xref: /openbmc/linux/drivers/net/macvtap.c (revision cbbd26b8b1a6af9c02e2b6523e12bd50cc765059)
1 #include <linux/etherdevice.h>
2 #include <linux/if_macvlan.h>
3 #include <linux/if_vlan.h>
4 #include <linux/interrupt.h>
5 #include <linux/nsproxy.h>
6 #include <linux/compat.h>
7 #include <linux/if_tun.h>
8 #include <linux/module.h>
9 #include <linux/skbuff.h>
10 #include <linux/cache.h>
11 #include <linux/sched.h>
12 #include <linux/types.h>
13 #include <linux/slab.h>
14 #include <linux/wait.h>
15 #include <linux/cdev.h>
16 #include <linux/idr.h>
17 #include <linux/fs.h>
18 #include <linux/uio.h>
19 
20 #include <net/net_namespace.h>
21 #include <net/rtnetlink.h>
22 #include <net/sock.h>
23 #include <linux/virtio_net.h>
24 #include <linux/skb_array.h>
25 
26 /*
27  * A macvtap queue is the central object of this driver, it connects
28  * an open character device to a macvlan interface. There can be
29  * multiple queues on one interface, which map back to queues
30  * implemented in hardware on the underlying device.
31  *
32  * macvtap_proto is used to allocate queues through the sock allocation
33  * mechanism.
34  *
35  */
36 struct macvtap_queue {
37 	struct sock sk;
38 	struct socket sock;
39 	struct socket_wq wq;
40 	int vnet_hdr_sz;
41 	struct macvlan_dev __rcu *vlan;
42 	struct file *file;
43 	unsigned int flags;
44 	u16 queue_index;
45 	bool enabled;
46 	struct list_head next;
47 	struct skb_array skb_array;
48 };
49 
50 #define MACVTAP_FEATURES (IFF_VNET_HDR | IFF_MULTI_QUEUE)
51 
52 #define MACVTAP_VNET_LE 0x80000000
53 #define MACVTAP_VNET_BE 0x40000000
54 
55 #ifdef CONFIG_TUN_VNET_CROSS_LE
56 static inline bool macvtap_legacy_is_little_endian(struct macvtap_queue *q)
57 {
58 	return q->flags & MACVTAP_VNET_BE ? false :
59 		virtio_legacy_is_little_endian();
60 }
61 
62 static long macvtap_get_vnet_be(struct macvtap_queue *q, int __user *sp)
63 {
64 	int s = !!(q->flags & MACVTAP_VNET_BE);
65 
66 	if (put_user(s, sp))
67 		return -EFAULT;
68 
69 	return 0;
70 }
71 
72 static long macvtap_set_vnet_be(struct macvtap_queue *q, int __user *sp)
73 {
74 	int s;
75 
76 	if (get_user(s, sp))
77 		return -EFAULT;
78 
79 	if (s)
80 		q->flags |= MACVTAP_VNET_BE;
81 	else
82 		q->flags &= ~MACVTAP_VNET_BE;
83 
84 	return 0;
85 }
86 #else
87 static inline bool macvtap_legacy_is_little_endian(struct macvtap_queue *q)
88 {
89 	return virtio_legacy_is_little_endian();
90 }
91 
92 static long macvtap_get_vnet_be(struct macvtap_queue *q, int __user *argp)
93 {
94 	return -EINVAL;
95 }
96 
97 static long macvtap_set_vnet_be(struct macvtap_queue *q, int __user *argp)
98 {
99 	return -EINVAL;
100 }
101 #endif /* CONFIG_TUN_VNET_CROSS_LE */
102 
103 static inline bool macvtap_is_little_endian(struct macvtap_queue *q)
104 {
105 	return q->flags & MACVTAP_VNET_LE ||
106 		macvtap_legacy_is_little_endian(q);
107 }
108 
109 static inline u16 macvtap16_to_cpu(struct macvtap_queue *q, __virtio16 val)
110 {
111 	return __virtio16_to_cpu(macvtap_is_little_endian(q), val);
112 }
113 
114 static inline __virtio16 cpu_to_macvtap16(struct macvtap_queue *q, u16 val)
115 {
116 	return __cpu_to_virtio16(macvtap_is_little_endian(q), val);
117 }
118 
119 static struct proto macvtap_proto = {
120 	.name = "macvtap",
121 	.owner = THIS_MODULE,
122 	.obj_size = sizeof (struct macvtap_queue),
123 };
124 
125 /*
126  * Variables for dealing with macvtaps device numbers.
127  */
128 static dev_t macvtap_major;
129 #define MACVTAP_NUM_DEVS (1U << MINORBITS)
130 static DEFINE_MUTEX(minor_lock);
131 static DEFINE_IDR(minor_idr);
132 
133 #define GOODCOPY_LEN 128
134 static const void *macvtap_net_namespace(struct device *d)
135 {
136 	struct net_device *dev = to_net_dev(d->parent);
137 	return dev_net(dev);
138 }
139 
140 static struct class macvtap_class = {
141 	.name = "macvtap",
142 	.owner = THIS_MODULE,
143 	.ns_type = &net_ns_type_operations,
144 	.namespace = macvtap_net_namespace,
145 };
146 static struct cdev macvtap_cdev;
147 
148 static const struct proto_ops macvtap_socket_ops;
149 
150 #define TUN_OFFLOADS (NETIF_F_HW_CSUM | NETIF_F_TSO_ECN | NETIF_F_TSO | \
151 		      NETIF_F_TSO6 | NETIF_F_UFO)
152 #define RX_OFFLOADS (NETIF_F_GRO | NETIF_F_LRO)
153 #define TAP_FEATURES (NETIF_F_GSO | NETIF_F_SG | NETIF_F_FRAGLIST)
154 
155 static struct macvlan_dev *macvtap_get_vlan_rcu(const struct net_device *dev)
156 {
157 	return rcu_dereference(dev->rx_handler_data);
158 }
159 
160 /*
161  * RCU usage:
162  * The macvtap_queue and the macvlan_dev are loosely coupled, the
163  * pointers from one to the other can only be read while rcu_read_lock
164  * or rtnl is held.
165  *
166  * Both the file and the macvlan_dev hold a reference on the macvtap_queue
167  * through sock_hold(&q->sk). When the macvlan_dev goes away first,
168  * q->vlan becomes inaccessible. When the files gets closed,
169  * macvtap_get_queue() fails.
