xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/ethtool.h>
14 #include <linux/module.h>
15 #include <linux/highmem.h>
16 #include <linux/device.h>
17 #include <linux/io.h>
18 #include <linux/delay.h>
19 #include <linux/netdevice.h>
20 #include <linux/inetdevice.h>
21 #include <linux/etherdevice.h>
22 #include <linux/pci.h>
23 #include <linux/skbuff.h>
24 #include <linux/if_vlan.h>
25 #include <linux/in.h>
26 #include <linux/slab.h>
27 #include <linux/rtnetlink.h>
28 #include <linux/netpoll.h>
29 #include <linux/bpf.h>
30 
31 #include <net/arp.h>
32 #include <net/route.h>
33 #include <net/sock.h>
34 #include <net/pkt_sched.h>
35 #include <net/checksum.h>
36 #include <net/ip6_checksum.h>
37 
38 #include "hyperv_net.h"
39 
40 #define RING_SIZE_MIN	64
41 #define RETRY_US_LO	5000
42 #define RETRY_US_HI	10000
43 #define RETRY_MAX	2000	/* >10 sec */
44 
45 #define LINKCHANGE_INT (2 * HZ)
46 #define VF_TAKEOVER_INT (HZ / 10)
47 
48 static unsigned int ring_size __ro_after_init = 128;
49 module_param(ring_size, uint, 0444);
50 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
51 unsigned int netvsc_ring_bytes __ro_after_init;
52 
53 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
54 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
55 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
56 				NETIF_MSG_TX_ERR;
57 
58 static int debug = -1;
59 module_param(debug, int, 0444);
60 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
61 
62 static LIST_HEAD(netvsc_dev_list);
63 
64 static void netvsc_change_rx_flags(struct net_device *net, int change)
65 {
66 	struct net_device_context *ndev_ctx = netdev_priv(net);
67 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
68 	int inc;
69 
70 	if (!vf_netdev)
71 		return;
72 
73 	if (change & IFF_PROMISC) {
74 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
75 		dev_set_promiscuity(vf_netdev, inc);
76 	}
77 
78 	if (change & IFF_ALLMULTI) {
79 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
80 		dev_set_allmulti(vf_netdev, inc);
81 	}
82 }
83 
84 static void netvsc_set_rx_mode(struct net_device *net)
85 {
86 	struct net_device_context *ndev_ctx = netdev_priv(net);
87 	struct net_device *vf_netdev;
88 	struct netvsc_device *nvdev;
89 
90 	rcu_read_lock();
91 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
92 	if (vf_netdev) {
93 		dev_uc_sync(vf_netdev, net);
94 		dev_mc_sync(vf_netdev, net);
95 	}
96 
97 	nvdev = rcu_dereference(ndev_ctx->nvdev);
98 	if (nvdev)
99 		rndis_filter_update(nvdev);
100 	rcu_read_unlock();
101 }
102 
103 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
104 			     struct net_device *ndev)
105 {
106 	nvscdev->tx_disable = false;
107 	virt_wmb(); /* ensure queue wake up mechanism is on */
108 
109 	netif_tx_wake_all_queues(ndev);
110 }
111 
112 static int netvsc_open(struct net_device *net)
113 {
114 	struct net_device_context *ndev_ctx = netdev_priv(net);
115 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
116 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
117 	struct rndis_device *rdev;
118 	int ret = 0;
119 
120 	netif_carrier_off(net);
121 
122 	/* Open up the device */
123 	ret = rndis_filter_open(nvdev);
124 	if (ret != 0) {
125 		netdev_err(net, "unable to open device (ret %d).\n", ret);
126 		return ret;
127 	}
128 
129 	rdev = nvdev->extension;
130 	if (!rdev->link_state) {
131 		netif_carrier_on(net);
132 		netvsc_tx_enable(nvdev, net);
133 	}
134 
135 	if (vf_netdev) {
136 		/* Setting synthetic device up transparently sets
137 		 * slave as up. If open fails, then slave will be
138 		 * still be offline (and not used).
139 		 */
140 		ret = dev_open(vf_netdev, NULL);
141 		if (ret)
142 			netdev_warn(net,
143 				    "unable to open slave: %s: %d\n",
144 				    vf_netdev->name, ret);
145 	}
146 	return 0;
147 }
148 
149 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
150 {
151 	unsigned int retry = 0;
152 	int i;
153 
154 	/* Ensure pending bytes in ring are read */
155 	for (;;) {
156 		u32 aread = 0;
157 
158 		for (i = 0; i < nvdev->num_chn; i++) {
159 			struct vmbus_channel *chn
160 				= nvdev->chan_table[i].channel;
161 
162 			if (!chn)
163 				continue;
164 
165 			/* make sure receive not running now */
166 			napi_synchronize(&nvdev->chan_table[i].napi);
167 
168 			aread = hv_get_bytes_to_read(&chn->inbound);
169 			if (aread)
170 				break;
171 
172 			aread = hv_get_bytes_to_read(&chn->outbound);
173 			if (aread)
174 				break;
175 		}
176 
177 		if (aread == 0)
178 			return 0;
179 
180 		if (++retry > RETRY_MAX)
181 			return -ETIMEDOUT;
182 
183 		usleep_range(RETRY_US_LO, RETRY_US_HI);
184 	}
185 }
186 
187 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
188 			      struct net_device *ndev)
189 {
190 	if (nvscdev) {
191 		nvscdev->tx_disable = true;
192 		virt_wmb(); /* ensure txq will not wake up after stop */
193 	}
194 
195 	netif_tx_disable(ndev);
196 }
197 
198 static int netvsc_close(struct net_device *net)
199 {
200 	struct net_device_context *net_device_ctx = netdev_priv(net);
201 	struct net_device *vf_netdev
202 		= rtnl_dereference(net_device_ctx->vf_netdev);
203 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
204 	int ret;
205 
206 	netvsc_tx_disable(nvdev, net);
207 
208 	/* No need to close rndis filter if it is removed already */
209 	if (!nvdev)
210 		return 0;
211 
212 	ret = rndis_filter_close(nvdev);
213 	if (ret != 0) {
214 		netdev_err(net, "unable to close device (ret %d).\n", ret);
215 		return ret;
216 	}
217 
218 	ret = netvsc_wait_until_empty(nvdev);
219 	if (ret)
220 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
221 
222 	if (vf_netdev)
223 		dev_close(vf_netdev);
224 
225 	return ret;
226 }
227 
228 static inline void *init_ppi_data(struct rndis_message *msg,
229 				  u32 ppi_size, u32 pkt_type)
230 {
231 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
232 	struct rndis_per_packet_info *ppi;
233 
234 	rndis_pkt->data_offset += ppi_size;
235 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
236 		+ rndis_pkt->per_pkt_info_len;
237 
238 	ppi->size = ppi_size;
239 	ppi->type = pkt_type;
240 	ppi->internal = 0;
241 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
242 
243 	rndis_pkt->per_pkt_info_len += ppi_size;
244 
245 	return ppi + 1;
246 }
247 
248 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
249  * packets. We can use ethtool to change UDP hash level when necessary.
250  */
251 static inline u32 netvsc_get_hash(
252 	struct sk_buff *skb,
253 	const struct net_device_context *ndc)
254 {
255 	struct flow_keys flow;
256 	u32 hash, pkt_proto = 0;
257 	static u32 hashrnd __read_mostly;
258 
259 	net_get_random_once(&hashrnd, sizeof(hashrnd));
260 
261 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
262 		return 0;
263 
264 	switch (flow.basic.ip_proto) {
265 	case IPPROTO_TCP:
266 		if (flow.basic.n_proto == htons(ETH_P_IP))
267 			pkt_proto = HV_TCP4_L4HASH;
268 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
269 			pkt_proto = HV_TCP6_L4HASH;
270 
271 		break;
272 
273 	case IPPROTO_UDP:
274 		if (flow.basic.n_proto == htons(ETH_P_IP))
275 			pkt_proto = HV_UDP4_L4HASH;
276 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
277 			pkt_proto = HV_UDP6_L4HASH;
278 
279 		break;
280 	}
281 
282 	if (pkt_proto & ndc->l4_hash) {
283 		return skb_get_hash(skb);
284 	} else {
285 		if (flow.basic.n_proto == htons(ETH_P_IP))
286 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
287 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
288 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
289 		else
290 			return 0;
291 
292 		__skb_set_sw_hash(skb, hash, false);
293 	}
294 
295 	return hash;
296 }
297 
298 static inline int netvsc_get_tx_queue(struct net_device *ndev,
299 				      struct sk_buff *skb, int old_idx)
300 {
301 	const struct net_device_context *ndc = netdev_priv(ndev);
302 	struct sock *sk = skb->sk;
303 	int q_idx;
304 
305 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
306 			      (VRSS_SEND_TAB_SIZE - 1)];
307 
308 	/* If queue index changed record the new value */
309 	if (q_idx != old_idx &&
310 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
311 		sk_tx_queue_set(sk, q_idx);
312 
313 	return q_idx;
314 }
315 
316 /*
317  * Select queue for transmit.
318  *
319  * If a valid queue has already been assigned, then use that.
320  * Otherwise compute tx queue based on hash and the send table.
321  *
322  * This is basically similar to default (netdev_pick_tx) with the added step
323  * of using the host send_table when no other queue has been assigned.
324  *
325  * TODO support XPS - but get_xps_queue not exported
326  */
327 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
328 {
329 	int q_idx = sk_tx_queue_get(skb->sk);
330 
331 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
332 		/* If forwarding a packet, we use the recorded queue when
333 		 * available for better cache locality.
334 		 */
335 		if (skb_rx_queue_recorded(skb))
336 			q_idx = skb_get_rx_queue(skb);
337 		else
338 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
339 	}
340 
341 	return q_idx;
342 }
343 
344 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
345 			       struct net_device *sb_dev)
346 {
347 	struct net_device_context *ndc = netdev_priv(ndev);
348 	struct net_device *vf_netdev;
349 	u16 txq;
350 
351 	rcu_read_lock();
352 	vf_netdev = rcu_dereference(ndc->vf_netdev);
353 	if (vf_netdev) {
354 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
355 
356 		if (vf_ops->ndo_select_queue)
357 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
358 		else
359 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
360 
361 		/* Record the queue selected by VF so that it can be
362 		 * used for common case where VF has more queues than
363 		 * the synthetic device.
