TAP_QUEUES;
338 }
339 
340 rx_handler_result_t tap_handle_frame(struct sk_buff **pskb)
341 {
342 	struct sk_buff *skb = *pskb;
343 	struct net_device *dev = skb->dev;
344 	struct macvlan_dev *vlan;
345 	struct tap_queue *q;
346 	netdev_features_t features = TAP_FEATURES;
347 
348 	vlan = tap_get_vlan_rcu(dev);
349 	if (!vlan)
350 		return RX_HANDLER_PASS;
351 
352 	q = tap_get_queue(dev, skb);
353 	if (!q)
354 		return RX_HANDLER_PASS;
355 
356 	if (__skb_array_full(&q->skb_array))
357 		goto drop;
358 
359 	skb_push(skb, ETH_HLEN);
360 
361 	/* Apply the forward feature mask so that we perform segmentation
362 	 * according to users wishes.  This only works if VNET_HDR is
363 	 * enabled.
364 	 */
365 	if (q->flags & IFF_VNET_HDR)
366 		features |= vlan->tap_features;
367 	if (netif_needs_gso(skb, features)) {
368 		struct sk_buff *segs = __skb_gso_segment(skb, features, false);
369 
370 		if (IS_ERR(segs))
371 			goto drop;
372 
373 		if (!segs) {
374 			if (skb_array_produce(&q->skb_array, skb))
375 				goto drop;
376 			goto wake_up;
377 		}
378 
379 		consume_skb(skb);
380 		while (segs) {
381 			struct sk_buff *nskb = segs->next;
382 
383 			segs->next = NULL;
384 			if (skb_array_produce(&q->skb_array, segs)) {
385 				kfree_skb(segs);
386 				kfree_skb_list(nskb);
387 				break;
388 			}
389 			segs = nskb;
390 		}
391 	} else {
392 		/* If we receive a partial checksum and the tap side
393 		 * doesn't support checksum offload, compute the checksum.
394 		 * Note: it doesn't matter which checksum feature to
395 		 *	  check, we either support them all or none.
396 		 */
397 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
398 		    !(features & NETIF_F_CSUM_MASK) &&
399 		    skb_checksum_help(skb))
400 			goto drop;
401 		if (skb_array_produce(&q->skb_array, skb))
402 			goto drop;
403 	}
404 
405 wake_up:
406 	wake_up_interruptible_poll(sk_sleep(&q->sk), POLLIN | POLLRDNORM | POLLRDBAND);
407 	return RX_HANDLER_CONSUMED;
408 
409 drop:
410 	/* Count errors/drops only here, thus don't care about args. */
411 	macvlan_count_rx(vlan, 0, 0, 0);
412 	kfree_skb(skb);
413 	return RX_HANDLER_CONSUMED;
414 }
415 
416 int tap_get_minor(struct macvlan_dev *vlan)
417 {
418 	int retval = -ENOMEM;
419 
420 	mutex_lock(&macvtap_major.minor_lock);
421 	retval = idr_alloc(&macvtap_major.minor_idr, vlan, 1, TAP_NUM_DEVS, GFP_KERNEL);
422 	if (retval >= 0) {
423 		vlan->minor = retval;
424 	} else if (retval == -ENOSPC) {
425 		netdev_err(vlan->dev, "Too many tap devices\n");
426 		retval = -EINVAL;
427 	}
428 	mutex_unlock(&macvtap_major.minor_lock);
429 	return retval < 0 ? retval : 0;
430 }
431 
432 void tap_free_minor(struct macvlan_dev *vlan)
433 {
434 	mutex_lock(&macvtap_major.minor_lock);
435 	if (vlan->minor) {
436 		idr_remove(&macvtap_major.minor_idr, vlan->minor);
437 		vlan->minor = 0;
438 	}
439 	mutex_unlock(&macvtap_major.minor_lock);
