xref: /openbmc/linux/drivers/net/hyperv/netvsc_drv.c (revision 081c65360bd817672d0753fdf68ab34802d7a81d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2009, Microsoft Corporation.
4  *
5  * Authors:
6  *   Haiyang Zhang <haiyangz@microsoft.com>
7  *   Hank Janssen  <hjanssen@microsoft.com>
8  */
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10 
11 #include <linux/init.h>
12 #include <linux/atomic.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/device.h>
16 #include <linux/io.h>
17 #include <linux/delay.h>
18 #include <linux/netdevice.h>
19 #include <linux/inetdevice.h>
20 #include <linux/etherdevice.h>
21 #include <linux/pci.h>
22 #include <linux/skbuff.h>
23 #include <linux/if_vlan.h>
24 #include <linux/in.h>
25 #include <linux/slab.h>
26 #include <linux/rtnetlink.h>
27 #include <linux/netpoll.h>
28 
29 #include <net/arp.h>
30 #include <net/route.h>
31 #include <net/sock.h>
32 #include <net/pkt_sched.h>
33 #include <net/checksum.h>
34 #include <net/ip6_checksum.h>
35 
36 #include "hyperv_net.h"
37 
38 #define RING_SIZE_MIN	64
39 #define RETRY_US_LO	5000
40 #define RETRY_US_HI	10000
41 #define RETRY_MAX	2000	/* >10 sec */
42 
43 #define LINKCHANGE_INT (2 * HZ)
44 #define VF_TAKEOVER_INT (HZ / 10)
45 
46 static unsigned int ring_size __ro_after_init = 128;
47 module_param(ring_size, uint, 0444);
48 MODULE_PARM_DESC(ring_size, "Ring buffer size (# of pages)");
49 unsigned int netvsc_ring_bytes __ro_after_init;
50 
51 static const u32 default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE |
52 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
53 				NETIF_MSG_IFDOWN | NETIF_MSG_RX_ERR |
54 				NETIF_MSG_TX_ERR;
55 
56 static int debug = -1;
57 module_param(debug, int, 0444);
58 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
59 
60 static LIST_HEAD(netvsc_dev_list);
61 
62 static void netvsc_change_rx_flags(struct net_device *net, int change)
63 {
64 	struct net_device_context *ndev_ctx = netdev_priv(net);
65 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
66 	int inc;
67 
68 	if (!vf_netdev)
69 		return;
70 
71 	if (change & IFF_PROMISC) {
72 		inc = (net->flags & IFF_PROMISC) ? 1 : -1;
73 		dev_set_promiscuity(vf_netdev, inc);
74 	}
75 
76 	if (change & IFF_ALLMULTI) {
77 		inc = (net->flags & IFF_ALLMULTI) ? 1 : -1;
78 		dev_set_allmulti(vf_netdev, inc);
79 	}
80 }
81 
82 static void netvsc_set_rx_mode(struct net_device *net)
83 {
84 	struct net_device_context *ndev_ctx = netdev_priv(net);
85 	struct net_device *vf_netdev;
86 	struct netvsc_device *nvdev;
87 
88 	rcu_read_lock();
89 	vf_netdev = rcu_dereference(ndev_ctx->vf_netdev);
90 	if (vf_netdev) {
91 		dev_uc_sync(vf_netdev, net);
92 		dev_mc_sync(vf_netdev, net);
93 	}
94 
95 	nvdev = rcu_dereference(ndev_ctx->nvdev);
96 	if (nvdev)
97 		rndis_filter_update(nvdev);
98 	rcu_read_unlock();
99 }
100 
101 static void netvsc_tx_enable(struct netvsc_device *nvscdev,
102 			     struct net_device *ndev)
103 {
104 	nvscdev->tx_disable = false;
105 	virt_wmb(); /* ensure queue wake up mechanism is on */
106 
107 	netif_tx_wake_all_queues(ndev);
108 }
109 
110 static int netvsc_open(struct net_device *net)
111 {
112 	struct net_device_context *ndev_ctx = netdev_priv(net);
113 	struct net_device *vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
114 	struct netvsc_device *nvdev = rtnl_dereference(ndev_ctx->nvdev);
115 	struct rndis_device *rdev;
116 	int ret = 0;
117 
118 	netif_carrier_off(net);
119 
120 	/* Open up the device */
121 	ret = rndis_filter_open(nvdev);
122 	if (ret != 0) {
123 		netdev_err(net, "unable to open device (ret %d).\n", ret);
124 		return ret;
125 	}
126 
127 	rdev = nvdev->extension;
128 	if (!rdev->link_state) {
129 		netif_carrier_on(net);
130 		netvsc_tx_enable(nvdev, net);
131 	}
132 
133 	if (vf_netdev) {
134 		/* Setting synthetic device up transparently sets
135 		 * slave as up. If open fails, then slave will be
136 		 * still be offline (and not used).
137 		 */
138 		ret = dev_open(vf_netdev, NULL);
139 		if (ret)
140 			netdev_warn(net,
141 				    "unable to open slave: %s: %d\n",
142 				    vf_netdev->name, ret);
143 	}
144 	return 0;
145 }
146 
147 static int netvsc_wait_until_empty(struct netvsc_device *nvdev)
148 {
149 	unsigned int retry = 0;
150 	int i;
151 
152 	/* Ensure pending bytes in ring are read */
153 	for (;;) {
154 		u32 aread = 0;
155 
156 		for (i = 0; i < nvdev->num_chn; i++) {
157 			struct vmbus_channel *chn
158 				= nvdev->chan_table[i].channel;
159 
160 			if (!chn)
161 				continue;
162 
163 			/* make sure receive not running now */
164 			napi_synchronize(&nvdev->chan_table[i].napi);
165 
166 			aread = hv_get_bytes_to_read(&chn->inbound);
167 			if (aread)
168 				break;
169 
170 			aread = hv_get_bytes_to_read(&chn->outbound);
171 			if (aread)
172 				break;
173 		}
174 
175 		if (aread == 0)
176 			return 0;
177 
178 		if (++retry > RETRY_MAX)
179 			return -ETIMEDOUT;
180 
181 		usleep_range(RETRY_US_LO, RETRY_US_HI);
182 	}
183 }
184 
185 static void netvsc_tx_disable(struct netvsc_device *nvscdev,
186 			      struct net_device *ndev)
187 {
188 	if (nvscdev) {
189 		nvscdev->tx_disable = true;
190 		virt_wmb(); /* ensure txq will not wake up after stop */
191 	}
192 
193 	netif_tx_disable(ndev);
194 }
195 
196 static int netvsc_close(struct net_device *net)
197 {
198 	struct net_device_context *net_device_ctx = netdev_priv(net);
199 	struct net_device *vf_netdev
200 		= rtnl_dereference(net_device_ctx->vf_netdev);
201 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
202 	int ret;
203 
204 	netvsc_tx_disable(nvdev, net);
205 
206 	/* No need to close rndis filter if it is removed already */
207 	if (!nvdev)
208 		return 0;
209 
210 	ret = rndis_filter_close(nvdev);
211 	if (ret != 0) {
212 		netdev_err(net, "unable to close device (ret %d).\n", ret);
213 		return ret;
214 	}
215 
216 	ret = netvsc_wait_until_empty(nvdev);
217 	if (ret)
218 		netdev_err(net, "Ring buffer not empty after closing rndis\n");
219 
220 	if (vf_netdev)
221 		dev_close(vf_netdev);
222 
223 	return ret;
224 }
225 
226 static inline void *init_ppi_data(struct rndis_message *msg,
227 				  u32 ppi_size, u32 pkt_type)
228 {
229 	struct rndis_packet *rndis_pkt = &msg->msg.pkt;
230 	struct rndis_per_packet_info *ppi;
231 
232 	rndis_pkt->data_offset += ppi_size;
233 	ppi = (void *)rndis_pkt + rndis_pkt->per_pkt_info_offset
234 		+ rndis_pkt->per_pkt_info_len;
235 
236 	ppi->size = ppi_size;
237 	ppi->type = pkt_type;
238 	ppi->internal = 0;
239 	ppi->ppi_offset = sizeof(struct rndis_per_packet_info);
240 
241 	rndis_pkt->per_pkt_info_len += ppi_size;
242 
243 	return ppi + 1;
244 }
245 
246 /* Azure hosts don't support non-TCP port numbers in hashing for fragmented
247  * packets. We can use ethtool to change UDP hash level when necessary.
248  */
249 static inline u32 netvsc_get_hash(
250 	struct sk_buff *skb,
251 	const struct net_device_context *ndc)
252 {
253 	struct flow_keys flow;
254 	u32 hash, pkt_proto = 0;
255 	static u32 hashrnd __read_mostly;
256 
257 	net_get_random_once(&hashrnd, sizeof(hashrnd));
258 
259 	if (!skb_flow_dissect_flow_keys(skb, &flow, 0))
260 		return 0;
261 
262 	switch (flow.basic.ip_proto) {
263 	case IPPROTO_TCP:
264 		if (flow.basic.n_proto == htons(ETH_P_IP))
265 			pkt_proto = HV_TCP4_L4HASH;
266 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
267 			pkt_proto = HV_TCP6_L4HASH;
268 
269 		break;
270 
271 	case IPPROTO_UDP:
272 		if (flow.basic.n_proto == htons(ETH_P_IP))
273 			pkt_proto = HV_UDP4_L4HASH;
274 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
275 			pkt_proto = HV_UDP6_L4HASH;
276 
277 		break;
278 	}
279 
280 	if (pkt_proto & ndc->l4_hash) {
281 		return skb_get_hash(skb);
282 	} else {
283 		if (flow.basic.n_proto == htons(ETH_P_IP))
284 			hash = jhash2((u32 *)&flow.addrs.v4addrs, 2, hashrnd);
285 		else if (flow.basic.n_proto == htons(ETH_P_IPV6))
286 			hash = jhash2((u32 *)&flow.addrs.v6addrs, 8, hashrnd);
287 		else
288 			return 0;
289 
290 		__skb_set_sw_hash(skb, hash, false);
291 	}
292 
293 	return hash;
294 }
295 
296 static inline int netvsc_get_tx_queue(struct net_device *ndev,
297 				      struct sk_buff *skb, int old_idx)
298 {
299 	const struct net_device_context *ndc = netdev_priv(ndev);
300 	struct sock *sk = skb->sk;
301 	int q_idx;
302 
303 	q_idx = ndc->tx_table[netvsc_get_hash(skb, ndc) &
304 			      (VRSS_SEND_TAB_SIZE - 1)];
305 
306 	/* If queue index changed record the new value */
307 	if (q_idx != old_idx &&
308 	    sk && sk_fullsock(sk) && rcu_access_pointer(sk->sk_dst_cache))
309 		sk_tx_queue_set(sk, q_idx);
310 
311 	return q_idx;
312 }
313 
314 /*
315  * Select queue for transmit.
316  *
317  * If a valid queue has already been assigned, then use that.
318  * Otherwise compute tx queue based on hash and the send table.
319  *
320  * This is basically similar to default (netdev_pick_tx) with the added step
321  * of using the host send_table when no other queue has been assigned.
322  *
323  * TODO support XPS - but get_xps_queue not exported
324  */
325 static u16 netvsc_pick_tx(struct net_device *ndev, struct sk_buff *skb)
326 {
327 	int q_idx = sk_tx_queue_get(skb->sk);
328 
329 	if (q_idx < 0 || skb->ooo_okay || q_idx >= ndev->real_num_tx_queues) {
330 		/* If forwarding a packet, we use the recorded queue when
331 		 * available for better cache locality.
332 		 */
333 		if (skb_rx_queue_recorded(skb))
334 			q_idx = skb_get_rx_queue(skb);
335 		else
336 			q_idx = netvsc_get_tx_queue(ndev, skb, q_idx);
337 	}
338 
339 	return q_idx;
340 }
341 
342 static u16 netvsc_select_queue(struct net_device *ndev, struct sk_buff *skb,
343 			       struct net_device *sb_dev)
344 {
345 	struct net_device_context *ndc = netdev_priv(ndev);
346 	struct net_device *vf_netdev;
347 	u16 txq;
348 
349 	rcu_read_lock();
350 	vf_netdev = rcu_dereference(ndc->vf_netdev);
351 	if (vf_netdev) {
352 		const struct net_device_ops *vf_ops = vf_netdev->netdev_ops;
353 
354 		if (vf_ops->ndo_select_queue)
355 			txq = vf_ops->ndo_select_queue(vf_netdev, skb, sb_dev);
356 		else
357 			txq = netdev_pick_tx(vf_netdev, skb, NULL);
358 
359 		/* Record the queue selected by VF so that it can be
360 		 * used for common case where VF has more queues than
361 		 * the synthetic device.