364 		 */
365 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
366 	} else {
367 		txq = netvsc_pick_tx(ndev, skb);
368 	}
369 	rcu_read_unlock();
370 
371 	while (txq >= ndev->real_num_tx_queues)
372 		txq -= ndev->real_num_tx_queues;
373 
374 	return txq;
375 }
376 
377 static u32 fill_pg_buf(unsigned long hvpfn, u32 offset, u32 len,
378 		       struct hv_page_buffer *pb)
379 {
380 	int j = 0;
381 
382 	hvpfn += offset >> HV_HYP_PAGE_SHIFT;
383 	offset = offset & ~HV_HYP_PAGE_MASK;
384 
385 	while (len > 0) {
386 		unsigned long bytes;
387 
388 		bytes = HV_HYP_PAGE_SIZE - offset;
389 		if (bytes > len)
390 			bytes = len;
391 		pb[j].pfn = hvpfn;
392 		pb[j].offset = offset;
393 		pb[j].len = bytes;
394 
395 		offset += bytes;
396 		len -= bytes;
397 
398 		if (offset == HV_HYP_PAGE_SIZE && len) {
399 			hvpfn++;
400 			offset = 0;
401 			j++;
402 		}
403 	}
404 
405 	return j + 1;
406 }
407 
408 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
409 			   struct hv_netvsc_packet *packet,
410 			   struct hv_page_buffer *pb)
411 {
412 	u32 slots_used = 0;
413 	char *data = skb->data;
414 	int frags = skb_shinfo(skb)->nr_frags;
415 	int i;
416 
417 	/* The packet is laid out thus:
418 	 * 1. hdr: RNDIS header and PPI
419 	 * 2. skb linear data
420 	 * 3. skb fragment data
421 	 */
422 	slots_used += fill_pg_buf(virt_to_hvpfn(hdr),
423 				  offset_in_hvpage(hdr),
424 				  len,
425 				  &pb[slots_used]);
426 
427 	packet->rmsg_size = len;
428 	packet->rmsg_pgcnt = slots_used;
429 
430 	slots_used += fill_pg_buf(virt_to_hvpfn(data),
431 				  offset_in_hvpage(data),
432 				  skb_headlen(skb),
433 				  &pb[slots_used]);
434 
435 	for (i = 0; i < frags; i++) {
436 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
437 
438 		slots_used += fill_pg_buf(page_to_hvpfn(skb_frag_page(frag)),
439 					  skb_frag_off(frag),
440 					  skb_frag_size(frag),
441 					  &pb[slots_used]);
442 	}
443 	return slots_used;
444 }
445 
446 static int count_skb_frag_slots(struct sk_buff *skb)
447 {
448 	int i, frags = skb_shinfo(skb)->nr_frags;
449 	int pages = 0;
450 
451 	for (i = 0; i < frags; i++) {
452 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
453 		unsigned long size = skb_frag_size(frag);
454 		unsigned long offset = skb_frag_off(frag);
455 
456 		/* Skip unused frames from start of page */
457 		offset &= ~HV_HYP_PAGE_MASK;
458 		pages += HVPFN_UP(offset + size);
459 	}
460 	return pages;
461 }
462 
463 static int netvsc_get_slots(struct sk_buff *skb)
464 {
465 	char *data = skb->data;
466 	unsigned int offset = offset_in_hvpage(data);
467 	unsigned int len = skb_headlen(skb);
468 	int slots;
469 	int frag_slots;
470 
471 	slots = DIV_ROUND_UP(offset + len, HV_HYP_PAGE_SIZE);
472 	frag_slots = count_skb_frag_slots(skb);
473 	return slots + frag_slots;
474 }
475 
476 static u32 net_checksum_info(struct sk_buff *skb)
477 {
478 	if (skb->protocol == htons(ETH_P_IP)) {
479 		struct iphdr *ip = ip_hdr(skb);
480 
481 		if (ip->protocol == IPPROTO_TCP)
482 			return TRANSPORT_INFO_IPV4_TCP;
483 		else if (ip->protocol == IPPROTO_UDP)
484 			return TRANSPORT_INFO_IPV4_UDP;
485 	} else {
486 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
487 
488 		if (ip6->nexthdr == IPPROTO_TCP)
489 			return TRANSPORT_INFO_IPV6_TCP;
490 		else if (ip6->nexthdr == IPPROTO_UDP)
491 			return TRANSPORT_INFO_IPV6_UDP;
492 	}
493 
494 	return TRANSPORT_INFO_NOT_IP;
495 }
496 
497 /* Send skb on the slave VF device. */
498 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
499 			  struct sk_buff *skb)
500 {
501 	struct net_device_context *ndev_ctx = netdev_priv(net);
502 	unsigned int len = skb->len;
503 	int rc;
504 
505 	skb->dev = vf_netdev;
506 	skb_record_rx_queue(skb, qdisc_skb_cb(skb)->slave_dev_queue_mapping);
507 
508 	rc = dev_queue_xmit(skb);
509 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
510 		struct netvsc_vf_pcpu_stats *pcpu_stats
511 			= this_cpu_ptr(ndev_ctx->vf_stats);
512 
513 		u64_stats_update_begin(&pcpu_stats->syncp);
514 		pcpu_stats->tx_packets++;
515 		pcpu_stats->tx_bytes += len;
516 		u64_stats_update_end(&pcpu_stats->syncp);
517 	} else {
518 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
519 	}
520 
521 	return rc;
522 }
523 
524 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx)
525 {
526 	struct net_device_context *net_device_ctx = netdev_priv(net);
527 	struct hv_netvsc_packet *packet = NULL;
528 	int ret;
529 	unsigned int num_data_pgs;
530 	struct rndis_message *rndis_msg;
531 	struct net_device *vf_netdev;
532 	u32 rndis_msg_size;
533 	u32 hash;
534 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
535 
536 	/* If VF is present and up then redirect packets to it.
537 	 * Skip the VF if it is marked down or has no carrier.
538 	 * If netpoll is in uses, then VF can not be used either.
539 	 */
540 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
541 	if (vf_netdev && netif_running(vf_netdev) &&
542 	    netif_carrier_ok(vf_netdev) && !netpoll_tx_running(net))
543 		return netvsc_vf_xmit(net, vf_netdev, skb);
544 
545 	/* We will atmost need two pages to describe the rndis
546 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
547 	 * of pages in a single packet. If skb is scattered around
548 	 * more pages we try linearizing it.
549 	 */
550 
551 	num_data_pgs = netvsc_get_slots(skb) + 2;
552 
553 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
554 		++net_device_ctx->eth_stats.tx_scattered;
555 
556 		if (skb_linearize(skb))
557 			goto no_memory;
558 
559 		num_data_pgs = netvsc_get_slots(skb) + 2;
560 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
561 			++net_device_ctx->eth_stats.tx_too_big;
562 			goto drop;
563 		}
564 	}
565 
566 	/*
567 	 * Place the rndis header in the skb head room and
568 	 * the skb->cb will be used for hv_netvsc_packet
569 	 * structure.
570 	 */
571 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
572 	if (ret)
573 		goto no_memory;
574 
575 	/* Use the skb control buffer for building up the packet */
576 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
577 			sizeof_field(struct sk_buff, cb));
578 	packet = (struct hv_netvsc_packet *)skb->cb;
579 
580 	packet->q_idx = skb_get_queue_mapping(skb);
581 
582 	packet->total_data_buflen = skb->len;
583 	packet->total_bytes = skb->len;
584 	packet->total_packets = 1;
585 
586 	rndis_msg = (struct rndis_message *)skb->head;
587 
588 	/* Add the rndis header */
589 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
590 	rndis_msg->msg_len = packet->total_data_buflen;
591 
592 	rndis_msg->msg.pkt = (struct rndis_packet) {
593 		.data_offset = sizeof(struct rndis_packet),
594 		.data_len = packet->total_data_buflen,
595 		.per_pkt_info_offset = sizeof(struct rndis_packet),
596 	};
597 
598 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
599 
600 	hash = skb_get_hash_raw(skb);
601 	if (hash != 0 && net->real_num_tx_queues > 1) {
602 		u32 *hash_info;
603 
604 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
605 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
606 					  NBL_HASH_VALUE);
607 		*hash_info = hash;
608 	}
609 
610 	/* When using AF_PACKET we need to drop VLAN header from
611 	 * the frame and update the SKB to allow the HOST OS
612 	 * to transmit the 802.1Q packet
613 	 */
614 	if (skb->protocol == htons(ETH_P_8021Q)) {
615 		u16 vlan_tci;
616 
617 		skb_reset_mac_header(skb);
618 		if (eth_type_vlan(eth_hdr(skb)->h_proto)) {
619 			if (unlikely(__skb_vlan_pop(skb, &vlan_tci) != 0)) {
620 				++net_device_ctx->eth_stats.vlan_error;
621 				goto drop;
622 			}
623 
624 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tci);
625 			/* Update the NDIS header pkt lengths */
626 			packet->total_data_buflen -= VLAN_HLEN;
627 			packet->total_bytes -= VLAN_HLEN;
628 			rndis_msg->msg_len = packet->total_data_buflen;
629 			rndis_msg->msg.pkt.data_len = packet->total_data_buflen;
630 		}
631 	}
632 
633 	if (skb_vlan_tag_present(skb)) {
634 		struct ndis_pkt_8021q_info *vlan;
635 
636 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
637 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
638 				     IEEE_8021Q_INFO);
639 
640 		vlan->value = 0;
641 		vlan->vlanid = skb_vlan_tag_get_id(skb);
642 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
643 		vlan->pri = skb_vlan_tag_get_prio(skb);
644 	}
645 
646 	if (skb_is_gso(skb)) {
647 		struct ndis_tcp_lso_info *lso_info;
648 
649 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
650 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
651 					 TCP_LARGESEND_PKTINFO);
652 
653 		lso_info->value = 0;
654 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
655 		if (skb->protocol == htons(ETH_P_IP)) {
656 			lso_info->lso_v2_transmit.ip_version =
657 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
658 			ip_hdr(skb)->tot_len = 0;
659 			ip_hdr(skb)->check = 0;
660 			tcp_hdr(skb)->check =
661 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
662 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
663 		} else {
664 			lso_info->lso_v2_transmit.ip_version =
665 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
666 			tcp_v6_gso_csum_prep(skb);
667 		}
668 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
669 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
