1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2009, Microsoft Corporation. 4 * 5 * Authors: 6 * Haiyang Zhang <haiyangz@microsoft.com> 7 * Hank Janssen <hjanssen@microsoft.com> 8 */ 9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 10 11 #include <linux/init.h> 12 #include <linux/atomic.h> 13 #include <linux/module.h> 14 #include <linux/highmem.h> 15 #include <linux/device.h> 16 #include <linux/io.h> 17 #include <linux/delay.h> 18 #include <linux/netdevice.h> 19 #include <linux/inetdevice.h> 20 #include <linux/etherdevice.h> 21 #include <linux/pci.h> 22 #include <linux/skbuff.h> 23 #include <linux/if_vlan.h> 24 #include <linux/in.h> 25 #include <linux/slab.h> 26 #include <linux/rtnetlink.h> 27 #include <linux/netpoll.h> 28 #include <linux/bpf.h> 29 30 #include <net/arp.h> 31 #include <net/route.h> 32 #include <net/sock.h> 33 #include <net/pkt_sched.h> 34 #include <net/checksum.h> 35 #include <net/ip6_checksum.h> 36 37 #include "hyperv_net.h" 38 39 #define RING_SIZE_MIN 64 40 #define RETRY_US_LO 5000 41 #define RETRY_US_HI 10000 42 #define RETRY_MAX 2000 /* >10 sec */ 43 44 #define LINKCHANGE_INT (2 * HZ) 45 #define VF_TAKEOVER_INT (HZ / 10) 46 47 static unsigned int ring_size __ro_after_init = 128; 48 module_param(ring_size, uint, 0444); 49 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)"); 50 unsigned int netvsc_ring_bytes __ro_after_init; 51 52 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | 53 NETIF_MSG_LINK | NETIF_MSG_IFUP | 54 NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR | 55 NETIF_MSG_TX_ERR; 56 57 static int debug = -1; 58 module_param(debug, int, 0444); 59 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)"); 60 61 static LIST_HEAD(netvsc_dev_list); 62 63 static void netvsc_change_rx_flags(struct net_device *net, int change) 64 { 65 struct net_device_context *ndev_ctx = netdev_priv(net); 66 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 67 int inc; 68 69 if (!vf_netdev) 70 return; 71 72 if (change & IFF_PROMISC) { 73 inc = (net->flags & IFF_PROMISC) ? 1 : -1; 74 dev_set_promiscuity(vf_netdev, inc); 75 } 76 77 if (change & IFF_ALLMULTI) { 78 inc = (net->flags & IFF_ALLMULTI) ? 1 : -1; 79 dev_set_allmulti(vf_netdev, inc); 80 } 81 } 82 83 static void netvsc_set_rx_mode(struct net_device *net) 84 { 85 struct net_device_context *ndev_ctx = netdev_priv(net); 86 struct net_device *vf_netdev; 87 struct netvsc_device *nvdev; 88 89 rcu_read_lock(); 90 vf_netdev = rcu_dereference(ndev_ctx->vf_netdev); 91 if (vf_netdev) { 92 dev_uc_sync(vf_netdev, net); 93 dev_mc_sync(vf_netdev, net); 94 } 95 96 nvdev = rcu_dereference(ndev_ctx->nvdev); 97 if (nvdev) 98 rndis_filter_update(nvdev); 99 rcu_read_unlock(); 100 } 101 102 static void netvsc_tx_enable(struct netvsc_device *nvscdev, 103 struct net_device *ndev) 104 { 105 nvscdev->tx_disable = false; 106 virt_wmb(); /* ensure queue wake up mechanism is on */ 107 108 netif_tx_wake_all_queues(ndev); 109 } 110 111 static int netvsc_open(struct net_device *net) 112 { 113 struct net_device_context *ndev_ctx = netdev_priv(net); 114 struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 115 struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev); 116 struct rndis_device *rdev; 117 int ret = 0; 118 119 netif_carrier_off(net); 120 121 /* Open up the device */ 122 ret = rndis_filter_open(nvdev); 123 if (ret != 0) { 124 netdev_err(net, "unable to open device (ret %d).\n", ret); 125 return ret; 126 } 127 128 rdev = nvdev->extension; 129 if (!rdev->link_state) { 130 netif_carrier_on(net); 131 netvsc_tx_enable(nvdev, net); 132 } 133 134 if (vf_netdev) { 135 /* Setting synthetic device up transparently sets 136 * slave as up. If open fails, then slave will be 137 * still be offline (and not used). 138 */ 139 ret = dev_open(vf_netdev, NULL); 140 if (ret) 141 netdev_warn(net, 142 "unable to open slave: %s: %d\n", 143 vf_netdev->name, ret); 144 } 145 return 0; 146 } 147 148 static int netvsc_wait_until_empty(struct netvsc_device *nvdev) 149 { 150 unsigned int retry = 0; 151 int i; 152 153 /* Ensure pending bytes in ring are read */ 154 for (;;) { 155 u32 aread = 0; 156 157 for (i = 0; i < nvdev->num_chn; i++) { 158 struct vmbus_channel *chn 159 = nvdev->chan_table[i].channel; 160 161 if (!chn) 162 continue; 163 164 /* make sure receive not running now */ 165 napi_synchronize(&nvdev->chan_table[i].napi); 166 167 aread = hv_get_bytes_to_read(&chn->inbound); 168 if (aread) 169 break; 170 171 aread = hv_get_bytes_to_read(&chn->outbound); 172 if (aread) 173 break; 174 } 175 176 if (aread == 0) 177 return 0; 178 179 if (++retry > RETRY_MAX) 180 return -ETIMEDOUT; 181 182 usleep_range(RETRY_US_LO, RETRY_US_HI); 183 } 184 } 185 186 static void netvsc_tx_disable(struct netvsc_device *nvscdev, 187 struct net_device *ndev) 188 { 189 if (nvscdev) { 190 nvscdev->tx_disable = true; 191 virt_wmb(); /* ensure txq will not wake up after stop */ 192 } 193 194 netif_tx_disable(ndev); 195 } 196 197 static int netvsc_close(struct net_device *net) 198 { 199 struct net_device_context *net_device_ctx = netdev_priv(net); 200 struct net_device *vf_netdev 201 = rtnl_dereference(net_device_ctx->vf_netdev); 202 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 203 int ret; 204 205 netvsc_tx_disable(nvdev, net); 206 207 /* No need to close rndis filter if it is removed already */ 208 if (!nvdev) 209 return 0; 210 211 ret = rndis_filter_close(nvdev); 212 if (ret != 0) { 213 netdev_err(net, "unable to close device (ret %d).\n", ret); 214 return ret; 215 } 216 217 ret = netvsc_wait_until_empty(nvdev); 218 if (ret) 219 netdev_err(net, "Ring buffer not empty after closing rndis\n"); 220 221 if (vf_netdev) 222 dev_close(vf_netdev); 223 224 return ret; 225 } 226 227 static inline void *init_ppi_data(struct rndis_message *msg, 228 u32 ppi_size, u32 pkt_type) 229 { 230 struct rndis_packet *rndis_pkt = &msg->msg.pkt; 231 struct rndis_per_packet_info *ppi; 232 233 rndis_pkt->data_offset += ppi_size; 234 ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset 235 + rndis_pkt->per_pkt_info_len; 236 237 ppi->size = ppi_size; 238 ppi->type = pkt_type; 239 ppi->internal = 0; 240 ppi->ppi_offset = sizeof(struct rndis_per_packet_info); 241 242 rndis_pkt->per_pkt_info_len += ppi_size; 243 244 return ppi + 1; 245 } 246 247 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented 248 * packets. We can use ethtool to change UDP hash level when necessary. 249 */ 250 static inline u32 netvsc_get_hash( 251 struct sk_buff *skb, 252 const struct net_device_context *ndc) 253 { 254 struct flow_keys flow; 255 u32 hash, pkt_proto = 0; 256 static u32 hashrnd __read_mostly; 257 258 net_get_random_once(&hashrnd, sizeof(hashrnd)); 259 260 if (!skb_flow_dissect_flow_keys(skb, &flow, 0)) 261 return 0; 262 263 switch (flow.basic.ip_proto) { 264 case IPPROTO_TCP: 265 if (flow.basic.n_proto == htons(ETH_P_IP)) 266 pkt_proto = HV_TCP4_L4HASH; 267 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 268 pkt_proto = HV_TCP6_L4HASH; 269 270 break; 271 272 case IPPROTO_UDP: 273 if (flow.basic.n_proto == htons(ETH_P_IP)) 274 pkt_proto = HV_UDP4_L4HASH; 275 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 276 pkt_proto = HV_UDP6_L4HASH; 277 278 break; 279 } 280 281 if (pkt_proto & ndc->l4_hash) { 282 return skb_get_hash(skb); 283 } else { 284 if (flow.basic.n_proto == htons(ETH_P_IP)) 285 hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd); 286 else if (flow.basic.n_proto == htons(ETH_P_IPV6)) 287 hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd); 288 else 289 return 0; 290 291 __skb_set_sw_hash(skb, hash, false); 292 } 293 294 return hash; 295 } 296 297 static inline int netvsc_get_tx_queue(struct net_device *ndev, 298 struct sk_buff *skb, int old_idx) 299 { 300 const struct net_device_context *ndc = netdev_priv(ndev); 301 struct sock *sk = skb->sk; 302 int q_idx; 303 304 q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) & 305 (VRSS_SEND_TAB_SIZE - 1)]; 306 307 /* If queue index changed record the new value */ 308 if (q_idx != old_idx && 309 sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache)) 310 sk_tx_queue_set(sk, q_idx); 311 312 return q_idx; 313 } 314 315 /* 316 * Select queue for transmit. 317 * 318 * If a valid queue has already been assigned, then use that. 319 * Otherwise compute tx queue based on hash and the send table. 320 * 321 * This is basically similar to default (netdev_pick_tx) with the added step 322 * of using the host send_table when no other queue has been assigned. 323 * 324 * TODO support XPS - but get_xps_queue not exported 325 */ 326 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb) 327 { 328 int q_idx = sk_tx_queue_get(skb->sk); 329 330 if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) { 331 /* If forwarding a packet, we use the recorded queue when 332 * available for better cache locality. 333 */ 334 if (skb_rx_queue_recorded(skb)) 335 q_idx = skb_get_rx_queue(skb); 336 else 337 q_idx = netvsc_get_tx_queue(ndev, skb, q_idx); 338 } 339 340 return q_idx; 341 } 342 343 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb, 344 struct net_device *sb_dev) 345 { 346 struct net_device_context *ndc = netdev_priv(ndev); 347 struct net_device *vf_netdev; 348 u16 txq; 349 350 rcu_read_lock(); 351 vf_netdev = rcu_dereference(ndc->vf_netdev); 352 if (vf_netdev) { 353 const struct net_device_ops *vf_ops = vf_netdev->netdev_ops; 354 355 if (vf_ops->ndo_select_queue) 356 txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev); 357 else 358 txq = netdev_pick_tx(vf_netdev, skb, NULL); 359 360 /* Record the queue selected by VF so that it can be 361 * used for common case where VF has more queues than 362 * the synthetic device. 