170  *
171  * There may still be references to the struct sock inside of the
172  * queue from outbound SKBs, but these never reference back to the
173  * file or the dev. The data structure is freed through __sk_free
174  * when both our references and any pending SKBs are gone.
175  */
176 
177 static int macvtap_enable_queue(struct net_device *dev, struct file *file,
178 				struct macvtap_queue *q)
179 {
180 	struct macvlan_dev *vlan = netdev_priv(dev);
181 	int err = -EINVAL;
182 
183 	ASSERT_RTNL();
184 
185 	if (q->enabled)
186 		goto out;
187 
188 	err = 0;
189 	rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
190 	q->queue_index = vlan->numvtaps;
191 	q->enabled = true;
192 
193 	vlan->numvtaps++;
194 out:
195 	return err;
196 }
197 
198 /* Requires RTNL */
199 static int macvtap_set_queue(struct net_device *dev, struct file *file,
200 			     struct macvtap_queue *q)
201 {
202 	struct macvlan_dev *vlan = netdev_priv(dev);
203 
204 	if (vlan->numqueues == MAX_MACVTAP_QUEUES)
205 		return -EBUSY;
206 
207 	rcu_assign_pointer(q->vlan, vlan);
208 	rcu_assign_pointer(vlan->taps[vlan->numvtaps], q);
209 	sock_hold(&q->sk);
210 
211 	q->file = file;
212 	q->queue_index = vlan->numvtaps;
213 	q->enabled = true;
214 	file->private_data = q;
215 	list_add_tail(&q->next, &vlan->queue_list);
216 
217 	vlan->numvtaps++;
218 	vlan->numqueues++;
219 
220 	return 0;
221 }
222 
223 static int macvtap_disable_queue(struct macvtap_queue *q)
224 {
225 	struct macvlan_dev *vlan;
226 	struct macvtap_queue *nq;
227 
228 	ASSERT_RTNL();
229 	if (!q->enabled)
230 		return -EINVAL;
231 
232 	vlan = rtnl_dereference(q->vlan);
233 
234 	if (vlan) {
235 		int index = q->queue_index;
236 		BUG_ON(index >= vlan->numvtaps);
237 		nq = rtnl_dereference(vlan->taps[vlan->numvtaps - 1]);
238 		nq->queue_index = index;
239 
240 		rcu_assign_pointer(vlan->taps[index], nq);
241 		RCU_INIT_POINTER(vlan->taps[vlan->numvtaps - 1], NULL);
242 		q->enabled = false;
243 
244 		vlan->numvtaps--;
245 	}
246 
247 	return 0;
248 }
249 
250 /*
251  * The file owning the queue got closed, give up both
252  * the reference that the files holds as well as the
253  * one from the macvlan_dev if that still exists.
254  *
255  * Using the spinlock makes sure that we don't get
256  * to the queue again after destroying it.
257  */
258 static void macvtap_put_queue(struct macvtap_queue *q)
259 {
260 	struct macvlan_dev *vlan;
261 
262 	rtnl_lock();
263 	vlan = rtnl_dereference(q->vlan);
264 
265 	if (vlan) {
266 		if (q->enabled)
267 			BUG_ON(macvtap_disable_queue(q));
268 
269 		vlan->numqueues--;
270 		RCU_INIT_POINTER(q->vlan, NULL);
271 		sock_put(&q->sk);
272 		list_del_init(&q->next);
273 	}
274 
275 	rtnl_unlock();
276 
277 	synchronize_rcu();
278 	sock_put(&q->sk);
279 }
280 
281 /*
282  * Select a queue based on the rxq of the device on which this packet
283  * arrived. If the incoming device is not mq, calculate a flow hash
284  * to select a queue. If all fails, find the first available queue.
285  * Cache vlan->numvtaps since it can become zero during the execution
286  * of this function.
287  */
288 static struct macvtap_queue *macvtap_get_queue(struct net_device *dev,
289 					       struct sk_buff *skb)
290 {
291 	struct macvlan_dev *vlan = netdev_priv(dev);
292 	struct macvtap_queue *tap = NULL;
293 	/* Access to taps array is protected by rcu, but access to numvtaps
294 	 * isn't. Below we use it to lookup a queue, but treat it as a hint
295 	 * and validate that the result isn't NULL - in case we are
296 	 * racing against queue removal.
297 	 */
298 	int numvtaps = ACCESS_ONCE(vlan->numvtaps);
299 	__u32 rxq;
300 
301 	if (!numvtaps)
302 		goto out;
303 
304 	if (numvtaps == 1)
305 		goto single;
306 
307 	/* Check if we can use flow to select a queue */
308 	rxq = skb_get_hash(skb);
309 	if (rxq) {
310 		tap = rcu_dereference(vlan->taps[rxq % numvtaps]);
311 		goto out;
312 	}
313 
314 	if (likely(skb_rx_queue_recorded(skb))) {
315 		rxq = skb_get_rx_queue(skb);
316 
317 		while (unlikely(rxq >= numvtaps))
318 			rxq -= numvtaps;
319 
320 		tap = rcu_dereference(vlan->taps[rxq]);
321 		goto out;
322 	}
323 
324 single:
325 	tap = rcu_dereference(vlan->taps[0]);
326 out:
327 	return tap;
328 }
329 
330 /*
331  * The net_device is going away, give up the reference
332  * that it holds on all queues and safely set the pointer
333  * from the queues to NULL.
334  */
335 static void macvtap_del_queues(struct net_device *dev)
336 {
337 	struct macvlan_dev *vlan = netdev_priv(dev);
338 	struct macvtap_queue *q, *tmp;
339 
340 	ASSERT_RTNL();
341 	list_for_each_entry_safe(q, tmp, &vlan->queue_list, next) {
342 		list_del_init(&q->next);
343 		RCU_INIT_POINTER(q->vlan, NULL);
344 		if (q->enabled)
345 			vlan->numvtaps--;
346 		vlan->numqueues--;
347 		sock_put(&q->sk);
348 	}
349 	BUG_ON(vlan->numvtaps);
350 	BUG_ON(vlan->numqueues);
351 	/* guarantee that any future macvtap_set_queue will fail */
352 	vlan->numvtaps = MAX_MACVTAP_QUEUES;
353 }
354 
355 static rx_handler_result_t macvtap_handle_frame(struct sk_buff **pskb)
356 {
357 	struct sk_buff *skb = *pskb;
358 	struct net_device *dev = skb->dev;
359 	struct macvlan_dev *vlan;
360 	struct macvtap_queue *q;
361 	netdev_features_t features = TAP_FEATURES;
362 
363 	vlan = macvtap_get_vlan_rcu(dev);
364 	if (!vlan)
365 		return RX_HANDLER_PASS;
366 
367 	q = macvtap_get_queue(dev, skb);
368 	if (!q)
369 		return RX_HANDLER_PASS;
370 
371 	if (__skb_array_full(&q->skb_array))
372 		goto drop;
373 
374 	skb_push(skb, ETH_HLEN);
375 
376 	/* Apply the forward feature mask so that we perform segmentation
377 	 * according to users wishes.  This only works if VNET_HDR is
378 	 * enabled.