670 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
671 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
672 			struct ndis_tcp_ip_checksum_info *csum_info;
673 
674 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
675 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
676 						  TCPIP_CHKSUM_PKTINFO);
677 
678 			csum_info->value = 0;
679 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
680 
681 			if (skb->protocol == htons(ETH_P_IP)) {
682 				csum_info->transmit.is_ipv4 = 1;
683 
684 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
685 					csum_info->transmit.tcp_checksum = 1;
686 				else
687 					csum_info->transmit.udp_checksum = 1;
688 			} else {
689 				csum_info->transmit.is_ipv6 = 1;
690 
691 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
692 					csum_info->transmit.tcp_checksum = 1;
693 				else
694 					csum_info->transmit.udp_checksum = 1;
695 			}
696 		} else {
697 			/* Can't do offload of this type of checksum */
698 			if (skb_checksum_help(skb))
699 				goto drop;
700 		}
701 	}
702 
703 	/* Start filling in the page buffers with the rndis hdr */
704 	rndis_msg->msg_len += rndis_msg_size;
705 	packet->total_data_buflen = rndis_msg->msg_len;
706 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
707 					       skb, packet, pb);
708 
709 	/* timestamp packet in software */
710 	skb_tx_timestamp(skb);
711 
712 	ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx);
713 	if (likely(ret == 0))
714 		return NETDEV_TX_OK;
715 
716 	if (ret == -EAGAIN) {
717 		++net_device_ctx->eth_stats.tx_busy;
718 		return NETDEV_TX_BUSY;
719 	}
720 
721 	if (ret == -ENOSPC)
722 		++net_device_ctx->eth_stats.tx_no_space;
723 
724 drop:
725 	dev_kfree_skb_any(skb);
726 	net->stats.tx_dropped++;
727 
728 	return NETDEV_TX_OK;
729 
730 no_memory:
731 	++net_device_ctx->eth_stats.tx_no_memory;
732 	goto drop;
733 }
734 
735 static netdev_tx_t netvsc_start_xmit(struct sk_buff *skb,
736 				     struct net_device *ndev)
737 {
738 	return netvsc_xmit(skb, ndev, false);
739 }
740 
741 /*
742  * netvsc_linkstatus_callback - Link up/down notification
743  */
744 void netvsc_linkstatus_callback(struct net_device *net,
745 				struct rndis_message *resp)
746 {
747 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
748 	struct net_device_context *ndev_ctx = netdev_priv(net);
749 	struct netvsc_reconfig *event;
750 	unsigned long flags;
751 
752 	/* Ensure the packet is big enough to access its fields */
753 	if (resp->msg_len - RNDIS_HEADER_SIZE < sizeof(struct rndis_indicate_status)) {
754 		netdev_err(net, "invalid rndis_indicate_status packet, len: %u\n",
755 			   resp->msg_len);
756 		return;
757 	}
758 
759 	/* Update the physical link speed when changing to another vSwitch */
760 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
761 		u32 speed;
762 
763 		speed = *(u32 *)((void *)indicate
764 				 + indicate->status_buf_offset) / 10000;
765 		ndev_ctx->speed = speed;
766 		return;
767 	}
768 
769 	/* Handle these link change statuses below */
770 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
771 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
772 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
773 		return;
774 
775 	if (net->reg_state != NETREG_REGISTERED)
776 		return;
777 
778 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
779 	if (!event)
780 		return;
781 	event->event = indicate->status;
782 
783 	spin_lock_irqsave(&ndev_ctx->lock, flags);
784 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
785 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
786 
787 	schedule_delayed_work(&ndev_ctx->dwork, 0);
788 }
789 
790 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev)
791 {
792 	int rc;
793 
794 	skb->queue_mapping = skb_get_rx_queue(skb);
795 	__skb_push(skb, ETH_HLEN);
796 
797 	rc = netvsc_xmit(skb, ndev, true);
798 
799 	if (dev_xmit_complete(rc))
800 		return;
801 
802 	dev_kfree_skb_any(skb);
803 	ndev->stats.tx_dropped++;
804 }
805 
806 static void netvsc_comp_ipcsum(struct sk_buff *skb)
807 {
808 	struct iphdr *iph = (struct iphdr *)skb->data;
809 
810 	iph->check = 0;
811 	iph->check = ip_fast_csum(iph, iph->ihl);
812 }
813 
814 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
815 					     struct netvsc_channel *nvchan,
816 					     struct xdp_buff *xdp)
817 {
818 	struct napi_struct *napi = &nvchan->napi;
819 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
820 	const struct ndis_tcp_ip_checksum_info *csum_info =
821 						nvchan->rsc.csum_info;
822 	const u32 *hash_info = nvchan->rsc.hash_info;
823 	struct sk_buff *skb;
824 	void *xbuf = xdp->data_hard_start;
825 	int i;
826 
827 	if (xbuf) {
828 		unsigned int hdroom = xdp->data - xdp->data_hard_start;
829 		unsigned int xlen = xdp->data_end - xdp->data;
830 		unsigned int frag_size = xdp->frame_sz;
831 
832 		skb = build_skb(xbuf, frag_size);
833 
834 		if (!skb) {
835 			__free_page(virt_to_page(xbuf));
836 			return NULL;
837 		}
838 
839 		skb_reserve(skb, hdroom);
840 		skb_put(skb, xlen);
841 		skb->dev = napi->dev;
842 	} else {
843 		skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
844 
845 		if (!skb)
846 			return NULL;
847 
848 		/* Copy to skb. This copy is needed here since the memory
849 		 * pointed by hv_netvsc_packet cannot be deallocated.
850 		 */
851 		for (i = 0; i < nvchan->rsc.cnt; i++)
852 			skb_put_data(skb, nvchan->rsc.data[i],
853 				     nvchan->rsc.len[i]);
854 	}
855 
856 	skb->protocol = eth_type_trans(skb, net);
857 
858 	/* skb is already created with CHECKSUM_NONE */
859 	skb_checksum_none_assert(skb);
860 
861 	/* Incoming packets may have IP header checksum verified by the host.
862 	 * They may not have IP header checksum computed after coalescing.
863 	 * We compute it here if the flags are set, because on Linux, the IP
864 	 * checksum is always checked.
865 	 */
866 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
867 	    csum_info->receive.ip_checksum_succeeded &&
868 	    skb->protocol == htons(ETH_P_IP))
869 		netvsc_comp_ipcsum(skb);
870 
871 	/* Do L4 checksum offload if enabled and present. */
872 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
873 		if (csum_info->receive.tcp_checksum_succeeded ||
874 		    csum_info->receive.udp_checksum_succeeded)
875 			skb->ip_summed = CHECKSUM_UNNECESSARY;
876 	}
877 
878 	if (hash_info && (net->features & NETIF_F_RXHASH))
879 		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
880 
881 	if (vlan) {
882 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
883 			(vlan->cfi ? VLAN_CFI_MASK : 0);
884 
885 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
886 				       vlan_tci);
887 	}
888 
889 	return skb;
890 }
891 
892 /*
893  * netvsc_recv_callback -  Callback when we receive a packet from the
894  * "wire" on the specified device.
895  */
896 int netvsc_recv_callback(struct net_device *net,
897 			 struct netvsc_device *net_device,
898 			 struct netvsc_channel *nvchan)
899 {
900 	struct net_device_context *net_device_ctx = netdev_priv(net);
901 	struct vmbus_channel *channel = nvchan->channel;
902 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
903 	struct sk_buff *skb;
904 	struct netvsc_stats *rx_stats = &nvchan->rx_stats;
905 	struct xdp_buff xdp;
906 	u32 act;
907 
908 	if (net->reg_state != NETREG_REGISTERED)
909 		return NVSP_STAT_FAIL;
910 
911 	act = netvsc_run_xdp(net, nvchan, &xdp);
912 
913 	if (act != XDP_PASS && act != XDP_TX) {
914 		u64_stats_update_begin(&rx_stats->syncp);
915 		rx_stats->xdp_drop++;
916 		u64_stats_update_end(&rx_stats->syncp);
917 
918 		return NVSP_STAT_SUCCESS; /* consumed by XDP */
919 	}
920 
921 	/* Allocate a skb - TODO direct I/O to pages? */
922 	skb = netvsc_alloc_recv_skb(net, nvchan, &xdp);
923 
924 	if (unlikely(!skb)) {
925 		++net_device_ctx->eth_stats.rx_no_memory;
926 		return NVSP_STAT_FAIL;
927 	}
928 
929 	skb_record_rx_queue(skb, q_idx);
930 
931 	/*
932 	 * Even if injecting the packet, record the statistics
933 	 * on the synthetic device because modifying the VF device
934 	 * statistics will not work correctly.
935 	 */
936 	u64_stats_update_begin(&rx_stats->syncp);
937 	rx_stats->packets++;
938 	rx_stats->bytes += nvchan->rsc.pktlen;
939 
940 	if (skb->pkt_type == PACKET_BROADCAST)
941 		++rx_stats->broadcast;
942 	else if (skb->pkt_type == PACKET_MULTICAST)
943 		++rx_stats->multicast;
944 	u64_stats_update_end(&rx_stats->syncp);
945 
946 	if (act == XDP_TX) {
947 		netvsc_xdp_xmit(skb, net);
948 		return NVSP_STAT_SUCCESS;
949 	}
950 
951 	napi_gro_receive(&nvchan->napi, skb);
952 	return NVSP_STAT_SUCCESS;
953 }
954 
955 static void netvsc_get_drvinfo(struct net_device *net,
956 			       struct ethtool_drvinfo *info)
957 {
958 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
959 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
960 }
961 
962 static void netvsc_get_channels(struct net_device *net,
963 				struct ethtool_channels *channel)
964 {
965 	struct net_device_context *net_device_ctx = netdev_priv(net);
966 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
967 
968 	if (nvdev) {
969 		channel->max_combined	= nvdev->max_chn;
970 		channel->combined_count = nvdev->num_chn;
971 	}
972 }
973 
974 /* Alloc struct netvsc_device_info, and initialize it from either existing
975  * struct netvsc_device, or from default values.