362 		 */
363 		qdisc_skb_cb(skb)->slave_dev_queue_mapping = txq;
364 	} else {
365 		txq = netvsc_pick_tx(ndev, skb);
366 	}
367 	rcu_read_unlock();
368 
369 	while (unlikely(txq >= ndev->real_num_tx_queues))
370 		txq -= ndev->real_num_tx_queues;
371 
372 	return txq;
373 }
374 
375 static u32 fill_pg_buf(struct page *page, u32 offset, u32 len,
376 		       struct hv_page_buffer *pb)
377 {
378 	int j = 0;
379 
380 	/* Deal with compound pages by ignoring unused part
381 	 * of the page.
382 	 */
383 	page += (offset >> PAGE_SHIFT);
384 	offset &= ~PAGE_MASK;
385 
386 	while (len > 0) {
387 		unsigned long bytes;
388 
389 		bytes = PAGE_SIZE - offset;
390 		if (bytes > len)
391 			bytes = len;
392 		pb[j].pfn = page_to_pfn(page);
393 		pb[j].offset = offset;
394 		pb[j].len = bytes;
395 
396 		offset += bytes;
397 		len -= bytes;
398 
399 		if (offset == PAGE_SIZE && len) {
400 			page++;
401 			offset = 0;
402 			j++;
403 		}
404 	}
405 
406 	return j + 1;
407 }
408 
409 static u32 init_page_array(void *hdr, u32 len, struct sk_buff *skb,
410 			   struct hv_netvsc_packet *packet,
411 			   struct hv_page_buffer *pb)
412 {
413 	u32 slots_used = 0;
414 	char *data = skb->data;
415 	int frags = skb_shinfo(skb)->nr_frags;
416 	int i;
417 
418 	/* The packet is laid out thus:
419 	 * 1. hdr: RNDIS header and PPI
420 	 * 2. skb linear data
421 	 * 3. skb fragment data
422 	 */
423 	slots_used += fill_pg_buf(virt_to_page(hdr),
424 				  offset_in_page(hdr),
425 				  len, &pb[slots_used]);
426 
427 	packet->rmsg_size = len;
428 	packet->rmsg_pgcnt = slots_used;
429 
430 	slots_used += fill_pg_buf(virt_to_page(data),
431 				offset_in_page(data),
432 				skb_headlen(skb), &pb[slots_used]);
433 
434 	for (i = 0; i < frags; i++) {
435 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
436 
437 		slots_used += fill_pg_buf(skb_frag_page(frag),
438 					skb_frag_off(frag),
439 					skb_frag_size(frag), &pb[slots_used]);
440 	}
441 	return slots_used;
442 }
443 
444 static int count_skb_frag_slots(struct sk_buff *skb)
445 {
446 	int i, frags = skb_shinfo(skb)->nr_frags;
447 	int pages = 0;
448 
449 	for (i = 0; i < frags; i++) {
450 		skb_frag_t *frag = skb_shinfo(skb)->frags + i;
451 		unsigned long size = skb_frag_size(frag);
452 		unsigned long offset = skb_frag_off(frag);
453 
454 		/* Skip unused frames from start of page */
455 		offset &= ~PAGE_MASK;
456 		pages += PFN_UP(offset + size);
457 	}
458 	return pages;
459 }
460 
461 static int netvsc_get_slots(struct sk_buff *skb)
462 {
463 	char *data = skb->data;
464 	unsigned int offset = offset_in_page(data);
465 	unsigned int len = skb_headlen(skb);
466 	int slots;
467 	int frag_slots;
468 
469 	slots = DIV_ROUND_UP(offset + len, PAGE_SIZE);
470 	frag_slots = count_skb_frag_slots(skb);
471 	return slots + frag_slots;
472 }
473 
474 static u32 net_checksum_info(struct sk_buff *skb)
475 {
476 	if (skb->protocol == htons(ETH_P_IP)) {
477 		struct iphdr *ip = ip_hdr(skb);
478 
479 		if (ip->protocol == IPPROTO_TCP)
480 			return TRANSPORT_INFO_IPV4_TCP;
481 		else if (ip->protocol == IPPROTO_UDP)
482 			return TRANSPORT_INFO_IPV4_UDP;
483 	} else {
484 		struct ipv6hdr *ip6 = ipv6_hdr(skb);
485 
486 		if (ip6->nexthdr == IPPROTO_TCP)
487 			return TRANSPORT_INFO_IPV6_TCP;
488 		else if (ip6->nexthdr == IPPROTO_UDP)
489 			return TRANSPORT_INFO_IPV6_UDP;
490 	}
491 
492 	return TRANSPORT_INFO_NOT_IP;
493 }
494 
495 /* Send skb on the slave VF device. */
496 static int netvsc_vf_xmit(struct net_device *net, struct net_device *vf_netdev,
497 			  struct sk_buff *skb)
498 {
499 	struct net_device_context *ndev_ctx = netdev_priv(net);
500 	unsigned int len = skb->len;
501 	int rc;
502 
503 	skb->dev = vf_netdev;
504 	skb->queue_mapping = qdisc_skb_cb(skb)->slave_dev_queue_mapping;
505 
506 	rc = dev_queue_xmit(skb);
507 	if (likely(rc == NET_XMIT_SUCCESS || rc == NET_XMIT_CN)) {
508 		struct netvsc_vf_pcpu_stats *pcpu_stats
509 			= this_cpu_ptr(ndev_ctx->vf_stats);
510 
511 		u64_stats_update_begin(&pcpu_stats->syncp);
512 		pcpu_stats->tx_packets++;
513 		pcpu_stats->tx_bytes += len;
514 		u64_stats_update_end(&pcpu_stats->syncp);
515 	} else {
516 		this_cpu_inc(ndev_ctx->vf_stats->tx_dropped);
517 	}
518 
519 	return rc;
520 }
521 
522 static int netvsc_start_xmit(struct sk_buff *skb, struct net_device *net)
523 {
524 	struct net_device_context *net_device_ctx = netdev_priv(net);
525 	struct hv_netvsc_packet *packet = NULL;
526 	int ret;
527 	unsigned int num_data_pgs;
528 	struct rndis_message *rndis_msg;
529 	struct net_device *vf_netdev;
530 	u32 rndis_msg_size;
531 	u32 hash;
532 	struct hv_page_buffer pb[MAX_PAGE_BUFFER_COUNT];
533 
534 	/* if VF is present and up then redirect packets
535 	 * already called with rcu_read_lock_bh
536 	 */
537 	vf_netdev = rcu_dereference_bh(net_device_ctx->vf_netdev);
538 	if (vf_netdev && netif_running(vf_netdev) &&
539 	    !netpoll_tx_running(net))
540 		return netvsc_vf_xmit(net, vf_netdev, skb);
541 
542 	/* We will atmost need two pages to describe the rndis
543 	 * header. We can only transmit MAX_PAGE_BUFFER_COUNT number
544 	 * of pages in a single packet. If skb is scattered around
545 	 * more pages we try linearizing it.
546 	 */
547 
548 	num_data_pgs = netvsc_get_slots(skb) + 2;
549 
550 	if (unlikely(num_data_pgs > MAX_PAGE_BUFFER_COUNT)) {
551 		++net_device_ctx->eth_stats.tx_scattered;
552 
553 		if (skb_linearize(skb))
554 			goto no_memory;
555 
556 		num_data_pgs = netvsc_get_slots(skb) + 2;
557 		if (num_data_pgs > MAX_PAGE_BUFFER_COUNT) {
558 			++net_device_ctx->eth_stats.tx_too_big;
559 			goto drop;
560 		}
561 	}
562 
563 	/*
564 	 * Place the rndis header in the skb head room and
565 	 * the skb->cb will be used for hv_netvsc_packet
566 	 * structure.
567 	 */
568 	ret = skb_cow_head(skb, RNDIS_AND_PPI_SIZE);
569 	if (ret)
570 		goto no_memory;
571 
572 	/* Use the skb control buffer for building up the packet */
573 	BUILD_BUG_ON(sizeof(struct hv_netvsc_packet) >
574 			sizeof_field(struct sk_buff, cb));
575 	packet = (struct hv_netvsc_packet *)skb->cb;
576 
577 	packet->q_idx = skb_get_queue_mapping(skb);
578 
579 	packet->total_data_buflen = skb->len;
580 	packet->total_bytes = skb->len;
581 	packet->total_packets = 1;
582 
583 	rndis_msg = (struct rndis_message *)skb->head;
584 
585 	/* Add the rndis header */
586 	rndis_msg->ndis_msg_type = RNDIS_MSG_PACKET;
587 	rndis_msg->msg_len = packet->total_data_buflen;
588 
589 	rndis_msg->msg.pkt = (struct rndis_packet) {
590 		.data_offset = sizeof(struct rndis_packet),
591 		.data_len = packet->total_data_buflen,
592 		.per_pkt_info_offset = sizeof(struct rndis_packet),
593 	};
594 
595 	rndis_msg_size = RNDIS_MESSAGE_SIZE(struct rndis_packet);
596 
597 	hash = skb_get_hash_raw(skb);
598 	if (hash != 0 && net->real_num_tx_queues > 1) {
599 		u32 *hash_info;
600 
601 		rndis_msg_size += NDIS_HASH_PPI_SIZE;
602 		hash_info = init_ppi_data(rndis_msg, NDIS_HASH_PPI_SIZE,
603 					  NBL_HASH_VALUE);
604 		*hash_info = hash;
605 	}
606 
607 	if (skb_vlan_tag_present(skb)) {
608 		struct ndis_pkt_8021q_info *vlan;
609 
610 		rndis_msg_size += NDIS_VLAN_PPI_SIZE;
611 		vlan = init_ppi_data(rndis_msg, NDIS_VLAN_PPI_SIZE,
612 				     IEEE_8021Q_INFO);
613 
614 		vlan->value = 0;
615 		vlan->vlanid = skb_vlan_tag_get_id(skb);
616 		vlan->cfi = skb_vlan_tag_get_cfi(skb);
617 		vlan->pri = skb_vlan_tag_get_prio(skb);
618 	}
619 
620 	if (skb_is_gso(skb)) {
621 		struct ndis_tcp_lso_info *lso_info;
622 
623 		rndis_msg_size += NDIS_LSO_PPI_SIZE;
624 		lso_info = init_ppi_data(rndis_msg, NDIS_LSO_PPI_SIZE,
625 					 TCP_LARGESEND_PKTINFO);
626 
627 		lso_info->value = 0;
628 		lso_info->lso_v2_transmit.type = NDIS_TCP_LARGE_SEND_OFFLOAD_V2_TYPE;
629 		if (skb->protocol == htons(ETH_P_IP)) {
630 			lso_info->lso_v2_transmit.ip_version =
631 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV4;
632 			ip_hdr(skb)->tot_len = 0;
633 			ip_hdr(skb)->check = 0;
634 			tcp_hdr(skb)->check =
635 				~csum_tcpudp_magic(ip_hdr(skb)->saddr,
636 						   ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
637 		} else {
638 			lso_info->lso_v2_transmit.ip_version =