363 */ 364 qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq; 365 } else { 366 txq = netvsc_pick_tx(ndev, skb); 367 } 368 rcu_read_unlock(); 369 370 while (unlikely(txq >= ndev->real_num_tx_queues)) 371 txq -= ndev->real_num_tx_queues; 372 373 return txq; 374 } 375 376 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len, 377 struct hv_page_buffer *pb) 378 { 379 int j = 0; 380 381 /* Deal with compound pages by ignoring unused part 382 * of the page. 383 */ 384 page += (offset >> PAGE_SHIFT); 385 offset &= ~PAGE_MASK; 386 387 while (len > 0) { 388 unsigned long bytes; 389 390 bytes = PAGE_SIZE - offset; 391 if (bytes > len) 392 bytes = len; 393 pb[j].pfn = page_to_pfn(page); 394 pb[j].offset = offset; 395 pb[j].len = bytes; 396 397 offset += bytes; 398 len -= bytes; 399 400 if (offset == PAGE_SIZE && len) { 401 page++; 402 offset = 0; 403 j++; 404 } 405 } 406 407 return j + 1; 408 } 409 410 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb, 411 struct hv_netvsc_packet *packet, 412 struct hv_page_buffer *pb) 413 { 414 u32 slots_used = 0; 415 char *data = skb->data; 416 int frags = skb_shinfo(skb)->nr_frags; 417 int i; 418 419 /* The packet is laid out thus: 420 * 1. hdr: RNDIS header and PPI 421 * 2. skb linear data 422 * 3. skb fragment data 423 */ 424 slots_used += fill_pg_buf(virt_to_page(hdr), 425 offset_in_page(hdr), 426 len, &pb[slots_used]); 427 428 packet->rmsg_size = len; 429 packet->rmsg_pgcnt = slots_used; 430 431 slots_used += fill_pg_buf(virt_to_page(data), 432 offset_in_page(data), 433 skb_headlen(skb), &pb[slots_used]); 434 435 for (i = 0; i < frags; i++) { 436 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 437 438 slots_used += fill_pg_buf(skb_frag_page(frag), 439 skb_frag_off(frag), 440 skb_frag_size(frag), &pb[slots_used]); 441 } 442 return slots_used; 443 } 444 445 static int count_skb_frag_slots(struct sk_buff *skb) 446 { 447 int i, frags = skb_shinfo(skb)->nr_frags; 448 int pages = 0; 449 450 for (i = 0; i < frags; i++) { 451 skb_frag_t *frag = skb_shinfo(skb)->frags + i; 452 unsigned long size = skb_frag_size(frag); 453 unsigned long offset = skb_frag_off(frag); 454 455 /* Skip unused frames from start of page */ 456 offset &= ~PAGE_MASK; 457 pages += PFN_UP(offset + size); 458 } 459 return pages; 460 } 461 462 static int netvsc_get_slots(struct sk_buff *skb) 463 { 464 char *data = skb->data; 465 unsigned int offset = offset_in_page(data); 466 unsigned int len = skb_headlen(skb); 467 int slots; 468 int frag_slots; 469 470 slots = DIV_ROUND_UP(offset + len, PAGE_SIZE); 471 frag_slots = count_skb_frag_slots(skb); 472 return slots + frag_slots; 473 } 474 475 static u32 net_checksum_info(struct sk_buff *skb) 476 { 477 if (skb->protocol == htons(ETH_P_IP)) { 478 struct iphdr *ip = ip_hdr(skb); 479 480 if (ip->protocol == IPPROTO_TCP) 481 return TRANSPORT_INFO_IPV4_TCP; 482 else if (ip->protocol == IPPROTO_UDP) 483 return TRANSPORT_INFO_IPV4_UDP; 484 } else { 485 struct ipv6hdr *ip6 = ipv6_hdr(skb); 486 487 if (ip6->nexthdr == IPPROTO_TCP) 488 return TRANSPORT_INFO_IPV6_TCP; 489 else if (ip6->nexthdr == IPPROTO_UDP) 490 return TRANSPORT_INFO_IPV6_UDP; 491 } 492 493 return TRANSPORT_INFO_NOT_IP; 494 } 495 496 /* Send skb on the slave VF device. */ 497 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev, 498 struct sk_buff *skb) 499 { 500 struct net_device_context *ndev_ctx = netdev_priv(net); 501 unsigned int len = skb->len; 502 int rc; 503 504 skb->dev = vf_netdev; 505 skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping; 506 507 rc = dev_queue_xmit(skb); 508 if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) { 509 struct netvsc_vf_pcpu_stats *pcpu_stats 510 = this_cpu_ptr(ndev_ctx->vf_stats); 511 512 u64_stats_update_begin(&pcpu_stats->syncp); 513 pcpu_stats->tx_packets++; 514 pcpu_stats->tx_bytes += len; 515 u64_stats_update_end(&pcpu_stats->syncp); 516 } else { 517 this_cpu_inc(ndev_ctx->vf_stats->tx_dropped); 518 } 519 520 return rc; 521 } 522 523 static int netvsc_xmit(struct sk_buff *skb, struct net_device *net, bool xdp_tx) 524 { 525 struct net_device_context *net_device_ctx = netdev_priv(net); 526 struct hv_netvsc_packet *packet = NULL; 527 int ret; 528 unsigned int num_data_pgs; 529 struct rndis_message *rndis_msg; 530 struct net_device *vf_netdev; 531 u32 rndis_msg_size; 532 u32 hash; 533 struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT]; 534 535 /* if VF is present and up then redirect packets 536 * already called with rcu_read_lock_bh 537 */ 538 vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev); 539 if (vf_netdev && netif_running(vf_netdev) && 540 !netpoll_tx_running(net)) 541 return netvsc_vf_xmit(net, vf_netdev, skb); 542 543 /* We will atmost need two pages to describe the rndis 544 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number 545 * of pages in a single packet. If skb is scattered around 546 * more pages we try linearizing it. 547 */ 548 549 num_data_pgs = netvsc_get_slots(skb) + 2; 550 551 if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) { 552 ++net_device_ctx->eth_stats.tx_scattered; 553 554 if (skb_linearize(skb)) 555 goto no_memory; 556 557 num_data_pgs = netvsc_get_slots(skb) + 2; 558 if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) { 559 ++net_device_ctx->eth_stats.tx_too_big; 560 goto drop; 561 } 562 } 563 564 /* 565 * Place the rndis header in the skb head room and 566 * the skb->cb will be used for hv_netvsc_packet 567 * structure. 568 */ 569 ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE); 570 if (ret) 571 goto no_memory; 572 573 /* Use the skb control buffer for building up the packet */ 574 BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) > 575 sizeof_field(struct sk_buff, cb)); 576 packet = (struct hv_netvsc_packet *)skb->cb; 577 578 packet->q_idx = skb_get_queue_mapping(skb); 579 580 packet->total_data_buflen = skb->len; 581 packet->total_bytes = skb->len; 582 packet->total_packets = 1; 583 584 rndis_msg = (struct rndis_message *)skb->head; 585 586 /* Add the rndis header */ 587 rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET; 588 rndis_msg->msg_len = packet->total_data_buflen; 589 590 rndis_msg->msg.pkt = (struct rndis_packet) { 591 .data_offset = sizeof(struct rndis_packet), 592 .data_len = packet->total_data_buflen, 593 .per_pkt_info_offset = sizeof(struct rndis_packet), 594 }; 595 596 rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet); 597 598 hash = skb_get_hash_raw(skb); 599 if (hash != 0 && net->real_num_tx_queues > 1) { 600 u32 *hash_info; 601 602 rndis_msg_size += NDIS_HASH_PPI_SIZE; 603 hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE, 604 NBL_HASH_VALUE); 605 *hash_info = hash; 606 } 607 608 if (skb_vlan_tag_present(skb)) { 609 struct ndis_pkt_8021q_info *vlan; 610 611 rndis_msg_size += NDIS_VLAN_PPI_SIZE; 612 vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE, 613 IEEE_8021Q_INFO); 614 615 vlan->value = 0; 616 vlan->vlanid = skb_vlan_tag_get_id(skb); 617 vlan->cfi = skb_vlan_tag_get_cfi(skb); 618 vlan->pri = skb_vlan_tag_get_prio(skb); 619 } 620 621 if (skb_is_gso(skb)) { 622 struct ndis_tcp_lso_info *lso_info; 623 624 rndis_msg_size += NDIS_LSO_PPI_SIZE; 625 lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE, 626 TCP_LARGESEND_PKTINFO); 627 628 lso_info->value = 0; 629 lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE; 630 if (skb->protocol == htons(ETH_P_IP)) { 631 lso_info->lso_v2_transmit.ip_version = 632 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4; 633 ip_hdr(skb)->tot_len = 0; 634 ip_hdr(skb)->check = 0; 635 tcp_hdr(skb)->check = 636 ~csum_tcpudp_magic(ip_hdr(skb)->saddr, 637 ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); 638 } else { 639 lso_info->lso_v2_transmit.ip_version = 640 NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6; 641 tcp_v6_gso_csum_prep(skb); 642 } 643 lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb); 644 lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size; 645 } else if (skb->ip_summed == CHECKSUM_PARTIAL) { 646 if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) { 647 struct ndis_tcp_ip_checksum_info *csum_info; 648 649 rndis_msg_size += NDIS_CSUM_PPI_SIZE; 650 csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE, 651 TCPIP_CHKSUM_PKTINFO); 652 653 csum_info->value = 0; 654 csum_info->transmit.tcp_header_offset = skb_transport_offset(skb); 655 656 if (skb->protocol == htons(ETH_P_IP)) { 657 csum_info->transmit.is_ipv4 = 1; 658 659 if (ip_hdr(skb)->protocol == IPPROTO_TCP) 660 csum_info->transmit.tcp_checksum = 1; 661 else 662 csum_info->transmit.udp_checksum = 1; 663 } else { 664 csum_info->transmit.is_ipv6 = 1; 665 666 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP) 667 csum_info->transmit.tcp_checksum = 1; 668 else 669 csum_info->transmit.udp_checksum = 1; 670 } 671 } else { 672 /* Can't do offload of this type of checksum */ 673 if (skb_checksum_help(skb)) 674 goto drop; 675 } 676 } 677 678 /* Start filling in the page buffers with the rndis hdr */ 679 rndis_msg->msg_len += rndis_msg_size; 680 packet->total_data_buflen = rndis_msg->msg_len; 681 packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size, 682 skb, packet, pb); 683 684 /* timestamp packet in software */ 685 skb_tx_timestamp(skb); 686 687 ret = netvsc_send(net, packet, rndis_msg, pb, skb, xdp_tx); 688 if (likely(ret == 0)) 689 return NETDEV_TX_OK; 690 691 