976  */
977 static
978 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev)
979 {
980 	struct netvsc_device_info *dev_info;
981 	struct bpf_prog *prog;
982 
983 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
984 
985 	if (!dev_info)
986 		return NULL;
987 
988 	if (nvdev) {
989 		ASSERT_RTNL();
990 
991 		dev_info->num_chn = nvdev->num_chn;
992 		dev_info->send_sections = nvdev->send_section_cnt;
993 		dev_info->send_section_size = nvdev->send_section_size;
994 		dev_info->recv_sections = nvdev->recv_section_cnt;
995 		dev_info->recv_section_size = nvdev->recv_section_size;
996 
997 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
998 		       NETVSC_HASH_KEYLEN);
999 
1000 		prog = netvsc_xdp_get(nvdev);
1001 		if (prog) {
1002 			bpf_prog_inc(prog);
1003 			dev_info->bprog = prog;
1004 		}
1005 	} else {
1006 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
1007 		dev_info->send_sections = NETVSC_DEFAULT_TX;
1008 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
1009 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
1010 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
1011 	}
1012 
1013 	return dev_info;
1014 }
1015 
1016 /* Free struct netvsc_device_info */
1017 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info)
1018 {
1019 	if (dev_info->bprog) {
1020 		ASSERT_RTNL();
1021 		bpf_prog_put(dev_info->bprog);
1022 	}
1023 
1024 	kfree(dev_info);
1025 }
1026 
1027 static int netvsc_detach(struct net_device *ndev,
1028 			 struct netvsc_device *nvdev)
1029 {
1030 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1031 	struct hv_device *hdev = ndev_ctx->device_ctx;
1032 	int ret;
1033 
1034 	/* Don't try continuing to try and setup sub channels */
1035 	if (cancel_work_sync(&nvdev->subchan_work))
1036 		nvdev->num_chn = 1;
1037 
1038 	netvsc_xdp_set(ndev, NULL, NULL, nvdev);
1039 
1040 	/* If device was up (receiving) then shutdown */
1041 	if (netif_running(ndev)) {
1042 		netvsc_tx_disable(nvdev, ndev);
1043 
1044 		ret = rndis_filter_close(nvdev);
1045 		if (ret) {
1046 			netdev_err(ndev,
1047 				   "unable to close device (ret %d).\n", ret);
1048 			return ret;
1049 		}
1050 
1051 		ret = netvsc_wait_until_empty(nvdev);
1052 		if (ret) {
1053 			netdev_err(ndev,
1054 				   "Ring buffer not empty after closing rndis\n");
1055 			return ret;
1056 		}
1057 	}
1058 
1059 	netif_device_detach(ndev);
1060 
1061 	rndis_filter_device_remove(hdev, nvdev);
1062 
1063 	return 0;
1064 }
1065 
1066 static int netvsc_attach(struct net_device *ndev,
1067 			 struct netvsc_device_info *dev_info)
1068 {
1069 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1070 	struct hv_device *hdev = ndev_ctx->device_ctx;
1071 	struct netvsc_device *nvdev;
1072 	struct rndis_device *rdev;
1073 	struct bpf_prog *prog;
1074 	int ret = 0;
1075 
1076 	nvdev = rndis_filter_device_add(hdev, dev_info);
1077 	if (IS_ERR(nvdev))
1078 		return PTR_ERR(nvdev);
1079 
1080 	if (nvdev->num_chn > 1) {
1081 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
1082 
1083 		/* if unavailable, just proceed with one queue */
1084 		if (ret) {
1085 			nvdev->max_chn = 1;
1086 			nvdev->num_chn = 1;
1087 		}
1088 	}
1089 
1090 	prog = dev_info->bprog;
1091 	if (prog) {
1092 		bpf_prog_inc(prog);
1093 		ret = netvsc_xdp_set(ndev, prog, NULL, nvdev);
1094 		if (ret) {
1095 			bpf_prog_put(prog);
1096 			goto err1;
1097 		}
1098 	}
1099 
1100 	/* In any case device is now ready */
1101 	nvdev->tx_disable = false;
1102 	netif_device_attach(ndev);
1103 
1104 	/* Note: enable and attach happen when sub-channels setup */
1105 	netif_carrier_off(ndev);
1106 
1107 	if (netif_running(ndev)) {
1108 		ret = rndis_filter_open(nvdev);
1109 		if (ret)
1110 			goto err2;
1111 
1112 		rdev = nvdev->extension;
1113 		if (!rdev->link_state)
1114 			netif_carrier_on(ndev);
1115 	}
1116 
1117 	return 0;
1118 
1119 err2:
1120 	netif_device_detach(ndev);
1121 
1122 err1:
1123 	rndis_filter_device_remove(hdev, nvdev);
1124 
1125 	return ret;
1126 }
1127 
1128 static int netvsc_set_channels(struct net_device *net,
1129 			       struct ethtool_channels *channels)
1130 {
1131 	struct net_device_context *net_device_ctx = netdev_priv(net);
1132 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1133 	unsigned int orig, count = channels->combined_count;
1134 	struct netvsc_device_info *device_info;
1135 	int ret;
1136 
1137 	/* We do not support separate count for rx, tx, or other */
1138 	if (count == 0 ||
1139 	    channels->rx_count || channels->tx_count || channels->other_count)
1140 		return -EINVAL;
1141 
1142 	if (!nvdev || nvdev->destroy)
1143 		return -ENODEV;
1144 
1145 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1146 		return -EINVAL;
1147 
1148 	if (count > nvdev->max_chn)
1149 		return -EINVAL;
1150 
1151 	orig = nvdev->num_chn;
1152 
1153 	device_info = netvsc_devinfo_get(nvdev);
1154 
1155 	if (!device_info)
1156 		return -ENOMEM;
1157 
1158 	device_info->num_chn = count;
1159 
1160 	ret = netvsc_detach(net, nvdev);
1161 	if (ret)
1162 		goto out;
1163 
1164 	ret = netvsc_attach(net, device_info);
1165 	if (ret) {
1166 		device_info->num_chn = orig;
1167 		if (netvsc_attach(net, device_info))
1168 			netdev_err(net, "restoring channel setting failed\n");
1169 	}
1170 
1171 out:
1172 	netvsc_devinfo_put(device_info);
1173 	return ret;
1174 }
1175 
1176 static void netvsc_init_settings(struct net_device *dev)
1177 {
1178 	struct net_device_context *ndc = netdev_priv(dev);
1179 
1180 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1181 
1182 	ndc->speed = SPEED_UNKNOWN;
1183 	ndc->duplex = DUPLEX_FULL;
1184 
1185 	dev->features = NETIF_F_LRO;
1186 }
1187 
1188 static int netvsc_get_link_ksettings(struct net_device *dev,
1189 				     struct ethtool_link_ksettings *cmd)
1190 {
1191 	struct net_device_context *ndc = netdev_priv(dev);
1192 	struct net_device *vf_netdev;
1193 
1194 	vf_netdev = rtnl_dereference(ndc->vf_netdev);
1195 
1196 	if (vf_netdev)
1197 		return __ethtool_get_link_ksettings(vf_netdev, cmd);
1198 
1199 	cmd->base.speed = ndc->speed;
1200 	cmd->base.duplex = ndc->duplex;
1201 	cmd->base.port = PORT_OTHER;
1202 
1203 	return 0;
1204 }
1205 
1206 static int netvsc_set_link_ksettings(struct net_device *dev,
1207 				     const struct ethtool_link_ksettings *cmd)
1208 {
1209 	struct net_device_context *ndc = netdev_priv(dev);
1210 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1211 
1212 	if (vf_netdev) {
1213 		if (!vf_netdev->ethtool_ops->set_link_ksettings)
1214 			return -EOPNOTSUPP;
1215 
1216 		return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev,
1217 								  cmd);
1218 	}
1219 
1220 	return ethtool_virtdev_set_link_ksettings(dev, cmd,
1221 						  &ndc->speed, &ndc->duplex);
1222 }
1223 
1224 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1225 {
1226 	struct net_device_context *ndevctx = netdev_priv(ndev);
1227 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1228 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1229 	int orig_mtu = ndev->mtu;
1230 	struct netvsc_device_info *device_info;
1231 	int ret = 0;
1232 
1233 	if (!nvdev || nvdev->destroy)
1234 		return -ENODEV;
1235 
1236 	device_info = netvsc_devinfo_get(nvdev);
1237 
1238 	if (!device_info)
1239 		return -ENOMEM;
1240 
1241 	/* Change MTU of underlying VF netdev first. */
1242 	if (vf_netdev) {
1243 		ret = dev_set_mtu(vf_netdev, mtu);
1244 		if (ret)
1245 			goto out;
1246 	}
1247 
1248 	ret = netvsc_detach(ndev, nvdev);
1249 	if (ret)
1250 		goto rollback_vf;
1251 
1252 	ndev->mtu = mtu;
1253 
1254 	ret = netvsc_attach(ndev, device_info);
1255 	if (!ret)
1256 		goto out;
1257 
1258 	/* Attempt rollback to original MTU */
1259 	ndev->mtu = orig_mtu;
1260 
1261 	if (netvsc_attach(ndev, device_info))
1262 		netdev_err(ndev, "restoring mtu failed\n");
1263 rollback_vf:
1264 	if (vf_netdev)
1265 		dev_set_mtu(vf_netdev, orig_mtu);
1266 
1267 out:
1268 	netvsc_devinfo_put(device_info);
1269 	return ret;
1270 }
1271 
1272 static void netvsc_get_vf_stats(struct net_device *net,
1273 				struct netvsc_vf_pcpu_stats *tot)
1274 {
1275 	struct net_device_context *ndev_ctx = netdev_priv(net);
1276 	int i;
1277 
1278 	memset(tot, 0, sizeof(*tot));
1279 
1280 	for_each_possible_cpu(i) {
1281 		const struct netvsc_vf_pcpu_stats *stats
1282 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1283 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1284 		unsigned int start;
1285 
1286 		do {
1287 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1288 			rx_packets = stats->rx_packets;
1289 			tx_packets = stats->tx_packets;
1290 			rx_bytes = stats->rx_bytes;
1291 			tx_bytes = stats->tx_bytes;
1292 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1293 
1294 		tot->rx_packets += rx_packets;
1295 		tot->tx_packets += tx_packets;
1296 		tot->rx_bytes   += rx_bytes;
1297 		tot->tx_bytes   += tx_bytes;
1298 		tot->tx_dropped += stats->tx_dropped;
1299 	}
1300 }
1301 
1302 static void netvsc_get_pcpu_stats(struct net_device *net,
1303 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1304 {
1305 	struct net_device_context *ndev_ctx = netdev_priv(net);
1306 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1307 	int i;
1308 
1309 	/* fetch percpu stats of vf */
1310 	for_each_possible_cpu(i) {
1311 		const struct netvsc_vf_pcpu_stats *stats =
1312 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1313 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1314 		unsigned int start;
1315 
1316 		do {
1317 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1318 			this_tot->vf_rx_packets = stats->rx_packets;
1319 			this_tot->vf_tx_packets = stats->tx_packets;
1320 			this_tot->vf_rx_bytes = stats->rx_bytes;
1321 			this_tot->vf_tx_bytes = stats->tx_bytes;
1322 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1323 		this_tot->rx_packets = this_tot->vf_rx_packets;
1324 		this_tot->tx_packets = this_tot->vf_tx_packets;
1325 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1326 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1327 	}
1328 
1329 	/* fetch percpu stats of netvsc */
1330 	for (i = 0; i < nvdev->num_chn; i++) {
1331 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1332 		const struct netvsc_stats *stats;
1333 		struct netvsc_ethtool_pcpu_stats *this_tot =
1334 			&pcpu_tot[nvchan->channel->target_cpu];
1335 		u64 packets, bytes;
1336 		unsigned int start;
1337 
1338 		stats = &nvchan->tx_stats;
1339 		do {
1340 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1341 			packets = stats->packets;
1342 			bytes = stats->bytes;
1343 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1344 
1345 		this_tot->tx_bytes	+= bytes;
1346 		this_tot->tx_packets	+= packets;
1347 
1348 		stats = &nvchan->rx_stats;
1349 		do {
1350 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1351 			packets = stats->packets;
1352 			bytes = stats->bytes;
1353 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1354 
1355 		this_tot->rx_bytes	+= bytes;
1356 		this_tot->rx_packets	+= packets;
1357 	}
1358 }
1359 
1360 static void netvsc_get_stats64(struct net_device *net,
1361 			       struct rtnl_link_stats64 *t)
1362 {
1363 	struct net_device_context *ndev_ctx = netdev_priv(net);
1364 	struct netvsc_device *nvdev;
1365 	struct netvsc_vf_pcpu_stats vf_tot;
1366 	int i;
1367 
1368 	rcu_read_lock();
1369 
1370 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1371 	if (!nvdev)
1372 		goto out;
1373 
1374 	netdev_stats_to_stats64(t, &net->stats);
1375 
1376 	netvsc_get_vf_stats(net, &vf_tot);
1377 	t->rx_packets += vf_tot.rx_packets;
1378 	t->tx_packets += vf_tot.tx_packets;
1379 	t->rx_bytes   += vf_tot.rx_bytes;
1380 	t->tx_bytes   += vf_tot.tx_bytes;
1381 	t->tx_dropped += vf_tot.tx_dropped;
1382 
1383 	for (i = 0; i < nvdev->num_chn; i++) {
1384 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1385 		const struct netvsc_stats *stats;
1386 		u64 packets, bytes, multicast;
1387 		unsigned int start;
1388 
1389 		stats = &nvchan->tx_stats;
1390 		do {
1391 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1392 			packets = stats->packets;
1393 			bytes = stats->bytes;
1394 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1395 
1396 		t->tx_bytes	+= bytes;
1397 		t->tx_packets	+= packets;
1398 
1399 		stats = &nvchan->rx_stats;
