xref: /openbmc/linux/drivers/net/ethernet/ti/cpts.c (revision c8395d4e1d4ffbc9d8aa61f534c82e8deed72cfd)
1 /*
2  * TI Common Platform Time Sync
3  *
4  * Copyright (C) 2012 Richard Cochran <richardcochran@gmail.com>
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; either version 2 of the License, or
9  * (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
19  */
20 #include <linux/err.h>
21 #include <linux/if.h>
22 #include <linux/hrtimer.h>
23 #include <linux/module.h>
24 #include <linux/net_tstamp.h>
25 #include <linux/ptp_classify.h>
26 #include <linux/time.h>
27 #include <linux/uaccess.h>
28 #include <linux/workqueue.h>
29 #include <linux/if_ether.h>
30 #include <linux/if_vlan.h>
31 
32 #include "cpts.h"
33 
34 #define cpts_read32(c, r)	readl_relaxed(&c->reg->r)
35 #define cpts_write32(c, v, r)	writel_relaxed(v, &c->reg->r)
36 
37 static int event_expired(struct cpts_event *event)
38 {
39 	return time_after(jiffies, event->tmo);
40 }
41 
42 static int event_type(struct cpts_event *event)
43 {
44 	return (event->high >> EVENT_TYPE_SHIFT) & EVENT_TYPE_MASK;
45 }
46 
47 static int cpts_fifo_pop(struct cpts *cpts, u32 *high, u32 *low)
48 {
49 	u32 r = cpts_read32(cpts, intstat_raw);
50 
51 	if (r & TS_PEND_RAW) {
52 		*high = cpts_read32(cpts, event_high);
53 		*low  = cpts_read32(cpts, event_low);
54 		cpts_write32(cpts, EVENT_POP, event_pop);
55 		return 0;
56 	}
57 	return -1;
58 }
59 
60 /*
61  * Returns zero if matching event type was found.
62  */
63 static int cpts_fifo_read(struct cpts *cpts, int match)
64 {
65 	int i, type = -1;
66 	u32 hi, lo;
67 	struct cpts_event *event;
68 
69 	for (i = 0; i < CPTS_FIFO_DEPTH; i++) {
70 		if (cpts_fifo_pop(cpts, &hi, &lo))
71 			break;
72 		if (list_empty(&cpts->pool)) {
73 			pr_err("cpts: event pool is empty\n");
74 			return -1;
75 		}
76 		event = list_first_entry(&cpts->pool, struct cpts_event, list);
77 		event->tmo = jiffies + 2;
78 		event->high = hi;
79 		event->low = lo;
80 		type = event_type(event);
81 		switch (type) {
82 		case CPTS_EV_PUSH:
83 		case CPTS_EV_RX:
84 		case CPTS_EV_TX:
85 			list_del_init(&event->list);
86 			list_add_tail(&event->list, &cpts->events);
87 			break;
88 		case CPTS_EV_ROLL:
89 		case CPTS_EV_HALF:
90 		case CPTS_EV_HW:
91 			break;
92 		default:
93 			pr_err("cpts: unknown event type\n");
94 			break;
95 		}
96 		if (type == match)
97 			break;
98 	}
99 	return type == match ? 0 : -1;
100 }
101 
102 static cycle_t cpts_systim_read(const struct cyclecounter *cc)
103 {
104 	u64 val = 0;
105 	struct cpts_event *event;
106 	struct list_head *this, *next;
107 	struct cpts *cpts = container_of(cc, struct cpts, cc);
108 
109 	cpts_write32(cpts, TS_PUSH, ts_push);
110 	if (cpts_fifo_read(cpts, CPTS_EV_PUSH))