if (ret == -EAGAIN) { 692 ++net_device_ctx->eth_stats.tx_busy; 693 return NETDEV_TX_BUSY; 694 } 695 696 if (ret == -ENOSPC) 697 ++net_device_ctx->eth_stats.tx_no_space; 698 699 drop: 700 dev_kfree_skb_any(skb); 701 net->stats.tx_dropped++; 702 703 return NETDEV_TX_OK; 704 705 no_memory: 706 ++net_device_ctx->eth_stats.tx_no_memory; 707 goto drop; 708 } 709 710 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *ndev) 711 { 712 return netvsc_xmit(skb, ndev, false); 713 } 714 715 /* 716 * netvsc_linkstatus_callback - Link up/down notification 717 */ 718 void netvsc_linkstatus_callback(struct net_device *net, 719 struct rndis_message *resp) 720 { 721 struct rndis_indicate_status *indicate = &resp->msg.indicate_status; 722 struct net_device_context *ndev_ctx = netdev_priv(net); 723 struct netvsc_reconfig *event; 724 unsigned long flags; 725 726 /* Update the physical link speed when changing to another vSwitch */ 727 if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) { 728 u32 speed; 729 730 speed = *(u32 *)((void *)indicate 731 + indicate->status_buf_offset) / 10000; 732 ndev_ctx->speed = speed; 733 return; 734 } 735 736 /* Handle these link change statuses below */ 737 if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE && 738 indicate->status != RNDIS_STATUS_MEDIA_CONNECT && 739 indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT) 740 return; 741 742 if (net->reg_state != NETREG_REGISTERED) 743 return; 744 745 event = kzalloc(sizeof(*event), GFP_ATOMIC); 746 if (!event) 747 return; 748 event->event = indicate->status; 749 750 spin_lock_irqsave(&ndev_ctx->lock, flags); 751 list_add_tail(&event->list, &ndev_ctx->reconfig_events); 752 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 753 754 schedule_delayed_work(&ndev_ctx->dwork, 0); 755 } 756 757 static void netvsc_xdp_xmit(struct sk_buff *skb, struct net_device *ndev) 758 { 759 int rc; 760 761 skb->queue_mapping = skb_get_rx_queue(skb); 762 __skb_push(skb, ETH_HLEN); 763 764 rc = netvsc_xmit(skb, ndev, true); 765 766 if (dev_xmit_complete(rc)) 767 return; 768 769 dev_kfree_skb_any(skb); 770 ndev->stats.tx_dropped++; 771 } 772 773 static void netvsc_comp_ipcsum(struct sk_buff *skb) 774 { 775 struct iphdr *iph = (struct iphdr *)skb->data; 776 777 iph->check = 0; 778 iph->check = ip_fast_csum(iph, iph->ihl); 779 } 780 781 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net, 782 struct netvsc_channel *nvchan, 783 struct xdp_buff *xdp) 784 { 785 struct napi_struct *napi = &nvchan->napi; 786 const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan; 787 const struct ndis_tcp_ip_checksum_info *csum_info = 788 nvchan->rsc.csum_info; 789 const u32 *hash_info = nvchan->rsc.hash_info; 790 struct sk_buff *skb; 791 void *xbuf = xdp->data_hard_start; 792 int i; 793 794 if (xbuf) { 795 unsigned int hdroom = xdp->data - xdp->data_hard_start; 796 unsigned int xlen = xdp->data_end - xdp->data; 797 unsigned int frag_size = netvsc_xdp_fraglen(hdroom + xlen); 798 799 skb = build_skb(xbuf, frag_size); 800 801 if (!skb) { 802 __free_page(virt_to_page(xbuf)); 803 return NULL; 804 } 805 806 skb_reserve(skb, hdroom); 807 skb_put(skb, xlen); 808 skb->dev = napi->dev; 809 } else { 810 skb = napi_alloc_skb(napi, nvchan->rsc.pktlen); 811 812 if (!skb) 813 return NULL; 814 815 /* Copy to skb. This copy is needed here since the memory 816 * pointed by hv_netvsc_packet cannot be deallocated. 817 */ 818 for (i = 0; i < nvchan->rsc.cnt; i++) 819 skb_put_data(skb, nvchan->rsc.data[i], 820 nvchan->rsc.len[i]); 821 } 822 823 skb->protocol = eth_type_trans(skb, net); 824 825 /* skb is already created with CHECKSUM_NONE */ 826 skb_checksum_none_assert(skb); 827 828 /* Incoming packets may have IP header checksum verified by the host. 829 * They may not have IP header checksum computed after coalescing. 830 * We compute it here if the flags are set, because on Linux, the IP 831 * checksum is always checked. 832 */ 833 if (csum_info && csum_info->receive.ip_checksum_value_invalid && 834 csum_info->receive.ip_checksum_succeeded && 835 skb->protocol == htons(ETH_P_IP)) 836 netvsc_comp_ipcsum(skb); 837 838 /* Do L4 checksum offload if enabled and present. */ 839 if (csum_info && (net->features & NETIF_F_RXCSUM)) { 840 if (csum_info->receive.tcp_checksum_succeeded || 841 csum_info->receive.udp_checksum_succeeded) 842 skb->ip_summed = CHECKSUM_UNNECESSARY; 843 } 844 845 if (hash_info && (net->features & NETIF_F_RXHASH)) 846 skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4); 847 848 if (vlan) { 849 u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) | 850 (vlan->cfi ? VLAN_CFI_MASK : 0); 851 852 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), 853 vlan_tci); 854 } 855 856 return skb; 857 } 858 859 /* 860 * netvsc_recv_callback - Callback when we receive a packet from the 861 * "wire" on the specified device. 862 */ 863 int netvsc_recv_callback(struct net_device *net, 864 struct netvsc_device *net_device, 865 struct netvsc_channel *nvchan) 866 { 867 struct net_device_context *net_device_ctx = netdev_priv(net); 868 struct vmbus_channel *channel = nvchan->channel; 869 u16 q_idx = channel->offermsg.offer.sub_channel_index; 870 struct sk_buff *skb; 871 struct netvsc_stats *rx_stats = &nvchan->rx_stats; 872 struct xdp_buff xdp; 873 u32 act; 874 875 if (net->reg_state != NETREG_REGISTERED) 876 return NVSP_STAT_FAIL; 877 878 act = netvsc_run_xdp(net, nvchan, &xdp); 879 880 if (act != XDP_PASS && act != XDP_TX) { 881 u64_stats_update_begin(&rx_stats->syncp); 882 rx_stats->xdp_drop++; 883 u64_stats_update_end(&rx_stats->syncp); 884 885 return NVSP_STAT_SUCCESS; /* consumed by XDP */ 886 } 887 888 /* Allocate a skb - TODO direct I/O to pages? */ 889 skb = netvsc_alloc_recv_skb(net, nvchan, &xdp); 890 891 if (unlikely(!skb)) { 892 ++net_device_ctx->eth_stats.rx_no_memory; 893 return NVSP_STAT_FAIL; 894 } 895 896 skb_record_rx_queue(skb, q_idx); 897 898 /* 899 * Even if injecting the packet, record the statistics 900 * on the synthetic device because modifying the VF device 901 * statistics will not work correctly. 902 */ 903 u64_stats_update_begin(&rx_stats->syncp); 904 rx_stats->packets++; 905 rx_stats->bytes += nvchan->rsc.pktlen; 906 907 if (skb->pkt_type == PACKET_BROADCAST) 908 ++rx_stats->broadcast; 909 else if (skb->pkt_type == PACKET_MULTICAST) 910 ++rx_stats->multicast; 911 u64_stats_update_end(&rx_stats->syncp); 912 913 if (act == XDP_TX) { 914 netvsc_xdp_xmit(skb, net); 915 return NVSP_STAT_SUCCESS; 916 } 917 918 napi_gro_receive(&nvchan->napi, skb); 919 return NVSP_STAT_SUCCESS; 920 } 921 922 static void netvsc_get_drvinfo(struct net_device *net, 923 struct ethtool_drvinfo *info) 924 { 925 strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver)); 926 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 927 } 928 929 static void netvsc_get_channels(struct net_device *net, 930 struct ethtool_channels *channel) 931 { 932 struct net_device_context *net_device_ctx = netdev_priv(net); 933 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 934 935 if (nvdev) { 936 channel->max_combined = nvdev->max_chn; 937 channel->combined_count = nvdev->num_chn; 938 } 939 } 940 941 /* Alloc struct netvsc_device_info, and initialize it from either existing 942 * struct netvsc_device, or from default values. 943 */ 944 static 945 struct netvsc_device_info *netvsc_devinfo_get(struct netvsc_device *nvdev) 946 { 947 struct netvsc_device_info *dev_info; 948 struct bpf_prog *prog; 949 950 dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC); 951 952 if (!dev_info) 953 return NULL; 954 955 if (nvdev) { 956 ASSERT_RTNL(); 957 958 dev_info->num_chn = nvdev->num_chn; 959 dev_info->send_sections = nvdev->send_section_cnt; 960 dev_info->send_section_size = nvdev->send_section_size; 961 dev_info->recv_sections = nvdev->recv_section_cnt; 962 dev_info->recv_section_size = nvdev->recv_section_size; 963 964 memcpy(dev_info->rss_key, nvdev->extension->rss_key, 965 NETVSC_HASH_KEYLEN); 966 967 prog = netvsc_xdp_get(nvdev); 968 if (prog) { 969 bpf_prog_inc(prog); 970 dev_info->bprog = prog; 971 } 972 } else { 973 dev_info->num_chn = VRSS_CHANNEL_DEFAULT; 974 dev_info->send_sections = NETVSC_DEFAULT_TX; 975 dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE; 976 dev_info->recv_sections = NETVSC_DEFAULT_RX; 977 dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE; 978 } 979 980 return dev_info; 981 } 982 983 /* Free struct netvsc_device_info */ 984 static void netvsc_devinfo_put(struct netvsc_device_info *dev_info) 985 { 986 if (dev_info->bprog) { 987 ASSERT_RTNL(); 988 bpf_prog_put(dev_info->bprog); 989 } 990 991 kfree(dev_info); 992 } 993 994 static int netvsc_detach(struct net_device *ndev, 995 struct netvsc_device *nvdev) 996 { 997 struct net_device_context *ndev_ctx = netdev_priv(ndev); 998 struct hv_device *hdev = ndev_ctx->device_ctx; 999 int ret; 1000 1001 /* Don't try continuing to try and setup sub channels */ 1002 if (cancel_work_sync(&nvdev->subchan_work)) 1003 nvdev->num_chn = 1; 1004 1005 netvsc_xdp_set(ndev, NULL, NULL, nvdev); 1006 1007 /* If device was up (receiving) then shutdown */ 1008 if (netif_running(ndev)) { 1009 netvsc_tx_disable(nvdev, ndev); 1010 1011 ret = rndis_filter_close(nvdev); 1012 if (ret) { 1013 netdev_err(ndev, 1014 "unable to close device (ret %d).