xref: /openbmc/linux/drivers/net/ethernet/stmicro/stmmac/stmmac_tc.c (revision a71b686418ee6bcb6d6365f7f6d838d9874d9c64)
1 // SPDX-License-Identifier: (GPL-2.0 OR MIT)
2 /*
3  * Copyright (c) 2018 Synopsys, Inc. and/or its affiliates.
4  * stmmac TC Handling (HW only)
5  */
6 
7 #include <net/pkt_cls.h>
8 #include <net/tc_act/tc_gact.h>
9 #include "common.h"
10 #include "dwmac4.h"
11 #include "dwmac5.h"
12 #include "stmmac.h"
13 
14 static void tc_fill_all_pass_entry(struct stmmac_tc_entry *entry)
15 {
16 	memset(entry, 0, sizeof(*entry));
17 	entry->in_use = true;
18 	entry->is_last = true;
19 	entry->is_frag = false;
20 	entry->prio = ~0x0;
21 	entry->handle = 0;
22 	entry->val.match_data = 0x0;
23 	entry->val.match_en = 0x0;
24 	entry->val.af = 1;
25 	entry->val.dma_ch_no = 0x0;
26 }
27 
28 static struct stmmac_tc_entry *tc_find_entry(struct stmmac_priv *priv,
29 					     struct tc_cls_u32_offload *cls,
30 					     bool free)
31 {
32 	struct stmmac_tc_entry *entry, *first = NULL, *dup = NULL;
33 	u32 loc = cls->knode.handle;
34 	int i;
35 
36 	for (i = 0; i < priv->tc_entries_max; i++) {
37 		entry = &priv->tc_entries[i];
38 		if (!entry->in_use && !first && free)
39 			first = entry;
40 		if ((entry->handle == loc) && !free && !entry->is_frag)
41 			dup = entry;
42 	}
43 
44 	if (dup)
45 		return dup;
46 	if (first) {
47 		first->handle = loc;
48 		first->in_use = true;
49 
50 		/* Reset HW values */
51 		memset(&first->val, 0, sizeof(first->val));
52 	}
53 
54 	return first;
55 }
56 
57 static int tc_fill_actions(struct stmmac_tc_entry *entry,
58 			   struct stmmac_tc_entry *frag,
59 			   struct tc_cls_u32_offload *cls)
60 {
61 	struct stmmac_tc_entry *action_entry = entry;
62 	const struct tc_action *act;
63 	struct tcf_exts *exts;
64 	int i;
65 
66 	exts = cls->knode.exts;
67 	if (!tcf_exts_has_actions(exts))
68 		return -EINVAL;
69 	if (frag)
70 		action_entry = frag;
71 
72 	tcf_exts_for_each_action(i, act, exts) {
73 		/* Accept */
74 		if (is_tcf_gact_ok(act)) {
75 			action_entry->val.af = 1;
76 			break;
77 		}
78 		/* Drop */
79 		if (is_tcf_gact_shot(act)) {
80 			action_entry->val.rf = 1;
81 			break;
82 		}
83 
84 		/* Unsupported */
85 		return -EINVAL;
86 	}
87 
88 	return 0;
89 }
90 
91 static int tc_fill_entry(struct stmmac_priv *priv,
92 			 struct tc_cls_u32_offload *cls)
93 {
94 	struct stmmac_tc_entry *entry, *frag = NULL;
95 	struct tc_u32_sel *sel = cls->knode.sel;
96 	u32 off, data, mask, real_off, rem;
97 	u32 prio = cls->common.prio << 16;
98 	int ret;
99 
100 	/* Only 1 match per entry */
101 	if (sel->nkeys <= 0 || sel->nkeys > 1)
102 		return -EINVAL;
103 
104 	off = sel->keys[0].off << sel->offshift;
105 	data = sel->keys[0].val;
106 	mask = sel->keys[0].mask;
107 
108 	switch (ntohs(cls->common.protocol)) {
109 	case ETH_P_ALL:
110 		break;
111 	case ETH_P_IP:
112 		off += ETH_HLEN;
113 		break;
114 	default:
115 		return -EINVAL;
116 	}
117 
118 	if (off > priv->tc_off_max)
119 		return -EINVAL;
120 
121 	real_off = off / 4;
122 	rem = off % 4;
123 
124 	entry = tc_find_entry(priv, cls, true);
125 	if (!entry)
126 		return -EINVAL;
127 
128 	if (rem) {
129 		frag = tc_find_entry(priv, cls, true);
130 		if (!frag) {