440 }
441 
442 static struct net_device *dev_get_by_tap_minor(int minor)
443 {
444 	struct net_device *dev = NULL;
445 	struct macvlan_dev *vlan;
446 
447 	mutex_lock(&macvtap_major.minor_lock);
448 	vlan = idr_find(&macvtap_major.minor_idr, minor);
449 	if (vlan) {
450 		dev = vlan->dev;
451 		dev_hold(dev);
452 	}
453 	mutex_unlock(&macvtap_major.minor_lock);
454 	return dev;
455 }
456 
457 static void tap_sock_write_space(struct sock *sk)
458 {
459 	wait_queue_head_t *wqueue;
460 
461 	if (!sock_writeable(sk) ||
462 	    !test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags))
463 		return;
464 
465 	wqueue = sk_sleep(sk);
466 	if (wqueue && waitqueue_active(wqueue))
467 		wake_up_interruptible_poll(wqueue, POLLOUT | POLLWRNORM | POLLWRBAND);
468 }
469 
470 static void tap_sock_destruct(struct sock *sk)
471 {
472 	struct tap_queue *q = container_of(sk, struct tap_queue, sk);
473 
474 	skb_array_cleanup(&q->skb_array);
475 }
476 
477 static int tap_open(struct inode *inode, struct file *file)
478 {
479 	struct net *net = current->nsproxy->net_ns;
480 	struct net_device *dev;
481 	struct tap_queue *q;
482 	int err = -ENODEV;
483 
484 	rtnl_lock();
485 	dev = dev_get_by_tap_minor(iminor(inode));
486 	if (!dev)
487 		goto err;
488 
489 	err = -ENOMEM;
490 	q = (struct tap_queue *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL,
491 					     &tap_proto, 0);
492 	if (!q)
493 		goto err;
494 
495 	RCU_INIT_POINTER(q->sock.wq, &q->wq);
496 	init_waitqueue_head(&q->wq.wait);
497 	q->sock.type = SOCK_RAW;
498 	q->sock.state = SS_CONNECTED;
499 	q->sock.file = file;
500 	q->sock.ops = &tap_socket_ops;
501 	sock_init_data(&q->sock, &q->sk);
502 	q->sk.sk_write_space = tap_sock_write_space;
503 	q->sk.sk_destruct = tap_sock_destruct;
504 	q->flags = IFF_VNET_HDR | IFF_NO_PI | IFF_TAP;
505 	q->vnet_hdr_sz = sizeof(struct virtio_net_hdr);
506 
507 	/*
508 	 * so far only KVM virtio_net uses tap, enable zero copy between
509 	 * guest kernel and host kernel when lower device supports zerocopy
510 	 *
511 	 * The macvlan supports zerocopy iff the lower device supports zero
512 	 * copy so we don't have to look at the lower device directly.
513 	 */
514 	if ((dev->features & NETIF_F_HIGHDMA) && (dev->features & NETIF_F_SG))
515 		sock_set_flag(&q->sk, SOCK_ZEROCOPY);
516 
517 	err = -ENOMEM;
518 	if (skb_array_init(&q->skb_array, dev->tx_queue_len, GFP_KERNEL))
519 		goto err_array;
520 
521 	err = tap_set_queue(dev, file, q);
522 	if (err)
523 		goto err_queue;
524 
525 	dev_put(dev);
526 
527 	rtnl_unlock();
528 	return err;
529 
530 err_queue:
531 	skb_array_cleanup(&q->skb_array);
532 err_array:
533 	sock_put(&q->sk);
534 err:
535 	if (dev)
536 		dev_put(dev);
537 
538 	rtnl_unlock();
539 	return err;
540 }
541 
542 static int tap_release(struct inode *inode, struct file *file)
543 {
544 	struct tap_queue *q = file->private_data;