379 	 */
380 	if (q->flags & IFF_VNET_HDR)
381 		features |= vlan->tap_features;
382 	if (netif_needs_gso(skb, features)) {
383 		struct sk_buff *segs = __skb_gso_segment(skb, features, false);
384 
385 		if (IS_ERR(segs))
386 			goto drop;
387 
388 		if (!segs) {
389 			if (skb_array_produce(&q->skb_array, skb))
390 				goto drop;
391 			goto wake_up;
392 		}
393 
394 		consume_skb(skb);
395 		while (segs) {
396 			struct sk_buff *nskb = segs->next;
397 
398 			segs->next = NULL;
399 			if (skb_array_produce(&q->skb_array, segs)) {
400 				kfree_skb(segs);
401 				kfree_skb_list(nskb);
402 				break;
403 			}
404 			segs = nskb;
405 		}
406 	} else {
407 		/* If we receive a partial checksum and the tap side
408 		 * doesn't support checksum offload, compute the checksum.
409 		 * Note: it doesn't matter which checksum feature to
410 		 *        check, we either support them all or none.
411 		 */
412 		if (skb->ip_summed == CHECKSUM_PARTIAL &&
413 		    !(features & NETIF_F_CSUM_MASK) &&
414 		    skb_checksum_help(skb))
415 			goto drop;
416 		if (skb_array_produce(&q->skb_array, skb))
417 			goto drop;
418 	}
419 
420 wake_up:
421 	wake_up_interruptible_poll(sk_sleep(&q->sk), POLLIN | POLLRDNORM | POLLRDBAND);
422 	return RX_HANDLER_CONSUMED;
423 
424 drop:
425 	/* Count errors/drops only here, thus don't care about args. */
426 	macvlan_count_rx(vlan, 0, 0, 0);
427 	kfree_skb(skb);
428 	return RX_HANDLER_CONSUMED;
429 }
430 
431 static int macvtap_get_minor(struct macvlan_dev *vlan)
432 {
433 	int retval = -ENOMEM;
434 
435 	mutex_lock(&minor_lock);
436 	retval = idr_alloc(&minor_idr, vlan, 1, MACVTAP_NUM_DEVS, GFP_KERNEL);
437 	if (retval >= 0) {
438 		vlan->minor = retval;
439 	} else if (retval == -ENOSPC) {
440 		printk(KERN_ERR "too many macvtap devices\n");
441 		retval = -EINVAL;
442 	}
443 	mutex_unlock(&minor_lock);
444 	return retval < 0 ? retval : 0;
445 }
446 
447 static void macvtap_free_minor(struct macvlan_dev *vlan)
448 {
449 	mutex_lock(&minor_lock);
450 	if (vlan->minor) {
451 		idr_remove(&minor_idr, vlan->minor);
452 		vlan->minor = 0;
453 	}
454 	mutex_unlock(&minor_lock);
455 }
456 
457 static struct net_device *dev_get_by_macvtap_minor(int minor)
458 {
459 	struct net_device *dev = NULL;
460 	struct macvlan_dev *vlan;
461 
462 	mutex_lock(&minor_lock);
463 	vlan = idr_find(&minor_idr, minor);
464 	if (vlan) {
465 		dev = vlan->dev;
466 		dev_hold(dev);
467 	}
468 	mutex_unlock(&minor_lock);
469 	return dev;
470 }
471 
472 static int macvtap_newlink(struct net *src_net,
473 			   struct net_device *dev,
474 			   struct nlattr *tb[],
475 			   struct nlattr *data[])
476 {
477 	struct macvlan_dev *vlan = netdev_priv(dev);
478 	int err;
479 
480 	INIT_LIST_HEAD(&vlan->queue_list);
481 
482 	/* Since macvlan supports all offloads by default, make
483 	 * tap support all offloads also.
484 	 */
485 	vlan->tap_features = TUN_OFFLOADS;
486 
487 	err = netdev_rx_handler_register(dev, macvtap_handle_frame, vlan);
488 	if (err)
489 		return err;
490 
491 	/* Don't put anything that may fail after macvlan_common_newlink
492 	 * because we can't undo what it does.