131 			ret = -EINVAL;
132 			goto err_unuse;
133 		}
134 
135 		entry->frag_ptr = frag;
136 		entry->val.match_en = (mask << (rem * 8)) &
137 			GENMASK(31, rem * 8);
138 		entry->val.match_data = (data << (rem * 8)) &
139 			GENMASK(31, rem * 8);
140 		entry->val.frame_offset = real_off;
141 		entry->prio = prio;
142 
143 		frag->val.match_en = (mask >> (rem * 8)) &
144 			GENMASK(rem * 8 - 1, 0);
145 		frag->val.match_data = (data >> (rem * 8)) &
146 			GENMASK(rem * 8 - 1, 0);
147 		frag->val.frame_offset = real_off + 1;
148 		frag->prio = prio;
149 		frag->is_frag = true;
150 	} else {
151 		entry->frag_ptr = NULL;
152 		entry->val.match_en = mask;
153 		entry->val.match_data = data;
154 		entry->val.frame_offset = real_off;
155 		entry->prio = prio;
156 	}
157 
158 	ret = tc_fill_actions(entry, frag, cls);
159 	if (ret)
160 		goto err_unuse;
161 
162 	return 0;
163 
164 err_unuse:
165 	if (frag)
166 		frag->in_use = false;
167 	entry->in_use = false;
168 	return ret;
169 }
170 
171 static void tc_unfill_entry(struct stmmac_priv *priv,
172 			    struct tc_cls_u32_offload *cls)
173 {
174 	struct stmmac_tc_entry *entry;
175 
176 	entry = tc_find_entry(priv, cls, false);
177 	if (!entry)
178 		return;
179 
180 	entry->in_use = false;
181 	if (entry->frag_ptr) {
182 		entry = entry->frag_ptr;
183 		entry->is_frag = false;
184 		entry->in_use = false;
185 	}
186 }
187 
188 static int tc_config_knode(struct stmmac_priv *priv,
189 			   struct tc_cls_u32_offload *cls)
190 {
191 	int ret;
192 
193 	ret = tc_fill_entry(priv, cls);
194 	if (ret)
195 		return ret;
196 
197 	ret = stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
198 			priv->tc_entries_max);
199 	if (ret)
200 		goto err_unfill;
201 
202 	return 0;
203 
204 err_unfill:
205 	tc_unfill_entry(priv, cls);
206 	return ret;
207 }
208 
209 static int tc_delete_knode(struct stmmac_priv *priv,
210 			   struct tc_cls_u32_offload *cls)
211 {
212 	/* Set entry and fragments as not used */
213 	tc_unfill_entry(priv, cls);
214 
215 	return stmmac_rxp_config(priv, priv->hw->pcsr, priv->tc_entries,
216 				 priv->tc_entries_max);
217 }
218 
219 static int tc_setup_cls_u32(struct stmmac_priv *priv,
220 			    struct tc_cls_u32_offload *cls)
221 {
222 	switch (cls->command) {
223 	case TC_CLSU32_REPLACE_KNODE:
224 		tc_unfill_entry(priv, cls);
225 		fallthrough;
226 	case TC_CLSU32_NEW_KNODE:
227 		return tc_config_knode(priv, cls);
228 	case TC_CLSU32_DELETE_KNODE:
229 		return tc_delete_knode(priv, cls);
230 	default:
231 		return -EOPNOTSUPP;
232 	}
233 }
234 
235 static int tc_rfs_init(struct stmmac_priv *priv)
236 {
237 	int i;
238 
239 	priv->rfs_entries_max[STMMAC_RFS_T_VLAN] = 8;
240 	priv->rfs_entries_max[STMMAC_RFS_T_LLDP] = 1;
241 	priv->rfs_entries_max[STMMAC_RFS_T_1588] = 1;
242 
243 	for (i = 0; i < STMMAC_RFS_T_MAX; i++)
244 		priv->rfs_entries_total += priv->rfs_entries_max[i];
245 
246 	priv->rfs_entries = devm_kcalloc(priv->device,
247 					 priv->rfs_entries_total,
248 					 sizeof(*priv->rfs_entries),
249 					 GFP_KERNEL);
250 	if (!priv->rfs_entries)
251 		return -ENOMEM;
252 
253 	dev_info(priv->device, "Enabled RFS Flow TC (entries=%d)\n",
254 		 priv->rfs_entries_total);