639 				NDIS_TCP_LARGE_SEND_OFFLOAD_IPV6;
640 			ipv6_hdr(skb)->payload_len = 0;
641 			tcp_hdr(skb)->check =
642 				~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
643 						 &ipv6_hdr(skb)->daddr, 0, IPPROTO_TCP, 0);
644 		}
645 		lso_info->lso_v2_transmit.tcp_header_offset = skb_transport_offset(skb);
646 		lso_info->lso_v2_transmit.mss = skb_shinfo(skb)->gso_size;
647 	} else if (skb->ip_summed == CHECKSUM_PARTIAL) {
648 		if (net_checksum_info(skb) & net_device_ctx->tx_checksum_mask) {
649 			struct ndis_tcp_ip_checksum_info *csum_info;
650 
651 			rndis_msg_size += NDIS_CSUM_PPI_SIZE;
652 			csum_info = init_ppi_data(rndis_msg, NDIS_CSUM_PPI_SIZE,
653 						  TCPIP_CHKSUM_PKTINFO);
654 
655 			csum_info->value = 0;
656 			csum_info->transmit.tcp_header_offset = skb_transport_offset(skb);
657 
658 			if (skb->protocol == htons(ETH_P_IP)) {
659 				csum_info->transmit.is_ipv4 = 1;
660 
661 				if (ip_hdr(skb)->protocol == IPPROTO_TCP)
662 					csum_info->transmit.tcp_checksum = 1;
663 				else
664 					csum_info->transmit.udp_checksum = 1;
665 			} else {
666 				csum_info->transmit.is_ipv6 = 1;
667 
668 				if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
669 					csum_info->transmit.tcp_checksum = 1;
670 				else
671 					csum_info->transmit.udp_checksum = 1;
672 			}
673 		} else {
674 			/* Can't do offload of this type of checksum */
675 			if (skb_checksum_help(skb))
676 				goto drop;
677 		}
678 	}
679 
680 	/* Start filling in the page buffers with the rndis hdr */
681 	rndis_msg->msg_len += rndis_msg_size;
682 	packet->total_data_buflen = rndis_msg->msg_len;
683 	packet->page_buf_cnt = init_page_array(rndis_msg, rndis_msg_size,
684 					       skb, packet, pb);
685 
686 	/* timestamp packet in software */
687 	skb_tx_timestamp(skb);
688 
689 	ret = netvsc_send(net, packet, rndis_msg, pb, skb);
690 	if (likely(ret == 0))
691 		return NETDEV_TX_OK;
692 
693 	if (ret == -EAGAIN) {
694 		++net_device_ctx->eth_stats.tx_busy;
695 		return NETDEV_TX_BUSY;
696 	}
697 
698 	if (ret == -ENOSPC)
699 		++net_device_ctx->eth_stats.tx_no_space;
700 
701 drop:
702 	dev_kfree_skb_any(skb);
703 	net->stats.tx_dropped++;
704 
705 	return NETDEV_TX_OK;
706 
707 no_memory:
708 	++net_device_ctx->eth_stats.tx_no_memory;
709 	goto drop;
710 }
711 
712 /*
713  * netvsc_linkstatus_callback - Link up/down notification
714  */
715 void netvsc_linkstatus_callback(struct net_device *net,
716 				struct rndis_message *resp)
717 {
718 	struct rndis_indicate_status *indicate = &resp->msg.indicate_status;
719 	struct net_device_context *ndev_ctx = netdev_priv(net);
720 	struct netvsc_reconfig *event;
721 	unsigned long flags;
722 
723 	/* Update the physical link speed when changing to another vSwitch */
724 	if (indicate->status == RNDIS_STATUS_LINK_SPEED_CHANGE) {
725 		u32 speed;
726 
727 		speed = *(u32 *)((void *)indicate
728 				 + indicate->status_buf_offset) / 10000;
729 		ndev_ctx->speed = speed;
730 		return;
731 	}
732 
733 	/* Handle these link change statuses below */
734 	if (indicate->status != RNDIS_STATUS_NETWORK_CHANGE &&
735 	    indicate->status != RNDIS_STATUS_MEDIA_CONNECT &&
736 	    indicate->status != RNDIS_STATUS_MEDIA_DISCONNECT)
737 		return;
738 
739 	if (net->reg_state != NETREG_REGISTERED)
740 		return;
741 
742 	event = kzalloc(sizeof(*event), GFP_ATOMIC);
743 	if (!event)
744 		return;
745 	event->event = indicate->status;
746 
747 	spin_lock_irqsave(&ndev_ctx->lock, flags);
748 	list_add_tail(&event->list, &ndev_ctx->reconfig_events);
749 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
750 
751 	schedule_delayed_work(&ndev_ctx->dwork, 0);
752 }
753 
754 static void netvsc_comp_ipcsum(struct sk_buff *skb)
755 {
756 	struct iphdr *iph = (struct iphdr *)skb->data;
757 
758 	iph->check = 0;
759 	iph->check = ip_fast_csum(iph, iph->ihl);
760 }
761 
762 static struct sk_buff *netvsc_alloc_recv_skb(struct net_device *net,
763 					     struct netvsc_channel *nvchan)
764 {
765 	struct napi_struct *napi = &nvchan->napi;
766 	const struct ndis_pkt_8021q_info *vlan = nvchan->rsc.vlan;
767 	const struct ndis_tcp_ip_checksum_info *csum_info =
768 						nvchan->rsc.csum_info;
769 	const u32 *hash_info = nvchan->rsc.hash_info;
770 	struct sk_buff *skb;
771 	int i;
772 
773 	skb = napi_alloc_skb(napi, nvchan->rsc.pktlen);
774 	if (!skb)
775 		return skb;
776 
777 	/*
778 	 * Copy to skb. This copy is needed here since the memory pointed by
779 	 * hv_netvsc_packet cannot be deallocated
780 	 */
781 	for (i = 0; i < nvchan->rsc.cnt; i++)
782 		skb_put_data(skb, nvchan->rsc.data[i], nvchan->rsc.len[i]);
783 
784 	skb->protocol = eth_type_trans(skb, net);
785 
786 	/* skb is already created with CHECKSUM_NONE */
787 	skb_checksum_none_assert(skb);
788 
789 	/* Incoming packets may have IP header checksum verified by the host.
790 	 * They may not have IP header checksum computed after coalescing.
791 	 * We compute it here if the flags are set, because on Linux, the IP
792 	 * checksum is always checked.
793 	 */
794 	if (csum_info && csum_info->receive.ip_checksum_value_invalid &&
795 	    csum_info->receive.ip_checksum_succeeded &&
796 	    skb->protocol == htons(ETH_P_IP))
797 		netvsc_comp_ipcsum(skb);
798 
799 	/* Do L4 checksum offload if enabled and present. */
800 	if (csum_info && (net->features & NETIF_F_RXCSUM)) {
801 		if (csum_info->receive.tcp_checksum_succeeded ||
802 		    csum_info->receive.udp_checksum_succeeded)
803 			skb->ip_summed = CHECKSUM_UNNECESSARY;
804 	}
805 
806 	if (hash_info && (net->features & NETIF_F_RXHASH))
807 		skb_set_hash(skb, *hash_info, PKT_HASH_TYPE_L4);
808 
809 	if (vlan) {
810 		u16 vlan_tci = vlan->vlanid | (vlan->pri << VLAN_PRIO_SHIFT) |
811 			(vlan->cfi ? VLAN_CFI_MASK : 0);
812 
813 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
814 				       vlan_tci);
815 	}
816 
817 	return skb;
818 }
819 
820 /*
821  * netvsc_recv_callback -  Callback when we receive a packet from the
822  * "wire" on the specified device.
823  */
824 int netvsc_recv_callback(struct net_device *net,
825 			 struct netvsc_device *net_device,
826 			 struct netvsc_channel *nvchan)
827 {
828 	struct net_device_context *net_device_ctx = netdev_priv(net);
829 	struct vmbus_channel *channel = nvchan->channel;
830 	u16 q_idx = channel->offermsg.offer.sub_channel_index;
831 	struct sk_buff *skb;
832 	struct netvsc_stats *rx_stats;
833 
834 	if (net->reg_state != NETREG_REGISTERED)
835 		return NVSP_STAT_FAIL;
836 
837 	/* Allocate a skb - TODO direct I/O to pages? */
838 	skb = netvsc_alloc_recv_skb(net, nvchan);
839 
840 	if (unlikely(!skb)) {
841 		++net_device_ctx->eth_stats.rx_no_memory;
842 		return NVSP_STAT_FAIL;
843 	}
844 
845 	skb_record_rx_queue(skb, q_idx);
846 
847 	/*
848 	 * Even if injecting the packet, record the statistics
849 	 * on the synthetic device because modifying the VF device
850 	 * statistics will not work correctly.
851 	 */
852 	rx_stats = &nvchan->rx_stats;
853 	u64_stats_update_begin(&rx_stats->syncp);
854 	rx_stats->packets++;
855 	rx_stats->bytes += nvchan->rsc.pktlen;
856 
857 	if (skb->pkt_type == PACKET_BROADCAST)
858 		++rx_stats->broadcast;
859 	else if (skb->pkt_type == PACKET_MULTICAST)
860 		++rx_stats->multicast;
861 	u64_stats_update_end(&rx_stats->syncp);
862 
863 	napi_gro_receive(&nvchan->napi, skb);
864 	return NVSP_STAT_SUCCESS;
865 }
866 
867 static void netvsc_get_drvinfo(struct net_device *net,
868 			       struct ethtool_drvinfo *info)
869 {
870 	strlcpy(info->driver, KBUILD_MODNAME, sizeof(info->driver));
871 	strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
872 }
873 
874 static void netvsc_get_channels(struct net_device *net,
875 				struct ethtool_channels *channel)
876 {
877 	struct net_device_context *net_device_ctx = netdev_priv(net);
878 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
879 
880 	if (nvdev) {
881 		channel->max_combined	= nvdev->max_chn;
882 		channel->combined_count = nvdev->num_chn;
883 	}
884 }
885 
886 /* Alloc struct netvsc_device_info, and initialize it from either existing
887  * struct netvsc_device, or from default values.