493 	 */
494 	return macvlan_common_newlink(src_net, dev, tb, data);
495 }
496 
497 static void macvtap_dellink(struct net_device *dev,
498 			    struct list_head *head)
499 {
500 	netdev_rx_handler_unregister(dev);
501 	macvtap_del_queues(dev);
502 	macvlan_dellink(dev, head);
503 }
504 
505 static void macvtap_setup(struct net_device *dev)
506 {
507 	macvlan_common_setup(dev);
508 	dev->tx_queue_len = TUN_READQ_SIZE;
509 }
510 
511 static struct rtnl_link_ops macvtap_link_ops __read_mostly = {
512 	.kind		= "macvtap",
513 	.setup		= macvtap_setup,
514 	.newlink	= macvtap_newlink,
515 	.dellink	= macvtap_dellink,
516 };
517 
518 
519 static void macvtap_sock_write_space(struct sock *sk)
520 {
521 	wait_queue_head_t *wqueue;
522 
523 	if (!sock_writeable(sk) ||
524 	    !test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &sk->sk_socket->flags))
525 		return;
526 
527 	wqueue = sk_sleep(sk);
528 	if (wqueue && waitqueue_active(wqueue))
529 		wake_up_interruptible_poll(wqueue, POLLOUT | POLLWRNORM | POLLWRBAND);
530 }
531 
532 static void macvtap_sock_destruct(struct sock *sk)
533 {
534 	struct macvtap_queue *q = container_of(sk, struct macvtap_queue, sk);
535 
536 	skb_array_cleanup(&q->skb_array);
537 }
538 
539 static int macvtap_open(struct inode *inode, struct file *file)
540 {
541 	struct net *net = current->nsproxy->net_ns;
542 	struct net_device *dev;
543 	struct macvtap_queue *q;
544 	int err = -ENODEV;
545 
546 	rtnl_lock();
547 	dev = dev_get_by_macvtap_minor(iminor(inode));
548 	if (!dev)
549 		goto err;
550 
551 	err = -ENOMEM;
552 	q = (struct macvtap_queue *)sk_alloc(net, AF_UNSPEC, GFP_KERNEL,
553 					     &macvtap_proto, 0);
554 	if (!q)
555 		goto err;
556 
557 	RCU_INIT_POINTER(q->sock.wq, &q->wq);
558 	init_waitqueue_head(&q->wq.wait);
559 	q->sock.type = SOCK_RAW;
560 	q->sock.state = SS_CONNECTED;
561 	q->sock.file = file;
562 	q->sock.ops = &macvtap_socket_ops;
563 	sock_init_data(&q->sock, &q->sk);
564 	q->sk.sk_write_space = macvtap_sock_write_space;
565 	q->sk.sk_destruct = macvtap_sock_destruct;
566 	q->flags = IFF_VNET_HDR | IFF_NO_PI | IFF_TAP;
567 	q->vnet_hdr_sz = sizeof(struct virtio_net_hdr);
568 
569 	/*
570 	 * so far only KVM virtio_net uses macvtap, enable zero copy between
571 	 * guest kernel and host kernel when lower device supports zerocopy
572 	 *
573 	 * The macvlan supports zerocopy iff the lower device supports zero
574 	 * copy so we don't have to look at the lower device directly.
575 	 */
576 	if ((dev->features & NETIF_F_HIGHDMA) && (dev->features & NETIF_F_SG))
577 		sock_set_flag(&q->sk, SOCK_ZEROCOPY);
578 
579 	err = -ENOMEM;
580 	if (skb_array_init(&q->skb_array, dev->tx_queue_len, GFP_KERNEL))
581 		goto err_array;
582 
583 	err = macvtap_set_queue(dev, file, q);
584 	if (err)
585 		goto err_queue;
586 
587 	dev_put(dev);
588 
589 	rtnl_unlock();
590 	return err;
591 
592 err_queue:
593 	skb_array_cleanup(&q->skb_array);
594 err_array:
595 	sock_put(&q->sk);
596 err:
597 	if (dev)
598 		dev_put(dev);
599 
600 	rtnl_unlock();
601 	return err;
602 }
603 
604 static int macvtap_release(struct inode *inode, struct file *file)
605 {
606 	struct macvtap_queue *q = file->private_data;
607 	macvtap_put_queue(q);
608 	return 0;
609 }
610 
611 static unsigned int macvtap_poll(struct file *file, poll_table * wait)
612 {
613 	struct macvtap_queue *q = file->private_data;
614 	unsigned int mask = POLLERR;
615 
616 	if (!q)
617 		goto out;
618 
619 	mask = 0;
620 	poll_wait(file, &q->wq.wait, wait);
621 
622 	if (!skb_array_empty(&q->skb_array))
623 		mask |= POLLIN | POLLRDNORM;
624 
625 	if (sock_writeable(&q->sk) ||
626 	    (!test_and_set_bit(SOCKWQ_ASYNC_NOSPACE, &q->sock.flags) &&
627 	     sock_writeable(&q->sk)))
628 		mask |= POLLOUT | POLLWRNORM;
629 
630 out:
631 	return mask;
632 }
633 
634 static inline struct sk_buff *macvtap_alloc_skb(struct sock *sk, size_t prepad,
635 						size_t len, size_t linear,
636 						int noblock, int *err)
637 {
638 	struct sk_buff *skb;
639 
640 	/* Under a page?  Don't bother with paged skb. */
641 	if (prepad + len < PAGE_SIZE || !linear)
642 		linear = len;
643 
644 	skb = sock_alloc_send_pskb(sk, prepad + linear, len - linear, noblock,
645 				   err, 0);
646 	if (!skb)
647 		return NULL;
648 
649 	skb_reserve(skb, prepad);
650 	skb_put(skb, linear);
651 	skb->data_len = len - linear;
652 	skb->len += len - linear;
653 
654 	return skb;
655 }
656 
657 /* Neighbour code has some assumptions on HH_DATA_MOD alignment */
658 #define MACVTAP_RESERVE HH_DATA_OFF(ETH_HLEN)
659 
660 /* Get packet from user space buffer */
661 static ssize_t macvtap_get_user(struct macvtap_queue *q, struct msghdr *m,
662 				struct iov_iter *from, int noblock)
663 {
664 	int good_linear = SKB_MAX_HEAD(MACVTAP_RESERVE);
665 	struct sk_buff *skb;
666 	struct macvlan_dev *vlan;
667 	unsigned long total_len = iov_iter_count(from);
668 	unsigned long len = total_len;
669 	int err;
670 	struct virtio_net_hdr vnet_hdr = { 0 };
671 	int vnet_hdr_len = 0;
672 	int copylen = 0;
673 	int depth;
674 	bool zerocopy = false;
675 	size_t linear;
676 
677 	if (q->flags & IFF_VNET_HDR) {
678 		vnet_hdr_len = q->vnet_hdr_sz;
679 
680 		err = -EINVAL;
681 		if (len < vnet_hdr_len)
682 			goto err;
683 		len -= vnet_hdr_len;
684 
685 		err = -EFAULT;
686 		if (!copy_from_iter_full(&vnet_hdr, sizeof(vnet_hdr), from))
687 			goto err;
688 		iov_iter_advance(from, vnet_hdr_len - sizeof(vnet_hdr));
689 		if ((vnet_hdr.flags & VIRTIO_NET_HDR_F_NEEDS_CSUM) &&
690 		     macvtap16_to_cpu(q, vnet_hdr.csum_start) +
691 		     macvtap16_to_cpu(q, vnet_hdr.csum_offset) + 2 >
692 			     macvtap16_to_cpu(q, vnet_hdr.hdr_len))
693 			vnet_hdr.hdr_len = cpu_to_macvtap16(q,
694 				 macvtap16_to_cpu(q, vnet_hdr.csum_start) +
695 				 macvtap16_to_cpu(q, vnet_hdr.csum_offset) + 2);
696 		err = -EINVAL;
697 		if (macvtap16_to_cpu(q, vnet_hdr.hdr_len) > len)
698 			goto err;
699 	}
700 
701 	err = -EINVAL;
702 	if (unlikely(len < ETH_HLEN))
703 		goto err;
704 
705 	if (m && m->msg_control && sock_flag(&q->sk, SOCK_ZEROCOPY)) {
706 		struct iov_iter i;
707 
708 		copylen = vnet_hdr.hdr_len ?