255 
256 	return 0;
257 }
258 
259 static int tc_init(struct stmmac_priv *priv)
260 {
261 	struct dma_features *dma_cap = &priv->dma_cap;
262 	unsigned int count;
263 	int ret, i;
264 
265 	if (dma_cap->l3l4fnum) {
266 		priv->flow_entries_max = dma_cap->l3l4fnum;
267 		priv->flow_entries = devm_kcalloc(priv->device,
268 						  dma_cap->l3l4fnum,
269 						  sizeof(*priv->flow_entries),
270 						  GFP_KERNEL);
271 		if (!priv->flow_entries)
272 			return -ENOMEM;
273 
274 		for (i = 0; i < priv->flow_entries_max; i++)
275 			priv->flow_entries[i].idx = i;
276 
277 		dev_info(priv->device, "Enabled L3L4 Flow TC (entries=%d)\n",
278 			 priv->flow_entries_max);
279 	}
280 
281 	ret = tc_rfs_init(priv);
282 	if (ret)
283 		return -ENOMEM;
284 
285 	if (!priv->plat->fpe_cfg) {
286 		priv->plat->fpe_cfg = devm_kzalloc(priv->device,
287 						   sizeof(*priv->plat->fpe_cfg),
288 						   GFP_KERNEL);
289 		if (!priv->plat->fpe_cfg)
290 			return -ENOMEM;
291 	} else {
292 		memset(priv->plat->fpe_cfg, 0, sizeof(*priv->plat->fpe_cfg));
293 	}
294 
295 	/* Fail silently as we can still use remaining features, e.g. CBS */
296 	if (!dma_cap->frpsel)
297 		return 0;
298 
299 	switch (dma_cap->frpbs) {
300 	case 0x0:
301 		priv->tc_off_max = 64;
302 		break;
303 	case 0x1:
304 		priv->tc_off_max = 128;
305 		break;
306 	case 0x2:
307 		priv->tc_off_max = 256;
308 		break;
309 	default:
310 		return -EINVAL;
311 	}
312 
313 	switch (dma_cap->frpes) {
314 	case 0x0:
315 		count = 64;
316 		break;
317 	case 0x1:
318 		count = 128;
319 		break;
320 	case 0x2:
321 		count = 256;
322 		break;
323 	default:
324 		return -EINVAL;
325 	}
326 
327 	/* Reserve one last filter which lets all pass */
328 	priv->tc_entries_max = count;
329 	priv->tc_entries = devm_kcalloc(priv->device,
330 			count, sizeof(*priv->tc_entries), GFP_KERNEL);
331 	if (!priv->tc_entries)
332 		return -ENOMEM;
333 
334 	tc_fill_all_pass_entry(&priv->tc_entries[count - 1]);
335 
336 	dev_info(priv->device, "Enabling HW TC (entries=%d, max_off=%d)\n",
337 			priv->tc_entries_max, priv->tc_off_max);
338 
339 	return 0;
340 }
341 
342 static int tc_setup_cbs(struct stmmac_priv *priv,
343 			struct tc_cbs_qopt_offload *qopt)
344 {
345 	u32 tx_queues_count = priv->plat->tx_queues_to_use;
346 	s64 port_transmit_rate_kbps;
347 	u32 queue = qopt->queue;
348 	u32 mode_to_use;
349 	u64 value;
350 	u32 ptr;
351 	int ret;
352 
353 	/* Queue 0 is not AVB capable */
354 	if (queue <= 0 || queue >= tx_queues_count)
355 		return -EINVAL;
356 	if (!priv->dma_cap.av)
357 		return -EOPNOTSUPP;
358 
359 	port_transmit_rate_kbps = qopt->idleslope - qopt->sendslope;
360 
361 	if (qopt->enable) {
362 		/* Port Transmit Rate and Speed Divider */
363 		switch (div_s64(port_transmit_rate_kbps, 1000)) {
364 		case SPEED_10000:
365 		case SPEED_5000:
366 			ptr = 32;
367 			break;
368 		case SPEED_2500:
369 		case SPEED_1000:
370 			ptr = 8;
371 			break;
372 		case SPEED_100:
373 			ptr = 4;
374 			break;
375 		default:
376 			netdev_err(priv->dev,
377 				   "Invalid portTransmitRate %lld (idleSlope - sendSlope)\n",
378 				   port_transmit_rate_kbps);
379 			return -EINVAL;
380 		}
381 	} else {
382 		ptr = 0;
