xref: /openbmc/linux/drivers/net/hamradio/6pack.c (revision 76c47183224c86e4011048b80f0e2d0d166f01c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * 6pack.c	This module implements the 6pack protocol for kernel-based
4  *		devices like TTY. It interfaces between a raw TTY and the
5  *		kernel's AX.25 protocol layers.
6  *
7  * Authors:	Andreas Könsgen <ajk@comnets.uni-bremen.de>
8  *              Ralf Baechle DL5RB <ralf@linux-mips.org>
9  *
10  * Quite a lot of stuff "stolen" by Joerg Reuter from slip.c, written by
11  *
12  *		Laurence Culhane, <loz@holmes.demon.co.uk>
13  *		Fred N. van Kempen, <waltje@uwalt.nl.mugnet.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/uaccess.h>
18 #include <linux/bitops.h>
19 #include <linux/string.h>
20 #include <linux/mm.h>
21 #include <linux/interrupt.h>
22 #include <linux/in.h>
23 #include <linux/tty.h>
24 #include <linux/errno.h>
25 #include <linux/netdevice.h>
26 #include <linux/timer.h>
27 #include <linux/slab.h>
28 #include <net/ax25.h>
29 #include <linux/etherdevice.h>
30 #include <linux/skbuff.h>
31 #include <linux/rtnetlink.h>
32 #include <linux/spinlock.h>
33 #include <linux/if_arp.h>
34 #include <linux/init.h>
35 #include <linux/ip.h>
36 #include <linux/tcp.h>
37 #include <linux/semaphore.h>
38 #include <linux/refcount.h>
39 
40 #define SIXPACK_VERSION    "Revision: 0.3.0"
41 
42 /* sixpack priority commands */
43 #define SIXP_SEOF		0x40	/* start and end of a 6pack frame */
44 #define SIXP_TX_URUN		0x48	/* transmit overrun */
45 #define SIXP_RX_ORUN		0x50	/* receive overrun */
46 #define SIXP_RX_BUF_OVL		0x58	/* receive buffer overflow */
47 
48 #define SIXP_CHKSUM		0xFF	/* valid checksum of a 6pack frame */
49 
50 /* masks to get certain bits out of the status bytes sent by the TNC */
51 
52 #define SIXP_CMD_MASK		0xC0
53 #define SIXP_CHN_MASK		0x07
54 #define SIXP_PRIO_CMD_MASK	0x80
55 #define SIXP_STD_CMD_MASK	0x40
56 #define SIXP_PRIO_DATA_MASK	0x38
57 #define SIXP_TX_MASK		0x20
58 #define SIXP_RX_MASK		0x10
59 #define SIXP_RX_DCD_MASK	0x18
60 #define SIXP_LEDS_ON		0x78
61 #define SIXP_LEDS_OFF		0x60
62 #define SIXP_CON		0x08
63 #define SIXP_STA		0x10
64 
65 #define SIXP_FOUND_TNC		0xe9
66 #define SIXP_CON_ON		0x68
67 #define SIXP_DCD_MASK		0x08
68 #define SIXP_DAMA_OFF		0
69 
70 /* default level 2 parameters */
71 #define SIXP_TXDELAY			25	/* 250 ms */
72 #define SIXP_PERSIST			50	/* in 256ths */
73 #define SIXP_SLOTTIME			10	/* 100 ms */
74 #define SIXP_INIT_RESYNC_TIMEOUT	(3*HZ/2) /* in 1 s */
75 #define SIXP_RESYNC_TIMEOUT		5*HZ	/* in 1 s */
76 
77 /* 6pack configuration. */
78 #define SIXP_NRUNIT			31      /* MAX number of 6pack channels */
79 #define SIXP_MTU			256	/* Default MTU */
80 
81 enum sixpack_flags {
82 	SIXPF_ERROR,	/* Parity, etc. error	*/
83 };
84 
85 struct sixpack {
86 	/* Various fields. */
87 	struct tty_struct	*tty;		/* ptr to TTY structure	*/
88 	struct net_device	*dev;		/* easy for intr handling  */
89 
90 	/* These are pointers to the malloc()ed frame buffers. */
91 	unsigned char		*rbuff;		/* receiver buffer	*/
92 	int			rcount;         /* received chars counter  */
93 	unsigned char		*xbuff;		/* transmitter buffer	*/
94 	unsigned char		*xhead;         /* next byte to XMIT */
95 	int			xleft;          /* bytes left in XMIT queue  */
96 
97 	unsigned char		raw_buf[4];
98 	unsigned char		cooked_buf[400];
99 