545 	tap_put_queue(q);
546 	return 0;
547 }
548 
549 static unsigned int tap_poll(struct file *file, poll_table *wait)
550 {
551 	struct tap_queue *q = file->private_data;
552 	unsigned int mask = POLLERR;
553 
554 	if (!q)
555 		goto out;
556 
557 	mask = 0;
558 	poll_wait(file, &q->wq.wait, wait);
559 
560 	if (!skb_array_empty(&q->skb_array))
561 		mask |= POLLIN | POLLRDNORM;
562 
563 	if (sock_writeable(&q->sk) ||
564 	    (!test_and_set_bit(SOCKWQ_ASYNC_NOSPACE, &q->sock.flags) &&
565 	     sock_writeable(&q->sk)))
566 		mask |= POLLOUT | POLLWRNORM;
567 
568 out:
569 	return mask;
570 }
571 
572 static inline struct sk_buff *tap_alloc_skb(struct sock *sk, size_t prepad,
573 					    size_t len, size_t linear,
574 						int noblock, int *err)
575 {
576 	struct sk_buff *skb;
577 
578 	/* Under a page?  Don't bother with paged skb. */
579 	if (prepad + len < PAGE_SIZE || !linear)
580 		linear = len;
581 
582 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
583 				   err, 0);
584 	if (!skb)
585 		return NULL;
586 
587 	skb_reserve(skb, prepad);
588 	skb_put(skb, linear);
589 	skb->data_len = len - linear;
590 	skb->len += len - linear;
591 
592 	return skb;
593 }
594 
595 /* Neighbour code has some assumptions on HH_DATA_MOD alignment */
596 #define TAP_RESERVE HH_DATA_OFF(ETH_HLEN)
597 
598 /* Get packet from user space buffer */
599 static ssize_t tap_get_user(struct tap_queue *q, struct msghdr *m,
600 			    struct iov_iter *from, int noblock)
601 {
602 	int good_linear = SKB_MAX_HEAD(TAP_RESERVE);
603 	struct sk_buff *skb;
604 	struct macvlan_dev *vlan;
605 	unsigned long total_len = iov_iter_count(from);
606 	unsigned long len = total_len;
607 	int err;
608 	struct virtio_net_hdr vnet_hdr = { 0 };
609 	int vnet_hdr_len = 0;
610 	int copylen = 0;
611 	int depth;
612 	bool zerocopy = false;
613 	size_t linear;
614 
615 	if (q->flags & IFF_VNET_HDR) {
616 		vnet_hdr_len = READ_ONCE(q->vnet_hdr_sz);
617 
618 		err = -EINVAL;
619 		if (len < vnet_hdr_len)
620 			goto err;
621 		len -= vnet_hdr_len;
622 
623 		err = -EFAULT;
624 		if (!copy_from_iter_full(&vnet_hdr, sizeof(vnet_hdr), from))
625 			goto err;
626 		iov_iter_advance(from, vnet_hdr_len - sizeof(vnet_hdr));
627 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
628 		     tap16_to_cpu(q, vnet_hdr.csum_start) +
629 		     tap16_to_cpu(q, vnet_hdr.csum_offset) + 2 >
630 			     tap16_to_cpu(q, vnet_hdr.hdr_len))
631 			vnet_hdr.hdr_len = cpu_to_tap16(q,
632 				 tap16_to_cpu(q, vnet_hdr.csum_start) +
633 				 tap16_to_cpu(q, vnet_hdr.csum_offset) + 2);
634 		err = -EINVAL;
635 		if (tap16_to_cpu(q, vnet_hdr.hdr_len) > len)
636 			goto err;
637 	}
638 
639 	err = -EINVAL;
640 	if (unlikely(len < ETH_HLEN))
641 		goto err;
642 
643 	if (m && m->msg_control && sock_flag(&q->sk, SOCK_ZEROCOPY)) {
644 		struct iov_iter i;
645 
646 		copylen = vnet_hdr.hdr_len ?