888  */
889 static struct netvsc_device_info *netvsc_devinfo_get
890 			(struct netvsc_device *nvdev)
891 {
892 	struct netvsc_device_info *dev_info;
893 
894 	dev_info = kzalloc(sizeof(*dev_info), GFP_ATOMIC);
895 
896 	if (!dev_info)
897 		return NULL;
898 
899 	if (nvdev) {
900 		dev_info->num_chn = nvdev->num_chn;
901 		dev_info->send_sections = nvdev->send_section_cnt;
902 		dev_info->send_section_size = nvdev->send_section_size;
903 		dev_info->recv_sections = nvdev->recv_section_cnt;
904 		dev_info->recv_section_size = nvdev->recv_section_size;
905 
906 		memcpy(dev_info->rss_key, nvdev->extension->rss_key,
907 		       NETVSC_HASH_KEYLEN);
908 	} else {
909 		dev_info->num_chn = VRSS_CHANNEL_DEFAULT;
910 		dev_info->send_sections = NETVSC_DEFAULT_TX;
911 		dev_info->send_section_size = NETVSC_SEND_SECTION_SIZE;
912 		dev_info->recv_sections = NETVSC_DEFAULT_RX;
913 		dev_info->recv_section_size = NETVSC_RECV_SECTION_SIZE;
914 	}
915 
916 	return dev_info;
917 }
918 
919 static int netvsc_detach(struct net_device *ndev,
920 			 struct netvsc_device *nvdev)
921 {
922 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
923 	struct hv_device *hdev = ndev_ctx->device_ctx;
924 	int ret;
925 
926 	/* Don't try continuing to try and setup sub channels */
927 	if (cancel_work_sync(&nvdev->subchan_work))
928 		nvdev->num_chn = 1;
929 
930 	/* If device was up (receiving) then shutdown */
931 	if (netif_running(ndev)) {
932 		netvsc_tx_disable(nvdev, ndev);
933 
934 		ret = rndis_filter_close(nvdev);
935 		if (ret) {
936 			netdev_err(ndev,
937 				   "unable to close device (ret %d).\n", ret);
938 			return ret;
939 		}
940 
941 		ret = netvsc_wait_until_empty(nvdev);
942 		if (ret) {
943 			netdev_err(ndev,
944 				   "Ring buffer not empty after closing rndis\n");
945 			return ret;
946 		}
947 	}
948 
949 	netif_device_detach(ndev);
950 
951 	rndis_filter_device_remove(hdev, nvdev);
952 
953 	return 0;
954 }
955 
956 static int netvsc_attach(struct net_device *ndev,
957 			 struct netvsc_device_info *dev_info)
958 {
959 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
960 	struct hv_device *hdev = ndev_ctx->device_ctx;
961 	struct netvsc_device *nvdev;
962 	struct rndis_device *rdev;
963 	int ret;
964 
965 	nvdev = rndis_filter_device_add(hdev, dev_info);
966 	if (IS_ERR(nvdev))
967 		return PTR_ERR(nvdev);
968 
969 	if (nvdev->num_chn > 1) {
970 		ret = rndis_set_subchannel(ndev, nvdev, dev_info);
971 
972 		/* if unavailable, just proceed with one queue */
973 		if (ret) {
974 			nvdev->max_chn = 1;
975 			nvdev->num_chn = 1;
976 		}
977 	}
978 
979 	/* In any case device is now ready */
980 	netif_device_attach(ndev);
981 
982 	/* Note: enable and attach happen when sub-channels setup */
983 	netif_carrier_off(ndev);
984 
985 	if (netif_running(ndev)) {
986 		ret = rndis_filter_open(nvdev);
987 		if (ret)
988 			goto err;
989 
990 		rdev = nvdev->extension;
991 		if (!rdev->link_state)
992 			netif_carrier_on(ndev);
993 	}
994 
995 	return 0;
996 
997 err:
998 	netif_device_detach(ndev);
999 
1000 	rndis_filter_device_remove(hdev, nvdev);
1001 
1002 	return ret;
1003 }
1004 
1005 static int netvsc_set_channels(struct net_device *net,
1006 			       struct ethtool_channels *channels)
1007 {
1008 	struct net_device_context *net_device_ctx = netdev_priv(net);
1009 	struct netvsc_device *nvdev = rtnl_dereference(net_device_ctx->nvdev);
1010 	unsigned int orig, count = channels->combined_count;
1011 	struct netvsc_device_info *device_info;
1012 	int ret;
1013 
1014 	/* We do not support separate count for rx, tx, or other */
1015 	if (count == 0 ||
1016 	    channels->rx_count || channels->tx_count || channels->other_count)
1017 		return -EINVAL;
1018 
1019 	if (!nvdev || nvdev->destroy)
1020 		return -ENODEV;
1021 
1022 	if (nvdev->nvsp_version < NVSP_PROTOCOL_VERSION_5)
1023 		return -EINVAL;
1024 
1025 	if (count > nvdev->max_chn)
1026 		return -EINVAL;
1027 
1028 	orig = nvdev->num_chn;
1029 
1030 	device_info = netvsc_devinfo_get(nvdev);
1031 
1032 	if (!device_info)
1033 		return -ENOMEM;
1034 
1035 	device_info->num_chn = count;
1036 
1037 	ret = netvsc_detach(net, nvdev);
1038 	if (ret)
1039 		goto out;
1040 
1041 	ret = netvsc_attach(net, device_info);
1042 	if (ret) {
1043 		device_info->num_chn = orig;
1044 		if (netvsc_attach(net, device_info))
1045 			netdev_err(net, "restoring channel setting failed\n");
1046 	}
1047 
1048 out:
1049 	kfree(device_info);
1050 	return ret;
1051 }
1052 
1053 static bool
1054 netvsc_validate_ethtool_ss_cmd(const struct ethtool_link_ksettings *cmd)
1055 {
1056 	struct ethtool_link_ksettings diff1 = *cmd;
1057 	struct ethtool_link_ksettings diff2 = {};
1058 
1059 	diff1.base.speed = 0;
1060 	diff1.base.duplex = 0;
1061 	/* advertising and cmd are usually set */
1062 	ethtool_link_ksettings_zero_link_mode(&diff1, advertising);
1063 	diff1.base.cmd = 0;
1064 	/* We set port to PORT_OTHER */
1065 	diff2.base.port = PORT_OTHER;
1066 
1067 	return !memcmp(&diff1, &diff2, sizeof(diff1));
1068 }
1069 
1070 static void netvsc_init_settings(struct net_device *dev)
1071 {
1072 	struct net_device_context *ndc = netdev_priv(dev);
1073 
1074 	ndc->l4_hash = HV_DEFAULT_L4HASH;
1075 
1076 	ndc->speed = SPEED_UNKNOWN;
1077 	ndc->duplex = DUPLEX_FULL;
1078 
1079 	dev->features = NETIF_F_LRO;
1080 }
1081 
1082 static int netvsc_get_link_ksettings(struct net_device *dev,
1083 				     struct ethtool_link_ksettings *cmd)
1084 {
1085 	struct net_device_context *ndc = netdev_priv(dev);
1086 
1087 	cmd->base.speed = ndc->speed;
1088 	cmd->base.duplex = ndc->duplex;
1089 	cmd->base.port = PORT_OTHER;
1090 
1091 	return 0;
1092 }
1093 
1094 static int netvsc_set_link_ksettings(struct net_device *dev,
1095 				     const struct ethtool_link_ksettings *cmd)
1096 {
1097 	struct net_device_context *ndc = netdev_priv(dev);
1098 	u32 speed;
1099 
1100 	speed = cmd->base.speed;
1101 	if (!ethtool_validate_speed(speed) ||
1102 	    !ethtool_validate_duplex(cmd->base.duplex) ||
1103 	    !netvsc_validate_ethtool_ss_cmd(cmd))
1104 		return -EINVAL;
1105 
1106 	ndc->speed = speed;
1107 	ndc->duplex = cmd->base.duplex;
1108 
1109 	return 0;
1110 }
1111 
1112 static int netvsc_change_mtu(struct net_device *ndev, int mtu)
1113 {
1114 	struct net_device_context *ndevctx = netdev_priv(ndev);
1115 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1116 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1117 	int orig_mtu = ndev->mtu;
1118 	struct netvsc_device_info *device_info;
1119 	int ret = 0;
1120 
1121 	if (!nvdev || nvdev->destroy)
1122 		return -ENODEV;
1123 
1124 	device_info = netvsc_devinfo_get(nvdev);
1125 
1126 	if (!device_info)
1127 		return -ENOMEM;
1128 
1129 	/* Change MTU of underlying VF netdev first. */
1130 	if (vf_netdev) {
1131 		ret = dev_set_mtu(vf_netdev, mtu);
1132 		if (ret)
1133 			goto out;
1134 	}
1135 
1136 	ret = netvsc_detach(ndev, nvdev);
1137 	if (ret)
1138 		goto rollback_vf;
1139 
1140 	ndev->mtu = mtu;
1141 
1142 	ret = netvsc_attach(ndev, device_info);
1143 	if (!ret)
1144 		goto out;
1145 
1146 	/* Attempt rollback to original MTU */
1147 	ndev->mtu = orig_mtu;
1148 
1149 	if (netvsc_attach(ndev, device_info))
1150 		netdev_err(ndev, "restoring mtu failed\n");
1151 rollback_vf:
1152 	if (vf_netdev)
1153 		dev_set_mtu(vf_netdev, orig_mtu);
1154 
1155 out:
1156 	kfree(device_info);
1157 	return ret;
1158 }
1159 
1160 static void netvsc_get_vf_stats(struct net_device *net,
1161 				struct netvsc_vf_pcpu_stats *tot)
1162 {
1163 	struct net_device_context *ndev_ctx = netdev_priv(net);
1164 	int i;
1165 
1166 	memset(tot, 0, sizeof(*tot));
1167 
1168 	for_each_possible_cpu(i) {
1169 		const struct netvsc_vf_pcpu_stats *stats
1170 			= per_cpu_ptr(ndev_ctx->vf_stats, i);
1171 		u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
1172 		unsigned int start;
1173 
1174 		do {
1175 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1176 			rx_packets = stats->rx_packets;
1177 			tx_packets = stats->tx_packets;
1178 			rx_bytes = stats->rx_bytes;
1179 			tx_bytes = stats->tx_bytes;
1180 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1181 
1182 		tot->rx_packets += rx_packets;
1183 		tot->tx_packets += tx_packets;
1184 		tot->rx_bytes   += rx_bytes;
1185 		tot->tx_bytes   += tx_bytes;
1186 		tot->tx_dropped += stats->tx_dropped;
1187 	}
1188 }
1189 
1190 static void netvsc_get_pcpu_stats(struct net_device *net,
1191 				  struct netvsc_ethtool_pcpu_stats *pcpu_tot)
1192 {
1193 	struct net_device_context *ndev_ctx = netdev_priv(net);
1194 	struct netvsc_device *nvdev = rcu_dereference_rtnl(ndev_ctx->nvdev);
1195 	int i;
1196 
1197 	/* fetch percpu stats of vf */
1198 	for_each_possible_cpu(i) {
1199 		const struct netvsc_vf_pcpu_stats *stats =
1200 			per_cpu_ptr(ndev_ctx->vf_stats, i);
1201 		struct netvsc_ethtool_pcpu_stats *this_tot = &pcpu_tot[i];
1202 		unsigned int start;
1203 
1204 		do {
1205 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1206 			this_tot->vf_rx_packets = stats->rx_packets;
1207 			this_tot->vf_tx_packets = stats->tx_packets;
1208 			this_tot->vf_rx_bytes = stats->rx_bytes;
1209 			this_tot->vf_tx_bytes = stats->tx_bytes;
1210 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1211 		this_tot->rx_packets = this_tot->vf_rx_packets;
1212 		this_tot->tx_packets = this_tot->vf_tx_packets;
1213 		this_tot->rx_bytes   = this_tot->vf_rx_bytes;
1214 		this_tot->tx_bytes   = this_tot->vf_tx_bytes;
1215 	}
1216 
1217 	/* fetch percpu stats of netvsc */
1218 	for (i = 0; i < nvdev->num_chn; i++) {
1219 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1220 		const struct netvsc_stats *stats;
1221 		struct netvsc_ethtool_pcpu_stats *this_tot =
1222 			&pcpu_tot[nvchan->channel->target_cpu];
1223 		u64 packets, bytes;
1224 		unsigned int start;
1225 
1226 		stats = &nvchan->tx_stats;
1227 		do {
1228 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1229 			packets = stats->packets;
1230 			bytes = stats->bytes;
1231 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1232 
1233 		this_tot->tx_bytes	+= bytes;
1234 		this_tot->tx_packets	+= packets;
1235 
1236 		stats = &nvchan->rx_stats;
1237 		do {
1238 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1239 			packets = stats->packets;
1240 			bytes = stats->bytes;
1241 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1242 
1243 		this_tot->rx_bytes	+= bytes;
1244 		this_tot->rx_packets	+= packets;
1245 	}
1246 }
1247 
1248 static void netvsc_get_stats64(struct net_device *net,
1249 			       struct rtnl_link_stats64 *t)
1250 {
1251 	struct net_device_context *ndev_ctx = netdev_priv(net);
1252 	struct netvsc_device *nvdev;
1253 	struct netvsc_vf_pcpu_stats vf_tot;
1254 	int i;
1255 
1256 	rcu_read_lock();
1257 
1258 	nvdev = rcu_dereference(ndev_ctx->nvdev);
1259 	if (!nvdev)
1260 		goto out;
1261 
1262 	netdev_stats_to_stats64(t, &net->stats);
1263 
1264 	netvsc_get_vf_stats(net, &vf_tot);
1265 	t->rx_packets += vf_tot.rx_packets;
1266 	t->tx_packets += vf_tot.tx_packets;
1267 	t->rx_bytes   += vf_tot.rx_bytes;
1268 	t->tx_bytes   += vf_tot.tx_bytes;
1269 	t->tx_dropped += vf_tot.tx_dropped;
1270 
1271 	for (i = 0; i < nvdev->num_chn; i++) {
1272 		const struct netvsc_channel *nvchan = &nvdev->chan_table[i];
1273 		const struct netvsc_stats *stats;
1274 		u64 packets, bytes, multicast;
1275 		unsigned int start;
1276 
1277 		stats = &nvchan->tx_stats;
1278 		do {
1279 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1280 			packets = stats->packets;
1281 			bytes = stats->bytes;
1282 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1283 
1284 		t->tx_bytes	+= bytes;
1285 		t->tx_packets	+= packets;
1286 
1287 		stats = &nvchan->rx_stats;
1288 		do {
1289 			start = u64_stats_fetch_begin_irq(&stats->syncp);
1290 			packets = stats->packets;
1291 			bytes = stats->bytes;
1292 			multicast = stats->multicast + stats->broadcast;
1293 		} while (u64_stats_fetch_retry_irq(&stats->syncp, start));
1294 
1295 		t->rx_bytes	+= bytes;
1296 		t->rx_packets	+= packets;