383 	}
384 
385 	mode_to_use = priv->plat->tx_queues_cfg[queue].mode_to_use;
386 	if (mode_to_use == MTL_QUEUE_DCB && qopt->enable) {
387 		ret = stmmac_dma_qmode(priv, priv->ioaddr, queue, MTL_QUEUE_AVB);
388 		if (ret)
389 			return ret;
390 
391 		priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_AVB;
392 	} else if (!qopt->enable) {
393 		ret = stmmac_dma_qmode(priv, priv->ioaddr, queue,
394 				       MTL_QUEUE_DCB);
395 		if (ret)
396 			return ret;
397 
398 		priv->plat->tx_queues_cfg[queue].mode_to_use = MTL_QUEUE_DCB;
399 	}
400 
401 	/* Final adjustments for HW */
402 	value = div_s64(qopt->idleslope * 1024ll * ptr, port_transmit_rate_kbps);
403 	priv->plat->tx_queues_cfg[queue].idle_slope = value & GENMASK(31, 0);
404 
405 	value = div_s64(-qopt->sendslope * 1024ll * ptr, port_transmit_rate_kbps);
406 	priv->plat->tx_queues_cfg[queue].send_slope = value & GENMASK(31, 0);
407 
408 	value = qopt->hicredit * 1024ll * 8;
409 	priv->plat->tx_queues_cfg[queue].high_credit = value & GENMASK(31, 0);
410 
411 	value = qopt->locredit * 1024ll * 8;
412 	priv->plat->tx_queues_cfg[queue].low_credit = value & GENMASK(31, 0);
413 
414 	ret = stmmac_config_cbs(priv, priv->hw,
415 				priv->plat->tx_queues_cfg[queue].send_slope,
416 				priv->plat->tx_queues_cfg[queue].idle_slope,
417 				priv->plat->tx_queues_cfg[queue].high_credit,
418 				priv->plat->tx_queues_cfg[queue].low_credit,
419 				queue);
420 	if (ret)
421 		return ret;
422 
423 	dev_info(priv->device, "CBS queue %d: send %d, idle %d, hi %d, lo %d\n",
424 			queue, qopt->sendslope, qopt->idleslope,
425 			qopt->hicredit, qopt->locredit);
426 	return 0;
427 }
428 
429 static int tc_parse_flow_actions(struct stmmac_priv *priv,
430 				 struct flow_action *action,
431 				 struct stmmac_flow_entry *entry,
432 				 struct netlink_ext_ack *extack)
433 {
434 	struct flow_action_entry *act;
435 	int i;
436 
437 	if (!flow_action_has_entries(action))
438 		return -EINVAL;
439 
440 	if (!flow_action_basic_hw_stats_check(action, extack))
441 		return -EOPNOTSUPP;
442 
443 	flow_action_for_each(i, act, action) {
444 		switch (act->id) {
445 		case FLOW_ACTION_DROP:
446 			entry->action |= STMMAC_FLOW_ACTION_DROP;
447 			return 0;
448 		default:
449 			break;
450 		}
451 	}
452 
453 	/* Nothing to do, maybe inverse filter ? */
454 	return 0;
455 }
456 
457 #define ETHER_TYPE_FULL_MASK	cpu_to_be16(~0)
458 
459 static int tc_add_basic_flow(struct stmmac_priv *priv,
460 			     struct flow_cls_offload *cls,
461 			     struct stmmac_flow_entry *entry)
462 {
463 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
464 	struct flow_dissector *dissector = rule->match.dissector;
465 	struct flow_match_basic match;
466 
467 	/* Nothing to do here */
468 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
469 		return -EINVAL;
470 
471 	flow_rule_match_basic(rule, &match);
472 
473 	entry->ip_proto = match.key->ip_proto;
474 	return 0;
475 }
476 
477 static int tc_add_ip4_flow(struct stmmac_priv *priv,
478 			   struct flow_cls_offload *cls,
479 			   struct stmmac_flow_entry *entry)
480 {
481 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
482 	struct flow_dissector *dissector = rule->match.dissector;