100 	unsigned int		rx_count;
101 	unsigned int		rx_count_cooked;
102 
103 	int			mtu;		/* Our mtu (to spot changes!) */
104 	int			buffsize;       /* Max buffers sizes */
105 
106 	unsigned long		flags;		/* Flag values/ mode etc */
107 	unsigned char		mode;		/* 6pack mode */
108 
109 	/* 6pack stuff */
110 	unsigned char		tx_delay;
111 	unsigned char		persistence;
112 	unsigned char		slottime;
113 	unsigned char		duplex;
114 	unsigned char		led_state;
115 	unsigned char		status;
116 	unsigned char		status1;
117 	unsigned char		status2;
118 	unsigned char		tx_enable;
119 	unsigned char		tnc_state;
120 
121 	struct timer_list	tx_t;
122 	struct timer_list	resync_t;
123 	refcount_t		refcnt;
124 	struct completion	dead;
125 	spinlock_t		lock;
126 };
127 
128 #define AX25_6PACK_HEADER_LEN 0
129 
130 static void sixpack_decode(struct sixpack *, const unsigned char[], int);
131 static int encode_sixpack(unsigned char *, unsigned char *, int, unsigned char);
132 
133 /*
134  * Perform the persistence/slottime algorithm for CSMA access. If the
135  * persistence check was successful, write the data to the serial driver.
136  * Note that in case of DAMA operation, the data is not sent here.
137  */
138 
139 static void sp_xmit_on_air(struct timer_list *t)
140 {
141 	struct sixpack *sp = from_timer(sp, t, tx_t);
142 	int actual, when = sp->slottime;
143 	static unsigned char random;
144 
145 	random = random * 17 + 41;
146 
147 	if (((sp->status1 & SIXP_DCD_MASK) == 0) && (random < sp->persistence)) {
148 		sp->led_state = 0x70;
149 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
150 		sp->tx_enable = 1;
151 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
152 		sp->xleft -= actual;
153 		sp->xhead += actual;
154 		sp->led_state = 0x60;
155 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
156 		sp->status2 = 0;
157 	} else
158 		mod_timer(&sp->tx_t, jiffies + ((when + 1) * HZ) / 100);
159 }
160 
161 /* ----> 6pack timer interrupt handler and friends. <---- */
162 
163 /* Encapsulate one AX.25 frame and stuff into a TTY queue. */
164 static void sp_encaps(struct sixpack *sp, unsigned char *icp, int len)
165 {
166 	unsigned char *msg, *p = icp;
167 	int actual, count;
168 
169 	if (len > sp->mtu) {	/* sp->mtu = AX25_MTU = max. PACLEN = 256 */
170 		msg = "oversized transmit packet!";
171 		goto out_drop;
172 	}
173 
174 	if (p[0] > 5) {
175 		msg = "invalid KISS command";
176 		goto out_drop;
177 	}
178 
179 	if ((p[0] != 0) && (len > 2)) {
180 		msg = "KISS control packet too long";
181 		goto out_drop;
182 	}
183 
184 	if ((p[0] == 0) && (len < 15)) {
185 		msg = "bad AX.25 packet to transmit";
186 		goto out_drop;
187 	}
188 
189 	count = encode_sixpack(p, sp->xbuff, len, sp->tx_delay);
190 	set_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
191 
192 	switch (p[0]) {
193 	case 1:	sp->tx_delay = p[1];
194 		return;
195 	case 2:	sp->persistence = p[1];
196 		return;
197 	case 3:	sp->slottime = p[1];
198 		return;
199 	case 4:	/* ignored */
200 		return;
201 	case 5:	sp->duplex = p[1];
202 		return;
203 	}
204 
205 	if (p[0] != 0)
206 		return;
207 
208 	/*
209 	 * In case of fullduplex or DAMA operation, we don't take care about the
210 	 * state of the DCD or of any timers, as the determination of the
211 	 * correct time to send is the job of the AX.25 layer. We send
212 	 * immediately after data has arrived.