647 			tap16_to_cpu(q, vnet_hdr.hdr_len) : GOODCOPY_LEN;
648 		if (copylen > good_linear)
649 			copylen = good_linear;
650 		else if (copylen < ETH_HLEN)
651 			copylen = ETH_HLEN;
652 		linear = copylen;
653 		i = *from;
654 		iov_iter_advance(&i, copylen);
655 		if (iov_iter_npages(&i, INT_MAX) <= MAX_SKB_FRAGS)
656 			zerocopy = true;
657 	}
658 
659 	if (!zerocopy) {
660 		copylen = len;
661 		linear = tap16_to_cpu(q, vnet_hdr.hdr_len);
662 		if (linear > good_linear)
663 			linear = good_linear;
664 		else if (linear < ETH_HLEN)
665 			linear = ETH_HLEN;
666 	}
667 
668 	skb = tap_alloc_skb(&q->sk, TAP_RESERVE, copylen,
669 			    linear, noblock, &err);
670 	if (!skb)
671 		goto err;
672 
673 	if (zerocopy)
674 		err = zerocopy_sg_from_iter(skb, from);
675 	else
676 		err = skb_copy_datagram_from_iter(skb, 0, from, len);
677 
678 	if (err)
679 		goto err_kfree;
680 
681 	skb_set_network_header(skb, ETH_HLEN);
682 	skb_reset_mac_header(skb);
683 	skb->protocol = eth_hdr(skb)->h_proto;
684 
685 	if (vnet_hdr_len) {
686 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr,
687 					    tap_is_little_endian(q));
688 		if (err)
689 			goto err_kfree;
690 	}
691 
692 	skb_probe_transport_header(skb, ETH_HLEN);
693 
694 	/* Move network header to the right position for VLAN tagged packets */
695 	if ((skb->protocol == htons(ETH_P_8021Q) ||
696 	     skb->protocol == htons(ETH_P_8021AD)) &&
697 	    __vlan_get_protocol(skb, skb->protocol, &depth) != 0)
698 		skb_set_network_header(skb, depth);
699 
700 	rcu_read_lock();
701 	vlan = rcu_dereference(q->vlan);
702 	/* copy skb_ubuf_info for callback when skb has no error */
703 	if (zerocopy) {
704 		skb_shinfo(skb)->destructor_arg = m->msg_control;
705 		skb_shinfo(skb)->tx_flags |= SKBTX_DEV_ZEROCOPY;
706 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
707 	} else if (m && m->msg_control) {
708 		struct ubuf_info *uarg = m->msg_control;
709 		uarg->callback(uarg, false);
710 	}
711 
712 	if (vlan) {
713 		skb->dev = vlan->dev;
714 		dev_queue_xmit(skb);
715 	} else {
716 		kfree_skb(skb);
717 	}
718 	rcu_read_unlock();
719 
720 	return total_len;
721 
722 err_kfree:
723 	kfree_skb(skb);
724 
725 err:
726 	rcu_read_lock();
727 	vlan = rcu_dereference(q->vlan);
728 	if (vlan)
729 		this_cpu_inc(vlan->pcpu_stats->tx_dropped);
730 	rcu_read_unlock();
731 
732 	return err;
733 }
734 
735 static ssize_t tap_write_iter(struct kiocb *iocb, struct iov_iter *from)
736 {
737 	struct file *file = iocb->ki_filp;
738 	struct tap_queue *q = file->private_data;
739 
740 	return tap_get_user(q, NULL, from, file->f_flags & O_NONBLOCK);
741 }
742 
743 /* Put packet to the user space buffer */
744 static ssize_t tap_put_user(struct tap_queue *q,
745 			    const struct sk_buff *skb,
746 			    struct iov_iter *iter)
747 {
748 	int ret;
749 	int vnet_hdr_len = 0;
750 	int vlan_offset = 0;
751 	int total;
752 
753 	if (q->flags & IFF_VNET_HDR) {
754 		struct virtio_net_hdr vnet_hdr;
755 		vnet_hdr_len = READ_ONCE(q->vnet_hdr_sz);
756 		if (iov_iter_count(iter) < vnet_hdr_len)
757 			return -EINVAL;
758 
759 		if (virtio_net_hdr_from_skb(skb, &vnet_hdr,
760 					    tap_is_little_endian(q), true))
761 			BUG();
762 
763 		if (copy_to_iter(&vnet_hdr, sizeof(vnet_hdr), iter) !=
764 		    sizeof(vnet_hdr))
765 			return -EFAULT;
766 
767 		iov_iter_advance(iter, vnet_hdr_len - sizeof(vnet_hdr));
768 	}
769 	total = vnet_hdr_len;
770 	total += skb->len;
771 
772 	if (skb_vlan_tag_present(skb)) {
773 		struct {
774 			__be16 h_vlan_proto;
775 			__be16 h_vlan_TCI;
776 		} veth;
777 		veth.h_vlan_proto = skb->vlan_proto;
778 		veth.h_vlan_TCI = htons(skb_vlan_tag_get(skb));