483 	bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
484 	struct flow_match_ipv4_addrs match;
485 	u32 hw_match;
486 	int ret;
487 
488 	/* Nothing to do here */
489 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_IPV4_ADDRS))
490 		return -EINVAL;
491 
492 	flow_rule_match_ipv4_addrs(rule, &match);
493 	hw_match = ntohl(match.key->src) & ntohl(match.mask->src);
494 	if (hw_match) {
495 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
496 					      false, true, inv, hw_match);
497 		if (ret)
498 			return ret;
499 	}
500 
501 	hw_match = ntohl(match.key->dst) & ntohl(match.mask->dst);
502 	if (hw_match) {
503 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, true,
504 					      false, false, inv, hw_match);
505 		if (ret)
506 			return ret;
507 	}
508 
509 	return 0;
510 }
511 
512 static int tc_add_ports_flow(struct stmmac_priv *priv,
513 			     struct flow_cls_offload *cls,
514 			     struct stmmac_flow_entry *entry)
515 {
516 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
517 	struct flow_dissector *dissector = rule->match.dissector;
518 	bool inv = entry->action & STMMAC_FLOW_ACTION_DROP;
519 	struct flow_match_ports match;
520 	u32 hw_match;
521 	bool is_udp;
522 	int ret;
523 
524 	/* Nothing to do here */
525 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_PORTS))
526 		return -EINVAL;
527 
528 	switch (entry->ip_proto) {
529 	case IPPROTO_TCP:
530 		is_udp = false;
531 		break;
532 	case IPPROTO_UDP:
533 		is_udp = true;
534 		break;
535 	default:
536 		return -EINVAL;
537 	}
538 
539 	flow_rule_match_ports(rule, &match);
540 
541 	hw_match = ntohs(match.key->src) & ntohs(match.mask->src);
542 	if (hw_match) {
543 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
544 					      is_udp, true, inv, hw_match);
545 		if (ret)
546 			return ret;
547 	}
548 
549 	hw_match = ntohs(match.key->dst) & ntohs(match.mask->dst);
550 	if (hw_match) {
551 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, true,
552 					      is_udp, false, inv, hw_match);
553 		if (ret)
554 			return ret;
555 	}
556 
557 	entry->is_l4 = true;
558 	return 0;
559 }
560 
561 static struct stmmac_flow_entry *tc_find_flow(struct stmmac_priv *priv,
562 					      struct flow_cls_offload *cls,
563 					      bool get_free)
564 {
565 	int i;
566 
567 	for (i = 0; i < priv->flow_entries_max; i++) {
568 		struct stmmac_flow_entry *entry = &priv->flow_entries[i];
569 
570 		if (entry->cookie == cls->cookie)
571 			return entry;
572 		if (get_free && (entry->in_use == false))
573 			return entry;
574 	}
575 
576 	return NULL;
577 }
578 
579 static struct {
580 	int (*fn)(struct stmmac_priv *priv, struct flow_cls_offload *cls,
581 		  struct stmmac_flow_entry *entry);
582 } tc_flow_parsers[] = {
583 	{ .fn = tc_add_basic_flow },
584 	{ .fn = tc_add_ip4_flow },
585 	{ .fn = tc_add_ports_flow },
586 };
587 
588 static int tc_add_flow(struct stmmac_priv *priv,
589 		       struct flow_cls_offload *cls)
590 {
591 	struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
592 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
593 	int i, ret;
594 
595 	if (!entry) {
596 		entry = tc_find_flow(priv, cls, true);
597 		if (!entry)