1297 		t->multicast	+= multicast;
1298 	}
1299 out:
1300 	rcu_read_unlock();
1301 }
1302 
1303 static int netvsc_set_mac_addr(struct net_device *ndev, void *p)
1304 {
1305 	struct net_device_context *ndc = netdev_priv(ndev);
1306 	struct net_device *vf_netdev = rtnl_dereference(ndc->vf_netdev);
1307 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1308 	struct sockaddr *addr = p;
1309 	int err;
1310 
1311 	err = eth_prepare_mac_addr_change(ndev, p);
1312 	if (err)
1313 		return err;
1314 
1315 	if (!nvdev)
1316 		return -ENODEV;
1317 
1318 	if (vf_netdev) {
1319 		err = dev_set_mac_address(vf_netdev, addr, NULL);
1320 		if (err)
1321 			return err;
1322 	}
1323 
1324 	err = rndis_filter_set_device_mac(nvdev, addr->sa_data);
1325 	if (!err) {
1326 		eth_commit_mac_addr_change(ndev, p);
1327 	} else if (vf_netdev) {
1328 		/* rollback change on VF */
1329 		memcpy(addr->sa_data, ndev->dev_addr, ETH_ALEN);
1330 		dev_set_mac_address(vf_netdev, addr, NULL);
1331 	}
1332 
1333 	return err;
1334 }
1335 
1336 static const struct {
1337 	char name[ETH_GSTRING_LEN];
1338 	u16 offset;
1339 } netvsc_stats[] = {
1340 	{ "tx_scattered", offsetof(struct netvsc_ethtool_stats, tx_scattered) },
1341 	{ "tx_no_memory", offsetof(struct netvsc_ethtool_stats, tx_no_memory) },
1342 	{ "tx_no_space",  offsetof(struct netvsc_ethtool_stats, tx_no_space) },
1343 	{ "tx_too_big",	  offsetof(struct netvsc_ethtool_stats, tx_too_big) },
1344 	{ "tx_busy",	  offsetof(struct netvsc_ethtool_stats, tx_busy) },
1345 	{ "tx_send_full", offsetof(struct netvsc_ethtool_stats, tx_send_full) },
1346 	{ "rx_comp_busy", offsetof(struct netvsc_ethtool_stats, rx_comp_busy) },
1347 	{ "rx_no_memory", offsetof(struct netvsc_ethtool_stats, rx_no_memory) },
1348 	{ "stop_queue", offsetof(struct netvsc_ethtool_stats, stop_queue) },
1349 	{ "wake_queue", offsetof(struct netvsc_ethtool_stats, wake_queue) },
1350 }, pcpu_stats[] = {
1351 	{ "cpu%u_rx_packets",
1352 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_packets) },
1353 	{ "cpu%u_rx_bytes",
1354 		offsetof(struct netvsc_ethtool_pcpu_stats, rx_bytes) },
1355 	{ "cpu%u_tx_packets",
1356 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_packets) },
1357 	{ "cpu%u_tx_bytes",
1358 		offsetof(struct netvsc_ethtool_pcpu_stats, tx_bytes) },
1359 	{ "cpu%u_vf_rx_packets",
1360 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_packets) },
1361 	{ "cpu%u_vf_rx_bytes",
1362 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_rx_bytes) },
1363 	{ "cpu%u_vf_tx_packets",
1364 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_packets) },
1365 	{ "cpu%u_vf_tx_bytes",
1366 		offsetof(struct netvsc_ethtool_pcpu_stats, vf_tx_bytes) },
1367 }, vf_stats[] = {
1368 	{ "vf_rx_packets", offsetof(struct netvsc_vf_pcpu_stats, rx_packets) },
1369 	{ "vf_rx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, rx_bytes) },
1370 	{ "vf_tx_packets", offsetof(struct netvsc_vf_pcpu_stats, tx_packets) },
1371 	{ "vf_tx_bytes",   offsetof(struct netvsc_vf_pcpu_stats, tx_bytes) },
1372 	{ "vf_tx_dropped", offsetof(struct netvsc_vf_pcpu_stats, tx_dropped) },
1373 };
1374 
1375 #define NETVSC_GLOBAL_STATS_LEN	ARRAY_SIZE(netvsc_stats)
1376 #define NETVSC_VF_STATS_LEN	ARRAY_SIZE(vf_stats)
1377 
1378 /* statistics per queue (rx/tx packets/bytes) */
1379 #define NETVSC_PCPU_STATS_LEN (num_present_cpus() * ARRAY_SIZE(pcpu_stats))
1380 
1381 /* 4 statistics per queue (rx/tx packets/bytes) */
1382 #define NETVSC_QUEUE_STATS_LEN(dev) ((dev)->num_chn * 4)
1383 
1384 static int netvsc_get_sset_count(struct net_device *dev, int string_set)
1385 {
1386 	struct net_device_context *ndc = netdev_priv(dev);
1387 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1388 
1389 	if (!nvdev)
1390 		return -ENODEV;
1391 
1392 	switch (string_set) {
1393 	case ETH_SS_STATS:
1394 		return NETVSC_GLOBAL_STATS_LEN
1395 			+ NETVSC_VF_STATS_LEN
1396 			+ NETVSC_QUEUE_STATS_LEN(nvdev)
1397 			+ NETVSC_PCPU_STATS_LEN;
1398 	default:
1399 		return -EINVAL;
1400 	}
1401 }
1402 
1403 static void netvsc_get_ethtool_stats(struct net_device *dev,
1404 				     struct ethtool_stats *stats, u64 *data)
1405 {
1406 	struct net_device_context *ndc = netdev_priv(dev);
1407 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1408 	const void *nds = &ndc->eth_stats;
1409 	const struct netvsc_stats *qstats;
1410 	struct netvsc_vf_pcpu_stats sum;
1411 	struct netvsc_ethtool_pcpu_stats *pcpu_sum;
1412 	unsigned int start;
1413 	u64 packets, bytes;
1414 	int i, j, cpu;
1415 
1416 	if (!nvdev)
1417 		return;
1418 
1419 	for (i = 0; i < NETVSC_GLOBAL_STATS_LEN; i++)
1420 		data[i] = *(unsigned long *)(nds + netvsc_stats[i].offset);
1421 
1422 	netvsc_get_vf_stats(dev, &sum);
1423 	for (j = 0; j < NETVSC_VF_STATS_LEN; j++)
1424 		data[i++] = *(u64 *)((void *)&sum + vf_stats[j].offset);
1425 
1426 	for (j = 0; j < nvdev->num_chn; j++) {
1427 		qstats = &nvdev->chan_table[j].tx_stats;
1428 
1429 		do {
1430 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1431 			packets = qstats->packets;
1432 			bytes = qstats->bytes;
1433 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1434 		data[i++] = packets;
1435 		data[i++] = bytes;
1436 
1437 		qstats = &nvdev->chan_table[j].rx_stats;
1438 		do {
1439 			start = u64_stats_fetch_begin_irq(&qstats->syncp);
1440 			packets = qstats->packets;
1441 			bytes = qstats->bytes;
1442 		} while (u64_stats_fetch_retry_irq(&qstats->syncp, start));
1443 		data[i++] = packets;
1444 		data[i++] = bytes;
1445 	}
1446 
1447 	pcpu_sum = kvmalloc_array(num_possible_cpus(),
1448 				  sizeof(struct netvsc_ethtool_pcpu_stats),
1449 				  GFP_KERNEL);
1450 	netvsc_get_pcpu_stats(dev, pcpu_sum);
1451 	for_each_present_cpu(cpu) {
1452 		struct netvsc_ethtool_pcpu_stats *this_sum = &pcpu_sum[cpu];
1453 
1454 		for (j = 0; j < ARRAY_SIZE(pcpu_stats); j++)
1455 			data[i++] = *(u64 *)((void *)this_sum
1456 					     + pcpu_stats[j].offset);
1457 	}
1458 	kvfree(pcpu_sum);
1459 }
1460 
1461 static void netvsc_get_strings(struct net_device *dev, u32 stringset, u8 *data)
1462 {
1463 	struct net_device_context *ndc = netdev_priv(dev);
1464 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1465 	u8 *p = data;
1466 	int i, cpu;
1467 
1468 	if (!nvdev)
1469 		return;
1470 
1471 	switch (stringset) {
1472 	case ETH_SS_STATS:
1473 		for (i = 0; i < ARRAY_SIZE(netvsc_stats); i++) {
1474 			memcpy(p, netvsc_stats[i].name, ETH_GSTRING_LEN);
1475 			p += ETH_GSTRING_LEN;
1476 		}
1477 
1478 		for (i = 0; i < ARRAY_SIZE(vf_stats); i++) {
1479 			memcpy(p, vf_stats[i].name, ETH_GSTRING_LEN);
1480 			p += ETH_GSTRING_LEN;
1481 		}
1482 
1483 		for (i = 0; i < nvdev->num_chn; i++) {
1484 			sprintf(p, "tx_queue_%u_packets", i);
1485 			p += ETH_GSTRING_LEN;
1486 			sprintf(p, "tx_queue_%u_bytes", i);
1487 			p += ETH_GSTRING_LEN;
1488 			sprintf(p, "rx_queue_%u_packets", i);
1489 			p += ETH_GSTRING_LEN;
1490 			sprintf(p, "rx_queue_%u_bytes", i);
1491 			p += ETH_GSTRING_LEN;
1492 		}
1493 
1494 		for_each_present_cpu(cpu) {
1495 			for (i = 0; i < ARRAY_SIZE(pcpu_stats); i++) {
1496 				sprintf(p, pcpu_stats[i].name, cpu);
1497 				p += ETH_GSTRING_LEN;
1498 			}
1499 		}
1500 
1501 		break;
1502 	}
1503 }
1504 
1505 static int
1506 netvsc_get_rss_hash_opts(struct net_device_context *ndc,
1507 			 struct ethtool_rxnfc *info)
1508 {
1509 	const u32 l4_flag = RXH_L4_B_0_1 | RXH_L4_B_2_3;
1510 
1511 	info->data = RXH_IP_SRC | RXH_IP_DST;
1512 
1513 	switch (info->flow_type) {
1514 	case TCP_V4_FLOW:
1515 		if (ndc->l4_hash & HV_TCP4_L4HASH)
1516 			info->data |= l4_flag;
1517 
1518 		break;
1519 
1520 	case TCP_V6_FLOW:
1521 		if (ndc->l4_hash & HV_TCP6_L4HASH)
1522 			info->data |= l4_flag;
1523 
1524 		break;
1525 
1526 	case UDP_V4_FLOW:
1527 		if (ndc->l4_hash & HV_UDP4_L4HASH)
1528 			info->data |= l4_flag;
1529 
1530 		break;
1531 
1532 	case UDP_V6_FLOW:
1533 		if (ndc->l4_hash & HV_UDP6_L4HASH)
1534 			info->data |= l4_flag;
1535 
1536 		break;
1537 
1538 	case IPV4_FLOW:
1539 	case IPV6_FLOW:
1540 		break;
1541 	default:
1542 		info->data = 0;
1543 		break;
1544 	}
1545 
1546 	return 0;
1547 }
1548 
1549 static int
1550 netvsc_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *info,
1551 		 u32 *rules)
1552 {
1553 	struct net_device_context *ndc = netdev_priv(dev);
1554 	struct netvsc_device *nvdev = rtnl_dereference(ndc->nvdev);
1555 
1556 	if (!nvdev)
1557 		return -ENODEV;
1558 
1559 	switch (info->cmd) {
1560 	case ETHTOOL_GRXRINGS:
1561 		info->data = nvdev->num_chn;
1562 		return 0;
1563 
1564 	case ETHTOOL_GRXFH:
1565 		return netvsc_get_rss_hash_opts(ndc, info);
1566 	}
1567 	return -EOPNOTSUPP;
1568 }
1569 
1570 static int netvsc_set_rss_hash_opts(struct net_device_context *ndc,
1571 				    struct ethtool_rxnfc *info)
1572 {
1573 	if (info->data == (RXH_IP_SRC | RXH_IP_DST |
1574 			   RXH_L4_B_0_1 | RXH_L4_B_2_3)) {
1575 		switch (info->flow_type) {
1576 		case TCP_V4_FLOW:
1577 			ndc->l4_hash |= HV_TCP4_L4HASH;
1578 			break;
1579 
1580 		case TCP_V6_FLOW:
1581 			ndc->l4_hash |= HV_TCP6_L4HASH;
1582 			break;
1583 
1584 		case UDP_V4_FLOW:
1585 			ndc->l4_hash |= HV_UDP4_L4HASH;
1586 			break;
1587 
1588 		case UDP_V6_FLOW:
1589 			ndc->l4_hash |= HV_UDP6_L4HASH;
1590 			break;
1591 
1592 		default:
1593 			return -EOPNOTSUPP;
1594 		}
1595 
1596 		return 0;
1597 	}
1598 
1599 	if (info->data == (RXH_IP_SRC | RXH_IP_DST)) {
1600 		switch (info->flow_type) {
1601 		case TCP_V4_FLOW:
1602 			ndc->l4_hash &= ~HV_TCP4_L4HASH;
1603 			break;
1604 
1605 		case TCP_V6_FLOW:
1606 			ndc->l4_hash &= ~HV_TCP6_L4HASH;
1607 			break;
1608 
1609 		case UDP_V4_FLOW:
1610 			ndc->l4_hash &= ~HV_UDP4_L4HASH;
1611 			break;
1612 
1613 		case UDP_V6_FLOW:
1614 			ndc->l4_hash &= ~HV_UDP6_L4HASH;
1615 			break;
1616 
1617 		default:
1618 			return -EOPNOTSUPP;
1619 		}
1620 
1621 		return 0;
1622 	}
1623 
1624 	return -EOPNOTSUPP;
1625 }
1626 
1627 static int
1628 netvsc_set_rxnfc(struct net_device *ndev, struct ethtool_rxnfc *info)
1629 {
1630 	struct net_device_context *ndc = netdev_priv(ndev);
1631 
1632 	if (info->cmd == ETHTOOL_SRXFH)
1633 		return netvsc_set_rss_hash_opts(ndc, info);
1634 
1635 	return -EOPNOTSUPP;
1636 }
1637 
1638 static u32 netvsc_get_rxfh_key_size(struct net_device *dev)
1639 {
1640 	return NETVSC_HASH_KEYLEN;
1641 }
1642 
1643 static u32 netvsc_rss_indir_size(struct net_device *dev)
1644 {
1645 	return ITAB_NUM;
1646 }
1647 
1648 static int netvsc_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
1649 			   u8 *hfunc)
1650 {
1651 	struct net_device_context *ndc = netdev_priv(dev);
1652 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1653 	struct rndis_device *rndis_dev;
1654 	int i;
1655 
1656 	if (!ndev)
1657 		return -ENODEV;
1658 
1659 	if (hfunc)
1660 		*hfunc = ETH_RSS_HASH_TOP;	/* Toeplitz */
1661 
1662 	rndis_dev = ndev->extension;
1663 	if (indir) {
1664 		for (i = 0; i < ITAB_NUM; i++)
1665 			indir[i] = ndc->rx_table[i];
1666 	}
1667 
1668 	if (key)
1669 		memcpy(key, rndis_dev->rss_key, NETVSC_HASH_KEYLEN);
1670 
1671 	return 0;
1672 }
1673 
1674 static int netvsc_set_rxfh(struct net_device *dev, const u32 *indir,
1675 			   const u8 *key, const u8 hfunc)
1676 {
1677 	struct net_device_context *ndc = netdev_priv(dev);
1678 	struct netvsc_device *ndev = rtnl_dereference(ndc->nvdev);
1679 	struct rndis_device *rndis_dev;
1680 	int i;
1681 
1682 	if (!ndev)
1683 		return -ENODEV;
1684 
1685 	if (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP)
1686 		return -EOPNOTSUPP;
1687 
1688 	rndis_dev = ndev->extension;
1689 	if (indir) {
1690 		for (i = 0; i < ITAB_NUM; i++)
1691 			if (indir[i] >= ndev->num_chn)
1692 				return -EINVAL;
1693 
1694 		for (i = 0; i < ITAB_NUM; i++)
1695 			ndc->rx_table[i] = indir[i];
1696 	}
1697 
1698 	if (!key) {
1699 		if (!indir)
1700 			return 0;
1701 
1702 		key = rndis_dev->rss_key;
1703 	}
1704 
1705 	return rndis_filter_set_rss_param(rndis_dev, key);
1706 }
1707 
1708 /* Hyper-V RNDIS protocol does not have ring in the HW sense.