213 	 */
214 	if (sp->duplex == 1) {
215 		sp->led_state = 0x70;
216 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
217 		sp->tx_enable = 1;
218 		actual = sp->tty->ops->write(sp->tty, sp->xbuff, count);
219 		sp->xleft = count - actual;
220 		sp->xhead = sp->xbuff + actual;
221 		sp->led_state = 0x60;
222 		sp->tty->ops->write(sp->tty, &sp->led_state, 1);
223 	} else {
224 		sp->xleft = count;
225 		sp->xhead = sp->xbuff;
226 		sp->status2 = count;
227 		sp_xmit_on_air(&sp->tx_t);
228 	}
229 
230 	return;
231 
232 out_drop:
233 	sp->dev->stats.tx_dropped++;
234 	netif_start_queue(sp->dev);
235 	if (net_ratelimit())
236 		printk(KERN_DEBUG "%s: %s - dropped.\n", sp->dev->name, msg);
237 }
238 
239 /* Encapsulate an IP datagram and kick it into a TTY queue. */
240 
241 static netdev_tx_t sp_xmit(struct sk_buff *skb, struct net_device *dev)
242 {
243 	struct sixpack *sp = netdev_priv(dev);
244 
245 	if (skb->protocol == htons(ETH_P_IP))
246 		return ax25_ip_xmit(skb);
247 
248 	spin_lock_bh(&sp->lock);
249 	/* We were not busy, so we are now... :-) */
250 	netif_stop_queue(dev);
251 	dev->stats.tx_bytes += skb->len;
252 	sp_encaps(sp, skb->data, skb->len);
253 	spin_unlock_bh(&sp->lock);
254 
255 	dev_kfree_skb(skb);
256 
257 	return NETDEV_TX_OK;
258 }
259 
260 static int sp_open_dev(struct net_device *dev)
261 {
262 	struct sixpack *sp = netdev_priv(dev);
263 
264 	if (sp->tty == NULL)
265 		return -ENODEV;
266 	return 0;
267 }
268 
269 /* Close the low-level part of the 6pack channel. */
270 static int sp_close(struct net_device *dev)
271 {
272 	struct sixpack *sp = netdev_priv(dev);
273 
274 	spin_lock_bh(&sp->lock);
275 	if (sp->tty) {
276 		/* TTY discipline is running. */
277 		clear_bit(TTY_DO_WRITE_WAKEUP, &sp->tty->flags);
278 	}
279 	netif_stop_queue(dev);
280 	spin_unlock_bh(&sp->lock);
281 
282 	return 0;
283 }
284 
285 static int sp_set_mac_address(struct net_device *dev, void *addr)
286 {
287 	struct sockaddr_ax25 *sa = addr;
288 
289 	netif_tx_lock_bh(dev);
290 	netif_addr_lock(dev);
291 	memcpy(dev->dev_addr, &sa->sax25_call, AX25_ADDR_LEN);
292 	netif_addr_unlock(dev);
293 	netif_tx_unlock_bh(dev);
294 
295 	return 0;
296 }
297 
298 static const struct net_device_ops sp_netdev_ops = {
299 	.ndo_open		= sp_open_dev,
300 	.ndo_stop		= sp_close,
301 	.ndo_start_xmit		= sp_xmit,
302 	.ndo_set_mac_address    = sp_set_mac_address,
303 };
304 
305 static void sp_setup(struct net_device *dev)
306 {
307 	/* Finish setting up the DEVICE info. */
308 	dev->netdev_ops		= &sp_netdev_ops;
309 	dev->needs_free_netdev	= true;
310 	dev->mtu		= SIXP_MTU;
311 	dev->hard_header_len	= AX25_MAX_HEADER_LEN;
312 	dev->header_ops 	= &ax25_header_ops;
313 
314 	dev->addr_len		= AX25_ADDR_LEN;
315 	dev->type		= ARPHRD_AX25;
316 	dev->tx_queue_len	= 10;
317 
318 	/* Only activated in AX.25 mode */
319 	memcpy(dev->broadcast, &ax25_bcast, AX25_ADDR_LEN);
320 	memcpy(dev->dev_addr, &ax25_defaddr, AX25_ADDR_LEN);
321 
322 	dev->flags		= 0;
323 }
324 
325 /* Send one completely decapsulated IP datagram to the IP layer. */
326 
327 /*
328  * This is the routine that sends the received data to the kernel AX.25.
329  * 'cmd' is the KISS command. For AX.25 data, it is zero.