598 			return -ENOENT;
599 	}
600 
601 	ret = tc_parse_flow_actions(priv, &rule->action, entry,
602 				    cls->common.extack);
603 	if (ret)
604 		return ret;
605 
606 	for (i = 0; i < ARRAY_SIZE(tc_flow_parsers); i++) {
607 		ret = tc_flow_parsers[i].fn(priv, cls, entry);
608 		if (!ret)
609 			entry->in_use = true;
610 	}
611 
612 	if (!entry->in_use)
613 		return -EINVAL;
614 
615 	entry->cookie = cls->cookie;
616 	return 0;
617 }
618 
619 static int tc_del_flow(struct stmmac_priv *priv,
620 		       struct flow_cls_offload *cls)
621 {
622 	struct stmmac_flow_entry *entry = tc_find_flow(priv, cls, false);
623 	int ret;
624 
625 	if (!entry || !entry->in_use)
626 		return -ENOENT;
627 
628 	if (entry->is_l4) {
629 		ret = stmmac_config_l4_filter(priv, priv->hw, entry->idx, false,
630 					      false, false, false, 0);
631 	} else {
632 		ret = stmmac_config_l3_filter(priv, priv->hw, entry->idx, false,
633 					      false, false, false, 0);
634 	}
635 
636 	entry->in_use = false;
637 	entry->cookie = 0;
638 	entry->is_l4 = false;
639 	return ret;
640 }
641 
642 static struct stmmac_rfs_entry *tc_find_rfs(struct stmmac_priv *priv,
643 					    struct flow_cls_offload *cls,
644 					    bool get_free)
645 {
646 	int i;
647 
648 	for (i = 0; i < priv->rfs_entries_total; i++) {
649 		struct stmmac_rfs_entry *entry = &priv->rfs_entries[i];
650 
651 		if (entry->cookie == cls->cookie)
652 			return entry;
653 		if (get_free && entry->in_use == false)
654 			return entry;
655 	}
656 
657 	return NULL;
658 }
659 
660 #define VLAN_PRIO_FULL_MASK (0x07)
661 
662 static int tc_add_vlan_flow(struct stmmac_priv *priv,
663 			    struct flow_cls_offload *cls)
664 {
665 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
666 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
667 	struct flow_dissector *dissector = rule->match.dissector;
668 	int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
669 	struct flow_match_vlan match;
670 
671 	if (!entry) {
672 		entry = tc_find_rfs(priv, cls, true);
673 		if (!entry)
674 			return -ENOENT;
675 	}
676 
677 	if (priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN] >=
678 	    priv->rfs_entries_max[STMMAC_RFS_T_VLAN])
679 		return -ENOENT;
680 
681 	/* Nothing to do here */
682 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_VLAN))
683 		return -EINVAL;
684 
685 	if (tc < 0) {
686 		netdev_err(priv->dev, "Invalid traffic class\n");
687 		return -EINVAL;
688 	}
689 
690 	flow_rule_match_vlan(rule, &match);
691 
692 	if (match.mask->vlan_priority) {
693 		u32 prio;
694 
695 		if (match.mask->vlan_priority != VLAN_PRIO_FULL_MASK) {
696 			netdev_err(priv->dev, "Only full mask is supported for VLAN priority");
697 			return -EINVAL;
698 		}
699 
700 		prio = BIT(match.key->vlan_priority);
701 		stmmac_rx_queue_prio(priv, priv->hw, prio, tc);
702 
703 		entry->in_use = true;
704 		entry->cookie = cls->cookie;
705 		entry->tc = tc;
706 		entry->type = STMMAC_RFS_T_VLAN;
707 		priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]++;
708 	}
709 
710 	return 0;
711 }
712 
713 static int tc_del_vlan_flow(struct stmmac_priv *priv,
714 			    struct flow_cls_offload *cls)
715 {