779 
780 		vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto);
781 		total += VLAN_HLEN;
782 
783 		ret = skb_copy_datagram_iter(skb, 0, iter, vlan_offset);
784 		if (ret || !iov_iter_count(iter))
785 			goto done;
786 
787 		ret = copy_to_iter(&veth, sizeof(veth), iter);
788 		if (ret != sizeof(veth) || !iov_iter_count(iter))
789 			goto done;
790 	}
791 
792 	ret = skb_copy_datagram_iter(skb, vlan_offset, iter,
793 				     skb->len - vlan_offset);
794 
795 done:
796 	return ret ? ret : total;
797 }
798 
799 static ssize_t tap_do_read(struct tap_queue *q,
800 			   struct iov_iter *to,
801 			   int noblock)
802 {
803 	DEFINE_WAIT(wait);
804 	struct sk_buff *skb;
805 	ssize_t ret = 0;
806 
807 	if (!iov_iter_count(to))
808 		return 0;
809 
810 	while (1) {
811 		if (!noblock)
812 			prepare_to_wait(sk_sleep(&q->sk), &wait,
813 					TASK_INTERRUPTIBLE);
814 
815 		/* Read frames from the queue */
816 		skb = skb_array_consume(&q->skb_array);
817 		if (skb)
818 			break;
819 		if (noblock) {
820 			ret = -EAGAIN;
821 			break;
822 		}
823 		if (signal_pending(current)) {
824 			ret = -ERESTARTSYS;
825 			break;
826 		}
827 		/* Nothing to read, let's sleep */
828 		schedule();
829 	}
830 	if (!noblock)
831 		finish_wait(sk_sleep(&q->sk), &wait);
832 
833 	if (skb) {
834 		ret = tap_put_user(q, skb, to);
835 		if (unlikely(ret < 0))
836 			kfree_skb(skb);
837 		else
838 			consume_skb(skb);
839 	}
840 	return ret;
841 }
842 
843 static ssize_t tap_read_iter(struct kiocb *iocb, struct iov_iter *to)
844 {
845 	struct file *file = iocb->ki_filp;
846 	struct tap_queue *q = file->private_data;
847 	ssize_t len = iov_iter_count(to), ret;
848 
849 	ret = tap_do_read(q, to, file->f_flags & O_NONBLOCK);
850 	ret = min_t(ssize_t, ret, len);
851 	if (ret > 0)
852 		iocb->ki_pos = ret;
853 	return ret;
854 }
855 
856 static struct macvlan_dev *tap_get_vlan(struct tap_queue *q)
857 {
858 	struct macvlan_dev *vlan;
859 
860 	ASSERT_RTNL();
861 	vlan = rtnl_dereference(q->vlan);
862 	if (vlan)
863 		dev_hold(vlan->dev);
864 
865 	return vlan;
866 }
867 
868 static void tap_put_vlan(struct macvlan_dev *vlan)
869 {
870 	dev_put(vlan->dev);
871 }
872 
873 static int tap_ioctl_set_queue(struct file *file, unsigned int flags)
874 {
875 	struct tap_queue *q = file->private_data;
876 	struct macvlan_dev *vlan;
877 	int ret;
878 
879 	vlan = tap_get_vlan(q);
880 	if (!vlan)
881 		return -EINVAL;
882 
883 	if (flags & IFF_ATTACH_QUEUE)
884 		ret = tap_enable_queue(vlan->dev, file, q);
885 	else if (flags & IFF_DETACH_QUEUE)
886 		ret = tap_disable_queue(q);
887 	else
888 		ret = -EINVAL;
889 
890 	tap_put_vlan(vlan);
891 	return ret;
892 }
893 
894 static int set_offload(struct tap_queue *q, unsigned long arg)
895 {
896 	struct macvlan_dev *vlan;
897 	netdev_features_t features;
898 	netdev_features_t feature_mask = 0;
899 
900 	vlan = rtnl_dereference(q->vlan);
901 	if (!vlan)
902 		return -ENOLINK;
903 
904 	features = vlan->dev->features;
905 
906 	if (arg & TUN_F_CSUM) {
907 		feature_mask = NETIF_F_HW_CSUM;
908 
909 		if (arg & (TUN_F_TSO4 | TUN_F_TSO6)) {
910 			if (arg & TUN_F_TSO_ECN)
911 				feature_mask |= NETIF_F_TSO_ECN;
912 			if (arg & TUN_F_TSO4)
913 				feature_mask |= NETIF_F_TSO;
914 			if (arg & TUN_F_TSO6)
915 				feature_mask |= NETIF_F_TSO6;
916 		}
917 
918 		if (arg & TUN_F_UFO)
919 			feature_mask |= NETIF_F_UFO;
920 	}
921 
922 	/* tun/tap driver inverts the usage for TSO offloads, where
923 	 * setting the TSO bit means that the userspace wants to
924 	 * accept TSO frames and turning it off means that user space
925 	 * does not support TSO.