330  */
331 
332 static void sp_bump(struct sixpack *sp, char cmd)
333 {
334 	struct sk_buff *skb;
335 	int count;
336 	unsigned char *ptr;
337 
338 	count = sp->rcount + 1;
339 
340 	sp->dev->stats.rx_bytes += count;
341 
342 	if ((skb = dev_alloc_skb(count + 1)) == NULL)
343 		goto out_mem;
344 
345 	ptr = skb_put(skb, count + 1);
346 	*ptr++ = cmd;	/* KISS command */
347 
348 	memcpy(ptr, sp->cooked_buf + 1, count);
349 	skb->protocol = ax25_type_trans(skb, sp->dev);
350 	netif_rx(skb);
351 	sp->dev->stats.rx_packets++;
352 
353 	return;
354 
355 out_mem:
356 	sp->dev->stats.rx_dropped++;
357 }
358 
359 
360 /* ----------------------------------------------------------------------- */
361 
362 /*
363  * We have a potential race on dereferencing tty->disc_data, because the tty
364  * layer provides no locking at all - thus one cpu could be running
365  * sixpack_receive_buf while another calls sixpack_close, which zeroes
366  * tty->disc_data and frees the memory that sixpack_receive_buf is using.  The
367  * best way to fix this is to use a rwlock in the tty struct, but for now we
368  * use a single global rwlock for all ttys in ppp line discipline.
369  */
370 static DEFINE_RWLOCK(disc_data_lock);
371 
372 static struct sixpack *sp_get(struct tty_struct *tty)
373 {
374 	struct sixpack *sp;
375 
376 	read_lock(&disc_data_lock);
377 	sp = tty->disc_data;
378 	if (sp)
379 		refcount_inc(&sp->refcnt);
380 	read_unlock(&disc_data_lock);
381 
382 	return sp;
383 }
384 
385 static void sp_put(struct sixpack *sp)
386 {
387 	if (refcount_dec_and_test(&sp->refcnt))
388 		complete(&sp->dead);
389 }
390 
391 /*
392  * Called by the TTY driver when there's room for more data.  If we have
393  * more packets to send, we send them here.
394  */
395 static void sixpack_write_wakeup(struct tty_struct *tty)
396 {
397 	struct sixpack *sp = sp_get(tty);
398 	int actual;
399 
400 	if (!sp)
401 		return;
402 	if (sp->xleft <= 0)  {
403 		/* Now serial buffer is almost free & we can start
404 		 * transmission of another packet */
405 		sp->dev->stats.tx_packets++;
406 		clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
407 		sp->tx_enable = 0;
408 		netif_wake_queue(sp->dev);
409 		goto out;
410 	}
411 
412 	if (sp->tx_enable) {
413 		actual = tty->ops->write(tty, sp->xhead, sp->xleft);
414 		sp->xleft -= actual;
415 		sp->xhead += actual;
416 	}
417 
418 out:
419 	sp_put(sp);
420 }
421 
422 /* ----------------------------------------------------------------------- */
423 
424 /*
425  * Handle the 'receiver data ready' interrupt.
426  * This function is called by the tty module in the kernel when
427  * a block of 6pack data has been received, which can now be decapsulated
428  * and sent on to some IP layer for further processing.
429  */
430 static void sixpack_receive_buf(struct tty_struct *tty,
431 	const unsigned char *cp, const char *fp, int count)
432 {
433 	struct sixpack *sp;
434 	int count1;
435 
436 	if (!count)
437 		return;
438 
439 	sp = sp_get(tty);
440 	if (!sp)
441 		return;
442 
443 	/* Read the characters out of the buffer */
444 	count1 = count;
445 	while (count) {
446 		count--;
447 		if (fp && *fp++) {
448 			if (!test_and_set_bit(SIXPF_ERROR, &sp->flags))
449 				sp->dev->stats.rx_errors++;
450 			continue;
451 		}
452 	}
453 	sixpack_decode(sp, cp, count1);
454 
455 	sp_put(sp);
456 	tty_unthrottle(tty);
457 }
458 
459 /*
460  * Try to resync the TNC. Called by the resync timer defined in
461  * decode_prio_command
462  */
463 
464 #define TNC_UNINITIALIZED	0
465 #define TNC_UNSYNC_STARTUP	1
466 #define TNC_UNSYNCED		2
467 #define TNC_IN_SYNC		3
468 
469 static void __tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
470 {
471 	char *msg;
472 
473 	switch (new_tnc_state) {
474 	default:			/* gcc oh piece-o-crap ... */
475 	case TNC_UNSYNC_STARTUP:
476 		msg = "Synchronizing with TNC";
477 		break;