111 		pr_err("cpts: unable to obtain a time stamp\n");
112 
113 	list_for_each_safe(this, next, &cpts->events) {
114 		event = list_entry(this, struct cpts_event, list);
115 		if (event_type(event) == CPTS_EV_PUSH) {
116 			list_del_init(&event->list);
117 			list_add(&event->list, &cpts->pool);
118 			val = event->low;
119 			break;
120 		}
121 	}
122 
123 	return val;
124 }
125 
126 /* PTP clock operations */
127 
128 static int cpts_ptp_adjfreq(struct ptp_clock_info *ptp, s32 ppb)
129 {
130 	u64 adj;
131 	u32 diff, mult;
132 	int neg_adj = 0;
133 	unsigned long flags;
134 	struct cpts *cpts = container_of(ptp, struct cpts, info);
135 
136 	if (ppb < 0) {
137 		neg_adj = 1;
138 		ppb = -ppb;
139 	}
140 	mult = cpts->cc_mult;
141 	adj = mult;
142 	adj *= ppb;
143 	diff = div_u64(adj, 1000000000ULL);
144 
145 	spin_lock_irqsave(&cpts->lock, flags);
146 
147 	timecounter_read(&cpts->tc);
148 
149 	cpts->cc.mult = neg_adj ? mult - diff : mult + diff;
150 
151 	spin_unlock_irqrestore(&cpts->lock, flags);
152 
153 	return 0;
154 }
155 
156 static int cpts_ptp_adjtime(struct ptp_clock_info *ptp, s64 delta)
157 {
158 	unsigned long flags;
159 	struct cpts *cpts = container_of(ptp, struct cpts, info);
160 
161 	spin_lock_irqsave(&cpts->lock, flags);
162 	timecounter_adjtime(&cpts->tc, delta);
163 	spin_unlock_irqrestore(&cpts->lock, flags);
164 
165 	return 0;
166 }
167 
168 static int cpts_ptp_gettime(struct ptp_clock_info *ptp, struct timespec64 *ts)
169 {
170 	u64 ns;
171 	unsigned long flags;
172 	struct cpts *cpts = container_of(ptp, struct cpts, info);
173 
174 	spin_lock_irqsave(&cpts->lock, flags);
175 	ns = timecounter_read(&cpts->tc);
176 	spin_unlock_irqrestore(&cpts->lock, flags);
177 
178 	*ts = ns_to_timespec64(ns);
179 
180 	return 0;
181 }
182 
183 static int cpts_ptp_settime(struct ptp_clock_info *ptp,
184 			    const struct timespec64 *ts)
185 {
186 	u64 ns;
187 	unsigned long flags;
188 	struct cpts *cpts = container_of(ptp, struct cpts, info);
189 
190 	ns = timespec64_to_ns(ts);
191 
192 	spin_lock_irqsave(&cpts->lock, flags);
193 	timecounter_init(&cpts->tc, &cpts->cc, ns);
194 	spin_unlock_irqrestore(&cpts->lock, flags);
195 
196 	return 0;
197 }
198 
199 static int cpts_ptp_enable(struct ptp_clock_info *ptp,
200 			   struct ptp_clock_request *rq, int on)
201 {
202 	return -EOPNOTSUPP;
203 }
204 
205 static struct ptp_clock_info cpts_info = {
206 	.owner		= THIS_MODULE,
207 	.name		= "CTPS timer",
208 	.max_adj	= 1000000,
209 	.n_ext_ts	= 0,
210 	.n_pins		= 0,
211 	.pps		= 0,
212 	.adjfreq	= cpts_ptp_adjfreq,
213 	.adjtime	= cpts_ptp_adjtime,
214 	.gettime64	= cpts_ptp_gettime,
215 	.settime64	= cpts_ptp_settime,
216 	.enable		= cpts_ptp_enable,
217 };
218 
219 static void cpts_overflow_check(struct work_struct *work)
