xref: /openbmc/linux/drivers/net/ifb.c (revision e7246e122aaa99ebbb8ad7da80f35a20577bd8af)
1 /* drivers/net/ifb.c:
2 
3 	The purpose of this driver is to provide a device that allows
4 	for sharing of resources:
5 
6 	1) qdiscs/policies that are per device as opposed to system wide.
7 	ifb allows for a device which can be redirected to thus providing
8 	an impression of sharing.
9 
10 	2) Allows for queueing incoming traffic for shaping instead of
11 	dropping.
12 
13 	The original concept is based on what is known as the IMQ
14 	driver initially written by Martin Devera, later rewritten
15 	by Patrick McHardy and then maintained by Andre Correa.
16 
17 	You need the tc action  mirror or redirect to feed this device
18        	packets.
19 
20 	This program is free software; you can redistribute it and/or
21 	modify it under the terms of the GNU General Public License
22 	as published by the Free Software Foundation; either version
23 	2 of the License, or (at your option) any later version.
24 
25   	Authors:	Jamal Hadi Salim (2005)
26 
27 */
28 
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/init.h>
35 #include <linux/interrupt.h>
36 #include <linux/moduleparam.h>
37 #include <net/pkt_sched.h>
38 #include <net/net_namespace.h>
39 
40 #define TX_Q_LIMIT    32
41 struct ifb_q_private {
42 	struct net_device	*dev;
43 	struct tasklet_struct   ifb_tasklet;
44 	int			tasklet_pending;
45 	int			txqnum;
46 	struct sk_buff_head     rq;
47 	u64			rx_packets;
48 	u64			rx_bytes;
49 	struct u64_stats_sync	rsync;
50 
51 	struct u64_stats_sync	tsync;
52 	u64			tx_packets;
53 	u64			tx_bytes;
54 	struct sk_buff_head     tq;
55 } ____cacheline_aligned_in_smp;
56 
57 struct ifb_dev_private {
58 	struct ifb_q_private *tx_private;
59 };
60 
61 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev);
62 static int ifb_open(struct net_device *dev);
63 static int ifb_close(struct net_device *dev);
64 
65 static void ifb_ri_tasklet(unsigned long _txp)
66 {
67 	struct ifb_q_private *txp = (struct ifb_q_private *)_txp;
68 	struct netdev_queue *txq;
69 	struct sk_buff *skb;
70 
71 	txq = netdev_get_tx_queue(txp->dev, txp->txqnum);
72 	skb = skb_peek(&txp->tq);
73 	if (!skb) {
74 		if (!__netif_tx_trylock(txq))
75 			goto resched;
76 		skb_queue_splice_tail_init(&txp->rq, &txp->tq);
77 		__netif_tx_unlock(txq);
78 	}
79 
80 	while ((skb = __skb_dequeue(&txp->tq)) != NULL) {
81 		u32 from = G_TC_FROM(skb->tc_verd);
82 
83 		skb->tc_verd = 0;
84 		skb->tc_skip_classify = 1;
85 
86 		u64_stats_update_begin(&txp->tsync);
87 		txp->tx_packets++;
88 		txp->tx_bytes += skb->len;
89 		u64_stats_update_end(&txp->tsync);
90 
91 		rcu_read_lock();
92 		skb->dev = dev_get_by_index_rcu(dev_net(txp->dev), skb->skb_iif);
93 		if (!skb->dev) {
94 			rcu_read_unlock();
95 			dev_kfree_skb(skb);
96 			txp->dev->stats.tx_dropped++;
97 			if (skb_queue_len(&txp->tq) != 0)
98 				goto resched;
99 			break;
100 		}
101 		rcu_read_unlock();
102 		skb->skb_iif = txp->dev->ifindex;
103 
104 		if (from & AT_EGRESS) {
105 			dev_queue_xmit(skb);
106 		} else if (from & AT_INGRESS) {
107 			skb_pull(skb, skb->mac_len);
108 			netif_receive_skb(skb);
109 		} else
110 			BUG();
111 	}
112 
113 	if (__netif_tx_trylock(txq)) {
114 		skb = skb_peek(&txp->rq);
115 		if (!skb) {
116 			txp->tasklet_pending = 0;
117 			if (netif_tx_queue_stopped(txq))