716 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
717 
718 	if (!entry || !entry->in_use || entry->type != STMMAC_RFS_T_VLAN)
719 		return -ENOENT;
720 
721 	stmmac_rx_queue_prio(priv, priv->hw, 0, entry->tc);
722 
723 	entry->in_use = false;
724 	entry->cookie = 0;
725 	entry->tc = 0;
726 	entry->type = 0;
727 
728 	priv->rfs_entries_cnt[STMMAC_RFS_T_VLAN]--;
729 
730 	return 0;
731 }
732 
733 static int tc_add_ethtype_flow(struct stmmac_priv *priv,
734 			       struct flow_cls_offload *cls)
735 {
736 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
737 	struct flow_rule *rule = flow_cls_offload_flow_rule(cls);
738 	struct flow_dissector *dissector = rule->match.dissector;
739 	int tc = tc_classid_to_hwtc(priv->dev, cls->classid);
740 	struct flow_match_basic match;
741 
742 	if (!entry) {
743 		entry = tc_find_rfs(priv, cls, true);
744 		if (!entry)
745 			return -ENOENT;
746 	}
747 
748 	/* Nothing to do here */
749 	if (!dissector_uses_key(dissector, FLOW_DISSECTOR_KEY_BASIC))
750 		return -EINVAL;
751 
752 	if (tc < 0) {
753 		netdev_err(priv->dev, "Invalid traffic class\n");
754 		return -EINVAL;
755 	}
756 
757 	flow_rule_match_basic(rule, &match);
758 
759 	if (match.mask->n_proto) {
760 		u16 etype = ntohs(match.key->n_proto);
761 
762 		if (match.mask->n_proto != ETHER_TYPE_FULL_MASK) {
763 			netdev_err(priv->dev, "Only full mask is supported for EthType filter");
764 			return -EINVAL;
765 		}
766 		switch (etype) {
767 		case ETH_P_LLDP:
768 			if (priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP] >=
769 			    priv->rfs_entries_max[STMMAC_RFS_T_LLDP])
770 				return -ENOENT;
771 
772 			entry->type = STMMAC_RFS_T_LLDP;
773 			priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]++;
774 
775 			stmmac_rx_queue_routing(priv, priv->hw,
776 						PACKET_DCBCPQ, tc);
777 			break;
778 		case ETH_P_1588:
779 			if (priv->rfs_entries_cnt[STMMAC_RFS_T_1588] >=
780 			    priv->rfs_entries_max[STMMAC_RFS_T_1588])
781 				return -ENOENT;
782 
783 			entry->type = STMMAC_RFS_T_1588;
784 			priv->rfs_entries_cnt[STMMAC_RFS_T_1588]++;
785 
786 			stmmac_rx_queue_routing(priv, priv->hw,
787 						PACKET_PTPQ, tc);
788 			break;
789 		default:
790 			netdev_err(priv->dev, "EthType(0x%x) is not supported", etype);
791 			return -EINVAL;
792 		}
793 
794 		entry->in_use = true;
795 		entry->cookie = cls->cookie;
796 		entry->tc = tc;
797 		entry->etype = etype;
798 
799 		return 0;
800 	}
801 
802 	return -EINVAL;
803 }
804 
805 static int tc_del_ethtype_flow(struct stmmac_priv *priv,
806 			       struct flow_cls_offload *cls)
807 {
808 	struct stmmac_rfs_entry *entry = tc_find_rfs(priv, cls, false);
809 
810 	if (!entry || !entry->in_use ||
811 	    entry->type < STMMAC_RFS_T_LLDP ||
812 	    entry->type > STMMAC_RFS_T_1588)
813 		return -ENOENT;
814 
815 	switch (entry->etype) {
816 	case ETH_P_LLDP:
817 		stmmac_rx_queue_routing(priv, priv->hw,
818 					PACKET_DCBCPQ, 0);
819 		priv->rfs_entries_cnt[STMMAC_RFS_T_LLDP]--;
820 		break;
821 	case ETH_P_1588:
822 		stmmac_rx_queue_routing(priv, priv->hw,
823 					PACKET_PTPQ, 0);
824 		priv->rfs_entries_cnt[STMMAC_RFS_T_1588]--;
825 		break;
826 	default:
827 		netdev_err(priv->dev, "EthType(0x%x) is not supported",