220 {
221 	struct timespec64 ts;
222 	struct cpts *cpts = container_of(work, struct cpts, overflow_work.work);
223 
224 	cpts_write32(cpts, CPTS_EN, control);
225 	cpts_write32(cpts, TS_PEND_EN, int_enable);
226 	cpts_ptp_gettime(&cpts->info, &ts);
227 	pr_debug("cpts overflow check at %lld.%09lu\n", ts.tv_sec, ts.tv_nsec);
228 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
229 }
230 
231 static void cpts_clk_init(struct device *dev, struct cpts *cpts)
232 {
233 	cpts->refclk = devm_clk_get(dev, "cpts");
234 	if (IS_ERR(cpts->refclk)) {
235 		dev_err(dev, "Failed to get cpts refclk\n");
236 		cpts->refclk = NULL;
237 		return;
238 	}
239 	clk_prepare_enable(cpts->refclk);
240 }
241 
242 static void cpts_clk_release(struct cpts *cpts)
243 {
244 	clk_disable(cpts->refclk);
245 }
246 
247 static int cpts_match(struct sk_buff *skb, unsigned int ptp_class,
248 		      u16 ts_seqid, u8 ts_msgtype)
249 {
250 	u16 *seqid;
251 	unsigned int offset = 0;
252 	u8 *msgtype, *data = skb->data;
253 
254 	if (ptp_class & PTP_CLASS_VLAN)
255 		offset += VLAN_HLEN;
256 
257 	switch (ptp_class & PTP_CLASS_PMASK) {
258 	case PTP_CLASS_IPV4:
259 		offset += ETH_HLEN + IPV4_HLEN(data + offset) + UDP_HLEN;
260 		break;
261 	case PTP_CLASS_IPV6:
262 		offset += ETH_HLEN + IP6_HLEN + UDP_HLEN;
263 		break;
264 	case PTP_CLASS_L2:
265 		offset += ETH_HLEN;
266 		break;
267 	default:
268 		return 0;
269 	}
270 
271 	if (skb->len + ETH_HLEN < offset + OFF_PTP_SEQUENCE_ID + sizeof(*seqid))
272 		return 0;
273 
274 	if (unlikely(ptp_class & PTP_CLASS_V1))
275 		msgtype = data + offset + OFF_PTP_CONTROL;
276 	else
277 		msgtype = data + offset;
278 
279 	seqid = (u16 *)(data + offset + OFF_PTP_SEQUENCE_ID);
280 
281 	return (ts_msgtype == (*msgtype & 0xf) && ts_seqid == ntohs(*seqid));
282 }
283 
284 static u64 cpts_find_ts(struct cpts *cpts, struct sk_buff *skb, int ev_type)
285 {
286 	u64 ns = 0;
287 	struct cpts_event *event;
288 	struct list_head *this, *next;
289 	unsigned int class = ptp_classify_raw(skb);
290 	unsigned long flags;
291 	u16 seqid;
292 	u8 mtype;
293 
294 	if (class == PTP_CLASS_NONE)
295 		return 0;
296 
297 	spin_lock_irqsave(&cpts->lock, flags);
298 	cpts_fifo_read(cpts, CPTS_EV_PUSH);
299 	list_for_each_safe(this, next, &cpts->events) {
300 		event = list_entry(this, struct cpts_event, list);
301 		if (event_expired(event)) {
302 			list_del_init(&event->list);
303 			list_add(&event->list, &cpts->pool);
304 			continue;
305 		}
306 		mtype = (event->high >> MESSAGE_TYPE_SHIFT) & MESSAGE_TYPE_MASK;
307 		seqid = (event->high >> SEQUENCE_ID_SHIFT) & SEQUENCE_ID_MASK;
308 		if (ev_type == event_type(event) &&
309 		    cpts_match(skb, class, seqid, mtype)) {
310 			ns = timecounter_cyc2time(&cpts->tc, event->low);