\n", ret); 1015 return ret; 1016 } 1017 1018 ret = netvsc_wait_until_empty(nvdev); 1019 if (ret) { 1020 netdev_err(ndev, 1021 "Ring buffer not empty after closing rndis\n"); 1022 return ret; 1023 } 1024 } 1025 1026 netif_device_detach(ndev); 1027 1028 rndis_filter_device_remove(hdev, nvdev); 1029 1030 return 0; 1031 } 1032 1033 static int netvsc_attach(struct net_device *ndev, 1034 struct netvsc_device_info *dev_info) 1035 { 1036 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1037 struct hv_device *hdev = ndev_ctx->device_ctx; 1038 struct netvsc_device *nvdev; 1039 struct rndis_device *rdev; 1040 struct bpf_prog *prog; 1041 int ret = 0; 1042 1043 nvdev = rndis_filter_device_add(hdev, dev_info); 1044 if (IS_ERR(nvdev)) 1045 return PTR_ERR(nvdev); 1046 1047 if (nvdev->num_chn > 1) { 1048 ret = rndis_set_subchannel(ndev, nvdev, dev_info); 1049 1050 /* if unavailable, just proceed with one queue */ 1051 if (ret) { 1052 nvdev->max_chn = 1; 1053 nvdev->num_chn = 1; 1054 } 1055 } 1056 1057 prog = dev_info->bprog; 1058 if (prog) { 1059 bpf_prog_inc(prog); 1060 ret = netvsc_xdp_set(ndev, prog, NULL, nvdev); 1061 if (ret) { 1062 bpf_prog_put(prog); 1063 goto err1; 1064 } 1065 } 1066 1067 /* In any case device is now ready */ 1068 nvdev->tx_disable = false; 1069 netif_device_attach(ndev); 1070 1071 /* Note: enable and attach happen when sub-channels setup */ 1072 netif_carrier_off(ndev); 1073 1074 if (netif_running(ndev)) { 1075 ret = rndis_filter_open(nvdev); 1076 if (ret) 1077 goto err2; 1078 1079 rdev = nvdev->extension; 1080 if (!rdev->link_state) 1081 netif_carrier_on(ndev); 1082 } 1083 1084 return 0; 1085 1086 err2: 1087 netif_device_detach(ndev); 1088 1089 err1: 1090 rndis_filter_device_remove(hdev, nvdev); 1091 1092 return ret; 1093 } 1094 1095 static int netvsc_set_channels(struct net_device *net, 1096 struct ethtool_channels *channels) 1097 { 1098 struct net_device_context *net_device_ctx = netdev_priv(net); 1099 struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev); 1100 unsigned int orig, count = channels->combined_count; 1101 struct netvsc_device_info *device_info; 1102 int ret; 1103 1104 /* We do not support separate count for rx, tx, or other */ 1105 if (count == 0 || 1106 channels->rx_count || channels->tx_count || channels->other_count) 1107 return -EINVAL; 1108 1109 if (!nvdev || nvdev->destroy) 1110 return -ENODEV; 1111 1112 if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5) 1113 return -EINVAL; 1114 1115 if (count > nvdev->max_chn) 1116 return -EINVAL; 1117 1118 orig = nvdev->num_chn; 1119 1120 device_info = netvsc_devinfo_get(nvdev); 1121 1122 if (!device_info) 1123 return -ENOMEM; 1124 1125 device_info->num_chn = count; 1126 1127 ret = netvsc_detach(net, nvdev); 1128 if (ret) 1129 goto out; 1130 1131 ret = netvsc_attach(net, device_info); 1132 if (ret) { 1133 device_info->num_chn = orig; 1134 if (netvsc_attach(net, device_info)) 1135 netdev_err(net, "restoring channel setting failed\n"); 1136 } 1137 1138 out: 1139 netvsc_devinfo_put(device_info); 1140 return ret; 1141 } 1142 1143 static void netvsc_init_settings(struct net_device *dev) 1144 { 1145 struct net_device_context *ndc = netdev_priv(dev); 1146 1147 ndc->l4_hash = HV_DEFAULT_L4HASH; 1148 1149 ndc->speed = SPEED_UNKNOWN; 1150 ndc->duplex = DUPLEX_FULL; 1151 1152 dev->features = NETIF_F_LRO; 1153 } 1154 1155 static int netvsc_get_link_ksettings(struct net_device *dev, 1156 struct ethtool_link_ksettings *cmd) 1157 { 1158 struct net_device_context *ndc = netdev_priv(dev); 1159 struct net_device *vf_netdev; 1160 1161 vf_netdev = rtnl_dereference(ndc->vf_netdev); 1162 1163 if (vf_netdev) 1164 return __ethtool_get_link_ksettings(vf_netdev, cmd); 1165 1166 cmd->base.speed = ndc->speed; 1167 cmd->base.duplex = ndc->duplex; 1168 cmd->base.port = PORT_OTHER; 1169 1170 return 0; 1171 } 1172 1173 static int netvsc_set_link_ksettings(struct net_device *dev, 1174 const struct ethtool_link_ksettings *cmd) 1175 { 1176 struct net_device_context *ndc = netdev_priv(dev); 1177 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1178 1179 if (vf_netdev) { 1180 if (!vf_netdev->ethtool_ops->set_link_ksettings) 1181 return -EOPNOTSUPP; 1182 1183 return vf_netdev->ethtool_ops->set_link_ksettings(vf_netdev, 1184 cmd); 1185 } 1186 1187 return ethtool_virtdev_set_link_ksettings(dev, cmd, 1188 &ndc->speed, &ndc->duplex); 1189 } 1190 1191 static int netvsc_change_mtu(struct net_device *ndev, int mtu) 1192 { 1193 struct net_device_context *ndevctx = netdev_priv(ndev); 1194 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1195 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1196 int orig_mtu = ndev->mtu; 1197 struct netvsc_device_info *device_info; 1198 int ret = 0; 1199 1200 if (!nvdev || nvdev->destroy) 1201 return -ENODEV; 1202 1203 device_info = netvsc_devinfo_get(nvdev); 1204 1205 if (!device_info) 1206 return -ENOMEM; 1207 1208 /* Change MTU of underlying VF netdev first. */ 1209 if (vf_netdev) { 1210 ret = dev_set_mtu(vf_netdev, mtu); 1211 if (ret) 1212 goto out; 1213 } 1214 1215 ret = netvsc_detach(ndev, nvdev); 1216 if (ret) 1217 goto rollback_vf; 1218 1219 ndev->mtu = mtu; 1220 1221 ret = netvsc_attach(ndev, device_info); 1222 if (!ret) 1223 goto out; 1224 1225 /* Attempt rollback to original MTU */ 1226 ndev->mtu = orig_mtu; 1227 1228 if (netvsc_attach(ndev, device_info)) 1229 netdev_err(ndev, "restoring mtu failed\n"); 1230 rollback_vf: 1231 if (vf_netdev) 1232 dev_set_mtu(vf_netdev, orig_mtu); 1233 1234 out: 1235 netvsc_devinfo_put(device_info); 1236 return ret; 1237 } 1238 1239 static void netvsc_get_vf_stats(struct net_device *net, 1240 struct netvsc_vf_pcpu_stats *tot) 1241 { 1242 struct net_device_context *ndev_ctx = netdev_priv(net); 1243 int i; 1244 1245 memset(tot, 0, sizeof(*tot)); 1246 1247 for_each_possible_cpu(i) { 1248 const struct netvsc_vf_pcpu_stats *stats 1249 = per_cpu_ptr(ndev_ctx->vf_stats, i); 1250 u64 rx_packets, rx_bytes, tx_packets, tx_bytes; 1251 unsigned int start; 1252 1253 do { 1254 start = u64_stats_fetch_begin_irq(&stats->syncp); 1255 rx_packets = stats->rx_packets; 1256 tx_packets = stats->tx_packets; 1257 rx_bytes = stats->rx_bytes; 1258 tx_bytes = stats->tx_bytes; 1259 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1260 1261 tot->rx_packets += rx_packets; 1262 tot->tx_packets += tx_packets; 1263 tot->rx_bytes += rx_bytes; 1264 tot->tx_bytes += tx_bytes; 1265 tot->tx_dropped += stats->tx_dropped; 1266 } 1267 } 1268 1269 static void netvsc_get_pcpu_stats(struct net_device *net, 1270 struct netvsc_ethtool_pcpu_stats *pcpu_tot) 1271 { 1272 struct net_device_context *ndev_ctx = netdev_priv(net); 1273 struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev); 1274 int i; 1275 1276 /* fetch percpu stats of vf */ 1277 for_each_possible_cpu(i) { 1278 const struct netvsc_vf_pcpu_stats *stats = 1279 per_cpu_ptr(ndev_ctx->vf_stats, i); 1280 struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i]; 1281 unsigned int start; 1282 1283 do { 1284 start = u64_stats_fetch_begin_irq(&stats->syncp); 1285 this_tot->vf_rx_packets = stats->rx_packets; 1286 this_tot->vf_tx_packets = stats->tx_packets; 1287 this_tot->vf_rx_bytes = stats->rx_bytes; 1288 this_tot->vf_tx_bytes = stats->tx_bytes; 1289 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1290 this_tot->rx_packets = this_tot->vf_rx_packets; 1291 this_tot->tx_packets = this_tot->vf_tx_packets; 1292 this_tot->rx_bytes = this_tot->vf_rx_bytes; 1293 this_tot->tx_bytes = this_tot->vf_tx_bytes; 1294 } 1295 1296 /* fetch percpu stats of netvsc */ 1297 for (i = 0; i < nvdev->num_chn; i++) { 1298 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1299 const struct netvsc_stats *stats; 1300 struct netvsc_ethtool_pcpu_stats *this_tot = 1301 &pcpu_tot[nvchan->channel->target_cpu]; 1302 u64 packets, bytes; 1303 unsigned int start; 1304 1305 stats = &nvchan->tx_stats; 1306 do { 1307 start = u64_stats_fetch_begin_irq(&stats->syncp); 1308 packets = stats->packets; 1309 bytes = stats->bytes; 1310 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1311 1312 this_tot->tx_bytes += bytes; 1313 this_tot->tx_packets += packets; 1314 1315 stats = &nvchan->rx_stats; 1316 do { 1317 start = u64_stats_fetch_begin_irq(&stats->syncp); 1318 packets = stats->packets; 1319 bytes = stats->bytes; 1320 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1321 1322 this_tot->rx_bytes += bytes; 1323 this_tot->rx_packets += packets; 1324 } 1325 } 1326 1327 static void netvsc_get_stats64(struct net_device *net, 1328 struct rtnl_link_stats64 *t) 1329 { 1330 struct net_device_context *ndev_ctx = netdev_priv(net); 1331 struct netvsc_device *nvdev; 1332 struct netvsc_vf_pcpu_stats vf_tot; 1333 int i; 1334 1335 rcu_read_lock(); 1336 1337 nvdev = rcu_dereference(ndev_ctx->nvdev); 1338 if (!nvdev) 1339 goto out; 1340 1341 netdev_stats_to_stats64(t, &net->stats); 1342 1343 netvsc_get_vf_stats(net, &vf_tot); 1344 t->rx_packets += vf_tot.rx_packets; 1345 t->tx_packets += vf_tot.tx_packets; 1346 t->rx_bytes += vf_tot.rx_bytes; 1347 t->tx_bytes += vf_tot.tx_bytes; 1348 t->tx_dropped += vf_tot.tx_dropped; 1349 1350 for (i = 0; i < nvdev->num_chn; i++) { 1351 const struct netvsc_channel *nvchan = &nvdev->chan_table[i]; 1352 const struct netvsc_stats *stats; 1353 u64 packets, bytes, multicast; 1354 unsigned int start; 1355 1356 stats = &nvchan->tx_stats; 1357 do { 1358 start = u64_stats_fetch_begin_irq(&stats->syncp); 1359 packets = stats->packets; 1360 bytes = stats->bytes; 1361 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1362 1363 t->tx_bytes += bytes; 1364 t->tx_packets += packets; 1365 1366 stats = &nvchan->rx_stats; 1367 do { 1368 start = u64_stats_fetch_begin_irq(&stats->syncp); 1369 packets = stats->packets; 1370 bytes = stats->bytes; 1371 multicast = stats->multicast + stats->broadcast; 1372 } while (u64_stats_fetch_retry_irq(&stats->syncp, start)); 1373 1374 t->rx_bytes += bytes; 1375 t->rx_packets += packets; 1376 t->multicast += multicast; 1377 } 1378 out: 1379 rcu_read_unlock(); 1380 } 1381 1382 static int netvsc_set_mac_addr(struct net_device *ndev, void *p) 1383 { 1384 struct net_device_context *ndc = netdev_priv(ndev); 1385 struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev); 1386 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1387 struct sockaddr *addr = p; 1388 int err; 1389 1390 err = eth_prepare_mac_addr_change(ndev, p); 1391 if (err) 1392 return err; 1393 1394 if (!nvdev) 1395 return -ENODEV; 1396 1397 if (vf_netdev) { 1398 err = dev_set_mac_address(vf_netdev, addr, NULL); 1399 if (err) 1400 return err; 1401 } 1402 1403 err = rndis_filter_set_device_mac(nvdev, addr->sa_data); 1404 if (!err) { 1405 eth_commit_mac_addr_change(ndev, p); 1406 } else if (vf_netdev) { 1407 /* rollback change on VF */ 1408 memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN); 1409 dev_set_mac_address(vf_netdev, addr, NULL); 1410 } 1411 1412 return err; 1413 } 1414 1415 static const struct { 1416 char name[ETH_GSTRING_LEN]; 1417 u16 offset; 1418 } netvsc_stats[] = { 1419 { "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) }, 1420 { "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) }, 1421 { "tx_no_space", offsetof(struct netvsc_ethtool_stats, tx_no_space) }, 1422 { "tx_too_big", offsetof(struct netvsc_ethtool_stats, tx_too_big) }, 1423 { "tx_busy", offsetof(struct netvsc_ethtool_stats, tx_busy) }, 1424 { "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) }, 1425 { "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) }, 1426 { "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) }, 1427 { "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) }, 1428 { "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) }, 1429 }, pcpu_stats[] = { 1430 { "cpu%u_rx_packets", 1431 offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) }, 1432 { "cpu%u_rx_bytes", 1433 offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) }, 1434 { "cpu%u_tx_packets", 1435 offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) }, 1436 { "cpu%u_tx_bytes", 1437 offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) }, 1438 { "cpu%u_vf_rx_packets", 1439 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) }, 1440 { "cpu%u_vf_rx_bytes", 1441 offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) }, 1442 { "cpu%u_vf_tx_packets", 1443 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) }, 1444 { "cpu%u_vf_tx_bytes", 1445 offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) }, 1446 }, vf_stats[] = { 1447 { "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) }, 1448 { "vf_rx_bytes", offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) }, 1449 { "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) }, 1450 { "vf_tx_bytes", offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) }, 1451 { "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) }, 1452 }; 1453 1454 #define NETVSC_GLOBAL_STATS_LEN ARRAY_SIZE(netvsc_stats) 1455 #define NETVSC_VF_STATS_LEN ARRAY_SIZE(vf_stats) 1456 1457 /* statistics per queue (rx/tx packets/bytes) */ 1458 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats)) 1459 1460 /* 5 statistics per queue (rx/tx packets/bytes, rx xdp_drop) */ 1461 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 5) 1462 1463 static int netvsc_get_sset_count(struct net_device *dev, int string_set) 1464 { 1465 struct net_device_context *ndc = netdev_priv(dev); 1466 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1467 1468 if (!nvdev) 1469 return -ENODEV; 1470 1471 switch (string_set) { 1472 case ETH_SS_STATS: 1473 return NETVSC_GLOBAL_STATS_LEN 1474 + NETVSC_VF_STATS_LEN 1475 + NETVSC_QUEUE_STATS_LEN(nvdev) 1476 + NETVSC_PCPU_STATS_LEN; 1477 default: 1478 return -EINVAL; 1479 } 1480 } 1481 1482 static void netvsc_get_ethtool_stats(struct net_device *dev, 1483 struct ethtool_stats *stats, u64 *data) 1484 { 1485 struct net_device_context *ndc = netdev_priv(dev); 1486 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1487 const void *nds = &ndc->eth_stats; 1488 const struct netvsc_stats *qstats; 1489 struct netvsc_vf_pcpu_stats sum; 1490 struct netvsc_ethtool_pcpu_stats *pcpu_sum; 1491 unsigned int start; 1492 u64 packets, bytes; 1493 u64 xdp_drop; 1494 int i, j, cpu; 1495 1496 if (!nvdev) 1497 return; 1498 1499 for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++) 1500 data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset); 1501 1502 netvsc_get_vf_stats(dev, &sum); 1503 for (j = 0; j < NETVSC_VF_STATS_LEN; j++) 1504 data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset); 1505 1506 for (j = 0; j < nvdev->num_chn; j++) { 1507 qstats = &nvdev->chan_table[j].tx_stats; 1508 1509 do { 1510 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1511 packets = qstats->packets; 1512 bytes = qstats->bytes; 1513 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1514 data[i++] = packets; 1515 data[i++] = bytes; 1516 1517 qstats = &nvdev->chan_table[j].rx_stats; 1518 do { 1519 start = u64_stats_fetch_begin_irq(&qstats->syncp); 1520 packets = qstats->packets; 1521 bytes = qstats->bytes; 1522 xdp_drop = qstats->xdp_drop; 1523 } while (u64_stats_fetch_retry_irq(&qstats->syncp, start)); 1524 data[i++] = packets; 1525 data[i++] = bytes; 1526 data[i++] = xdp_drop; 1527 } 1528 1529 pcpu_sum = kvmalloc_array(num_possible_cpus(), 1530 sizeof(struct netvsc_ethtool_pcpu_stats), 1531 GFP_KERNEL); 1532 netvsc_get_pcpu_stats(dev, pcpu_sum); 1533 for_each_present_cpu(cpu) { 1534 struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu]; 1535 1536 for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++) 1537 data[i++] = *(u64 *)((void *)this_sum 1538 + pcpu_stats[j].offset); 1539 } 1540 kvfree(pcpu_sum); 1541 } 1542 1543 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data) 1544 { 1545 struct net_device_context *ndc = netdev_priv(dev); 1546 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1547 u8 *p = data; 1548 int i, cpu; 1549 1550 if (!nvdev) 1551 return; 1552 1553 switch (stringset) { 1554 case ETH_SS_STATS: 1555 for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) { 1556 memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN); 1557 p += ETH_GSTRING_LEN; 1558 } 1559 1560 for (i = 0; i < ARRAY_SIZE(vf_stats); i++) { 1561 memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN); 1562 p += ETH_GSTRING_LEN; 1563 } 1564 1565 for (i = 0; i < nvdev->num_chn; i++) { 1566 sprintf(p, "tx_queue_%u_packets", i); 1567 p += ETH_GSTRING_LEN; 1568 sprintf(p, "tx_queue_%u_bytes", i); 1569 p += ETH_GSTRING_LEN; 1570 sprintf(p, "rx_queue_%u_packets", i); 1571 p += ETH_GSTRING_LEN; 1572 sprintf(p, "rx_queue_%u_bytes", i); 1573 p += ETH_GSTRING_LEN; 1574 sprintf(p, "rx_queue_%u_xdp_drop", i); 1575 p += ETH_GSTRING_LEN; 1576 } 1577 1578 for_each_present_cpu(cpu) { 1579 for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) { 1580 sprintf(p, pcpu_stats[i].name, cpu); 1581 p += ETH_GSTRING_LEN; 1582 } 1583 } 1584 1585 break; 1586 } 1587 } 1588 1589 static int 1590 netvsc_get_rss_hash_opts(struct net_device_context *ndc, 1591 struct ethtool_rxnfc *info) 1592 { 1593 const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3; 1594 1595 info->data = RXH_IP_SRC | RXH_IP_DST; 1596 1597 switch (info->flow_type) { 1598 case TCP_V4_FLOW: 1599 if (ndc->l4_hash & HV_TCP4_L4HASH) 1600 info->data |= l4_flag; 1601 1602 break; 1603 1604 case TCP_V6_FLOW: 1605 if (ndc->l4_hash & HV_TCP6_L4HASH) 1606 info->data |= l4_flag; 1607 1608 break; 1609 1610 case UDP_V4_FLOW: 1611 if (ndc->l4_hash & HV_UDP4_L4HASH) 1612 info->data |= l4_flag; 1613 1614 break; 1615 1616 case UDP_V6_FLOW: 1617 if (ndc->l4_hash & HV_UDP6_L4HASH) 1618 info->data |= l4_flag; 1619 1620 break; 1621 1622 case IPV4_FLOW: 1623 case IPV6_FLOW: 1624 break; 1625 default: 1626 info->data = 0; 1627 break; 1628 } 1629 1630 return 0; 1631 } 1632 1633 static int 1634 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info, 1635 u32 *rules) 1636 { 1637 struct net_device_context *ndc = netdev_priv(dev); 1638 struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev); 1639 1640 if (!nvdev) 1641 return -ENODEV; 1642 1643 switch (info->cmd) { 1644 case ETHTOOL_GRXRINGS: 1645 info->data = nvdev->num_chn; 1646 return 0; 1647 1648 case ETHTOOL_GRXFH: 1649 return netvsc_get_rss_hash_opts(ndc, info); 1650 } 1651 return -EOPNOTSUPP; 1652 } 1653 1654 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc, 1655 struct ethtool_rxnfc *info) 1656 { 1657 if (info->data == (RXH_IP_SRC | RXH_IP_DST | 1658 RXH_L4_B_0_1 | RXH_L4_B_2_3)) { 1659 switch (info->flow_type) { 1660 case TCP_V4_FLOW: 1661 ndc->l4_hash |= HV_TCP4_L4HASH; 1662 break; 1663 1664 case TCP_V6_FLOW: 1665 ndc->l4_hash |= HV_TCP6_L4HASH; 1666 break; 1667 1668 case UDP_V4_FLOW: 1669 ndc->l4_hash |= HV_UDP4_L4HASH; 1670 break; 1671 1672 case UDP_V6_FLOW: 1673 ndc->l4_hash |= HV_UDP6_L4HASH; 1674 break; 1675 1676 default: 1677 return -EOPNOTSUPP; 1678 } 1679 1680 return 0; 1681 } 1682 1683 if (info->data == (RXH_IP_SRC | RXH_IP_DST)) { 1684 switch (info->flow_type) { 1685 case TCP_V4_FLOW: 1686 ndc->l4_hash &= ~HV_TCP4_L4HASH; 1687 break; 1688 1689 case TCP_V6_FLOW: 1690 ndc->l4_hash &= ~HV_TCP6_L4HASH; 1691 break; 1692 1693 case UDP_V4_FLOW: 1694 ndc->l4_hash &= ~HV_UDP4_L4HASH; 1695 break; 1696 1697 case UDP_V6_FLOW: 1698 ndc->l4_hash &= ~HV_UDP6_L4HASH; 1699 break; 1700 