709 			macvtap16_to_cpu(q, vnet_hdr.hdr_len) : GOODCOPY_LEN;
710 		if (copylen > good_linear)
711 			copylen = good_linear;
712 		else if (copylen < ETH_HLEN)
713 			copylen = ETH_HLEN;
714 		linear = copylen;
715 		i = *from;
716 		iov_iter_advance(&i, copylen);
717 		if (iov_iter_npages(&i, INT_MAX) <= MAX_SKB_FRAGS)
718 			zerocopy = true;
719 	}
720 
721 	if (!zerocopy) {
722 		copylen = len;
723 		linear = macvtap16_to_cpu(q, vnet_hdr.hdr_len);
724 		if (linear > good_linear)
725 			linear = good_linear;
726 		else if (linear < ETH_HLEN)
727 			linear = ETH_HLEN;
728 	}
729 
730 	skb = macvtap_alloc_skb(&q->sk, MACVTAP_RESERVE, copylen,
731 				linear, noblock, &err);
732 	if (!skb)
733 		goto err;
734 
735 	if (zerocopy)
736 		err = zerocopy_sg_from_iter(skb, from);
737 	else {
738 		err = skb_copy_datagram_from_iter(skb, 0, from, len);
739 		if (!err && m && m->msg_control) {
740 			struct ubuf_info *uarg = m->msg_control;
741 			uarg->callback(uarg, false);
742 		}
743 	}
744 
745 	if (err)
746 		goto err_kfree;
747 
748 	skb_set_network_header(skb, ETH_HLEN);
749 	skb_reset_mac_header(skb);
750 	skb->protocol = eth_hdr(skb)->h_proto;
751 
752 	if (vnet_hdr_len) {
753 		err = virtio_net_hdr_to_skb(skb, &vnet_hdr,
754 					    macvtap_is_little_endian(q));
755 		if (err)
756 			goto err_kfree;
757 	}
758 
759 	skb_probe_transport_header(skb, ETH_HLEN);
760 
761 	/* Move network header to the right position for VLAN tagged packets */
762 	if ((skb->protocol == htons(ETH_P_8021Q) ||
763 	     skb->protocol == htons(ETH_P_8021AD)) &&
764 	    __vlan_get_protocol(skb, skb->protocol, &depth) != 0)
765 		skb_set_network_header(skb, depth);
766 
767 	rcu_read_lock();
768 	vlan = rcu_dereference(q->vlan);
769 	/* copy skb_ubuf_info for callback when skb has no error */
770 	if (zerocopy) {
771 		skb_shinfo(skb)->destructor_arg = m->msg_control;
772 		skb_shinfo(skb)->tx_flags |= SKBTX_DEV_ZEROCOPY;
773 		skb_shinfo(skb)->tx_flags |= SKBTX_SHARED_FRAG;
774 	}
775 	if (vlan) {
776 		skb->dev = vlan->dev;
777 		dev_queue_xmit(skb);
778 	} else {
779 		kfree_skb(skb);
780 	}
781 	rcu_read_unlock();
782 
783 	return total_len;
784 
785 err_kfree:
786 	kfree_skb(skb);
787 
788 err:
789 	rcu_read_lock();
790 	vlan = rcu_dereference(q->vlan);
791 	if (vlan)
792 		this_cpu_inc(vlan->pcpu_stats->tx_dropped);
793 	rcu_read_unlock();
794 
795 	return err;
796 }
797 
798 static ssize_t macvtap_write_iter(struct kiocb *iocb, struct iov_iter *from)
799 {
800 	struct file *file = iocb->ki_filp;
801 	struct macvtap_queue *q = file->private_data;
802 
803 	return macvtap_get_user(q, NULL, from, file->f_flags & O_NONBLOCK);
804 }
805 
806 /* Put packet to the user space buffer */
807 static ssize_t macvtap_put_user(struct macvtap_queue *q,
808 				const struct sk_buff *skb,
809 				struct iov_iter *iter)
810 {
811 	int ret;
812 	int vnet_hdr_len = 0;
813 	int vlan_offset = 0;
814 	int total;
815 
816 	if (q->flags & IFF_VNET_HDR) {
817 		struct virtio_net_hdr vnet_hdr;
818 		vnet_hdr_len = q->vnet_hdr_sz;
819 		if (iov_iter_count(iter) < vnet_hdr_len)
820 			return -EINVAL;
821 
822 		ret = virtio_net_hdr_from_skb(skb, &vnet_hdr,
823 					      macvtap_is_little_endian(q));
824 		if (ret)
825 			BUG();
826 
827 		if (copy_to_iter(&vnet_hdr, sizeof(vnet_hdr), iter) !=
828 		    sizeof(vnet_hdr))
829 			return -EFAULT;
830 
831 		iov_iter_advance(iter, vnet_hdr_len - sizeof(vnet_hdr));
832 	}
833 	total = vnet_hdr_len;
834 	total += skb->len;
835 
836 	if (skb_vlan_tag_present(skb)) {
837 		struct {
838 			__be16 h_vlan_proto;
839 			__be16 h_vlan_TCI;
840 		} veth;
841 		veth.h_vlan_proto = skb->vlan_proto;
842 		veth.h_vlan_TCI = htons(skb_vlan_tag_get(skb));
843 
844 		vlan_offset = offsetof(struct vlan_ethhdr, h_vlan_proto);
845 		total += VLAN_HLEN;
846 
847 		ret = skb_copy_datagram_iter(skb, 0, iter, vlan_offset);
848 		if (ret || !iov_iter_count(iter))
849 			goto done;