478 	case TNC_UNSYNCED:
479 		msg = "Lost synchronization with TNC\n";
480 		break;
481 	case TNC_IN_SYNC:
482 		msg = "Found TNC";
483 		break;
484 	}
485 
486 	sp->tnc_state = new_tnc_state;
487 	printk(KERN_INFO "%s: %s\n", sp->dev->name, msg);
488 }
489 
490 static inline void tnc_set_sync_state(struct sixpack *sp, int new_tnc_state)
491 {
492 	int old_tnc_state = sp->tnc_state;
493 
494 	if (old_tnc_state != new_tnc_state)
495 		__tnc_set_sync_state(sp, new_tnc_state);
496 }
497 
498 static void resync_tnc(struct timer_list *t)
499 {
500 	struct sixpack *sp = from_timer(sp, t, resync_t);
501 	static char resync_cmd = 0xe8;
502 
503 	/* clear any data that might have been received */
504 
505 	sp->rx_count = 0;
506 	sp->rx_count_cooked = 0;
507 
508 	/* reset state machine */
509 
510 	sp->status = 1;
511 	sp->status1 = 1;
512 	sp->status2 = 0;
513 
514 	/* resync the TNC */
515 
516 	sp->led_state = 0x60;
517 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
518 	sp->tty->ops->write(sp->tty, &resync_cmd, 1);
519 
520 
521 	/* Start resync timer again -- the TNC might be still absent */
522 	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
523 }
524 
525 static inline int tnc_init(struct sixpack *sp)
526 {
527 	unsigned char inbyte = 0xe8;
528 
529 	tnc_set_sync_state(sp, TNC_UNSYNC_STARTUP);
530 
531 	sp->tty->ops->write(sp->tty, &inbyte, 1);
532 
533 	mod_timer(&sp->resync_t, jiffies + SIXP_RESYNC_TIMEOUT);
534 
535 	return 0;
536 }
537 
538 /*
539  * Open the high-level part of the 6pack channel.
540  * This function is called by the TTY module when the
541  * 6pack line discipline is called for.  Because we are
542  * sure the tty line exists, we only have to link it to
543  * a free 6pcack channel...
544  */
545 static int sixpack_open(struct tty_struct *tty)
546 {
547 	char *rbuff = NULL, *xbuff = NULL;
548 	struct net_device *dev;
549 	struct sixpack *sp;
550 	unsigned long len;
551 	int err = 0;
552 
553 	if (!capable(CAP_NET_ADMIN))
554 		return -EPERM;
555 	if (tty->ops->write == NULL)
556 		return -EOPNOTSUPP;
557 
558 	dev = alloc_netdev(sizeof(struct sixpack), "sp%d", NET_NAME_UNKNOWN,
559 			   sp_setup);
560 	if (!dev) {
561 		err = -ENOMEM;
562 		goto out;
563 	}
564 
565 	sp = netdev_priv(dev);
566 	sp->dev = dev;
567 
568 	spin_lock_init(&sp->lock);
569 	refcount_set(&sp->refcnt, 1);
570 	init_completion(&sp->dead);
571 
572 	/* !!! length of the buffers. MTU is IP MTU, not PACLEN!  */
573 
574 	len = dev->mtu * 2;
575 
576 	rbuff = kmalloc(len + 4, GFP_KERNEL);
577 	xbuff = kmalloc(len + 4, GFP_KERNEL);
578 
579 	if (rbuff == NULL || xbuff == NULL) {
580 		err = -ENOBUFS;
581 		goto out_free;
582 	}
583 
584 	spin_lock_bh(&sp->lock);
585 
586 	sp->tty = tty;
587 
588 	sp->rbuff	= rbuff;
589 	sp->xbuff	= xbuff;
590 
591 	sp->mtu		= AX25_MTU + 73;
592 	sp->buffsize	= len;
593 	sp->rcount	= 0;
594 	sp->rx_count	= 0;
595 	sp->rx_count_cooked = 0;
596 	sp->xleft	= 0;
597 
598 	sp->flags	= 0;		/* Clear ESCAPE & ERROR flags */
599 
600 	sp->duplex	= 0;
601 	sp->tx_delay    = SIXP_TXDELAY;
602 	sp->persistence = SIXP_PERSIST;
603 	sp->slottime    = SIXP_SLOTTIME;
604 	sp->led_state   = 0x60;
605 	sp->status      = 1;
606 	sp->status1     = 1;
607 	sp->status2     = 0;
608 	sp->tx_enable   = 0;
609 
610 	netif_start_queue(dev);
611 
612 	timer_setup(&sp->tx_t, sp_xmit_on_air, 0);
613 
614 	timer_setup(&sp->resync_t, resync_tnc, 0);
615 
616 	spin_unlock_bh(&sp->lock);
617 
618 	/* Done.  We have linked the TTY line to a channel. */
619 	tty->disc_data = sp;
620 	tty->receive_room = 65536;
621 
622 	/* Now we're ready to register. */
623 	err = register_netdev(dev);
624 	if (err)
625 		goto out_free;
626 
627 	tnc_init(sp);
628 
629 	return 0;
630 
631 out_free:
632 	kfree(xbuff);
633 	kfree(rbuff);
634 
635 	free_netdev(dev);
636 
637 out:
638 	return err;
639 }
640 
641 
642 /*
643  * Close down a 6pack channel.