1701 default: 1702 return -EOPNOTSUPP; 1703 } 1704 1705 return 0; 1706 } 1707 1708 return -EOPNOTSUPP; 1709 } 1710 1711 static int 1712 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info) 1713 { 1714 struct net_device_context *ndc = netdev_priv(ndev); 1715 1716 if (info->cmd == ETHTOOL_SRXFH) 1717 return netvsc_set_rss_hash_opts(ndc, info); 1718 1719 return -EOPNOTSUPP; 1720 } 1721 1722 static u32 netvsc_get_rxfh_key_size(struct net_device *dev) 1723 { 1724 return NETVSC_HASH_KEYLEN; 1725 } 1726 1727 static u32 netvsc_rss_indir_size(struct net_device *dev) 1728 { 1729 return ITAB_NUM; 1730 } 1731 1732 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key, 1733 u8 *hfunc) 1734 { 1735 struct net_device_context *ndc = netdev_priv(dev); 1736 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1737 struct rndis_device *rndis_dev; 1738 int i; 1739 1740 if (!ndev) 1741 return -ENODEV; 1742 1743 if (hfunc) 1744 *hfunc = ETH_RSS_HASH_TOP; /* Toeplitz */ 1745 1746 rndis_dev = ndev->extension; 1747 if (indir) { 1748 for (i = 0; i < ITAB_NUM; i++) 1749 indir[i] = ndc->rx_table[i]; 1750 } 1751 1752 if (key) 1753 memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN); 1754 1755 return 0; 1756 } 1757 1758 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir, 1759 const u8 *key, const u8 hfunc) 1760 { 1761 struct net_device_context *ndc = netdev_priv(dev); 1762 struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev); 1763 struct rndis_device *rndis_dev; 1764 int i; 1765 1766 if (!ndev) 1767 return -ENODEV; 1768 1769 if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP) 1770 return -EOPNOTSUPP; 1771 1772 rndis_dev = ndev->extension; 1773 if (indir) { 1774 for (i = 0; i < ITAB_NUM; i++) 1775 if (indir[i] >= ndev->num_chn) 1776 return -EINVAL; 1777 1778 for (i = 0; i < ITAB_NUM; i++) 1779 ndc->rx_table[i] = indir[i]; 1780 } 1781 1782 if (!key) { 1783 if (!indir) 1784 return 0; 1785 1786 key = rndis_dev->rss_key; 1787 } 1788 1789 return rndis_filter_set_rss_param(rndis_dev, key); 1790 } 1791 1792 /* Hyper-V RNDIS protocol does not have ring in the HW sense. 1793 * It does have pre-allocated receive area which is divided into sections. 1794 */ 1795 static void __netvsc_get_ringparam(struct netvsc_device *nvdev, 1796 struct ethtool_ringparam *ring) 1797 { 1798 u32 max_buf_size; 1799 1800 ring->rx_pending = nvdev->recv_section_cnt; 1801 ring->tx_pending = nvdev->send_section_cnt; 1802 1803 if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2) 1804 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY; 1805 else 1806 max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE; 1807 1808 ring->rx_max_pending = max_buf_size / nvdev->recv_section_size; 1809 ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE 1810 / nvdev->send_section_size; 1811 } 1812 1813 static void netvsc_get_ringparam(struct net_device *ndev, 1814 struct ethtool_ringparam *ring) 1815 { 1816 struct net_device_context *ndevctx = netdev_priv(ndev); 1817 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1818 1819 if (!nvdev) 1820 return; 1821 1822 __netvsc_get_ringparam(nvdev, ring); 1823 } 1824 1825 static int netvsc_set_ringparam(struct net_device *ndev, 1826 struct ethtool_ringparam *ring) 1827 { 1828 struct net_device_context *ndevctx = netdev_priv(ndev); 1829 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1830 struct netvsc_device_info *device_info; 1831 struct ethtool_ringparam orig; 1832 u32 new_tx, new_rx; 1833 int ret = 0; 1834 1835 if (!nvdev || nvdev->destroy) 1836 return -ENODEV; 1837 1838 memset(&orig, 0, sizeof(orig)); 1839 __netvsc_get_ringparam(nvdev, &orig); 1840 1841 new_tx = clamp_t(u32, ring->tx_pending, 1842 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending); 1843 new_rx = clamp_t(u32, ring->rx_pending, 1844 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending); 1845 1846 if (new_tx == orig.tx_pending && 1847 new_rx == orig.rx_pending) 1848 return 0; /* no change */ 1849 1850 device_info = netvsc_devinfo_get(nvdev); 1851 1852 if (!device_info) 1853 return -ENOMEM; 1854 1855 device_info->send_sections = new_tx; 1856 device_info->recv_sections = new_rx; 1857 1858 ret = netvsc_detach(ndev, nvdev); 1859 if (ret) 1860 goto out; 1861 1862 ret = netvsc_attach(ndev, device_info); 1863 if (ret) { 1864 device_info->send_sections = orig.tx_pending; 1865 device_info->recv_sections = orig.rx_pending; 1866 1867 if (netvsc_attach(ndev, device_info)) 1868 netdev_err(ndev, "restoring ringparam failed"); 1869 } 1870 1871 out: 1872 netvsc_devinfo_put(device_info); 1873 return ret; 1874 } 1875 1876 static netdev_features_t netvsc_fix_features(struct net_device *ndev, 1877 netdev_features_t features) 1878 { 1879 struct net_device_context *ndevctx = netdev_priv(ndev); 1880 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1881 1882 if (!nvdev || nvdev->destroy) 1883 return features; 1884 1885 if ((features & NETIF_F_LRO) && netvsc_xdp_get(nvdev)) { 1886 features ^= NETIF_F_LRO; 1887 netdev_info(ndev, "Skip LRO - unsupported with XDP\n"); 1888 } 1889 1890 return features; 1891 } 1892 1893 static int netvsc_set_features(struct net_device *ndev, 1894 netdev_features_t features) 1895 { 1896 netdev_features_t change = features ^ ndev->features; 1897 struct net_device_context *ndevctx = netdev_priv(ndev); 1898 struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev); 1899 struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev); 1900 struct ndis_offload_params offloads; 1901 int ret = 0; 1902 1903 if (!nvdev || nvdev->destroy) 1904 return -ENODEV; 1905 1906 if (!(change & NETIF_F_LRO)) 1907 goto syncvf; 1908 1909 memset(&offloads, 0, sizeof(struct ndis_offload_params)); 1910 1911 if (features & NETIF_F_LRO) { 1912 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1913 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED; 1914 } else { 1915 offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1916 offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED; 1917 } 1918 1919 ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads); 1920 1921 if (ret) { 1922 features ^= NETIF_F_LRO; 1923 ndev->features = features; 1924 } 1925 1926 syncvf: 1927 if (!vf_netdev) 1928 return ret; 1929 1930 vf_netdev->wanted_features = features; 1931 netdev_update_features(vf_netdev); 1932 1933 return ret; 1934 } 1935 1936 static u32 netvsc_get_msglevel(struct net_device *ndev) 1937 { 1938 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1939 1940 return ndev_ctx->msg_enable; 1941 } 1942 1943 static void netvsc_set_msglevel(struct net_device *ndev, u32 val) 1944 { 1945 struct net_device_context *ndev_ctx = netdev_priv(ndev); 1946 1947 ndev_ctx->msg_enable = val; 1948 } 1949 1950 static const struct ethtool_ops ethtool_ops = { 1951 .get_drvinfo = netvsc_get_drvinfo, 1952 .get_msglevel = netvsc_get_msglevel, 1953 .set_msglevel = netvsc_set_msglevel, 1954 .get_link = ethtool_op_get_link, 1955 .get_ethtool_stats = netvsc_get_ethtool_stats, 1956 .get_sset_count = netvsc_get_sset_count, 1957 .get_strings = netvsc_get_strings, 1958 .get_channels = netvsc_get_channels, 1959 .set_channels = netvsc_set_channels, 1960 .get_ts_info = ethtool_op_get_ts_info, 1961 .get_rxnfc = netvsc_get_rxnfc, 1962 .set_rxnfc = netvsc_set_rxnfc, 1963 .get_rxfh_key_size = netvsc_get_rxfh_key_size, 1964 .get_rxfh_indir_size = netvsc_rss_indir_size, 1965 .get_rxfh = netvsc_get_rxfh, 1966 .set_rxfh = netvsc_set_rxfh, 1967 .get_link_ksettings = netvsc_get_link_ksettings, 1968 .set_link_ksettings = netvsc_set_link_ksettings, 1969 .get_ringparam = netvsc_get_ringparam, 1970 .set_ringparam = netvsc_set_ringparam, 1971 }; 1972 1973 static const struct net_device_ops device_ops = { 1974 .ndo_open = netvsc_open, 1975 .ndo_stop = netvsc_close, 1976 .ndo_start_xmit = netvsc_start_xmit, 1977 .ndo_change_rx_flags = netvsc_change_rx_flags, 1978 .ndo_set_rx_mode = netvsc_set_rx_mode, 1979 .ndo_fix_features = netvsc_fix_features, 1980 .ndo_set_features = netvsc_set_features, 1981 .ndo_change_mtu = netvsc_change_mtu, 1982 .ndo_validate_addr = eth_validate_addr, 1983 .ndo_set_mac_address = netvsc_set_mac_addr, 1984 .ndo_select_queue = netvsc_select_queue, 1985 .ndo_get_stats64 = netvsc_get_stats64, 1986 .ndo_bpf = netvsc_bpf, 1987 }; 1988 1989 /* 1990 * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link 1991 * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is 1992 * present send GARP packet to network peers with netif_notify_peers(). 1993 */ 1994 static void netvsc_link_change(struct work_struct *w) 1995 { 1996 struct net_device_context *ndev_ctx = 1997 container_of(w, struct net_device_context, dwork.work); 1998 struct hv_device *device_obj = ndev_ctx->device_ctx; 1999 struct net_device *net = hv_get_drvdata(device_obj); 2000 struct netvsc_device *net_device; 2001 struct rndis_device *rdev; 2002 struct netvsc_reconfig *event = NULL; 2003 bool notify = false, reschedule = false; 2004 unsigned long flags, next_reconfig, delay; 2005 2006 /* if changes are happening, comeback later */ 2007 if (!rtnl_trylock()) { 2008 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2009 return; 2010 } 2011 2012 net_device = rtnl_dereference(ndev_ctx->nvdev); 2013 if (!net_device) 2014 goto out_unlock; 2015 2016 rdev = net_device->extension; 2017 2018 next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT; 2019 if (time_is_after_jiffies(next_reconfig)) { 2020 /* link_watch only sends one notification with current state 2021 * per second, avoid doing reconfig more frequently. Handle 2022 * wrap around. 