311 			list_del_init(&event->list);
312 			list_add(&event->list, &cpts->pool);
313 			break;
314 		}
315 	}
316 	spin_unlock_irqrestore(&cpts->lock, flags);
317 
318 	return ns;
319 }
320 
321 void cpts_rx_timestamp(struct cpts *cpts, struct sk_buff *skb)
322 {
323 	u64 ns;
324 	struct skb_shared_hwtstamps *ssh;
325 
326 	if (!cpts->rx_enable)
327 		return;
328 	ns = cpts_find_ts(cpts, skb, CPTS_EV_RX);
329 	if (!ns)
330 		return;
331 	ssh = skb_hwtstamps(skb);
332 	memset(ssh, 0, sizeof(*ssh));
333 	ssh->hwtstamp = ns_to_ktime(ns);
334 }
335 EXPORT_SYMBOL_GPL(cpts_rx_timestamp);
336 
337 void cpts_tx_timestamp(struct cpts *cpts, struct sk_buff *skb)
338 {
339 	u64 ns;
340 	struct skb_shared_hwtstamps ssh;
341 
342 	if (!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
343 		return;
344 	ns = cpts_find_ts(cpts, skb, CPTS_EV_TX);
345 	if (!ns)
346 		return;
347 	memset(&ssh, 0, sizeof(ssh));
348 	ssh.hwtstamp = ns_to_ktime(ns);
349 	skb_tstamp_tx(skb, &ssh);
350 }
351 EXPORT_SYMBOL_GPL(cpts_tx_timestamp);
352 
353 int cpts_register(struct device *dev, struct cpts *cpts,
354 		  u32 mult, u32 shift)
355 {
356 	int err, i;
357 	unsigned long flags;
358 
359 	cpts->info = cpts_info;
360 	cpts->clock = ptp_clock_register(&cpts->info, dev);
361 	if (IS_ERR(cpts->clock)) {
362 		err = PTR_ERR(cpts->clock);
363 		cpts->clock = NULL;
364 		return err;
365 	}
366 	spin_lock_init(&cpts->lock);
367 
368 	cpts->cc.read = cpts_systim_read;
369 	cpts->cc.mask = CLOCKSOURCE_MASK(32);
370 	cpts->cc_mult = mult;
371 	cpts->cc.mult = mult;
372 	cpts->cc.shift = shift;
373 
374 	INIT_LIST_HEAD(&cpts->events);
375 	INIT_LIST_HEAD(&cpts->pool);
376 	for (i = 0; i < CPTS_MAX_EVENTS; i++)
377 		list_add(&cpts->pool_data[i].list, &cpts->pool);
378 
379 	cpts_clk_init(dev, cpts);
380 	cpts_write32(cpts, CPTS_EN, control);
381 	cpts_write32(cpts, TS_PEND_EN, int_enable);
382 
383 	spin_lock_irqsave(&cpts->lock, flags);
384 	timecounter_init(&cpts->tc, &cpts->cc, ktime_to_ns(ktime_get_real()));
385 	spin_unlock_irqrestore(&cpts->lock, flags);
386 
387 	INIT_DELAYED_WORK(&cpts->overflow_work, cpts_overflow_check);
388 	schedule_delayed_work(&cpts->overflow_work, CPTS_OVERFLOW_PERIOD);
389 
390 	cpts->phc_index = ptp_clock_index(cpts->clock);
391 	return 0;
392 }
393 EXPORT_SYMBOL_GPL(cpts_register);
394 
395 void cpts_unregister(struct cpts *cpts)
396 {
397 	if (cpts->clock) {
398 		ptp_clock_unregister(cpts->clock);
399 		cancel_delayed_work_sync(&cpts->overflow_work);
400 	}
401 	if (cpts->refclk)
402 		cpts_clk_release(cpts);
403 }
404 EXPORT_SYMBOL_GPL(cpts_unregister);
405 
406 MODULE_LICENSE("GPL v2");
407 MODULE_DESCRIPTION("TI CPTS driver");
408 MODULE_AUTHOR("Richard Cochran <richardcochran@gmail.com>");
409