644  * This means flushing out any pending queues, and then restoring the
645  * TTY line discipline to what it was before it got hooked to 6pack
646  * (which usually is TTY again).
647  */
648 static void sixpack_close(struct tty_struct *tty)
649 {
650 	struct sixpack *sp;
651 
652 	write_lock_irq(&disc_data_lock);
653 	sp = tty->disc_data;
654 	tty->disc_data = NULL;
655 	write_unlock_irq(&disc_data_lock);
656 	if (!sp)
657 		return;
658 
659 	/*
660 	 * We have now ensured that nobody can start using ap from now on, but
661 	 * we have to wait for all existing users to finish.
662 	 */
663 	if (!refcount_dec_and_test(&sp->refcnt))
664 		wait_for_completion(&sp->dead);
665 
666 	/* We must stop the queue to avoid potentially scribbling
667 	 * on the free buffers. The sp->dead completion is not sufficient
668 	 * to protect us from sp->xbuff access.
669 	 */
670 	netif_stop_queue(sp->dev);
671 
672 	del_timer_sync(&sp->tx_t);
673 	del_timer_sync(&sp->resync_t);
674 
675 	/* Free all 6pack frame buffers. */
676 	kfree(sp->rbuff);
677 	kfree(sp->xbuff);
678 
679 	unregister_netdev(sp->dev);
680 }
681 
682 /* Perform I/O control on an active 6pack channel. */
683 static int sixpack_ioctl(struct tty_struct *tty, struct file *file,
684 	unsigned int cmd, unsigned long arg)
685 {
686 	struct sixpack *sp = sp_get(tty);
687 	struct net_device *dev;
688 	unsigned int tmp, err;
689 
690 	if (!sp)
691 		return -ENXIO;
692 	dev = sp->dev;
693 
694 	switch(cmd) {
695 	case SIOCGIFNAME:
696 		err = copy_to_user((void __user *) arg, dev->name,
697 		                   strlen(dev->name) + 1) ? -EFAULT : 0;
698 		break;
699 
700 	case SIOCGIFENCAP:
701 		err = put_user(0, (int __user *) arg);
702 		break;
703 
704 	case SIOCSIFENCAP:
705 		if (get_user(tmp, (int __user *) arg)) {
706 			err = -EFAULT;
707 			break;
708 		}
709 
710 		sp->mode = tmp;
711 		dev->addr_len        = AX25_ADDR_LEN;
712 		dev->hard_header_len = AX25_KISS_HEADER_LEN +
713 		                       AX25_MAX_HEADER_LEN + 3;
714 		dev->type            = ARPHRD_AX25;
715 
716 		err = 0;
717 		break;
718 
719 	case SIOCSIFHWADDR: {
720 			char addr[AX25_ADDR_LEN];
721 
722 			if (copy_from_user(&addr,
723 					   (void __user *)arg, AX25_ADDR_LEN)) {
724 				err = -EFAULT;
725 				break;
726 			}
727 
728 			netif_tx_lock_bh(dev);
729 			memcpy(dev->dev_addr, &addr, AX25_ADDR_LEN);
730 			netif_tx_unlock_bh(dev);
731 			err = 0;
732 			break;
733 		}
734 	default:
735 		err = tty_mode_ioctl(tty, file, cmd, arg);
736 	}
737 
738 	sp_put(sp);
739 
740 	return err;
741 }
742 
743 static struct tty_ldisc_ops sp_ldisc = {
744 	.owner		= THIS_MODULE,
745 	.num		= N_6PACK,
746 	.name		= "6pack",
747 	.open		= sixpack_open,
748 	.close		= sixpack_close,
749 	.ioctl		= sixpack_ioctl,
750 	.receive_buf	= sixpack_receive_buf,
751 	.write_wakeup	= sixpack_write_wakeup,
752 };
753 
754 /* Initialize 6pack control device -- register 6pack line discipline */
755 
756 static const char msg_banner[]  __initconst = KERN_INFO \
757 	"AX.25: 6pack driver, " SIXPACK_VERSION "\n";
758 static const char msg_regfail[] __initconst = KERN_ERR  \
759 	"6pack: can't register line discipline (err = %d)\n";
760 
761 static int __init sixpack_init_driver(void)
762 {
763 	int status;
764 