1709  * It does have pre-allocated receive area which is divided into sections.
1710  */
1711 static void __netvsc_get_ringparam(struct netvsc_device *nvdev,
1712 				   struct ethtool_ringparam *ring)
1713 {
1714 	u32 max_buf_size;
1715 
1716 	ring->rx_pending = nvdev->recv_section_cnt;
1717 	ring->tx_pending = nvdev->send_section_cnt;
1718 
1719 	if (nvdev->nvsp_version <= NVSP_PROTOCOL_VERSION_2)
1720 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE_LEGACY;
1721 	else
1722 		max_buf_size = NETVSC_RECEIVE_BUFFER_SIZE;
1723 
1724 	ring->rx_max_pending = max_buf_size / nvdev->recv_section_size;
1725 	ring->tx_max_pending = NETVSC_SEND_BUFFER_SIZE
1726 		/ nvdev->send_section_size;
1727 }
1728 
1729 static void netvsc_get_ringparam(struct net_device *ndev,
1730 				 struct ethtool_ringparam *ring)
1731 {
1732 	struct net_device_context *ndevctx = netdev_priv(ndev);
1733 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1734 
1735 	if (!nvdev)
1736 		return;
1737 
1738 	__netvsc_get_ringparam(nvdev, ring);
1739 }
1740 
1741 static int netvsc_set_ringparam(struct net_device *ndev,
1742 				struct ethtool_ringparam *ring)
1743 {
1744 	struct net_device_context *ndevctx = netdev_priv(ndev);
1745 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1746 	struct netvsc_device_info *device_info;
1747 	struct ethtool_ringparam orig;
1748 	u32 new_tx, new_rx;
1749 	int ret = 0;
1750 
1751 	if (!nvdev || nvdev->destroy)
1752 		return -ENODEV;
1753 
1754 	memset(&orig, 0, sizeof(orig));
1755 	__netvsc_get_ringparam(nvdev, &orig);
1756 
1757 	new_tx = clamp_t(u32, ring->tx_pending,
1758 			 NETVSC_MIN_TX_SECTIONS, orig.tx_max_pending);
1759 	new_rx = clamp_t(u32, ring->rx_pending,
1760 			 NETVSC_MIN_RX_SECTIONS, orig.rx_max_pending);
1761 
1762 	if (new_tx == orig.tx_pending &&
1763 	    new_rx == orig.rx_pending)
1764 		return 0;	 /* no change */
1765 
1766 	device_info = netvsc_devinfo_get(nvdev);
1767 
1768 	if (!device_info)
1769 		return -ENOMEM;
1770 
1771 	device_info->send_sections = new_tx;
1772 	device_info->recv_sections = new_rx;
1773 
1774 	ret = netvsc_detach(ndev, nvdev);
1775 	if (ret)
1776 		goto out;
1777 
1778 	ret = netvsc_attach(ndev, device_info);
1779 	if (ret) {
1780 		device_info->send_sections = orig.tx_pending;
1781 		device_info->recv_sections = orig.rx_pending;
1782 
1783 		if (netvsc_attach(ndev, device_info))
1784 			netdev_err(ndev, "restoring ringparam failed");
1785 	}
1786 
1787 out:
1788 	kfree(device_info);
1789 	return ret;
1790 }
1791 
1792 static int netvsc_set_features(struct net_device *ndev,
1793 			       netdev_features_t features)
1794 {
1795 	netdev_features_t change = features ^ ndev->features;
1796 	struct net_device_context *ndevctx = netdev_priv(ndev);
1797 	struct netvsc_device *nvdev = rtnl_dereference(ndevctx->nvdev);
1798 	struct net_device *vf_netdev = rtnl_dereference(ndevctx->vf_netdev);
1799 	struct ndis_offload_params offloads;
1800 	int ret = 0;
1801 
1802 	if (!nvdev || nvdev->destroy)
1803 		return -ENODEV;
1804 
1805 	if (!(change & NETIF_F_LRO))
1806 		goto syncvf;
1807 
1808 	memset(&offloads, 0, sizeof(struct ndis_offload_params));
1809 
1810 	if (features & NETIF_F_LRO) {
1811 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1812 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_ENABLED;
1813 	} else {
1814 		offloads.rsc_ip_v4 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1815 		offloads.rsc_ip_v6 = NDIS_OFFLOAD_PARAMETERS_RSC_DISABLED;
1816 	}
1817 
1818 	ret = rndis_filter_set_offload_params(ndev, nvdev, &offloads);
1819 
1820 	if (ret) {
1821 		features ^= NETIF_F_LRO;
1822 		ndev->features = features;
1823 	}
1824 
1825 syncvf:
1826 	if (!vf_netdev)
1827 		return ret;
1828 
1829 	vf_netdev->wanted_features = features;
1830 	netdev_update_features(vf_netdev);
1831 
1832 	return ret;
1833 }
1834 
1835 static u32 netvsc_get_msglevel(struct net_device *ndev)
1836 {
1837 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1838 
1839 	return ndev_ctx->msg_enable;
1840 }
1841 
1842 static void netvsc_set_msglevel(struct net_device *ndev, u32 val)
1843 {
1844 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
1845 
1846 	ndev_ctx->msg_enable = val;
1847 }
1848 
1849 static const struct ethtool_ops ethtool_ops = {
1850 	.get_drvinfo	= netvsc_get_drvinfo,
1851 	.get_msglevel	= netvsc_get_msglevel,
1852 	.set_msglevel	= netvsc_set_msglevel,
1853 	.get_link	= ethtool_op_get_link,
1854 	.get_ethtool_stats = netvsc_get_ethtool_stats,
1855 	.get_sset_count = netvsc_get_sset_count,
1856 	.get_strings	= netvsc_get_strings,
1857 	.get_channels   = netvsc_get_channels,
1858 	.set_channels   = netvsc_set_channels,
1859 	.get_ts_info	= ethtool_op_get_ts_info,
1860 	.get_rxnfc	= netvsc_get_rxnfc,
1861 	.set_rxnfc	= netvsc_set_rxnfc,
1862 	.get_rxfh_key_size = netvsc_get_rxfh_key_size,
1863 	.get_rxfh_indir_size = netvsc_rss_indir_size,
1864 	.get_rxfh	= netvsc_get_rxfh,
1865 	.set_rxfh	= netvsc_set_rxfh,
1866 	.get_link_ksettings = netvsc_get_link_ksettings,
1867 	.set_link_ksettings = netvsc_set_link_ksettings,
1868 	.get_ringparam	= netvsc_get_ringparam,
1869 	.set_ringparam	= netvsc_set_ringparam,
1870 };
1871 
1872 static const struct net_device_ops device_ops = {
1873 	.ndo_open =			netvsc_open,
1874 	.ndo_stop =			netvsc_close,
1875 	.ndo_start_xmit =		netvsc_start_xmit,
1876 	.ndo_change_rx_flags =		netvsc_change_rx_flags,
1877 	.ndo_set_rx_mode =		netvsc_set_rx_mode,
1878 	.ndo_set_features =		netvsc_set_features,
1879 	.ndo_change_mtu =		netvsc_change_mtu,
1880 	.ndo_validate_addr =		eth_validate_addr,
1881 	.ndo_set_mac_address =		netvsc_set_mac_addr,
1882 	.ndo_select_queue =		netvsc_select_queue,
1883 	.ndo_get_stats64 =		netvsc_get_stats64,
1884 };
1885 
1886 /*
1887  * Handle link status changes. For RNDIS_STATUS_NETWORK_CHANGE emulate link
1888  * down/up sequence. In case of RNDIS_STATUS_MEDIA_CONNECT when carrier is
1889  * present send GARP packet to network peers with netif_notify_peers().
1890  */
1891 static void netvsc_link_change(struct work_struct *w)
1892 {
1893 	struct net_device_context *ndev_ctx =
1894 		container_of(w, struct net_device_context, dwork.work);
1895 	struct hv_device *device_obj = ndev_ctx->device_ctx;
1896 	struct net_device *net = hv_get_drvdata(device_obj);
1897 	struct netvsc_device *net_device;
1898 	struct rndis_device *rdev;
1899 	struct netvsc_reconfig *event = NULL;
1900 	bool notify = false, reschedule = false;
1901 	unsigned long flags, next_reconfig, delay;
1902 
1903 	/* if changes are happening, comeback later */
1904 	if (!rtnl_trylock()) {
1905 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1906 		return;
1907 	}
1908 
1909 	net_device = rtnl_dereference(ndev_ctx->nvdev);
1910 	if (!net_device)
1911 		goto out_unlock;
1912 
1913 	rdev = net_device->extension;
1914 
1915 	next_reconfig = ndev_ctx->last_reconfig + LINKCHANGE_INT;
1916 	if (time_is_after_jiffies(next_reconfig)) {
1917 		/* link_watch only sends one notification with current state
1918 		 * per second, avoid doing reconfig more frequently. Handle
1919 		 * wrap around.