926 	 * For tap, we have to invert it to mean the same thing.
927 	 * When user space turns off TSO, we turn off GSO/LRO so that
928 	 * user-space will not receive TSO frames.
929 	 */
930 	if (feature_mask & (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_UFO))
931 		features |= RX_OFFLOADS;
932 	else
933 		features &= ~RX_OFFLOADS;
934 
935 	/* tap_features are the same as features on tun/tap and
936 	 * reflect user expectations.
937 	 */
938 	vlan->tap_features = feature_mask;
939 	vlan->set_features = features;
940 	netdev_update_features(vlan->dev);
941 
942 	return 0;
943 }
944 
945 /*
946  * provide compatibility with generic tun/tap interface
947  */
948 static long tap_ioctl(struct file *file, unsigned int cmd,
949 		      unsigned long arg)
950 {
951 	struct tap_queue *q = file->private_data;
952 	struct macvlan_dev *vlan;
953 	void __user *argp = (void __user *)arg;
954 	struct ifreq __user *ifr = argp;
955 	unsigned int __user *up = argp;
956 	unsigned short u;
957 	int __user *sp = argp;
958 	struct sockaddr sa;
959 	int s;
960 	int ret;
961 
962 	switch (cmd) {
963 	case TUNSETIFF:
964 		/* ignore the name, just look at flags */
965 		if (get_user(u, &ifr->ifr_flags))
966 			return -EFAULT;
967 
968 		ret = 0;
969 		if ((u & ~TAP_IFFEATURES) != (IFF_NO_PI | IFF_TAP))
970 			ret = -EINVAL;
971 		else
972 			q->flags = (q->flags & ~TAP_IFFEATURES) | u;
973 
974 		return ret;
975 
976 	case TUNGETIFF:
977 		rtnl_lock();
978 		vlan = tap_get_vlan(q);
979 		if (!vlan) {
980 			rtnl_unlock();
981 			return -ENOLINK;
982 		}
983 
984 		ret = 0;
985 		u = q->flags;
986 		if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
987 		    put_user(u, &ifr->ifr_flags))
988 			ret = -EFAULT;
989 		tap_put_vlan(vlan);
990 		rtnl_unlock();
991 		return ret;
992 
993 	case TUNSETQUEUE:
994 		if (get_user(u, &ifr->ifr_flags))
995 			return -EFAULT;
996 		rtnl_lock();
997 		ret = tap_ioctl_set_queue(file, u);
998 		rtnl_unlock();
999 		return ret;
1000 
1001 	case TUNGETFEATURES:
1002 		if (put_user(IFF_TAP | IFF_NO_PI | TAP_IFFEATURES, up))
1003 			return -EFAULT;
1004 		return 0;
1005 
1006 	case TUNSETSNDBUF:
1007 		if (get_user(s, sp))
1008 			return -EFAULT;
1009 
1010 		q->sk.sk_sndbuf = s;
1011 		return 0;
1012 
1013 	case TUNGETVNETHDRSZ:
1014 		s = q->vnet_hdr_sz;
1015 		if (put_user(s, sp))
1016 			return -EFAULT;
1017 		return 0;
1018 
1019 	case TUNSETVNETHDRSZ:
1020 		if (get_user(s, sp))
1021 			return -EFAULT;
1022 		if (s < (int)sizeof(struct virtio_net_hdr))
1023 			return -EINVAL;
1024 
1025 		q->vnet_hdr_sz = s;
1026 		return 0;
1027 
1028 	case TUNGETVNETLE:
1029 		s = !!(q->flags & TAP_VNET_LE);
1030 		if (put_user(s, sp))
1031 			return -EFAULT;
1032 		return 0;