765 	printk(msg_banner);
766 
767 	/* Register the provided line protocol discipline */
768 	status = tty_register_ldisc(&sp_ldisc);
769 	if (status)
770 		printk(msg_regfail, status);
771 
772 	return status;
773 }
774 
775 static void __exit sixpack_exit_driver(void)
776 {
777 	tty_unregister_ldisc(&sp_ldisc);
778 }
779 
780 /* encode an AX.25 packet into 6pack */
781 
782 static int encode_sixpack(unsigned char *tx_buf, unsigned char *tx_buf_raw,
783 	int length, unsigned char tx_delay)
784 {
785 	int count = 0;
786 	unsigned char checksum = 0, buf[400];
787 	int raw_count = 0;
788 
789 	tx_buf_raw[raw_count++] = SIXP_PRIO_CMD_MASK | SIXP_TX_MASK;
790 	tx_buf_raw[raw_count++] = SIXP_SEOF;
791 
792 	buf[0] = tx_delay;
793 	for (count = 1; count < length; count++)
794 		buf[count] = tx_buf[count];
795 
796 	for (count = 0; count < length; count++)
797 		checksum += buf[count];
798 	buf[length] = (unsigned char) 0xff - checksum;
799 
800 	for (count = 0; count <= length; count++) {
801 		if ((count % 3) == 0) {
802 			tx_buf_raw[raw_count++] = (buf[count] & 0x3f);
803 			tx_buf_raw[raw_count] = ((buf[count] >> 2) & 0x30);
804 		} else if ((count % 3) == 1) {
805 			tx_buf_raw[raw_count++] |= (buf[count] & 0x0f);
806 			tx_buf_raw[raw_count] =	((buf[count] >> 2) & 0x3c);
807 		} else {
808 			tx_buf_raw[raw_count++] |= (buf[count] & 0x03);
809 			tx_buf_raw[raw_count++] = (buf[count] >> 2);
810 		}
811 	}
812 	if ((length % 3) != 2)
813 		raw_count++;
814 	tx_buf_raw[raw_count++] = SIXP_SEOF;
815 	return raw_count;
816 }
817 
818 /* decode 4 sixpack-encoded bytes into 3 data bytes */
819 
820 static void decode_data(struct sixpack *sp, unsigned char inbyte)
821 {
822 	unsigned char *buf;
823 
824 	if (sp->rx_count != 3) {
825 		sp->raw_buf[sp->rx_count++] = inbyte;
826 
827 		return;
828 	}
829 
830 	if (sp->rx_count_cooked + 2 >= sizeof(sp->cooked_buf)) {
831 		pr_err("6pack: cooked buffer overrun, data loss\n");
832 		sp->rx_count = 0;
833 		return;
834 	}
835 
836 	buf = sp->raw_buf;
837 	sp->cooked_buf[sp->rx_count_cooked++] =
838 		buf[0] | ((buf[1] << 2) & 0xc0);
839 	sp->cooked_buf[sp->rx_count_cooked++] =
840 		(buf[1] & 0x0f) | ((buf[2] << 2) & 0xf0);
841 	sp->cooked_buf[sp->rx_count_cooked++] =
842 		(buf[2] & 0x03) | (inbyte << 2);
843 	sp->rx_count = 0;
844 }
845 
846 /* identify and execute a 6pack priority command byte */
847 
848 static void decode_prio_command(struct sixpack *sp, unsigned char cmd)
849 {
850 	int actual;
851 
852 	if ((cmd & SIXP_PRIO_DATA_MASK) != 0) {     /* idle ? */
853 
854 	/* RX and DCD flags can only be set in the same prio command,
855 	   if the DCD flag has been set without the RX flag in the previous
856 	   prio command. If DCD has not been set before, something in the
857 	   transmission has gone wrong. In this case, RX and DCD are
858 	   cleared in order to prevent the decode_data routine from
859 	   reading further data that might be corrupt. */
860 
861 		if (((sp->status & SIXP_DCD_MASK) == 0) &&
862 			((cmd & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)) {
863 				if (sp->status != 1)
864 					printk(KERN_DEBUG "6pack: protocol violation\n");
865 				else
866 					sp->status = 0;
867 				cmd &= ~SIXP_RX_DCD_MASK;
868 		}
869 		sp->status = cmd & SIXP_PRIO_DATA_MASK;