850 
851 		ret = copy_to_iter(&veth, sizeof(veth), iter);
852 		if (ret != sizeof(veth) || !iov_iter_count(iter))
853 			goto done;
854 	}
855 
856 	ret = skb_copy_datagram_iter(skb, vlan_offset, iter,
857 				     skb->len - vlan_offset);
858 
859 done:
860 	return ret ? ret : total;
861 }
862 
863 static ssize_t macvtap_do_read(struct macvtap_queue *q,
864 			       struct iov_iter *to,
865 			       int noblock)
866 {
867 	DEFINE_WAIT(wait);
868 	struct sk_buff *skb;
869 	ssize_t ret = 0;
870 
871 	if (!iov_iter_count(to))
872 		return 0;
873 
874 	while (1) {
875 		if (!noblock)
876 			prepare_to_wait(sk_sleep(&q->sk), &wait,
877 					TASK_INTERRUPTIBLE);
878 
879 		/* Read frames from the queue */
880 		skb = skb_array_consume(&q->skb_array);
881 		if (skb)
882 			break;
883 		if (noblock) {
884 			ret = -EAGAIN;
885 			break;
886 		}
887 		if (signal_pending(current)) {
888 			ret = -ERESTARTSYS;
889 			break;
890 		}
891 		/* Nothing to read, let's sleep */
892 		schedule();
893 	}
894 	if (!noblock)
895 		finish_wait(sk_sleep(&q->sk), &wait);
896 
897 	if (skb) {
898 		ret = macvtap_put_user(q, skb, to);
899 		if (unlikely(ret < 0))
900 			kfree_skb(skb);
901 		else
902 			consume_skb(skb);
903 	}
904 	return ret;
905 }
906 
907 static ssize_t macvtap_read_iter(struct kiocb *iocb, struct iov_iter *to)
908 {
909 	struct file *file = iocb->ki_filp;
910 	struct macvtap_queue *q = file->private_data;
911 	ssize_t len = iov_iter_count(to), ret;
912 
913 	ret = macvtap_do_read(q, to, file->f_flags & O_NONBLOCK);
914 	ret = min_t(ssize_t, ret, len);
915 	if (ret > 0)
916 		iocb->ki_pos = ret;
917 	return ret;
918 }
919 
920 static struct macvlan_dev *macvtap_get_vlan(struct macvtap_queue *q)
921 {
922 	struct macvlan_dev *vlan;
923 
924 	ASSERT_RTNL();
925 	vlan = rtnl_dereference(q->vlan);
926 	if (vlan)
927 		dev_hold(vlan->dev);
928 
929 	return vlan;
930 }
931 
932 static void macvtap_put_vlan(struct macvlan_dev *vlan)
933 {
934 	dev_put(vlan->dev);
935 }
936 
937 static int macvtap_ioctl_set_queue(struct file *file, unsigned int flags)
938 {
939 	struct macvtap_queue *q = file->private_data;
940 	struct macvlan_dev *vlan;
941 	int ret;
942 
943 	vlan = macvtap_get_vlan(q);
944 	if (!vlan)
945 		return -EINVAL;
946 
947 	if (flags & IFF_ATTACH_QUEUE)
948 		ret = macvtap_enable_queue(vlan->dev, file, q);
949 	else if (flags & IFF_DETACH_QUEUE)
950 		ret = macvtap_disable_queue(q);
951 	else
952 		ret = -EINVAL;
953 
954 	macvtap_put_vlan(vlan);
955 	return ret;
956 }
957 
958 static int set_offload(struct macvtap_queue *q, unsigned long arg)
959 {
960 	struct macvlan_dev *vlan;
961 	netdev_features_t features;
962 	netdev_features_t feature_mask = 0;
963 
964 	vlan = rtnl_dereference(q->vlan);
965 	if (!vlan)
966 		return -ENOLINK;
967 
968 	features = vlan->dev->features;
969 
970 	if (arg & TUN_F_CSUM) {
971 		feature_mask = NETIF_F_HW_CSUM;
972 
973 		if (arg & (TUN_F_TSO4 | TUN_F_TSO6)) {
974 			if (arg & TUN_F_TSO_ECN)
975 				feature_mask |= NETIF_F_TSO_ECN;
976 			if (arg & TUN_F_TSO4)
977 				feature_mask |= NETIF_F_TSO;
978 			if (arg & TUN_F_TSO6)
979 				feature_mask |= NETIF_F_TSO6;
980 		}
981 
982 		if (arg & TUN_F_UFO)
983 			feature_mask |= NETIF_F_UFO;
984 	}
985 
986 	/* tun/tap driver inverts the usage for TSO offloads, where
987 	 * setting the TSO bit means that the userspace wants to
988 	 * accept TSO frames and turning it off means that user space
989 	 * does not support TSO.
990 	 * For macvtap, we have to invert it to mean the same thing.
991 	 * When user space turns off TSO, we turn off GSO/LRO so that
992 	 * user-space will not receive TSO frames.
993 	 */
994 	if (feature_mask & (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_UFO))
995 		features |= RX_OFFLOADS;
996 	else
997 		features &= ~RX_OFFLOADS;
998 
999 	/* tap_features are the same as features on tun/tap and
1000 	 * reflect user expectations.