1033 
1034 	case TUNSETVNETLE:
1035 		if (get_user(s, sp))
1036 			return -EFAULT;
1037 		if (s)
1038 			q->flags |= TAP_VNET_LE;
1039 		else
1040 			q->flags &= ~TAP_VNET_LE;
1041 		return 0;
1042 
1043 	case TUNGETVNETBE:
1044 		return tap_get_vnet_be(q, sp);
1045 
1046 	case TUNSETVNETBE:
1047 		return tap_set_vnet_be(q, sp);
1048 
1049 	case TUNSETOFFLOAD:
1050 		/* let the user check for future flags */
1051 		if (arg & ~(TUN_F_CSUM | TUN_F_TSO4 | TUN_F_TSO6 |
1052 			    TUN_F_TSO_ECN | TUN_F_UFO))
1053 			return -EINVAL;
1054 
1055 		rtnl_lock();
1056 		ret = set_offload(q, arg);
1057 		rtnl_unlock();
1058 		return ret;
1059 
1060 	case SIOCGIFHWADDR:
1061 		rtnl_lock();
1062 		vlan = tap_get_vlan(q);
1063 		if (!vlan) {
1064 			rtnl_unlock();
1065 			return -ENOLINK;
1066 		}
1067 		ret = 0;
1068 		u = vlan->dev->type;
1069 		if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
1070 		    copy_to_user(&ifr->ifr_hwaddr.sa_data, vlan->dev->dev_addr, ETH_ALEN) ||
1071 		    put_user(u, &ifr->ifr_hwaddr.sa_family))
1072 			ret = -EFAULT;
1073 		tap_put_vlan(vlan);
1074 		rtnl_unlock();
1075 		return ret;
1076 
1077 	case SIOCSIFHWADDR:
1078 		if (copy_from_user(&sa, &ifr->ifr_hwaddr, sizeof(sa)))
1079 			return -EFAULT;
1080 		rtnl_lock();
1081 		vlan = tap_get_vlan(q);
1082 		if (!vlan) {
1083 			rtnl_unlock();
1084 			return -ENOLINK;
1085 		}
1086 		ret = dev_set_mac_address(vlan->dev, &sa);
1087 		tap_put_vlan(vlan);
1088 		rtnl_unlock();
1089 		return ret;
1090 
1091 	default:
1092 		return -EINVAL;
1093 	}
1094 }
1095 
1096 #ifdef CONFIG_COMPAT
1097 static long tap_compat_ioctl(struct file *file, unsigned int cmd,
1098 			     unsigned long arg)
1099 {
1100 	return tap_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
1101 }
1102 #endif
1103 
1104 const struct file_operations tap_fops = {
1105 	.owner		= THIS_MODULE,
1106 	.open		= tap_open,
1107 	.release	= tap_release,
1108 	.read_iter	= tap_read_iter,
1109 	.write_iter	= tap_write_iter,
1110 	.poll		= tap_poll,
1111 	.llseek		= no_llseek,
1112 	.unlocked_ioctl	= tap_ioctl,
1113 #ifdef CONFIG_COMPAT
1114 	.compat_ioctl	= tap_compat_ioctl,
1115 #endif
1116 };
1117 
1118 static int tap_sendmsg(struct socket *sock, struct msghdr *m,
1119 		       size_t total_len)
1120 {
1121 	struct tap_queue *q = container_of(sock, struct tap_queue, sock);
1122 	return tap_get_user(q, m, &m->msg_iter, m->msg_flags & MSG_DONTWAIT);
1123 }
1124 
1125 static int tap_recvmsg(struct socket *sock, struct msghdr *m,
1126 		       size_t total_len, int flags)
1127 {
1128 	struct tap_queue *q = container_of(sock, struct tap_queue, sock);
1129 	int ret;
1130 	if (flags & ~(MSG_DONTWAIT|MSG_TRUNC))
1131 		return -EINVAL;