1400 		do {
1401 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1402 			packets = stats->packets;
1403 			bytes = stats->bytes;
1404 			multicast = stats->multicast + stats->broadcast;
1405 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1406 
1407 		t->rx_bytes	+= bytes;
1408 		t->rx_packets	+= packets;
1409 		t->multicast	+= multicast;
1410 	}
1411 out:
1412 	rcu_read_unlock();
1413 }
1414 
1415 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1416 {
1417 	struct net_device_context *ndc = netdev_priv(ndev);
1418 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1419 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1420 	struct sockaddr *addr = p;
1421 	int err;
1422 
1423 	err = eth_prepare_mac_addr_change(ndev, p);
1424 	if (err)
1425 		return err;
1426 
1427 	if (!nvdev)
1428 		return -ENODEV;
1429 
1430 	if (vf_netdev) {
1431 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1432 		if (err)
1433 			return err;
1434 	}
1435 
1436 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1437 	if (!err) {
1438 		eth_commit_mac_addr_change(ndev, p);
1439 	} else if (vf_netdev) {
1440 		/* rollback change on VF */
1441 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1442 		dev_set_mac_address(vf_netdev, addr, NULL);
1443 	}
1444 
1445 	return err;
1446 }
1447 
1448 static const struct {
1449 	char name[ETH_GSTRING_LEN];
1450 	u16 offset;
1451 } netvsc_stats[] = {
1452 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1453 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1454 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1455 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1456 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1457 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1458 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1459 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1460 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1461 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1462 	{ "vlan_error", offsetof(struct netvsc_ethtool_stats, vlan_error) },
1463 }, pcpu_stats[] = {
1464 	{ "cpu%u_rx_packets",
1465 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1466 	{ "cpu%u_rx_bytes",
1467 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1468 	{ "cpu%u_tx_packets",
1469 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1470 	{ "cpu%u_tx_bytes",
1471 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1472 	{ "cpu%u_vf_rx_packets",
1473 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1474 	{ "cpu%u_vf_rx_bytes",
1475 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1476 	{ "cpu%u_vf_tx_packets",
1477 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1478 	{ "cpu%u_vf_tx_bytes",
1479 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1480 }, vf_stats[] = {
1481 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1482 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1483 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1484 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1485 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1486 };
1487 
1488 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1489 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1490 
1491 /* statistics per queue (rx/tx packets/bytes) */
1492 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1493 
1494 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */
1495 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5)
1496 
1497 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1498 {
1499 	struct net_device_context *ndc = netdev_priv(dev);
1500 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1501 
1502 	if (!nvdev)
1503 		return -ENODEV;
1504 
1505 	switch (string_set) {
1506 	case ETH_SS_STATS:
1507 		return NETVSC_GLOBAL_STATS_LEN
1508 			+ NETVSC_VF_STATS_LEN
1509 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1510 			+ NETVSC_PCPU_STATS_LEN;
1511 	default:
1512 		return -EINVAL;
1513 	}
1514 }
1515 
1516 static void netvsc_get_ethtool_stats(struct net_device *dev,
1517 				     struct ethtool_stats *stats, u64 *data)
1518 {
1519 	struct net_device_context *ndc = netdev_priv(dev);
1520 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1521 	const void *nds = &ndc->eth_stats;
1522 	const struct netvsc_stats *qstats;
1523 	struct netvsc_vf_pcpu_stats sum;
1524 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1525 	unsigned int start;
1526 	u64 packets, bytes;
1527 	u64 xdp_drop;
1528 	int i, j, cpu;
1529 
1530 	if (!nvdev)
1531 		return;
1532 
1533 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1534 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1535 
1536 	netvsc_get_vf_stats(dev, &sum);
1537 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1538 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1539 
1540 	for (j = 0; j < nvdev->num_chn; j++) {
1541 		qstats = &nvdev->chan_table[j].tx_stats;
1542 
1543 		do {
1544 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1545 			packets = qstats->packets;
1546 			bytes = qstats->bytes;
1547 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1548 		data[i++] = packets;
1549 		data[i++] = bytes;
1550 
1551 		qstats = &nvdev->chan_table[j].rx_stats;
1552 		do {
1553 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1554 			packets = qstats->packets;
1555 			bytes = qstats->bytes;
1556 			xdp_drop = qstats->xdp_drop;
1557 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1558 		data[i++] = packets;
1559 		data[i++] = bytes;
1560 		data[i++] = xdp_drop;
1561 	}
1562 
1563 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1564 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1565 				  GFP_KERNEL);
1566 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1567 	for_each_present_cpu(cpu) {
1568 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1569 
1570 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1571 			data[i++] = *(u64 *)((void *)this_sum
1572 					     + pcpu_stats[j].offset);
1573 	}
1574 	kvfree(pcpu_sum);
1575 }
1576 
1577 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1578 {
1579 	struct net_device_context *ndc = netdev_priv(dev);
1580 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1581 	u8 *p = data;
1582 	int i, cpu;
1583 
1584 	if (!nvdev)
1585 		return;
1586 
1587 	switch (stringset) {
1588 	case ETH_SS_STATS:
1589 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1590 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1591 			p += ETH_GSTRING_LEN;
1592 		}
1593 
1594 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1595 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1596 			p += ETH_GSTRING_LEN;
1597 		}
1598 
1599 		for (i = 0; i < nvdev->num_chn; i++) {
1600 			sprintf(p, "tx_queue_%u_packets", i);
1601 			p += ETH_GSTRING_LEN;
1602 			sprintf(p, "tx_queue_%u_bytes", i);
1603 			p += ETH_GSTRING_LEN;
1604 			sprintf(p, "rx_queue_%u_packets", i);
1605 			p += ETH_GSTRING_LEN;
1606 			sprintf(p, "rx_queue_%u_bytes", i);
1607 			p += ETH_GSTRING_LEN;
1608 			sprintf(p, "rx_queue_%u_xdp_drop", i);
1609 			p += ETH_GSTRING_LEN;
1610 		}
1611 
1612 		for_each_present_cpu(cpu) {
1613 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1614 				sprintf(p, pcpu_stats[i].name, cpu);
1615 				p += ETH_GSTRING_LEN;
1616 			}
1617 		}
1618 
1619 		break;
1620 	}
1621 }
1622 
1623 static int
1624 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1625 			 struct ethtool_rxnfc *info)
1626 {
1627 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1628 
1629 	info->data = RXH_IP_SRC | RXH_IP_DST;
1630 
1631 	switch (info->flow_type) {
1632 	case TCP_V4_FLOW:
1633 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1634 			info->data |= l4_flag;
1635 
1636 		break;
1637 
1638 	case TCP_V6_FLOW:
1639 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1640 			info->data |= l4_flag;
1641 
1642 		break;
1643 
1644 	case UDP_V4_FLOW:
1645 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1646 			info->data |= l4_flag;
1647 
1648 		break;
1649 
1650 	case UDP_V6_FLOW:
1651 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1652 			info->data |= l4_flag;
1653 
1654 		break;
1655 
1656 	case IPV4_FLOW:
1657 	case IPV6_FLOW:
1658 		break;
1659 	default:
1660 		info->data = 0;
1661 		break;
1662 	}
1663 
1664 	return 0;
1665 }
1666 
1667 static int
1668 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1669 		 u32 *rules)
1670 {
1671 	struct net_device_context *ndc = netdev_priv(dev);
1672 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1673 
1674 	if (!nvdev)
1675 		return -ENODEV;
1676 
1677 	switch (info->cmd) {
1678 	case ETHTOOL_GRXRINGS:
1679 		info->data = nvdev->num_chn;
1680 		return 0;
1681 
1682 	case ETHTOOL_GRXFH:
1683 		return netvsc_get_rss_hash_opts(ndc, info);
1684 	}
1685 	return -EOPNOTSUPP;
1686 }
1687 
1688 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1689 				    struct ethtool_rxnfc *info)
1690 {
1691 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1692 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1693 		switch (info->flow_type) {
1694 		case TCP_V4_FLOW:
1695 			ndc->l4_hash |= HV_TCP4_L4HASH;
1696 			break;
1697 
1698 		case TCP_V6_FLOW:
1699 			ndc->l4_hash |= HV_TCP6_L4HASH;
1700 			break;
1701 
1702 		case UDP_V4_FLOW:
1703 			ndc->l4_hash |= HV_UDP4_L4HASH;
1704 			break;
1705 
1706 		case UDP_V6_FLOW:
1707 			ndc->l4_hash |= HV_UDP6_L4HASH;
1708 			break;
1709 
1710 		default:
1711 			return -EOPNOTSUPP;
1712 		}
1713 
1714 		return 0;
1715 	}
1716 
1717 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1718 		switch (info->flow_type) {
1719 		case TCP_V4_FLOW:
1720 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1721 			break;
1722 
1723 		case TCP_V6_FLOW:
1724 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1725 			break;
1726 
1727 		case UDP_V4_FLOW:
1728 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1729 			break;
1730 
1731 		case UDP_V6_FLOW:
1732 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1733 			break;
1734 
1735 		default:
1736 			return -EOPNOTSUPP;
1737 		}
1738 
1739 		return 0;
1740 	}
1741 
1742 	return -EOPNOTSUPP;
1743 }
1744 
1745 static int
1746 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1747 {
1748 	struct net_device_context *ndc = netdev_priv(ndev);
1749 
1750 	if (info->cmd == ETHTOOL_SRXFH)
1751 		return netvsc_set_rss_hash_opts(ndc, info);
1752 
1753 	return -EOPNOTSUPP;
1754 }
1755 
1756 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1757 {
1758 	return NETVSC_HASH_KEYLEN;
1759 }
1760 
1761 static u32 netvsc_rss_indir_size(struct net_device *dev)
1762 {
1763 	return ITAB_NUM;
1764 }
1765 
1766 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1767 			   u8 *hfunc)
1768 {
1769 	struct net_device_context *ndc = netdev_priv(dev);
1770 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1771 	struct rndis_device *rndis_dev;
1772 	int i;
1773 
1774 	if (!ndev)
1775 		return -ENODEV;
1776 
1777 	if (hfunc)
1778 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1779 
1780 	rndis_dev = ndev->extension;
1781 	if (indir) {
1782 		for (i = 0; i < ITAB_NUM; i++)
1783 			indir[i] = ndc->rx_table[i];
1784 	}
1785 
1786 	if (key)
1787 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1788 
1789 	return 0;
1790 }
1791 
1792 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1793 			   const u8 *key, const u8 hfunc)
1794 {
1795 	struct net_device_context *ndc = netdev_priv(dev);
1796 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1797 	struct rndis_device *rndis_dev;
1798 	int i;
1799 
1800 	if (!ndev)
1801 		return -ENODEV;
1802 
1803 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1804 		return -EOPNOTSUPP;
1805 
1806 	rndis_dev = ndev->extension;
1807 	if (indir) {
1808 		for (i = 0; i < ITAB_NUM; i++)
1809 			if (indir[i] >= ndev->num_chn)
1810 				return -EINVAL;
1811 
1812 		for (i = 0; i < ITAB_NUM; i++)
1813 			ndc->rx_table[i] = indir[i];
1814 	}
1815 
1816 	if (!key) {
1817 		if (!indir)
1818 			return 0;
1819 
1820 		key = rndis_dev->rss_key;
1821 	}
1822 
1823 	return rndis_filter_set_rss_param(rndis_dev, key);
1824 }
1825 
1826 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1827  * It does have pre-allocated receive area which is divided into sections.