2023 */ 2024 delay = next_reconfig - jiffies; 2025 delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT; 2026 schedule_delayed_work(&ndev_ctx->dwork, delay); 2027 goto out_unlock; 2028 } 2029 ndev_ctx->last_reconfig = jiffies; 2030 2031 spin_lock_irqsave(&ndev_ctx->lock, flags); 2032 if (!list_empty(&ndev_ctx->reconfig_events)) { 2033 event = list_first_entry(&ndev_ctx->reconfig_events, 2034 struct netvsc_reconfig, list); 2035 list_del(&event->list); 2036 reschedule = !list_empty(&ndev_ctx->reconfig_events); 2037 } 2038 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2039 2040 if (!event) 2041 goto out_unlock; 2042 2043 switch (event->event) { 2044 /* Only the following events are possible due to the check in 2045 * netvsc_linkstatus_callback() 2046 */ 2047 case RNDIS_STATUS_MEDIA_CONNECT: 2048 if (rdev->link_state) { 2049 rdev->link_state = false; 2050 netif_carrier_on(net); 2051 netvsc_tx_enable(net_device, net); 2052 } else { 2053 notify = true; 2054 } 2055 kfree(event); 2056 break; 2057 case RNDIS_STATUS_MEDIA_DISCONNECT: 2058 if (!rdev->link_state) { 2059 rdev->link_state = true; 2060 netif_carrier_off(net); 2061 netvsc_tx_disable(net_device, net); 2062 } 2063 kfree(event); 2064 break; 2065 case RNDIS_STATUS_NETWORK_CHANGE: 2066 /* Only makes sense if carrier is present */ 2067 if (!rdev->link_state) { 2068 rdev->link_state = true; 2069 netif_carrier_off(net); 2070 netvsc_tx_disable(net_device, net); 2071 event->event = RNDIS_STATUS_MEDIA_CONNECT; 2072 spin_lock_irqsave(&ndev_ctx->lock, flags); 2073 list_add(&event->list, &ndev_ctx->reconfig_events); 2074 spin_unlock_irqrestore(&ndev_ctx->lock, flags); 2075 reschedule = true; 2076 } 2077 break; 2078 } 2079 2080 rtnl_unlock(); 2081 2082 if (notify) 2083 netdev_notify_peers(net); 2084 2085 /* link_watch only sends one notification with current state per 2086 * second, handle next reconfig event in 2 seconds. 2087 */ 2088 if (reschedule) 2089 schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT); 2090 2091 return; 2092 2093 out_unlock: 2094 rtnl_unlock(); 2095 } 2096 2097 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev) 2098 { 2099 struct net_device_context *net_device_ctx; 2100 struct net_device *dev; 2101 2102 dev = netdev_master_upper_dev_get(vf_netdev); 2103 if (!dev || dev->netdev_ops != &device_ops) 2104 return NULL; /* not a netvsc device */ 2105 2106 net_device_ctx = netdev_priv(dev); 2107 if (!rtnl_dereference(net_device_ctx->nvdev)) 2108 return NULL; /* device is removed */ 2109 2110 return dev; 2111 } 2112 2113 /* Called when VF is injecting data into network stack. 2114 * Change the associated network device from VF to netvsc. 2115 * note: already called with rcu_read_lock 2116 */ 2117 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb) 2118 { 2119 struct sk_buff *skb = *pskb; 2120 struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data); 2121 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2122 struct netvsc_vf_pcpu_stats *pcpu_stats 2123 = this_cpu_ptr(ndev_ctx->vf_stats); 2124 2125 skb = skb_share_check(skb, GFP_ATOMIC); 2126 if (unlikely(!skb)) 2127 return RX_HANDLER_CONSUMED; 2128 2129 *pskb = skb; 2130 2131 skb->dev = ndev; 2132 2133 u64_stats_update_begin(&pcpu_stats->syncp); 2134 pcpu_stats->rx_packets++; 2135 pcpu_stats->rx_bytes += skb->len; 2136 u64_stats_update_end(&pcpu_stats->syncp); 2137 2138 return RX_HANDLER_ANOTHER; 2139 } 2140 2141 static int netvsc_vf_join(struct net_device *vf_netdev, 2142 struct net_device *ndev) 2143 { 2144 struct net_device_context *ndev_ctx = netdev_priv(ndev); 2145 int ret; 2146 2147 ret = netdev_rx_handler_register(vf_netdev, 2148 netvsc_vf_handle_frame, ndev); 2149 if (ret != 0) { 2150 netdev_err(vf_netdev, 2151 "can not register netvsc VF receive handler (err = %d)\n", 2152 ret); 2153 goto rx_handler_failed; 2154 } 2155 2156 ret = netdev_master_upper_dev_link(vf_netdev, ndev, 2157 NULL, NULL, NULL); 2158 if (ret != 0) { 2159 netdev_err(vf_netdev, 2160 "can not set master device %s (err = %d)\n", 2161 ndev->name, ret); 2162 goto upper_link_failed; 2163 } 2164 2165 /* set slave flag before open to prevent IPv6 addrconf */ 2166 vf_netdev->flags |= IFF_SLAVE; 2167 2168 schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT); 2169 2170 call_netdevice_notifiers(NETDEV_JOIN, vf_netdev); 2171 2172 netdev_info(vf_netdev, "joined to %s\n", ndev->name); 2173 return 0; 2174 2175 upper_link_failed: 2176 netdev_rx_handler_unregister(vf_netdev); 2177 rx_handler_failed: 2178 return ret; 2179 } 2180 2181 static void __netvsc_vf_setup(struct net_device *ndev, 2182 struct net_device *vf_netdev) 2183 { 2184 int ret; 2185 2186 /* Align MTU of VF with master */ 2187 ret = dev_set_mtu(vf_netdev, ndev->mtu); 2188 if (ret) 2189 netdev_warn(vf_netdev, 2190 "unable to change mtu to %u\n", ndev->mtu); 2191 2192 /* set multicast etc flags on VF */ 2193 dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL); 2194 2195 /* sync address list from ndev to VF */ 2196 netif_addr_lock_bh(ndev); 2197 dev_uc_sync(vf_netdev, ndev); 2198 dev_mc_sync(vf_netdev, ndev); 2199 netif_addr_unlock_bh(ndev); 2200 2201 if (netif_running(ndev)) { 2202 ret = dev_open(vf_netdev, NULL); 2203 if (ret) 2204 netdev_warn(vf_netdev, 2205 "unable to open: %d\n", ret); 2206 } 2207 } 2208 2209 /* Setup VF as slave of the synthetic device. 2210 * Runs in workqueue to avoid recursion in netlink callbacks. 2211 */ 2212 static void netvsc_vf_setup(struct work_struct *w) 2213 { 2214 struct net_device_context *ndev_ctx 2215 = container_of(w, struct net_device_context, vf_takeover.work); 2216 struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx); 2217 struct net_device *vf_netdev; 2218 2219 if (!rtnl_trylock()) { 2220 schedule_delayed_work(&ndev_ctx->vf_takeover, 0); 2221 return; 2222 } 2223 2224 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2225 if (vf_netdev) 2226 __netvsc_vf_setup(ndev, vf_netdev); 2227 2228 rtnl_unlock(); 2229 } 2230 2231 /* Find netvsc by VF serial number. 2232 * The PCI hyperv controller records the serial number as the slot kobj name. 2233 */ 2234 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev) 2235 { 2236 struct device *parent = vf_netdev->dev.parent; 2237 struct net_device_context *ndev_ctx; 2238 struct pci_dev *pdev; 2239 u32 serial; 2240 2241 if (!parent || !dev_is_pci(parent)) 2242 return NULL; /* not a PCI device */ 2243 2244 pdev = to_pci_dev(parent); 2245 if (!pdev->slot) { 2246 netdev_notice(vf_netdev, "no PCI slot information\n"); 2247 return NULL; 2248 } 2249 2250 if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) { 2251 netdev_notice(vf_netdev, "Invalid vf serial:%s\n", 2252 pci_slot_name(pdev->slot)); 2253 return NULL; 2254 } 2255 2256 list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) { 2257 if (!ndev_ctx->vf_alloc) 2258 continue; 2259 2260 if (ndev_ctx->vf_serial == serial) 2261 return hv_get_drvdata(ndev_ctx->device_ctx); 2262 } 2263 2264 netdev_notice(vf_netdev, 2265 "no netdev found for vf serial:%u\n", serial); 2266 return NULL; 2267 } 2268 2269 static int netvsc_register_vf(struct net_device *vf_netdev) 2270 { 2271 struct net_device_context *net_device_ctx; 2272 struct netvsc_device *netvsc_dev; 2273 struct bpf_prog *prog; 2274 struct net_device *ndev; 2275 int ret; 2276 2277 if (vf_netdev->addr_len != ETH_ALEN) 2278 return NOTIFY_DONE; 2279 2280 ndev = get_netvsc_byslot(vf_netdev); 2281 if (!ndev) 2282 return NOTIFY_DONE; 2283 2284 net_device_ctx = netdev_priv(ndev); 2285 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2286 if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev)) 2287 return NOTIFY_DONE; 2288 2289 /* if synthetic interface is a different namespace, 2290 * then move the VF to that namespace; join will be 2291 * done again in that context. 2292 */ 2293 if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) { 2294 ret = dev_change_net_namespace(vf_netdev, 2295 dev_net(ndev), "eth%d"); 2296 if (ret) 2297 netdev_err(vf_netdev, 2298 "could not move to same namespace as %s: %d\n", 2299 ndev->name, ret); 2300 else 2301 netdev_info(vf_netdev, 2302 "VF moved to namespace with: %s\n", 2303 ndev->name); 2304 return NOTIFY_DONE; 2305 } 2306 2307 netdev_info(ndev, "VF registering: %s\n", vf_netdev->name); 2308 2309 if (netvsc_vf_join(vf_netdev, ndev) != 0) 2310 return NOTIFY_DONE; 2311 2312 dev_hold(vf_netdev); 2313 rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev); 2314 2315 vf_netdev->wanted_features = ndev->features; 2316 netdev_update_features(vf_netdev); 2317 2318 prog = netvsc_xdp_get(netvsc_dev); 2319 netvsc_vf_setxdp(vf_netdev, prog); 2320 2321 return NOTIFY_OK; 2322 } 2323 2324 /* VF up/down change detected, schedule to change data path */ 2325 static int netvsc_vf_changed(struct net_device *vf_netdev) 2326 { 2327 struct net_device_context *net_device_ctx; 2328 struct netvsc_device *netvsc_dev; 2329 struct net_device *ndev; 2330 bool vf_is_up = netif_running(vf_netdev); 2331 2332 ndev = get_netvsc_byref(vf_netdev); 2333 if (!ndev) 2334 return NOTIFY_DONE; 2335 2336 net_device_ctx = netdev_priv(ndev); 2337 netvsc_dev = rtnl_dereference(net_device_ctx->nvdev); 2338 if (!netvsc_dev) 2339 return NOTIFY_DONE; 2340 2341 netvsc_switch_datapath(ndev, vf_is_up); 2342 netdev_info(ndev, "Data path switched %s VF: %s\n", 2343 vf_is_up ? "to" : "from", vf_netdev->name); 2344 2345 return NOTIFY_OK; 2346 } 2347 2348 static int netvsc_unregister_vf(struct net_device *vf_netdev) 2349 { 2350 struct net_device *ndev; 2351 struct net_device_context *net_device_ctx; 2352 2353 ndev = get_netvsc_byref(vf_netdev); 2354 if (!ndev) 2355 return NOTIFY_DONE; 2356 2357 net_device_ctx = netdev_priv(ndev); 2358 cancel_delayed_work_sync(&net_device_ctx->vf_takeover); 2359 2360 netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name); 2361 2362 netvsc_vf_setxdp(vf_netdev, NULL); 2363 2364 netdev_rx_handler_unregister(vf_netdev); 2365 netdev_upper_dev_unlink(vf_netdev, ndev); 2366 RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL); 2367 dev_put(vf_netdev); 2368 2369 return NOTIFY_OK; 2370 } 2371 2372 static int netvsc_probe(struct hv_device *dev, 2373 const struct hv_vmbus_device_id *dev_id) 2374 { 2375 struct net_device *net = NULL; 2376 struct net_device_context *net_device_ctx; 2377 struct netvsc_device_info *device_info = NULL; 2378 struct netvsc_device *nvdev; 2379 int ret = -ENOMEM; 2380 2381 net = alloc_etherdev_mq(sizeof(struct net_device_context), 2382 VRSS_CHANNEL_MAX); 2383 if (!net) 2384 goto no_net; 2385 2386 netif_carrier_off(net); 2387 2388 netvsc_init_settings(net); 2389 2390 net_device_ctx = netdev_priv(net); 2391 net_device_ctx->device_ctx = dev; 2392 net_device_ctx->msg_enable = netif_msg_init(debug, default_msg); 2393 if (netif_msg_probe(net_device_ctx)) 2394 netdev_dbg(net, "netvsc msg_enable: %d\n", 2395 net_device_ctx->msg_enable); 2396 2397 hv_set_drvdata(dev, net); 2398 2399 INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change); 2400 2401 spin_lock_init(&net_device_ctx->lock); 2402 INIT_LIST_HEAD(&net_device_ctx->reconfig_events); 2403 INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup); 2404 2405 net_device_ctx->vf_stats 2406 = netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats); 2407 if (!net_device_ctx->vf_stats) 2408 goto no_stats; 2409 2410 net->netdev_ops = &device_ops; 2411 net->ethtool_ops = ðtool_ops; 2412 SET_NETDEV_DEV(net, &dev->device); 2413 2414 /* We always need headroom for rndis header */ 2415 net->needed_headroom = RNDIS_AND_PPI_SIZE; 2416 2417 /* Initialize the number of queues to be 1, we may change it if more 2418 * channels are offered later. 2419 */ 2420 netif_set_real_num_tx_queues(net, 1); 2421 netif_set_real_num_rx_queues(net, 1); 2422 2423 /* Notify the netvsc driver of the new device */ 2424 device_info = netvsc_devinfo_get(NULL); 2425 2426 if (!device_info) { 2427 ret = -ENOMEM; 2428 goto devinfo_failed; 2429 } 2430 2431 nvdev = rndis_filter_device_add(dev, device_info); 2432 if (IS_ERR(nvdev)) { 2433 ret = PTR_ERR(nvdev); 2434 netdev_err(net, "unable to add netvsc device (ret %d)\n", ret); 2435 goto rndis_failed; 2436 } 2437 2438 memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN); 2439 2440 /* We must get rtnl lock before scheduling nvdev->subchan_work, 2441 * otherwise netvsc_subchan_work() can get rtnl lock first and wait 2442 * all subchannels to show up, but that may not happen because 2443 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer() 2444 * -> ... -> device_add() -> ... -> __device_attach() can't get 2445 * the device lock, so all the subchannels can't be processed -- 2446 * finally netvsc_subchan_work() hangs forever. 2447 */ 2448 rtnl_lock(); 2449 2450 if (nvdev->num_chn > 1) 2451 schedule_work(&nvdev->subchan_work); 2452 2453 /* hw_features computed in rndis_netdev_set_hwcaps() */ 2454 net->features = net->hw_features | 2455 NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX | 2456 NETIF_F_HW_VLAN_CTAG_RX; 2457 net->vlan_features = net->features; 2458 2459 /* MTU range: 68 - 1500 or 65521 */ 2460 net->min_mtu = NETVSC_MTU_MIN; 2461 if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2) 2462 net->max_mtu = NETVSC_MTU - ETH_HLEN; 2463 else 2464 net->max_mtu = ETH_DATA_LEN; 2465 2466 nvdev->tx_disable = false; 2467 2468 ret = register_netdevice(net); 2469 if (ret != 0) { 2470 pr_err("Unable to register netdev.\n"); 2471 goto register_failed; 2472 } 2473 2474 list_add(&net_device_ctx->list, &netvsc_dev_list); 2475 rtnl_unlock(); 2476 2477 netvsc_devinfo_put(device_info); 2478 return 0; 2479 2480 register_failed: 2481 rtnl_unlock(); 2482 rndis_filter_device_remove(dev, nvdev); 2483 rndis_failed: 2484 netvsc_devinfo_put(device_info); 2485 devinfo_failed: 2486 free_percpu(net_device_ctx->vf_stats); 2487 no_stats: 2488 hv_set_drvdata(dev, NULL); 2489 free_netdev(net); 2490 no_net: 2491 return ret; 2492 } 2493 2494 static int netvsc_remove(struct hv_device *dev) 2495 { 2496 struct net_device_context *ndev_ctx; 2497 struct net_device *vf_netdev, *net; 2498 struct netvsc_device *nvdev; 2499 2500 net = hv_get_drvdata(dev); 2501 if (net == NULL) { 2502 dev_err(&dev->device, "No net device to remove\n"); 2503 return 0; 2504 } 2505 2506 ndev_ctx = netdev_priv(net); 2507 2508 cancel_delayed_work_sync(&ndev_ctx->dwork); 2509 2510 rtnl_lock(); 2511 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2512 if (nvdev) { 2513 cancel_work_sync(&nvdev->subchan_work); 2514 netvsc_xdp_set(net, NULL, NULL, nvdev); 2515 } 2516 2517 /* 2518 * Call to the vsc driver to let it know that the device is being 2519 * removed. Also blocks mtu and channel changes. 2520 */ 2521 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2522 if (vf_netdev) 2523 netvsc_unregister_vf(vf_netdev); 2524 2525 if (nvdev) 2526 rndis_filter_device_remove(dev, nvdev); 2527 2528 unregister_netdevice(net); 2529 list_del(&ndev_ctx->list); 2530 2531 rtnl_unlock(); 2532 2533 hv_set_drvdata(dev, NULL); 2534 2535 free_percpu(ndev_ctx->vf_stats); 2536 free_netdev(net); 2537 return 0; 2538 } 2539 2540 static int netvsc_suspend(struct hv_device *dev) 2541 { 2542 struct net_device_context *ndev_ctx; 2543 struct net_device *vf_netdev, *net; 2544 struct netvsc_device *nvdev; 2545 int ret; 2546 2547 net = hv_get_drvdata(dev); 2548 2549 ndev_ctx = netdev_priv(net); 2550 cancel_delayed_work_sync(&ndev_ctx->dwork); 2551 2552 rtnl_lock(); 2553 2554 nvdev = rtnl_dereference(ndev_ctx->nvdev); 2555 if (nvdev == NULL) { 2556 ret = -ENODEV; 2557 goto out; 2558 } 2559 2560 vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev); 2561 if (vf_netdev) 2562 netvsc_unregister_vf(vf_netdev); 2563 2564 /* Save the current config info */ 2565 ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev); 2566 2567 ret = netvsc_detach(net, nvdev); 2568 out: 2569 rtnl_unlock(); 2570 2571 return ret; 2572 } 2573 2574 static int netvsc_resume(struct hv_device *dev) 2575 { 2576 struct net_device *net = hv_get_drvdata(dev); 2577 struct net_device_context *net_device_ctx; 2578 struct netvsc_device_info *device_info; 2579 int ret; 2580 2581 rtnl_lock(); 2582 2583 net_device_ctx = netdev_priv(net); 2584 device_info = net_device_ctx->saved_netvsc_dev_info; 2585 2586 ret = netvsc_attach(net, device_info); 2587 2588 netvsc_devinfo_put(device_info); 2589 net_device_ctx->saved_netvsc_dev_info = NULL; 2590 2591 rtnl_unlock(); 2592 2593 return ret; 2594 } 2595 static const struct hv_vmbus_device_id id_table[] = { 2596 /* Network guid */ 2597 { HV_NIC_GUID, }, 2598 { }, 2599 }; 2600 2601 MODULE_DEVICE_TABLE(vmbus, id_table); 2602 2603 /* The one and only one */ 2604 static struct hv_driver netvsc_drv = { 2605 .name = KBUILD_MODNAME, 2606 .id_table = id_table, 2607 .probe = netvsc_probe, 2608 .remove = netvsc_remove, 2609 .suspend = netvsc_suspend, 2610 .resume = netvsc_resume, 2611 .driver = { 2612 .probe_type = PROBE_FORCE_SYNCHRONOUS, 2613 }, 2614 }; 2615 2616 /* 2617 * On Hyper-V, every VF interface is matched with a corresponding 2618 * synthetic interface. The synthetic interface is presented first 2619 * to the guest. When the corresponding VF instance is registered, 2620 * we will take care of switching the data path. 2621 */ 2622 static int netvsc_netdev_event(struct notifier_block *this, 2623 unsigned long event, void *ptr) 2624 { 2625 struct net_device *event_dev = netdev_notifier_info_to_dev(ptr); 2626 2627 /* Skip our own events */ 2628 if (event_dev->netdev_ops == &device_ops) 2629 return NOTIFY_DONE; 2630 2631 /* Avoid non-Ethernet type devices */ 2632 if (event_dev->type != ARPHRD_ETHER) 2633 return NOTIFY_DONE; 2634 2635 /* Avoid Vlan dev with same MAC registering as VF */ 2636 if (is_vlan_dev(event_dev)) 2637 return NOTIFY_DONE; 2638 2639 /* Avoid Bonding master dev with same MAC registering as VF */ 2640 if ((event_dev->priv_flags & IFF_BONDING) && 2641 (event_dev->flags & IFF_MASTER)) 2642 return NOTIFY_DONE; 2643 2644 switch (event) { 2645 case NETDEV_REGISTER: 2646 return netvsc_register_vf(event_dev); 2647 case NETDEV_UNREGISTER: 2648 return netvsc_unregister_vf(event_dev); 2649 case NETDEV_UP: 2650 case NETDEV_DOWN: 2651 return netvsc_vf_changed(event_dev); 2652 default: 2653 return NOTIFY_DONE; 2654 } 2655 } 2656 2657 static struct notifier_block netvsc_netdev_notifier = { 2658 .notifier_call = netvsc_netdev_event, 2659 }; 2660 2661 static void __exit netvsc_drv_exit(void) 2662 { 2663 unregister_netdevice_notifier(&netvsc_netdev_notifier); 2664 vmbus_driver_unregister(&netvsc_drv); 2665 } 2666 2667 static int __init netvsc_drv_init(void) 2668 { 2669 int ret; 2670 2671 if (ring_size < RING_SIZE_MIN) { 2672 ring_size = RING_SIZE_MIN; 2673 pr_info("Increased ring_size to %u (min allowed)\n", 2674 ring_size); 2675 } 2676 netvsc_ring_bytes = ring_size * PAGE_SIZE; 2677 2678 ret = vmbus_driver_register(&netvsc_drv); 2679 if (ret) 2680 return ret; 2681 2682 register_netdevice_notifier(&netvsc_netdev_notifier); 2683 return 0; 2684 } 2685 2686 MODULE_LICENSE("GPL"); 2687 MODULE_DESCRIPTION("Microsoft Hyper-V network driver"); 2688 2689 module_init(netvsc_drv_init); 2690 module_exit(netvsc_drv_exit); 2691