1001 	 */
1002 	vlan->tap_features = feature_mask;
1003 	vlan->set_features = features;
1004 	netdev_update_features(vlan->dev);
1005 
1006 	return 0;
1007 }
1008 
1009 /*
1010  * provide compatibility with generic tun/tap interface
1011  */
1012 static long macvtap_ioctl(struct file *file, unsigned int cmd,
1013 			  unsigned long arg)
1014 {
1015 	struct macvtap_queue *q = file->private_data;
1016 	struct macvlan_dev *vlan;
1017 	void __user *argp = (void __user *)arg;
1018 	struct ifreq __user *ifr = argp;
1019 	unsigned int __user *up = argp;
1020 	unsigned short u;
1021 	int __user *sp = argp;
1022 	struct sockaddr sa;
1023 	int s;
1024 	int ret;
1025 
1026 	switch (cmd) {
1027 	case TUNSETIFF:
1028 		/* ignore the name, just look at flags */
1029 		if (get_user(u, &ifr->ifr_flags))
1030 			return -EFAULT;
1031 
1032 		ret = 0;
1033 		if ((u & ~MACVTAP_FEATURES) != (IFF_NO_PI | IFF_TAP))
1034 			ret = -EINVAL;
1035 		else
1036 			q->flags = (q->flags & ~MACVTAP_FEATURES) | u;
1037 
1038 		return ret;
1039 
1040 	case TUNGETIFF:
1041 		rtnl_lock();
1042 		vlan = macvtap_get_vlan(q);
1043 		if (!vlan) {
1044 			rtnl_unlock();
1045 			return -ENOLINK;
1046 		}
1047 
1048 		ret = 0;
1049 		u = q->flags;
1050 		if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
1051 		    put_user(u, &ifr->ifr_flags))
1052 			ret = -EFAULT;
1053 		macvtap_put_vlan(vlan);
1054 		rtnl_unlock();
1055 		return ret;
1056 
1057 	case TUNSETQUEUE:
1058 		if (get_user(u, &ifr->ifr_flags))
1059 			return -EFAULT;
1060 		rtnl_lock();
1061 		ret = macvtap_ioctl_set_queue(file, u);
1062 		rtnl_unlock();
1063 		return ret;
1064 
1065 	case TUNGETFEATURES:
1066 		if (put_user(IFF_TAP | IFF_NO_PI | MACVTAP_FEATURES, up))
1067 			return -EFAULT;
1068 		return 0;
1069 
1070 	case TUNSETSNDBUF:
1071 		if (get_user(s, sp))
1072 			return -EFAULT;
1073 
1074 		q->sk.sk_sndbuf = s;
1075 		return 0;
1076 
1077 	case TUNGETVNETHDRSZ:
1078 		s = q->vnet_hdr_sz;
1079 		if (put_user(s, sp))
1080 			return -EFAULT;
1081 		return 0;
1082 
1083 	case TUNSETVNETHDRSZ:
1084 		if (get_user(s, sp))
1085 			return -EFAULT;
1086 		if (s < (int)sizeof(struct virtio_net_hdr))
1087 			return -EINVAL;
1088 
1089 		q->vnet_hdr_sz = s;
1090 		return 0;
1091 
1092 	case TUNGETVNETLE:
1093 		s = !!(q->flags & MACVTAP_VNET_LE);
1094 		if (put_user(s, sp))
1095 			return -EFAULT;
1096 		return 0;
1097 
1098 	case TUNSETVNETLE:
1099 		if (get_user(s, sp))
1100 			return -EFAULT;
1101 		if (s)
1102 			q->flags |= MACVTAP_VNET_LE;
1103 		else
1104 			q->flags &= ~MACVTAP_VNET_LE;
1105 		return 0;
1106 
1107 	case TUNGETVNETBE:
1108 		return macvtap_get_vnet_be(q, sp);
1109 
1110 	case TUNSETVNETBE:
1111 		return macvtap_set_vnet_be(q, sp);
1112 
1113 	case TUNSETOFFLOAD:
1114 		/* let the user check for future flags */
1115 		if (arg & ~(TUN_F_CSUM | TUN_F_TSO4 | TUN_F_TSO6 |
1116 			    TUN_F_TSO_ECN | TUN_F_UFO))
1117 			return -EINVAL;
1118 
1119 		rtnl_lock();
1120 		ret = set_offload(q, arg);
1121 		rtnl_unlock();
1122 		return ret;
1123 
1124 	case SIOCGIFHWADDR:
1125 		rtnl_lock();
1126 		vlan = macvtap_get_vlan(q);
1127 		if (!vlan) {
1128 			rtnl_unlock();
1129 			return -ENOLINK;
1130 		}
1131 		ret = 0;
1132 		u = vlan->dev->type;
1133 		if (copy_to_user(&ifr->ifr_name, vlan->dev->name, IFNAMSIZ) ||
1134 		    copy_to_user(&ifr->ifr_hwaddr.sa_data, vlan->dev->dev_addr, ETH_ALEN) ||
1135 		    put_user(u, &ifr->ifr_hwaddr.sa_family))
1136 			ret = -EFAULT;
1137 		macvtap_put_vlan(vlan);
1138 		rtnl_unlock();
1139 		return ret;
1140 
1141 	case SIOCSIFHWADDR:
1142 		if (copy_from_user(&sa, &ifr->ifr_hwaddr, sizeof(sa)))
1143 			return -EFAULT;
1144 		rtnl_lock();
1145 		vlan = macvtap_get_vlan(q);
1146 		if (!vlan) {
1147 			rtnl_unlock();
1148 			return -ENOLINK;
1149 		}
1150 		ret = dev_set_mac_address(vlan->dev, &sa);
1151 		macvtap_put_vlan(vlan);
1152 		rtnl_unlock();
1153 		return ret;
1154 
1155 	default:
1156 		return -EINVAL;
1157 	}
1158 }
1159 
1160 #ifdef CONFIG_COMPAT
1161 static long macvtap_compat_ioctl(struct file *file, unsigned int cmd,
1162 				 unsigned long arg)
1163 {
1164 	return macvtap_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
1165 }
1166 #endif
1167 
1168 static const struct file_operations macvtap_fops = {
1169 	.owner		= THIS_MODULE,
1170 	.open		= macvtap_open,
1171 	.release	= macvtap_release,
1172 	.read_iter	= macvtap_read_iter,
1173 	.write_iter	= macvtap_write_iter,
1174 	.poll		= macvtap_poll,
1175 	.llseek		= no_llseek,
1176 	.unlocked_ioctl	= macvtap_ioctl,
1177 #ifdef CONFIG_COMPAT
1178 	.compat_ioctl	= macvtap_compat_ioctl,
1179 #endif
1180 };
1181 
1182 static int macvtap_sendmsg(struct socket *sock, struct msghdr *m,
1183 			   size_t total_len)
1184 {
1185 	struct macvtap_queue *q = container_of(sock, struct macvtap_queue, sock);
1186 	return macvtap_get_user(q, m, &m->msg_iter, m->msg_flags & MSG_DONTWAIT);
1187 }
1188 
1189 static int macvtap_recvmsg(struct socket *sock, struct msghdr *m,
1190 			   size_t total_len, int flags)
1191 {
1192 	struct macvtap_queue *q = container_of(sock, struct macvtap_queue, sock);
1193 	int ret;
1194 	if (flags & ~(MSG_DONTWAIT|MSG_TRUNC))
1195 		return -EINVAL;