118 				netif_tx_wake_queue(txq);
119 		} else {
120 			__netif_tx_unlock(txq);
121 			goto resched;
122 		}
123 		__netif_tx_unlock(txq);
124 	} else {
125 resched:
126 		txp->tasklet_pending = 1;
127 		tasklet_schedule(&txp->ifb_tasklet);
128 	}
129 
130 }
131 
132 static void ifb_stats64(struct net_device *dev,
133 			struct rtnl_link_stats64 *stats)
134 {
135 	struct ifb_dev_private *dp = netdev_priv(dev);
136 	struct ifb_q_private *txp = dp->tx_private;
137 	unsigned int start;
138 	u64 packets, bytes;
139 	int i;
140 
141 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
142 		do {
143 			start = u64_stats_fetch_begin_irq(&txp->rsync);
144 			packets = txp->rx_packets;
145 			bytes = txp->rx_bytes;
146 		} while (u64_stats_fetch_retry_irq(&txp->rsync, start));
147 		stats->rx_packets += packets;
148 		stats->rx_bytes += bytes;
149 
150 		do {
151 			start = u64_stats_fetch_begin_irq(&txp->tsync);
152 			packets = txp->tx_packets;
153 			bytes = txp->tx_bytes;
154 		} while (u64_stats_fetch_retry_irq(&txp->tsync, start));
155 		stats->tx_packets += packets;
156 		stats->tx_bytes += bytes;
157 	}
158 	stats->rx_dropped = dev->stats.rx_dropped;
159 	stats->tx_dropped = dev->stats.tx_dropped;
160 }
161 
162 static int ifb_dev_init(struct net_device *dev)
163 {
164 	struct ifb_dev_private *dp = netdev_priv(dev);
165 	struct ifb_q_private *txp;
166 	int i;
167 
168 	txp = kcalloc(dev->num_tx_queues, sizeof(*txp), GFP_KERNEL);
169 	if (!txp)
170 		return -ENOMEM;
171 	dp->tx_private = txp;
172 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
173 		txp->txqnum = i;
174 		txp->dev = dev;
175 		__skb_queue_head_init(&txp->rq);
176 		__skb_queue_head_init(&txp->tq);
177 		u64_stats_init(&txp->rsync);
178 		u64_stats_init(&txp->tsync);
179 		tasklet_init(&txp->ifb_tasklet, ifb_ri_tasklet,
180 			     (unsigned long)txp);
181 		netif_tx_start_queue(netdev_get_tx_queue(dev, i));
182 	}
183 	return 0;
184 }
185 
186 static const struct net_device_ops ifb_netdev_ops = {
187 	.ndo_open	= ifb_open,
188 	.ndo_stop	= ifb_close,
189 	.ndo_get_stats64 = ifb_stats64,
190 	.ndo_start_xmit	= ifb_xmit,
191 	.ndo_validate_addr = eth_validate_addr,
192 	.ndo_init	= ifb_dev_init,
193 };
194 
195 #define IFB_FEATURES (NETIF_F_HW_CSUM | NETIF_F_SG  | NETIF_F_FRAGLIST	| \
196 		      NETIF_F_TSO_ECN | NETIF_F_TSO | NETIF_F_TSO6	| \
197 		      NETIF_F_GSO_ENCAP_ALL 				| \
198 		      NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX		| \
199 		      NETIF_F_HW_VLAN_STAG_TX)
200 
201 static void ifb_dev_free(struct net_device *dev)
202 {
203 	struct ifb_dev_private *dp = netdev_priv(dev);
204 	struct ifb_q_private *txp = dp->tx_private;
205 	int i;
206 
207 	for (i = 0; i < dev->num_tx_queues; i++,txp++) {
208 		tasklet_kill(&txp->ifb_tasklet);
209 		__skb_queue_purge(&txp->rq);
210 		__skb_queue_purge(&txp->tq);
211 	}
212 	kfree(dp->tx_private);
213 	free_netdev(dev);
214 }
215 
216 static void ifb_setup(struct net_device *dev)
217 {
218 	/* Initialize the device structure. */
219 	dev->netdev_ops = &ifb_netdev_ops;
220 
221 	/* Fill in device structure with ethernet-generic values. */
222 	ether_setup(dev);
223 	dev->tx_queue_len = TX_Q_LIMIT;
224 
225 	dev->features |= IFB_FEATURES;
226 	dev->hw_features |= dev->features;
227 	dev->hw_enc_features |= dev->features;
228 	dev->vlan_features |= IFB_FEATURES & ~(NETIF_F_HW_VLAN_CTAG_TX |