1132 	ret = tap_do_read(q, &m->msg_iter, flags & MSG_DONTWAIT);
1133 	if (ret > total_len) {
1134 		m->msg_flags |= MSG_TRUNC;
1135 		ret = flags & MSG_TRUNC ? ret : total_len;
1136 	}
1137 	return ret;
1138 }
1139 
1140 static int tap_peek_len(struct socket *sock)
1141 {
1142 	struct tap_queue *q = container_of(sock, struct tap_queue,
1143 					       sock);
1144 	return skb_array_peek_len(&q->skb_array);
1145 }
1146 
1147 /* Ops structure to mimic raw sockets with tun */
1148 static const struct proto_ops tap_socket_ops = {
1149 	.sendmsg = tap_sendmsg,
1150 	.recvmsg = tap_recvmsg,
1151 	.peek_len = tap_peek_len,
1152 };
1153 
1154 /* Get an underlying socket object from tun file.  Returns error unless file is
1155  * attached to a device.  The returned object works like a packet socket, it
1156  * can be used for sock_sendmsg/sock_recvmsg.  The caller is responsible for
1157  * holding a reference to the file for as long as the socket is in use. */
1158 struct socket *tap_get_socket(struct file *file)
1159 {
1160 	struct tap_queue *q;
1161 	if (file->f_op != &tap_fops)
1162 		return ERR_PTR(-EINVAL);
1163 	q = file->private_data;
1164 	if (!q)
1165 		return ERR_PTR(-EBADFD);
1166 	return &q->sock;
1167 }
1168 EXPORT_SYMBOL_GPL(tap_get_socket);
1169 
1170 int tap_queue_resize(struct macvlan_dev *vlan)
1171 {
1172 	struct net_device *dev = vlan->dev;
1173 	struct tap_queue *q;
1174 	struct skb_array **arrays;
1175 	int n = vlan->numqueues;
1176 	int ret, i = 0;
1177 
1178 	arrays = kmalloc(sizeof *arrays * n, GFP_KERNEL);
1179 	if (!arrays)
1180 		return -ENOMEM;
1181 
1182 	list_for_each_entry(q, &vlan->queue_list, next)
1183 		arrays[i++] = &q->skb_array;
1184 
1185 	ret = skb_array_resize_multiple(arrays, n,
1186 					dev->tx_queue_len, GFP_KERNEL);
1187 
1188 	kfree(arrays);
1189 	return ret;
1190 }
1191 
1192 int tap_create_cdev(struct cdev *tap_cdev,
1193 		    dev_t *tap_major, const char *device_name)
1194 {
1195 	int err;
1196 
1197 	err = alloc_chrdev_region(tap_major, 0, TAP_NUM_DEVS, device_name);
1198 	if (err)
1199 		goto out1;
1200 
1201 	cdev_init(tap_cdev, &tap_fops);
1202 	err = cdev_add(tap_cdev, *tap_major, TAP_NUM_DEVS);
1203 	if (err)
1204 		goto out2;
1205 
1206 	macvtap_major.major = MAJOR(*tap_major);
1207 
1208 	idr_init(&macvtap_major.minor_idr);
1209 	mutex_init(&macvtap_major.minor_lock);
1210 
1211 	macvtap_major.device_name = device_name;
1212 
1213 	return 0;
1214 
1215 out2:
1216 	unregister_chrdev_region(*tap_major, TAP_NUM_DEVS);
1217 out1:
1218 	return err;
1219 }
1220 
1221 void tap_destroy_cdev(dev_t major, struct cdev *tap_cdev)
1222 {
1223 	cdev_del(tap_cdev);
1224 	unregister_chrdev_region(major, TAP_NUM_DEVS);
1225 	idr_destroy(&macvtap_major.minor_idr);
1226 }
1227