1828  */
1829 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1830 				   struct ethtool_ringparam *ring)
1831 {
1832 	u32 max_buf_size;
1833 
1834 	ring->rx_pending = nvdev->recv_section_cnt;
1835 	ring->tx_pending = nvdev->send_section_cnt;
1836 
1837 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1838 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1839 	else
1840 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1841 
1842 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1843 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1844 		/ nvdev->send_section_size;
1845 }
1846 
1847 static void netvsc_get_ringparam(struct net_device *ndev,
1848 				 struct ethtool_ringparam *ring)
1849 {
1850 	struct net_device_context *ndevctx = netdev_priv(ndev);
1851 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1852 
1853 	if (!nvdev)
1854 		return;
1855 
1856 	__netvsc_get_ringparam(nvdev, ring);
1857 }
1858 
1859 static int netvsc_set_ringparam(struct net_device *ndev,
1860 				struct ethtool_ringparam *ring)
1861 {
1862 	struct net_device_context *ndevctx = netdev_priv(ndev);
1863 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1864 	struct netvsc_device_info *device_info;
1865 	struct ethtool_ringparam orig;
1866 	u32 new_tx, new_rx;
1867 	int ret = 0;
1868 
1869 	if (!nvdev || nvdev->destroy)
1870 		return -ENODEV;
1871 
1872 	memset(&orig, 0, sizeof(orig));
1873 	__netvsc_get_ringparam(nvdev, &orig);
1874 
1875 	new_tx = clamp_t(u32, ring->tx_pending,
1876 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1877 	new_rx = clamp_t(u32, ring->rx_pending,
1878 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1879 
1880 	if (new_tx == orig.tx_pending &&
1881 	    new_rx == orig.rx_pending)
1882 		return 0;	 /* no change */
1883 
1884 	device_info = netvsc_devinfo_get(nvdev);
1885 
1886 	if (!device_info)
1887 		return -ENOMEM;
1888 
1889 	device_info->send_sections = new_tx;
1890 	device_info->recv_sections = new_rx;
1891 
1892 	ret = netvsc_detach(ndev, nvdev);
1893 	if (ret)
1894 		goto out;
1895 
1896 	ret = netvsc_attach(ndev, device_info);
1897 	if (ret) {
1898 		device_info->send_sections = orig.tx_pending;
1899 		device_info->recv_sections = orig.rx_pending;
1900 
1901 		if (netvsc_attach(ndev, device_info))
1902 			netdev_err(ndev, "restoring ringparam failed");
1903 	}
1904 
1905 out:
1906 	netvsc_devinfo_put(device_info);
1907 	return ret;
1908 }
1909 
1910 static netdev_features_t netvsc_fix_features(struct net_device *ndev,
1911 					     netdev_features_t features)
1912 {
1913 	struct net_device_context *ndevctx = netdev_priv(ndev);
1914 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1915 
1916 	if (!nvdev || nvdev->destroy)
1917 		return features;
1918 
1919 	if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) {
1920 		features ^= NETIF_F_LRO;
1921 		netdev_info(ndev, "Skip LRO - unsupported with XDP\n");
1922 	}
1923 
1924 	return features;
1925 }
1926 
1927 static int netvsc_set_features(struct net_device *ndev,
1928 			       netdev_features_t features)
1929 {
1930 	netdev_features_t change = features ^ ndev->features;
1931 	struct net_device_context *ndevctx = netdev_priv(ndev);
1932 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1933 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1934 	struct ndis_offload_params offloads;
1935 	int ret = 0;
1936 
1937 	if (!nvdev || nvdev->destroy)
1938 		return -ENODEV;
1939 
1940 	if (!(change & NETIF_F_LRO))
1941 		goto syncvf;
1942 
1943 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1944 
1945 	if (features & NETIF_F_LRO) {
1946 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1947 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1948 	} else {
1949 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1950 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1951 	}
1952 
1953 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1954 
1955 	if (ret) {
1956 		features ^= NETIF_F_LRO;
1957 		ndev->features = features;
1958 	}
1959 
1960 syncvf:
1961 	if (!vf_netdev)
1962 		return ret;
1963 
1964 	vf_netdev->wanted_features = features;
1965 	netdev_update_features(vf_netdev);
1966 
1967 	return ret;
1968 }
1969 
1970 static int netvsc_get_regs_len(struct net_device *netdev)
1971 {
1972 	return VRSS_SEND_TAB_SIZE * sizeof(u32);
1973 }
1974 
1975 static void netvsc_get_regs(struct net_device *netdev,
1976 			    struct ethtool_regs *regs, void *p)
1977 {
1978 	struct net_device_context *ndc = netdev_priv(netdev);
1979 	u32 *regs_buff = p;
1980 
1981 	/* increase the version, if buffer format is changed. */
1982 	regs->version = 1;
1983 
1984 	memcpy(regs_buff, ndc->tx_table, VRSS_SEND_TAB_SIZE * sizeof(u32));
1985 }
1986 
1987 static u32 netvsc_get_msglevel(struct net_device *ndev)
1988 {
1989 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1990 
1991 	return ndev_ctx->msg_enable;
1992 }
1993 
1994 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1995 {
1996 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1997 
1998 	ndev_ctx->msg_enable = val;
1999 }
2000 
2001 static const struct ethtool_ops ethtool_ops = {
2002 	.get_drvinfo	= netvsc_get_drvinfo,
2003 	.get_regs_len	= netvsc_get_regs_len,
2004 	.get_regs	= netvsc_get_regs,
2005 	.get_msglevel	= netvsc_get_msglevel,
2006 	.set_msglevel	= netvsc_set_msglevel,
2007 	.get_link	= ethtool_op_get_link,
2008 	.get_ethtool_stats = netvsc_get_ethtool_stats,
2009 	.get_sset_count = netvsc_get_sset_count,
2010 	.get_strings	= netvsc_get_strings,
2011 	.get_channels   = netvsc_get_channels,
2012 	.set_channels   = netvsc_set_channels,
2013 	.get_ts_info	= ethtool_op_get_ts_info,
2014 	.get_rxnfc	= netvsc_get_rxnfc,
2015 	.set_rxnfc	= netvsc_set_rxnfc,
2016 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
2017 	.get_rxfh_indir_size = netvsc_rss_indir_size,
2018 	.get_rxfh	= netvsc_get_rxfh,
2019 	.set_rxfh	= netvsc_set_rxfh,
2020 	.get_link_ksettings = netvsc_get_link_ksettings,
2021 	.set_link_ksettings = netvsc_set_link_ksettings,
2022 	.get_ringparam	= netvsc_get_ringparam,
2023 	.set_ringparam	= netvsc_set_ringparam,
2024 };
2025 
2026 static const struct net_device_ops device_ops = {
2027 	.ndo_open =			netvsc_open,
2028 	.ndo_stop =			netvsc_close,
2029 	.ndo_start_xmit =		netvsc_start_xmit,
2030 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
2031 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
2032 	.ndo_fix_features =		netvsc_fix_features,
2033 	.ndo_set_features =		netvsc_set_features,
2034 	.ndo_change_mtu =		netvsc_change_mtu,
2035 	.ndo_validate_addr =		eth_validate_addr,
2036 	.ndo_set_mac_address =		netvsc_set_mac_addr,
2037 	.ndo_select_queue =		netvsc_select_queue,
2038 	.ndo_get_stats64 =		netvsc_get_stats64,
2039 	.ndo_bpf =			netvsc_bpf,
2040 };
2041 
2042 /*
2043  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
2044  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
2045  * present send GARP packet to network peers with netif_notify_peers().
2046  */
2047 static void netvsc_link_change(struct work_struct *w)
2048 {
2049 	struct net_device_context *ndev_ctx =
2050 		container_of(w, struct net_device_context, dwork.work);
2051 	struct hv_device *device_obj = ndev_ctx->device_ctx;
2052 	struct net_device *net = hv_get_drvdata(device_obj);
2053 	unsigned long flags, next_reconfig, delay;
2054 	struct netvsc_reconfig *event = NULL;
2055 	struct netvsc_device *net_device;
2056 	struct rndis_device *rdev;
2057 	bool reschedule = false;
2058 
2059 	/* if changes are happening, comeback later */
2060 	if (!rtnl_trylock()) {
2061 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2062 		return;
2063 	}
2064 
2065 	net_device = rtnl_dereference(ndev_ctx->nvdev);
2066 	if (!net_device)
2067 		goto out_unlock;
2068 
2069 	rdev = net_device->extension;
2070 
2071 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
2072 	if (time_is_after_jiffies(next_reconfig)) {
2073 		/* link_watch only sends one notification with current state
2074 		 * per second, avoid doing reconfig more frequently. Handle
2075 		 * wrap around.