1920 		 */
1921 		delay = next_reconfig - jiffies;
1922 		delay = delay < LINKCHANGE_INT ? delay : LINKCHANGE_INT;
1923 		schedule_delayed_work(&ndev_ctx->dwork, delay);
1924 		goto out_unlock;
1925 	}
1926 	ndev_ctx->last_reconfig = jiffies;
1927 
1928 	spin_lock_irqsave(&ndev_ctx->lock, flags);
1929 	if (!list_empty(&ndev_ctx->reconfig_events)) {
1930 		event = list_first_entry(&ndev_ctx->reconfig_events,
1931 					 struct netvsc_reconfig, list);
1932 		list_del(&event->list);
1933 		reschedule = !list_empty(&ndev_ctx->reconfig_events);
1934 	}
1935 	spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1936 
1937 	if (!event)
1938 		goto out_unlock;
1939 
1940 	switch (event->event) {
1941 		/* Only the following events are possible due to the check in
1942 		 * netvsc_linkstatus_callback()
1943 		 */
1944 	case RNDIS_STATUS_MEDIA_CONNECT:
1945 		if (rdev->link_state) {
1946 			rdev->link_state = false;
1947 			netif_carrier_on(net);
1948 			netvsc_tx_enable(net_device, net);
1949 		} else {
1950 			notify = true;
1951 		}
1952 		kfree(event);
1953 		break;
1954 	case RNDIS_STATUS_MEDIA_DISCONNECT:
1955 		if (!rdev->link_state) {
1956 			rdev->link_state = true;
1957 			netif_carrier_off(net);
1958 			netvsc_tx_disable(net_device, net);
1959 		}
1960 		kfree(event);
1961 		break;
1962 	case RNDIS_STATUS_NETWORK_CHANGE:
1963 		/* Only makes sense if carrier is present */
1964 		if (!rdev->link_state) {
1965 			rdev->link_state = true;
1966 			netif_carrier_off(net);
1967 			netvsc_tx_disable(net_device, net);
1968 			event->event = RNDIS_STATUS_MEDIA_CONNECT;
1969 			spin_lock_irqsave(&ndev_ctx->lock, flags);
1970 			list_add(&event->list, &ndev_ctx->reconfig_events);
1971 			spin_unlock_irqrestore(&ndev_ctx->lock, flags);
1972 			reschedule = true;
1973 		}
1974 		break;
1975 	}
1976 
1977 	rtnl_unlock();
1978 
1979 	if (notify)
1980 		netdev_notify_peers(net);
1981 
1982 	/* link_watch only sends one notification with current state per
1983 	 * second, handle next reconfig event in 2 seconds.
1984 	 */
1985 	if (reschedule)
1986 		schedule_delayed_work(&ndev_ctx->dwork, LINKCHANGE_INT);
1987 
1988 	return;
1989 
1990 out_unlock:
1991 	rtnl_unlock();
1992 }
1993 
1994 static struct net_device *get_netvsc_byref(struct net_device *vf_netdev)
1995 {
1996 	struct net_device_context *net_device_ctx;
1997 	struct net_device *dev;
1998 
1999 	dev = netdev_master_upper_dev_get(vf_netdev);
2000 	if (!dev || dev->netdev_ops != &device_ops)
2001 		return NULL;	/* not a netvsc device */
2002 
2003 	net_device_ctx = netdev_priv(dev);
2004 	if (!rtnl_dereference(net_device_ctx->nvdev))
2005 		return NULL;	/* device is removed */
2006 
2007 	return dev;
2008 }
2009 
2010 /* Called when VF is injecting data into network stack.
2011  * Change the associated network device from VF to netvsc.
2012  * note: already called with rcu_read_lock
2013  */
2014 static rx_handler_result_t netvsc_vf_handle_frame(struct sk_buff **pskb)
2015 {
2016 	struct sk_buff *skb = *pskb;
2017 	struct net_device *ndev = rcu_dereference(skb->dev->rx_handler_data);
2018 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2019 	struct netvsc_vf_pcpu_stats *pcpu_stats
2020 		 = this_cpu_ptr(ndev_ctx->vf_stats);
2021 
2022 	skb = skb_share_check(skb, GFP_ATOMIC);
2023 	if (unlikely(!skb))
2024 		return RX_HANDLER_CONSUMED;
2025 
2026 	*pskb = skb;
2027 
2028 	skb->dev = ndev;
2029 
2030 	u64_stats_update_begin(&pcpu_stats->syncp);
2031 	pcpu_stats->rx_packets++;
2032 	pcpu_stats->rx_bytes += skb->len;
2033 	u64_stats_update_end(&pcpu_stats->syncp);
2034 
2035 	return RX_HANDLER_ANOTHER;
2036 }
2037 
2038 static int netvsc_vf_join(struct net_device *vf_netdev,
2039 			  struct net_device *ndev)
2040 {
2041 	struct net_device_context *ndev_ctx = netdev_priv(ndev);
2042 	int ret;
2043 
2044 	ret = netdev_rx_handler_register(vf_netdev,
2045 					 netvsc_vf_handle_frame, ndev);
2046 	if (ret != 0) {
2047 		netdev_err(vf_netdev,
2048 			   "can not register netvsc VF receive handler (err = %d)\n",
2049 			   ret);
2050 		goto rx_handler_failed;
2051 	}
2052 
2053 	ret = netdev_master_upper_dev_link(vf_netdev, ndev,
2054 					   NULL, NULL, NULL);
2055 	if (ret != 0) {
2056 		netdev_err(vf_netdev,
2057 			   "can not set master device %s (err = %d)\n",
2058 			   ndev->name, ret);
2059 		goto upper_link_failed;
2060 	}
2061 
2062 	/* set slave flag before open to prevent IPv6 addrconf */
2063 	vf_netdev->flags |= IFF_SLAVE;
2064 
2065 	schedule_delayed_work(&ndev_ctx->vf_takeover, VF_TAKEOVER_INT);
2066 
2067 	call_netdevice_notifiers(NETDEV_JOIN, vf_netdev);
2068 
2069 	netdev_info(vf_netdev, "joined to %s\n", ndev->name);
2070 	return 0;
2071 
2072 upper_link_failed:
2073 	netdev_rx_handler_unregister(vf_netdev);
2074 rx_handler_failed:
2075 	return ret;
2076 }
2077 
2078 static void __netvsc_vf_setup(struct net_device *ndev,
2079 			      struct net_device *vf_netdev)
2080 {
2081 	int ret;
2082 
2083 	/* Align MTU of VF with master */
2084 	ret = dev_set_mtu(vf_netdev, ndev->mtu);
2085 	if (ret)
2086 		netdev_warn(vf_netdev,
2087 			    "unable to change mtu to %u\n", ndev->mtu);
2088 
2089 	/* set multicast etc flags on VF */
2090 	dev_change_flags(vf_netdev, ndev->flags | IFF_SLAVE, NULL);
2091 
2092 	/* sync address list from ndev to VF */
2093 	netif_addr_lock_bh(ndev);
2094 	dev_uc_sync(vf_netdev, ndev);
2095 	dev_mc_sync(vf_netdev, ndev);
2096 	netif_addr_unlock_bh(ndev);
2097 
2098 	if (netif_running(ndev)) {
2099 		ret = dev_open(vf_netdev, NULL);
2100 		if (ret)
2101 			netdev_warn(vf_netdev,
2102 				    "unable to open: %d\n", ret);
2103 	}
2104 }
2105 
2106 /* Setup VF as slave of the synthetic device.
2107  * Runs in workqueue to avoid recursion in netlink callbacks.
2108  */
2109 static void netvsc_vf_setup(struct work_struct *w)
2110 {
2111 	struct net_device_context *ndev_ctx
2112 		= container_of(w, struct net_device_context, vf_takeover.work);
2113 	struct net_device *ndev = hv_get_drvdata(ndev_ctx->device_ctx);
2114 	struct net_device *vf_netdev;
2115 
2116 	if (!rtnl_trylock()) {
2117 		schedule_delayed_work(&ndev_ctx->vf_takeover, 0);
2118 		return;
2119 	}
2120 
2121 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2122 	if (vf_netdev)
2123 		__netvsc_vf_setup(ndev, vf_netdev);
2124 
2125 	rtnl_unlock();
2126 }
2127 
2128 /* Find netvsc by VF serial number.
2129  * The PCI hyperv controller records the serial number as the slot kobj name.
2130  */
2131 static struct net_device *get_netvsc_byslot(const struct net_device *vf_netdev)
2132 {
2133 	struct device *parent = vf_netdev->dev.parent;
2134 	struct net_device_context *ndev_ctx;
2135 	struct pci_dev *pdev;
2136 	u32 serial;
2137 
2138 	if (!parent || !dev_is_pci(parent))
2139 		return NULL; /* not a PCI device */
2140 
2141 	pdev = to_pci_dev(parent);
2142 	if (!pdev->slot) {
2143 		netdev_notice(vf_netdev, "no PCI slot information\n");
2144 		return NULL;
2145 	}
2146 
2147 	if (kstrtou32(pci_slot_name(pdev->slot), 10, &serial)) {
2148 		netdev_notice(vf_netdev, "Invalid vf serial:%s\n",
2149 			      pci_slot_name(pdev->slot));
2150 		return NULL;
2151 	}
2152 
2153 	list_for_each_entry(ndev_ctx, &netvsc_dev_list, list) {
2154 		if (!ndev_ctx->vf_alloc)
2155 			continue;
2156 
2157 		if (ndev_ctx->vf_serial == serial)
2158 			return hv_get_drvdata(ndev_ctx->device_ctx);
2159 	}
2160 
2161 	netdev_notice(vf_netdev,
2162 		      "no netdev found for vf serial:%u\n", serial);
2163 	return NULL;
2164 }
2165 
2166 static int netvsc_register_vf(struct net_device *vf_netdev)
2167 {
2168 	struct net_device_context *net_device_ctx;
2169 	struct netvsc_device *netvsc_dev;
2170 	struct net_device *ndev;
2171 	int ret;
2172 
2173 	if (vf_netdev->addr_len != ETH_ALEN)
2174 		return NOTIFY_DONE;
2175 
2176 	ndev = get_netvsc_byslot(vf_netdev);
2177 	if (!ndev)
2178 		return NOTIFY_DONE;
2179 
2180 	net_device_ctx = netdev_priv(ndev);
2181 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2182 	if (!netvsc_dev || rtnl_dereference(net_device_ctx->vf_netdev))
2183 		return NOTIFY_DONE;
2184 
2185 	/* if synthetic interface is a different namespace,
2186 	 * then move the VF to that namespace; join will be
2187 	 * done again in that context.
2188 	 */
2189 	if (!net_eq(dev_net(ndev), dev_net(vf_netdev))) {
2190 		ret = dev_change_net_namespace(vf_netdev,
2191 					       dev_net(ndev), "eth%d");
2192 		if (ret)
2193 			netdev_err(vf_netdev,
2194 				   "could not move to same namespace as %s: %d\n",
2195 				   ndev->name, ret);
2196 		else
2197 			netdev_info(vf_netdev,
2198 				    "VF moved to namespace with: %s\n",
2199 				    ndev->name);
2200 		return NOTIFY_DONE;
2201 	}
2202 
2203 	netdev_info(ndev, "VF registering: %s\n", vf_netdev->name);
2204 
2205 	if (netvsc_vf_join(vf_netdev, ndev) != 0)
2206 		return NOTIFY_DONE;
2207 
2208 	dev_hold(vf_netdev);
2209 	rcu_assign_pointer(net_device_ctx->vf_netdev, vf_netdev);
2210 
2211 	vf_netdev->wanted_features = ndev->features;
2212 	netdev_update_features(vf_netdev);
2213 
2214 	return NOTIFY_OK;
2215 }
2216 
2217 /* VF up/down change detected, schedule to change data path */
2218 static int netvsc_vf_changed(struct net_device *vf_netdev)
2219 {
2220 	struct net_device_context *net_device_ctx;
2221 	struct netvsc_device *netvsc_dev;
2222 	struct net_device *ndev;
2223 	bool vf_is_up = netif_running(vf_netdev);
2224 
2225 	ndev = get_netvsc_byref(vf_netdev);
2226 	if (!ndev)
2227 		return NOTIFY_DONE;
2228 
2229 	net_device_ctx = netdev_priv(ndev);
2230 	netvsc_dev = rtnl_dereference(net_device_ctx->nvdev);
2231 	if (!netvsc_dev)
2232 		return NOTIFY_DONE;
2233 
2234 	netvsc_switch_datapath(ndev, vf_is_up);
2235 	netdev_info(ndev, "Data path switched %s VF: %s\n",
2236 		    vf_is_up ? "to" : "from", vf_netdev->name);
2237 
2238 	return NOTIFY_OK;
2239 }
2240 
2241 static int netvsc_unregister_vf(struct net_device *vf_netdev)
2242 {
2243 	struct net_device *ndev;
2244 	struct net_device_context *net_device_ctx;
2245 
2246 	ndev = get_netvsc_byref(vf_netdev);
2247 	if (!ndev)
2248 		return NOTIFY_DONE;
2249 
2250 	net_device_ctx = netdev_priv(ndev);
2251 	cancel_delayed_work_sync(&net_device_ctx->vf_takeover);
2252 
2253 	netdev_info(ndev, "VF unregistering: %s\n", vf_netdev->name);
2254 
2255 	netdev_rx_handler_unregister(vf_netdev);
2256 	netdev_upper_dev_unlink(vf_netdev, ndev);
2257 	RCU_INIT_POINTER(net_device_ctx->vf_netdev, NULL);
2258 	dev_put(vf_netdev);
2259 
2260 	return NOTIFY_OK;
2261 }
2262 
2263 static int netvsc_probe(struct hv_device *dev,
2264 			const struct hv_vmbus_device_id *dev_id)
2265 {
2266 	struct net_device *net = NULL;
2267 	struct net_device_context *net_device_ctx;
2268 	struct netvsc_device_info *device_info = NULL;
2269 	struct netvsc_device *nvdev;
2270 	int ret = -ENOMEM;
2271 
2272 	net = alloc_etherdev_mq(sizeof(struct net_device_context),
2273 				VRSS_CHANNEL_MAX);
2274 	if (!net)
2275 		goto no_net;
2276 
2277 	netif_carrier_off(net);
2278 
2279 	netvsc_init_settings(net);
2280 
2281 	net_device_ctx = netdev_priv(net);
2282 	net_device_ctx->device_ctx = dev;
2283 	net_device_ctx->msg_enable = netif_msg_init(debug, default_msg);
2284 	if (netif_msg_probe(net_device_ctx))
2285 		netdev_dbg(net, "netvsc msg_enable: %d\n",
2286 			   net_device_ctx->msg_enable);
2287 
2288 	hv_set_drvdata(dev, net);
2289 
2290 	INIT_DELAYED_WORK(&net_device_ctx->dwork, netvsc_link_change);
2291 
2292 	spin_lock_init(&net_device_ctx->lock);
2293 	INIT_LIST_HEAD(&net_device_ctx->reconfig_events);
2294 	INIT_DELAYED_WORK(&net_device_ctx->vf_takeover, netvsc_vf_setup);
2295 
2296 	net_device_ctx->vf_stats
2297 		= netdev_alloc_pcpu_stats(struct netvsc_vf_pcpu_stats);
2298 	if (!net_device_ctx->vf_stats)
2299 		goto no_stats;
2300 
2301 	net->netdev_ops = &device_ops;
2302 	net->ethtool_ops = &ethtool_ops;
2303 	SET_NETDEV_DEV(net, &dev->device);
2304 
2305 	/* We always need headroom for rndis header */
2306 	net->needed_headroom = RNDIS_AND_PPI_SIZE;
2307 
2308 	/* Initialize the number of queues to be 1, we may change it if more
2309 	 * channels are offered later.