1196 	ret = macvtap_do_read(q, &m->msg_iter, flags & MSG_DONTWAIT);
1197 	if (ret > total_len) {
1198 		m->msg_flags |= MSG_TRUNC;
1199 		ret = flags & MSG_TRUNC ? ret : total_len;
1200 	}
1201 	return ret;
1202 }
1203 
1204 static int macvtap_peek_len(struct socket *sock)
1205 {
1206 	struct macvtap_queue *q = container_of(sock, struct macvtap_queue,
1207 					       sock);
1208 	return skb_array_peek_len(&q->skb_array);
1209 }
1210 
1211 /* Ops structure to mimic raw sockets with tun */
1212 static const struct proto_ops macvtap_socket_ops = {
1213 	.sendmsg = macvtap_sendmsg,
1214 	.recvmsg = macvtap_recvmsg,
1215 	.peek_len = macvtap_peek_len,
1216 };
1217 
1218 /* Get an underlying socket object from tun file.  Returns error unless file is
1219  * attached to a device.  The returned object works like a packet socket, it
1220  * can be used for sock_sendmsg/sock_recvmsg.  The caller is responsible for
1221  * holding a reference to the file for as long as the socket is in use. */
1222 struct socket *macvtap_get_socket(struct file *file)
1223 {
1224 	struct macvtap_queue *q;
1225 	if (file->f_op != &macvtap_fops)
1226 		return ERR_PTR(-EINVAL);
1227 	q = file->private_data;
1228 	if (!q)
1229 		return ERR_PTR(-EBADFD);
1230 	return &q->sock;
1231 }
1232 EXPORT_SYMBOL_GPL(macvtap_get_socket);
1233 
1234 static int macvtap_queue_resize(struct macvlan_dev *vlan)
1235 {
1236 	struct net_device *dev = vlan->dev;
1237 	struct macvtap_queue *q;
1238 	struct skb_array **arrays;
1239 	int n = vlan->numqueues;
1240 	int ret, i = 0;
1241 
1242 	arrays = kmalloc(sizeof *arrays * n, GFP_KERNEL);
1243 	if (!arrays)
1244 		return -ENOMEM;
1245 
1246 	list_for_each_entry(q, &vlan->queue_list, next)
1247 		arrays[i++] = &q->skb_array;
1248 
1249 	ret = skb_array_resize_multiple(arrays, n,
1250 					dev->tx_queue_len, GFP_KERNEL);
1251 
1252 	kfree(arrays);
1253 	return ret;
1254 }
1255 
1256 static int macvtap_device_event(struct notifier_block *unused,
1257 				unsigned long event, void *ptr)
1258 {
1259 	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1260 	struct macvlan_dev *vlan;
1261 	struct device *classdev;
1262 	dev_t devt;
1263 	int err;
1264 	char tap_name[IFNAMSIZ];
1265 
1266 	if (dev->rtnl_link_ops != &macvtap_link_ops)
1267 		return NOTIFY_DONE;
1268 
1269 	snprintf(tap_name, IFNAMSIZ, "tap%d", dev->ifindex);
1270 	vlan = netdev_priv(dev);
1271 
1272 	switch (event) {
1273 	case NETDEV_REGISTER:
1274 		/* Create the device node here after the network device has
1275 		 * been registered but before register_netdevice has
1276 		 * finished running.
1277 		 */
1278 		err = macvtap_get_minor(vlan);
1279 		if (err)
1280 			return notifier_from_errno(err);
1281 
1282 		devt = MKDEV(MAJOR(macvtap_major), vlan->minor);
1283 		classdev = device_create(&macvtap_class, &dev->dev, devt,
1284 					 dev, tap_name);
1285 		if (IS_ERR(classdev)) {
1286 			macvtap_free_minor(vlan);
1287 			return notifier_from_errno(PTR_ERR(classdev));
1288 		}
1289 		err = sysfs_create_link(&dev->dev.kobj, &classdev->kobj,
1290 					tap_name);
1291 		if (err)
1292 			return notifier_from_errno(err);
1293 		break;
1294 	case NETDEV_UNREGISTER:
1295 		/* vlan->minor == 0 if NETDEV_REGISTER above failed */
1296 		if (vlan->minor == 0)
1297 			break;
1298 		sysfs_remove_link(&dev->dev.kobj, tap_name);
1299 		devt = MKDEV(MAJOR(macvtap_major), vlan->minor);
1300 		device_destroy(&macvtap_class, devt);
1301 		macvtap_free_minor(vlan);
1302 		break;
1303 	case NETDEV_CHANGE_TX_QUEUE_LEN:
1304 		if (macvtap_queue_resize(vlan))
1305 			return NOTIFY_BAD;
1306 		break;
1307 	}
1308 
1309 	return NOTIFY_DONE;
1310 }
1311 
1312 static struct notifier_block macvtap_notifier_block __read_mostly = {
1313 	.notifier_call	= macvtap_device_event,
1314 };
1315 
1316 static int macvtap_init(void)
1317 {
1318 	int err;
1319 
1320 	err = alloc_chrdev_region(&macvtap_major, 0,
1321 				MACVTAP_NUM_DEVS, "macvtap");
1322 	if (err)
1323 		goto out1;
1324 
1325 	cdev_init(&macvtap_cdev, &macvtap_fops);
1326 	err = cdev_add(&macvtap_cdev, macvtap_major, MACVTAP_NUM_DEVS);
1327 	if (err)
1328 		goto out2;
1329 
1330 	err = class_register(&macvtap_class);
1331 	if (err)
1332 		goto out3;
1333 
1334 	err = register_netdevice_notifier(&macvtap_notifier_block);
1335 	if (err)
1336 		goto out4;
1337 
1338 	err = macvlan_link_register(&macvtap_link_ops);
1339 	if (err)
1340 		goto out5;
1341 
1342 	return 0;
1343 
1344 out5:
1345 	unregister_netdevice_notifier(&macvtap_notifier_block);
1346 out4:
1347 	class_unregister(&macvtap_class);
1348 out3:
1349 	cdev_del(&macvtap_cdev);
1350 out2:
1351 	unregister_chrdev_region(macvtap_major, MACVTAP_NUM_DEVS);
1352 out1:
1353 	return err;
1354 }
1355 module_init(macvtap_init);
1356 
1357 static void macvtap_exit(void)
1358 {
1359 	rtnl_link_unregister(&macvtap_link_ops);
1360 	unregister_netdevice_notifier(&macvtap_notifier_block);
1361 	class_unregister(&macvtap_class);
1362 	cdev_del(&macvtap_cdev);
1363 	unregister_chrdev_region(macvtap_major, MACVTAP_NUM_DEVS);
1364 	idr_destroy(&minor_idr);
1365 }
1366 module_exit(macvtap_exit);
1367 
1368 MODULE_ALIAS_RTNL_LINK("macvtap");
1369 MODULE_AUTHOR("Arnd Bergmann <arnd@arndb.de>");
1370 MODULE_LICENSE("GPL");
1371