2076 		 */
2077 		delay = next_reconfig - jiffies;
2078 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
2079 		schedule_delayed_work(&ndev_ctx->dwork, delay);
2080 		goto out_unlock;
2081 	}
2082 	ndev_ctx->last_reconfig = jiffies;
2083 
2084 	spin_lock_irqsave(&ndev_ctx->lock, flags);
2085 	if (!list_empty(&ndev_ctx->reconfig_events)) {
2086 		event = list_first_entry(&ndev_ctx->reconfig_events,
2087 					 struct netvsc_reconfig, list);
2088 		list_del(&event->list);
2089 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
2090 	}
2091 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2092 
2093 	if (!event)
2094 		goto out_unlock;
2095 
2096 	switch (event->event) {
2097 		/* Only the following events are possible due to the check in
2098 		 * netvsc_linkstatus_callback()
2099 		 */
2100 	case RNDIS_STATUS_MEDIA_CONNECT:
2101 		if (rdev->link_state) {
2102 			rdev->link_state = false;
2103 			netif_carrier_on(net);
2104 			netvsc_tx_enable(net_device, net);
2105 		} else {
2106 			__netdev_notify_peers(net);
2107 		}
2108 		kfree(event);
2109 		break;
2110 	case RNDIS_STATUS_MEDIA_DISCONNECT:
2111 		if (!rdev->link_state) {
2112 			rdev->link_state = true;
2113 			netif_carrier_off(net);
2114 			netvsc_tx_disable(net_device, net);
2115 		}
2116 		kfree(event);
2117 		break;
2118 	case RNDIS_STATUS_NETWORK_CHANGE:
2119 		/* Only makes sense if carrier is present */
2120 		if (!rdev->link_state) {
2121 			rdev->link_state = true;
2122 			netif_carrier_off(net);
2123 			netvsc_tx_disable(net_device, net);
2124 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
2125 			spin_lock_irqsave(&ndev_ctx->lock, flags);
2126 			list_add(&event->list, &ndev_ctx->reconfig_events);
2127 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
2128 			reschedule = true;
2129 		}
2130 		break;
2131 	}
2132 
2133 	rtnl_unlock();
2134 
2135 	/* link_watch only sends one notification with current state per
2136 	 * second, handle next reconfig event in 2 seconds.
2137 	 */
2138 	if (reschedule)
2139 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
2140 
2141 	return;
2142 
2143 out_unlock:
2144 	rtnl_unlock();
2145 }
2146 
2147 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
2148 {
2149 	struct net_device_context *net_device_ctx;
2150 	struct net_device *dev;
2151 
2152 	dev = netdev_master_upper_dev_get(vf_netdev);
2153 	if (!dev || dev->netdev_ops != &device_ops)
2154 		return NULL;	/* not a netvsc device */
2155 
2156 	net_device_ctx = netdev_priv(dev);
2157 	if (!rtnl_dereference(net_device_ctx->nvdev))
2158 		return NULL;	/* device is removed */
2159 
2160 	return dev;
2161 }
2162 
2163 /* Called when VF is injecting data into network stack.
2164  * Change the associated network device from VF to netvsc.
2165  * note: already called with rcu_read_lock
2166  */
2167 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2168 {
2169 	struct sk_buff *skb = *pskb;
2170 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2171 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2172 	struct netvsc_vf_pcpu_stats *pcpu_stats
2173 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2174 
2175 	skb = skb_share_check(skb, GFP_ATOMIC);
2176 	if (unlikely(!skb))
2177 		return RX_HANDLER_CONSUMED;
2178 
2179 	*pskb = skb;
2180 
2181 	skb->dev = ndev;
2182 
2183 	u64_stats_update_begin(&pcpu_stats->syncp);
2184 	pcpu_stats->rx_packets++;
2185 	pcpu_stats->rx_bytes += skb->len;
2186 	u64_stats_update_end(&pcpu_stats->syncp);
2187 
2188 	return RX_HANDLER_ANOTHER;
2189 }
2190 
2191 static int netvsc_vf_join(struct net_device *vf_netdev,
2192 			  struct net_device *ndev)
2193 {
2194 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2195 	int ret;
2196 
2197 	ret = netdev_rx_handler_register(vf_netdev,
2198 					 netvsc_vf_handle_frame, ndev);
2199 	if (ret != 0) {
2200 		netdev_err(vf_netdev,
2201 			   "can not register netvsc VF receive handler (err = %d)\n",
2202 			   ret);
2203 		goto rx_handler_failed;
2204 	}
2205 
2206 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2207 					   NULL, NULL, NULL);
2208 	if (ret != 0) {
2209 		netdev_err(vf_netdev,
2210 			   "can not set master device %s (err = %d)\n",
2211 			   ndev->name, ret);
2212 		goto upper_link_failed;
2213 	}
2214 
2215 	/* set slave flag before open to prevent IPv6 addrconf */
2216 	vf_netdev->flags |= IFF_SLAVE;
2217 
2218 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2219 
2220 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2221 
2222 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2223 	return 0;
2224 
2225 upper_link_failed:
2226 	netdev_rx_handler_unregister(vf_netdev);
2227 rx_handler_failed:
2228 	return ret;
2229 }
2230 
2231 static void __netvsc_vf_setup(struct net_device *ndev,
2232 			      struct net_device *vf_netdev)
2233 {
2234 	int ret;
2235 
2236 	/* Align MTU of VF with master */
2237 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2238 	if (ret)
2239 		netdev_warn(vf_netdev,
2240 			    "unable to change mtu to %u\n", ndev->mtu);
2241 
2242 	/* set multicast etc flags on VF */
2243 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2244 
2245 	/* sync address list from ndev to VF */
2246 	netif_addr_lock_bh(ndev);
2247 	dev_uc_sync(vf_netdev, ndev);
2248 	dev_mc_sync(vf_netdev, ndev);
2249 	netif_addr_unlock_bh(ndev);
2250 
2251 	if (netif_running(ndev)) {
2252 		ret = dev_open(vf_netdev, NULL);
2253 		if (ret)
2254 			netdev_warn(vf_netdev,
2255 				    "unable to open: %d\n", ret);
2256 	}
2257 }
2258 
2259 /* Setup VF as slave of the synthetic device.
2260  * Runs in workqueue to avoid recursion in netlink callbacks.
2261  */
2262 static void netvsc_vf_setup(struct work_struct *w)
2263 {
2264 	struct net_device_context *ndev_ctx
2265 		= container_of(w, struct net_device_context, vf_takeover.work);
2266 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2267 	struct net_device *vf_netdev;
2268 
2269 	if (!rtnl_trylock()) {
2270 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2271 		return;
2272 	}
2273 
2274 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2275 	if (vf_netdev)
2276 		__netvsc_vf_setup(ndev, vf_netdev);
2277 
2278 	rtnl_unlock();
2279 }
2280 
2281 /* Find netvsc by VF serial number.
2282  * The PCI hyperv controller records the serial number as the slot kobj name.
2283  */
2284 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2285 {
2286 	struct device *parent = vf_netdev->dev.parent;
2287 	struct net_device_context *ndev_ctx;
2288 	struct pci_dev *pdev;
2289 	u32 serial;
2290 
2291 	if (!parent || !dev_is_pci(parent))
2292 		return NULL; /* not a PCI device */
2293 
2294 	pdev = to_pci_dev(parent);
2295 	if (!pdev->slot) {
2296 		netdev_notice(vf_netdev, "no PCI slot information\n");
2297 		return NULL;
2298 	}
2299 
2300 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2301 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2302 			      pci_slot_name(pdev->slot));
2303 		return NULL;
2304 	}
2305 
2306 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2307 		if (!ndev_ctx->vf_alloc)
2308 			continue;
2309 
2310 		if (ndev_ctx->vf_serial == serial)
2311 			return hv_get_drvdata(ndev_ctx->device_ctx);
2312 	}
2313 
2314 	netdev_notice(vf_netdev,
2315 		      "no netdev found for vf serial:%u\n", serial);
2316 	return NULL;
2317 }
2318 
2319 static int netvsc_register_vf(struct net_device *vf_netdev)
2320 {
2321 	struct net_device_context *net_device_ctx;
2322 	struct netvsc_device *netvsc_dev;
2323 	struct bpf_prog *prog;
2324 	struct net_device *ndev;
2325 	int ret;
2326 
2327 	if (vf_netdev->addr_len != ETH_ALEN)
2328 		return NOTIFY_DONE;
2329 
2330 	ndev = get_netvsc_byslot(vf_netdev);
2331 	if (!ndev)
2332 		return NOTIFY_DONE;
2333 
2334 	net_device_ctx = netdev_priv(ndev);
2335 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2336 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2337 		return NOTIFY_DONE;
2338 
2339 	/* if synthetic interface is a different namespace,
2340 	 * then move the VF to that namespace; join will be
2341 	 * done again in that context.
2342 	 */
2343 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2344 		ret = dev_change_net_namespace(vf_netdev,
2345 					       dev_net(ndev), "eth%d");
2346 		if (ret)
2347 			netdev_err(vf_netdev,
2348 				   "could not move to same namespace as %s: %d\n",
2349 				   ndev->name, ret);
2350 		else
2351 			netdev_info(vf_netdev,
2352 				    "VF moved to namespace with: %s\n",
2353 				    ndev->name);
2354 		return NOTIFY_DONE;
2355 	}
2356 
2357 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2358 
2359 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2360 		return NOTIFY_DONE;
2361 
2362 	dev_hold(vf_netdev);
2363 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2364 
2365 	vf_netdev->wanted_features = ndev->features;
2366 	netdev_update_features(vf_netdev);
2367 
2368 	prog = netvsc_xdp_get(netvsc_dev);
2369 	netvsc_vf_setxdp(vf_netdev, prog);
2370 
2371 	return NOTIFY_OK;
2372 }
2373 
2374 /* Change the data path when VF UP/DOWN/CHANGE are detected.
2375  *
2376  * Typically a UP or DOWN event is followed by a CHANGE event, so
2377  * net_device_ctx->data_path_is_vf is used to cache the current data path
2378  * to avoid the duplicate call of netvsc_switch_datapath() and the duplicate
2379  * message.
2380  *
2381  * During hibernation, if a VF NIC driver (e.g. mlx5) preserves the network
2382  * interface, there is only the CHANGE event and no UP or DOWN event.