2310 	 */
2311 	netif_set_real_num_tx_queues(net, 1);
2312 	netif_set_real_num_rx_queues(net, 1);
2313 
2314 	/* Notify the netvsc driver of the new device */
2315 	device_info = netvsc_devinfo_get(NULL);
2316 
2317 	if (!device_info) {
2318 		ret = -ENOMEM;
2319 		goto devinfo_failed;
2320 	}
2321 
2322 	nvdev = rndis_filter_device_add(dev, device_info);
2323 	if (IS_ERR(nvdev)) {
2324 		ret = PTR_ERR(nvdev);
2325 		netdev_err(net, "unable to add netvsc device (ret %d)\n", ret);
2326 		goto rndis_failed;
2327 	}
2328 
2329 	memcpy(net->dev_addr, device_info->mac_adr, ETH_ALEN);
2330 
2331 	/* We must get rtnl lock before scheduling nvdev->subchan_work,
2332 	 * otherwise netvsc_subchan_work() can get rtnl lock first and wait
2333 	 * all subchannels to show up, but that may not happen because
2334 	 * netvsc_probe() can't get rtnl lock and as a result vmbus_onoffer()
2335 	 * -> ... -> device_add() -> ... -> __device_attach() can't get
2336 	 * the device lock, so all the subchannels can't be processed --
2337 	 * finally netvsc_subchan_work() hangs forever.
2338 	 */
2339 	rtnl_lock();
2340 
2341 	if (nvdev->num_chn > 1)
2342 		schedule_work(&nvdev->subchan_work);
2343 
2344 	/* hw_features computed in rndis_netdev_set_hwcaps() */
2345 	net->features = net->hw_features |
2346 		NETIF_F_HIGHDMA | NETIF_F_HW_VLAN_CTAG_TX |
2347 		NETIF_F_HW_VLAN_CTAG_RX;
2348 	net->vlan_features = net->features;
2349 
2350 	/* MTU range: 68 - 1500 or 65521 */
2351 	net->min_mtu = NETVSC_MTU_MIN;
2352 	if (nvdev->nvsp_version >= NVSP_PROTOCOL_VERSION_2)
2353 		net->max_mtu = NETVSC_MTU - ETH_HLEN;
2354 	else
2355 		net->max_mtu = ETH_DATA_LEN;
2356 
2357 	ret = register_netdevice(net);
2358 	if (ret != 0) {
2359 		pr_err("Unable to register netdev.\n");
2360 		goto register_failed;
2361 	}
2362 
2363 	list_add(&net_device_ctx->list, &netvsc_dev_list);
2364 	rtnl_unlock();
2365 
2366 	kfree(device_info);
2367 	return 0;
2368 
2369 register_failed:
2370 	rtnl_unlock();
2371 	rndis_filter_device_remove(dev, nvdev);
2372 rndis_failed:
2373 	kfree(device_info);
2374 devinfo_failed:
2375 	free_percpu(net_device_ctx->vf_stats);
2376 no_stats:
2377 	hv_set_drvdata(dev, NULL);
2378 	free_netdev(net);
2379 no_net:
2380 	return ret;
2381 }
2382 
2383 static int netvsc_remove(struct hv_device *dev)
2384 {
2385 	struct net_device_context *ndev_ctx;
2386 	struct net_device *vf_netdev, *net;
2387 	struct netvsc_device *nvdev;
2388 
2389 	net = hv_get_drvdata(dev);
2390 	if (net == NULL) {
2391 		dev_err(&dev->device, "No net device to remove\n");
2392 		return 0;
2393 	}
2394 
2395 	ndev_ctx = netdev_priv(net);
2396 
2397 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2398 
2399 	rtnl_lock();
2400 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2401 	if (nvdev)
2402 		cancel_work_sync(&nvdev->subchan_work);
2403 
2404 	/*
2405 	 * Call to the vsc driver to let it know that the device is being
2406 	 * removed. Also blocks mtu and channel changes.
2407 	 */
2408 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2409 	if (vf_netdev)
2410 		netvsc_unregister_vf(vf_netdev);
2411 
2412 	if (nvdev)
2413 		rndis_filter_device_remove(dev, nvdev);
2414 
2415 	unregister_netdevice(net);
2416 	list_del(&ndev_ctx->list);
2417 
2418 	rtnl_unlock();
2419 
2420 	hv_set_drvdata(dev, NULL);
2421 
2422 	free_percpu(ndev_ctx->vf_stats);
2423 	free_netdev(net);
2424 	return 0;
2425 }
2426 
2427 static int netvsc_suspend(struct hv_device *dev)
2428 {
2429 	struct net_device_context *ndev_ctx;
2430 	struct net_device *vf_netdev, *net;
2431 	struct netvsc_device *nvdev;
2432 	int ret;
2433 
2434 	net = hv_get_drvdata(dev);
2435 
2436 	ndev_ctx = netdev_priv(net);
2437 	cancel_delayed_work_sync(&ndev_ctx->dwork);
2438 
2439 	rtnl_lock();
2440 
2441 	nvdev = rtnl_dereference(ndev_ctx->nvdev);
2442 	if (nvdev == NULL) {
2443 		ret = -ENODEV;
2444 		goto out;
2445 	}
2446 
2447 	vf_netdev = rtnl_dereference(ndev_ctx->vf_netdev);
2448 	if (vf_netdev)
2449 		netvsc_unregister_vf(vf_netdev);
2450 
2451 	/* Save the current config info */
2452 	ndev_ctx->saved_netvsc_dev_info = netvsc_devinfo_get(nvdev);
2453 
2454 	ret = netvsc_detach(net, nvdev);
2455 out:
2456 	rtnl_unlock();
2457 
2458 	return ret;
2459 }
2460 
2461 static int netvsc_resume(struct hv_device *dev)
2462 {
2463 	struct net_device *net = hv_get_drvdata(dev);
2464 	struct net_device_context *net_device_ctx;
2465 	struct netvsc_device_info *device_info;
2466 	int ret;
2467 
2468 	rtnl_lock();
2469 
2470 	net_device_ctx = netdev_priv(net);
2471 	device_info = net_device_ctx->saved_netvsc_dev_info;
2472 
2473 	ret = netvsc_attach(net, device_info);
2474 
2475 	rtnl_unlock();
2476 
2477 	kfree(device_info);
2478 	net_device_ctx->saved_netvsc_dev_info = NULL;
2479 
2480 	return ret;
2481 }
2482 static const struct hv_vmbus_device_id id_table[] = {
2483 	/* Network guid */
2484 	{ HV_NIC_GUID, },
2485 	{ },
2486 };
2487 
2488 MODULE_DEVICE_TABLE(vmbus, id_table);
2489 
2490 /* The one and only one */
2491 static struct  hv_driver netvsc_drv = {
2492 	.name = KBUILD_MODNAME,
2493 	.id_table = id_table,
2494 	.probe = netvsc_probe,
2495 	.remove = netvsc_remove,
2496 	.suspend = netvsc_suspend,
2497 	.resume = netvsc_resume,
2498 	.driver = {
2499 		.probe_type = PROBE_FORCE_SYNCHRONOUS,
2500 	},
2501 };
2502 
2503 /*
2504  * On Hyper-V, every VF interface is matched with a corresponding
2505  * synthetic interface. The synthetic interface is presented first
2506  * to the guest. When the corresponding VF instance is registered,
2507  * we will take care of switching the data path.
2508  */
2509 static int netvsc_netdev_event(struct notifier_block *this,
2510 			       unsigned long event, void *ptr)
2511 {
2512 	struct net_device *event_dev = netdev_notifier_info_to_dev(ptr);
2513 
2514 	/* Skip our own events */
2515 	if (event_dev->netdev_ops == &device_ops)
2516 		return NOTIFY_DONE;
2517 
2518 	/* Avoid non-Ethernet type devices */
2519 	if (event_dev->type != ARPHRD_ETHER)
2520 		return NOTIFY_DONE;
2521 
2522 	/* Avoid Vlan dev with same MAC registering as VF */
2523 	if (is_vlan_dev(event_dev))
2524 		return NOTIFY_DONE;
2525 
2526 	/* Avoid Bonding master dev with same MAC registering as VF */
2527 	if ((event_dev->priv_flags & IFF_BONDING) &&
2528 	    (event_dev->flags & IFF_MASTER))
2529 		return NOTIFY_DONE;
2530 
2531 	switch (event) {
2532 	case NETDEV_REGISTER:
2533 		return netvsc_register_vf(event_dev);
2534 	case NETDEV_UNREGISTER:
2535 		return netvsc_unregister_vf(event_dev);
2536 	case NETDEV_UP:
2537 	case NETDEV_DOWN:
2538 		return netvsc_vf_changed(event_dev);
2539 	default:
2540 		return NOTIFY_DONE;
2541 	}
2542 }
2543 
2544 static struct notifier_block netvsc_netdev_notifier = {
2545 	.notifier_call = netvsc_netdev_event,
2546 };
2547 
2548 static void __exit netvsc_drv_exit(void)
2549 {
2550 	unregister_netdevice_notifier(&netvsc_netdev_notifier);
2551 	vmbus_driver_unregister(&netvsc_drv);
2552 }
2553 
2554 static int __init netvsc_drv_init(void)
2555 {
2556 	int ret;
2557 
2558 	if (ring_size < RING_SIZE_MIN) {
2559 		ring_size = RING_SIZE_MIN;
2560 		pr_info("Increased ring_size to %u (min allowed)\n",
2561 			ring_size);
2562 	}
2563 	netvsc_ring_bytes = ring_size * PAGE_SIZE;
2564 
2565 	ret = vmbus_driver_register(&netvsc_drv);
2566 	if (ret)
2567 		return ret;
2568 
2569 	register_netdevice_notifier(&netvsc_netdev_notifier);
2570 	return 0;
2571 }
2572 
2573 MODULE_LICENSE("GPL");
2574 MODULE_DESCRIPTION("Microsoft Hyper-V network driver");
2575 
2576 module_init(netvsc_drv_init);
2577 module_exit(netvsc_drv_exit);
2578