229 					       NETIF_F_HW_VLAN_STAG_TX);
230 
231 	dev->flags |= IFF_NOARP;
232 	dev->flags &= ~IFF_MULTICAST;
233 	dev->priv_flags &= ~IFF_TX_SKB_SHARING;
234 	netif_keep_dst(dev);
235 	eth_hw_addr_random(dev);
236 	dev->destructor = ifb_dev_free;
237 }
238 
239 static netdev_tx_t ifb_xmit(struct sk_buff *skb, struct net_device *dev)
240 {
241 	struct ifb_dev_private *dp = netdev_priv(dev);
242 	u32 from = G_TC_FROM(skb->tc_verd);
243 	struct ifb_q_private *txp = dp->tx_private + skb_get_queue_mapping(skb);
244 
245 	u64_stats_update_begin(&txp->rsync);
246 	txp->rx_packets++;
247 	txp->rx_bytes += skb->len;
248 	u64_stats_update_end(&txp->rsync);
249 
250 	if (!(from & (AT_INGRESS|AT_EGRESS)) || !skb->skb_iif) {
251 		dev_kfree_skb(skb);
252 		dev->stats.rx_dropped++;
253 		return NETDEV_TX_OK;
254 	}
255 
256 	if (skb_queue_len(&txp->rq) >= dev->tx_queue_len)
257 		netif_tx_stop_queue(netdev_get_tx_queue(dev, txp->txqnum));
258 
259 	__skb_queue_tail(&txp->rq, skb);
260 	if (!txp->tasklet_pending) {
261 		txp->tasklet_pending = 1;
262 		tasklet_schedule(&txp->ifb_tasklet);
263 	}
264 
265 	return NETDEV_TX_OK;
266 }
267 
268 static int ifb_close(struct net_device *dev)
269 {
270 	netif_tx_stop_all_queues(dev);
271 	return 0;
272 }
273 
274 static int ifb_open(struct net_device *dev)
275 {
276 	netif_tx_start_all_queues(dev);
277 	return 0;
278 }
279 
280 static int ifb_validate(struct nlattr *tb[], struct nlattr *data[])
281 {
282 	if (tb[IFLA_ADDRESS]) {
283 		if (nla_len(tb[IFLA_ADDRESS]) != ETH_ALEN)
284 			return -EINVAL;
285 		if (!is_valid_ether_addr(nla_data(tb[IFLA_ADDRESS])))
286 			return -EADDRNOTAVAIL;
287 	}
288 	return 0;
289 }
290 
291 static struct rtnl_link_ops ifb_link_ops __read_mostly = {
292 	.kind		= "ifb",
293 	.priv_size	= sizeof(struct ifb_dev_private),
294 	.setup		= ifb_setup,
295 	.validate	= ifb_validate,
296 };
297 
298 /* Number of ifb devices to be set up by this module.
299  * Note that these legacy devices have one queue.
300  * Prefer something like : ip link add ifb10 numtxqueues 8 type ifb
301  */
302 static int numifbs = 2;
303 module_param(numifbs, int, 0);
304 MODULE_PARM_DESC(numifbs, "Number of ifb devices");
305 
306 static int __init ifb_init_one(int index)
307 {
308 	struct net_device *dev_ifb;
309 	int err;
310 
311 	dev_ifb = alloc_netdev(sizeof(struct ifb_dev_private), "ifb%d",
312 			       NET_NAME_UNKNOWN, ifb_setup);
313 
314 	if (!dev_ifb)
315 		return -ENOMEM;
316 
317 	dev_ifb->rtnl_link_ops = &ifb_link_ops;
318 	err = register_netdevice(dev_ifb);
319 	if (err < 0)
320 		goto err;
321 
322 	return 0;
323 
324 err:
325 	free_netdev(dev_ifb);
326 	return err;
327 }
328 
329 static int __init ifb_init_module(void)
330 {
331 	int i, err;
332 
333 	rtnl_lock();
334 	err = __rtnl_link_register(&ifb_link_ops);
335 	if (err < 0)
336 		goto out;
337 
338 	for (i = 0; i < numifbs && !err; i++) {
339 		err = ifb_init_one(i);
340 		cond_resched();
341 	}
342 	if (err)
343 		__rtnl_link_unregister(&ifb_link_ops);
344 
345 out:
346 	rtnl_unlock();
347 
348 	return err;
349 }
350 
351 static void __exit ifb_cleanup_module(void)
352 {
353 	rtnl_link_unregister(&ifb_link_ops);
354 }
355 
356 module_init(ifb_init_module);
357 module_exit(ifb_cleanup_module);
358 MODULE_LICENSE("GPL");
359 MODULE_AUTHOR("Jamal Hadi Salim");
360 MODULE_ALIAS_RTNL_LINK("ifb");
361