2383  */
2384 static int netvsc_vf_changed(struct net_device *vf_netdev)
2385 {
2386 	struct net_device_context *net_device_ctx;
2387 	struct netvsc_device *netvsc_dev;
2388 	struct net_device *ndev;
2389 	bool vf_is_up = netif_running(vf_netdev);
2390 
2391 	ndev = get_netvsc_byref(vf_netdev);
2392 	if (!ndev)
2393 		return NOTIFY_DONE;
2394 
2395 	net_device_ctx = netdev_priv(ndev);
2396 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2397 	if (!netvsc_dev)
2398 		return NOTIFY_DONE;
2399 
2400 	if (net_device_ctx->data_path_is_vf == vf_is_up)
2401 		return NOTIFY_OK;
2402 	net_device_ctx->data_path_is_vf = vf_is_up;
2403 
2404 	netvsc_switch_datapath(ndev, vf_is_up);
2405 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2406 		    vf_is_up ? "to" : "from", vf_netdev->name);
2407 
2408 	return NOTIFY_OK;
2409 }
2410 
2411 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2412 {
2413 	struct net_device *ndev;
2414 	struct net_device_context *net_device_ctx;
2415 
2416 	ndev = get_netvsc_byref(vf_netdev);
2417 	if (!ndev)
2418 		return NOTIFY_DONE;
2419 
2420 	net_device_ctx = netdev_priv(ndev);
2421 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2422 
2423 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2424 
2425 	netvsc_vf_setxdp(vf_netdev, NULL);
2426 
2427 	netdev_rx_handler_unregister(vf_netdev);
2428 	netdev_upper_dev_unlink(vf_netdev, ndev);
2429 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2430 	dev_put(vf_netdev);
2431 
2432 	return NOTIFY_OK;
2433 }
2434 
2435 static int netvsc_probe(struct hv_device *dev,
2436 			const struct hv_vmbus_device_id *dev_id)
2437 {
2438 	struct net_device *net = NULL;
2439 	struct net_device_context *net_device_ctx;
2440 	struct netvsc_device_info *device_info = NULL;
2441 	struct netvsc_device *nvdev;
2442 	int ret = -ENOMEM;
2443 
2444 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2445 				VRSS_CHANNEL_MAX);
2446 	if (!net)
2447 		goto no_net;
2448 
2449 	netif_carrier_off(net);
2450 
2451 	netvsc_init_settings(net);
2452 
2453 	net_device_ctx = netdev_priv(net);
2454 	net_device_ctx->device_ctx = dev;
2455 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2456 	if (netif_msg_probe(net_device_ctx))
2457 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2458 			   net_device_ctx->msg_enable);
2459 
2460 	hv_set_drvdata(dev, net);
2461 
2462 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2463 
2464 	spin_lock_init(&net_device_ctx->lock);
2465 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2466 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2467 
2468 	net_device_ctx->vf_stats
2469 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2470 	if (!net_device_ctx->vf_stats)
2471 		goto no_stats;
2472 
2473 	net->netdev_ops = &device_ops;
2474 	net->ethtool_ops = &ethtool_ops;
2475 	SET_NETDEV_DEV(net, &dev->device);
2476 
2477 	/* We always need headroom for rndis header */
2478 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2479 
2480 	/* Initialize the number of queues to be 1, we may change it if more
2481 	 * channels are offered later.
2482 	 */
2483 	netif_set_real_num_tx_queues(net, 1);
2484 	netif_set_real_num_rx_queues(net, 1);
2485 
2486 	/* Notify the netvsc driver of the new device */
2487 	device_info = netvsc_devinfo_get(NULL);
2488 
2489 	if (!device_info) {
2490 		ret = -ENOMEM;
2491 		goto devinfo_failed;
2492 	}
2493 
2494 	nvdev = rndis_filter_device_add(dev, device_info);
2495 	if (IS_ERR(nvdev)) {
2496 		ret = PTR_ERR(nvdev);
2497 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2498 		goto rndis_failed;
2499 	}
2500 
2501 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2502 
2503 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2504 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2505 	 * all subchannels to show up, but that may not happen because
2506 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2507 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2508 	 * the device lock, so all the subchannels can't be processed --
2509 	 * finally netvsc_subchan_work() hangs forever.
2510 	 */
2511 	rtnl_lock();
2512 
2513 	if (nvdev->num_chn > 1)
2514 		schedule_work(&nvdev->subchan_work);
2515 
2516 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2517 	net->features = net->hw_features |
2518 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2519 		NETIF_F_HW_VLAN_CTAG_RX;
2520 	net->vlan_features = net->features;
2521 
2522 	netdev_lockdep_set_classes(net);
2523 
2524 	/* MTU range: 68 - 1500 or 65521 */
2525 	net->min_mtu = NETVSC_MTU_MIN;
2526 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2527 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2528 	else
2529 		net->max_mtu = ETH_DATA_LEN;
2530 
2531 	nvdev->tx_disable = false;
2532 
2533 	ret = register_netdevice(net);
2534 	if (ret != 0) {
2535 		pr_err("Unable to register netdev.\n");
2536 		goto register_failed;
2537 	}
2538 
2539 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2540 	rtnl_unlock();
2541 
2542 	netvsc_devinfo_put(device_info);
2543 	return 0;
2544 
2545 register_failed:
2546 	rtnl_unlock();
2547 	rndis_filter_device_remove(dev, nvdev);
2548 rndis_failed:
2549 	netvsc_devinfo_put(device_info);
2550 devinfo_failed:
2551 	free_percpu(net_device_ctx->vf_stats);
2552 no_stats:
2553 	hv_set_drvdata(dev, NULL);
2554 	free_netdev(net);
2555 no_net:
2556 	return ret;
2557 }
2558 
2559 static int netvsc_remove(struct hv_device *dev)
2560 {
2561 	struct net_device_context *ndev_ctx;
2562 	struct net_device *vf_netdev, *net;
2563 	struct netvsc_device *nvdev;
2564 
2565 	net = hv_get_drvdata(dev);
2566 	if (net == NULL) {
2567 		dev_err(&dev->device, "No net device to remove\n");
2568 		return 0;
2569 	}
2570 
2571 	ndev_ctx = netdev_priv(net);
2572 
2573 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2574 
2575 	rtnl_lock();
2576 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2577 	if (nvdev) {
2578 		cancel_work_sync(&nvdev->subchan_work);
2579 		netvsc_xdp_set(net, NULL, NULL, nvdev);
2580 	}
2581 
2582 	/*
2583 	 * Call to the vsc driver to let it know that the device is being
2584 	 * removed. Also blocks mtu and channel changes.
2585 	 */
2586 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2587 	if (vf_netdev)
2588 		netvsc_unregister_vf(vf_netdev);
2589 
2590 	if (nvdev)
2591 		rndis_filter_device_remove(dev, nvdev);
2592 
2593 	unregister_netdevice(net);
2594 	list_del(&ndev_ctx->list);
2595 
2596 	rtnl_unlock();
2597 
2598 	hv_set_drvdata(dev, NULL);
2599 
2600 	free_percpu(ndev_ctx->vf_stats);
2601 	free_netdev(net);
2602 	return 0;
2603 }
2604 
2605 static int netvsc_suspend(struct hv_device *dev)
2606 {
2607 	struct net_device_context *ndev_ctx;
2608 	struct netvsc_device *nvdev;
2609 	struct net_device *net;
2610 	int ret;
2611 
2612 	net = hv_get_drvdata(dev);
2613 
2614 	ndev_ctx = netdev_priv(net);
2615 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2616 
2617 	rtnl_lock();
2618 
2619 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2620 	if (nvdev == NULL) {
2621 		ret = -ENODEV;
2622 		goto out;
2623 	}
2624 
2625 	/* Save the current config info */
2626 	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2627 
2628 	ret = netvsc_detach(net, nvdev);
2629 out:
2630 	rtnl_unlock();
2631 
2632 	return ret;
2633 }
2634 
2635 static int netvsc_resume(struct hv_device *dev)
2636 {
2637 	struct net_device *net = hv_get_drvdata(dev);
2638 	struct net_device_context *net_device_ctx;
2639 	struct netvsc_device_info *device_info;
2640 	int ret;
2641 
2642 	rtnl_lock();
2643 
2644 	net_device_ctx = netdev_priv(net);
2645 
2646 	/* Reset the data path to the netvsc NIC before re-opening the vmbus
2647 	 * channel. Later netvsc_netdev_event() will switch the data path to
2648 	 * the VF upon the UP or CHANGE event.
2649 	 */
2650 	net_device_ctx->data_path_is_vf = false;
2651 	device_info = net_device_ctx->saved_netvsc_dev_info;
2652 
2653 	ret = netvsc_attach(net, device_info);
2654 
2655 	netvsc_devinfo_put(device_info);
2656 	net_device_ctx->saved_netvsc_dev_info = NULL;
2657 
2658 	rtnl_unlock();
2659 
2660 	return ret;
2661 }
2662 static const struct hv_vmbus_device_id id_table[] = {
2663 	/* Network guid */
2664 	{ HV_NIC_GUID, },
2665 	{ },
2666 };
2667 
2668 MODULE_DEVICE_TABLE(vmbus, id_table);
2669 
2670 /* The one and only one */
2671 static struct  hv_driver netvsc_drv = {
2672 	.name = KBUILD_MODNAME,
2673 	.id_table = id_table,
2674 	.probe = netvsc_probe,
2675 	.remove = netvsc_remove,
2676 	.suspend = netvsc_suspend,
2677 	.resume = netvsc_resume,
2678 	.driver = {
2679 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2680 	},
2681 };
2682 
2683 /*
2684  * On Hyper-V, every VF interface is matched with a corresponding
2685  * synthetic interface. The synthetic interface is presented first
2686  * to the guest. When the corresponding VF instance is registered,
2687  * we will take care of switching the data path.
2688  */
2689 static int netvsc_netdev_event(struct notifier_block *this,
2690 			       unsigned long event, void *ptr)
2691 {
2692 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2693 
2694 	/* Skip our own events */
2695 	if (event_dev->netdev_ops == &device_ops)
2696 		return NOTIFY_DONE;
2697 
2698 	/* Avoid non-Ethernet type devices */
2699 	if (event_dev->type != ARPHRD_ETHER)
2700 		return NOTIFY_DONE;
2701 
2702 	/* Avoid Vlan dev with same MAC registering as VF */
2703 	if (is_vlan_dev(event_dev))
2704 		return NOTIFY_DONE;
2705 
2706 	/* Avoid Bonding master dev with same MAC registering as VF */
2707 	if ((event_dev->priv_flags & IFF_BONDING) &&
2708 	    (event_dev->flags & IFF_MASTER))
2709 		return NOTIFY_DONE;
2710 
2711 	switch (event) {
2712 	case NETDEV_REGISTER:
2713 		return netvsc_register_vf(event_dev);
2714 	case NETDEV_UNREGISTER:
2715 		return netvsc_unregister_vf(event_dev);
2716 	case NETDEV_UP:
2717 	case NETDEV_DOWN:
2718 	case NETDEV_CHANGE:
2719 		return netvsc_vf_changed(event_dev);
2720 	default:
2721 		return NOTIFY_DONE;
2722 	}
2723 }
2724 
2725 static struct notifier_block netvsc_netdev_notifier = {
2726 	.notifier_call = netvsc_netdev_event,
2727 };
2728 
2729 static void __exit netvsc_drv_exit(void)
2730 {
2731 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2732 	vmbus_driver_unregister(&netvsc_drv);
2733 }
2734 
2735 static int __init netvsc_drv_init(void)
2736 {
2737 	int ret;
2738 
2739 	if (ring_size < RING_SIZE_MIN) {
2740 		ring_size = RING_SIZE_MIN;
2741 		pr_info("Increased ring_size to %u (min allowed)\n",
2742 			ring_size);
2743 	}
2744 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2745 
2746 	ret = vmbus_driver_register(&netvsc_drv);
2747 	if (ret)
2748 		return ret;
2749 
2750 	register_netdevice_notifier(&netvsc_netdev_notifier);
2751 	return 0;
2752 }
2753 
2754 MODULE_LICENSE("GPL");
2755 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2756 
2757 module_init(netvsc_drv_init);
2758 module_exit(netvsc_drv_exit);
2759