870 	} else { /* output watchdog char if idle */
871 		if ((sp->status2 != 0) && (sp->duplex == 1)) {
872 			sp->led_state = 0x70;
873 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
874 			sp->tx_enable = 1;
875 			actual = sp->tty->ops->write(sp->tty, sp->xbuff, sp->status2);
876 			sp->xleft -= actual;
877 			sp->xhead += actual;
878 			sp->led_state = 0x60;
879 			sp->status2 = 0;
880 
881 		}
882 	}
883 
884 	/* needed to trigger the TNC watchdog */
885 	sp->tty->ops->write(sp->tty, &sp->led_state, 1);
886 
887         /* if the state byte has been received, the TNC is present,
888            so the resync timer can be reset. */
889 
890 	if (sp->tnc_state == TNC_IN_SYNC)
891 		mod_timer(&sp->resync_t, jiffies + SIXP_INIT_RESYNC_TIMEOUT);
892 
893 	sp->status1 = cmd & SIXP_PRIO_DATA_MASK;
894 }
895 
896 /* identify and execute a standard 6pack command byte */
897 
898 static void decode_std_command(struct sixpack *sp, unsigned char cmd)
899 {
900 	unsigned char checksum = 0, rest = 0;
901 	short i;
902 
903 	switch (cmd & SIXP_CMD_MASK) {     /* normal command */
904 	case SIXP_SEOF:
905 		if ((sp->rx_count == 0) && (sp->rx_count_cooked == 0)) {
906 			if ((sp->status & SIXP_RX_DCD_MASK) ==
907 				SIXP_RX_DCD_MASK) {
908 				sp->led_state = 0x68;
909 				sp->tty->ops->write(sp->tty, &sp->led_state, 1);
910 			}
911 		} else {
912 			sp->led_state = 0x60;
913 			/* fill trailing bytes with zeroes */
914 			sp->tty->ops->write(sp->tty, &sp->led_state, 1);
915 			rest = sp->rx_count;
916 			if (rest != 0)
917 				 for (i = rest; i <= 3; i++)
918 					decode_data(sp, 0);
919 			if (rest == 2)
920 				sp->rx_count_cooked -= 2;
921 			else if (rest == 3)
922 				sp->rx_count_cooked -= 1;
923 			for (i = 0; i < sp->rx_count_cooked; i++)
924 				checksum += sp->cooked_buf[i];
925 			if (checksum != SIXP_CHKSUM) {
926 				printk(KERN_DEBUG "6pack: bad checksum %2.2x\n", checksum);
927 			} else {
928 				sp->rcount = sp->rx_count_cooked-2;
929 				sp_bump(sp, 0);
930 			}
931 			sp->rx_count_cooked = 0;
932 		}
933 		break;
934 	case SIXP_TX_URUN: printk(KERN_DEBUG "6pack: TX underrun\n");
935 		break;
936 	case SIXP_RX_ORUN: printk(KERN_DEBUG "6pack: RX overrun\n");
937 		break;
938 	case SIXP_RX_BUF_OVL:
939 		printk(KERN_DEBUG "6pack: RX buffer overflow\n");
940 	}
941 }
942 
943 /* decode a 6pack packet */
944 
945 static void
946 sixpack_decode(struct sixpack *sp, const unsigned char *pre_rbuff, int count)
947 {
948 	unsigned char inbyte;
949 	int count1;
950 
951 	for (count1 = 0; count1 < count; count1++) {
952 		inbyte = pre_rbuff[count1];
953 		if (inbyte == SIXP_FOUND_TNC) {
954 			tnc_set_sync_state(sp, TNC_IN_SYNC);
955 			del_timer(&sp->resync_t);
956 		}
957 		if ((inbyte & SIXP_PRIO_CMD_MASK) != 0)
958 			decode_prio_command(sp, inbyte);
959 		else if ((inbyte & SIXP_STD_CMD_MASK) != 0)
960 			decode_std_command(sp, inbyte);
961 		else if ((sp->status & SIXP_RX_DCD_MASK) == SIXP_RX_DCD_MASK)
962 			decode_data(sp, inbyte);
963 	}
964 }
965 
966 MODULE_AUTHOR("Ralf Baechle DO1GRB <ralf@linux-mips.org>");
967 MODULE_DESCRIPTION("6pack driver for AX.25");
968 MODULE_LICENSE("GPL");
969 MODULE_ALIAS_LDISC(N_6PACK);
970 
971 module_init(sixpack_init_driver);
972 module_exit(sixpack_exit_driver);
973