828 			   entry->etype);
829 		return -EINVAL;
830 	}
831 
832 	entry->in_use = false;
833 	entry->cookie = 0;
834 	entry->tc = 0;
835 	entry->etype = 0;
836 	entry->type = 0;
837 
838 	return 0;
839 }
840 
841 static int tc_add_flow_cls(struct stmmac_priv *priv,
842 			   struct flow_cls_offload *cls)
843 {
844 	int ret;
845 
846 	ret = tc_add_flow(priv, cls);
847 	if (!ret)
848 		return ret;
849 
850 	ret = tc_add_ethtype_flow(priv, cls);
851 	if (!ret)
852 		return ret;
853 
854 	return tc_add_vlan_flow(priv, cls);
855 }
856 
857 static int tc_del_flow_cls(struct stmmac_priv *priv,
858 			   struct flow_cls_offload *cls)
859 {
860 	int ret;
861 
862 	ret = tc_del_flow(priv, cls);
863 	if (!ret)
864 		return ret;
865 
866 	ret = tc_del_ethtype_flow(priv, cls);
867 	if (!ret)
868 		return ret;
869 
870 	return tc_del_vlan_flow(priv, cls);
871 }
872 
873 static int tc_setup_cls(struct stmmac_priv *priv,
874 			struct flow_cls_offload *cls)
875 {
876 	int ret = 0;
877 
878 	/* When RSS is enabled, the filtering will be bypassed */
879 	if (priv->rss.enable)
880 		return -EBUSY;
881 
882 	switch (cls->command) {
883 	case FLOW_CLS_REPLACE:
884 		ret = tc_add_flow_cls(priv, cls);
885 		break;
886 	case FLOW_CLS_DESTROY:
887 		ret = tc_del_flow_cls(priv, cls);
888 		break;
889 	default:
890 		return -EOPNOTSUPP;
891 	}
892 
893 	return ret;
894 }
895 
896 struct timespec64 stmmac_calc_tas_basetime(ktime_t old_base_time,
897 					   ktime_t current_time,
898 					   u64 cycle_time)
899 {
900 	struct timespec64 time;
901 
902 	if (ktime_after(old_base_time, current_time)) {
903 		time = ktime_to_timespec64(old_base_time);
904 	} else {
905 		s64 n;
906 		ktime_t base_time;
907 
908 		n = div64_s64(ktime_sub_ns(current_time, old_base_time),
909 			      cycle_time);
910 		base_time = ktime_add_ns(old_base_time,
911 					 (n + 1) * cycle_time);
912 
913 		time = ktime_to_timespec64(base_time);
914 	}
915 
916 	return time;
917 }
918 
919 static int tc_setup_taprio(struct stmmac_priv *priv,
920 			   struct tc_taprio_qopt_offload *qopt)
921 {
922 	u32 size, wid = priv->dma_cap.estwid, dep = priv->dma_cap.estdep;
923 	struct plat_stmmacenet_data *plat = priv->plat;
924 	struct timespec64 time, current_time, qopt_time;
925 	ktime_t current_time_ns;
926 	bool fpe = false;
927 	int i, ret = 0;
928 	u64 ctr;
929 
930 	if (qopt->base_time < 0)
931 		return -ERANGE;
932 
933 	if (!priv->dma_cap.estsel)
934 		return -EOPNOTSUPP;
935 
936 	switch (wid) {
937 	case 0x1:
938 		wid = 16;
939 		break;
940 	case 0x2:
941 		wid = 20;
942 		break;
943 	case 0x3:
944 		wid = 24;
945 		break;
946 	default:
947 		return -EOPNOTSUPP;
948 	}
949 
950 	switch (dep) {
951 	case 0x1:
952 		dep = 64;
953 		break;
954 	case 0x2:
955 		dep = 128;
956 		break;
957 	case 0x3:
958 		dep = 256;
959 		break;
960 	case 0x4:
961 		dep = 512;
962 		break;
963 	case 0x5:
964 		dep = 1024;
965 		break;
966 	default:
967 		return -EOPNOTSUPP;
968 	}
969 
970 	if (qopt->cmd == TAPRIO_CMD_DESTROY)
971 		goto disable;
972 	else if (qopt->cmd != TAPRIO_CMD_REPLACE)
973 		return -EOPNOTSUPP;
974 
975 	if (qopt->num_entries >= dep)
976 		return -EINVAL;
977 	if (!qopt->cycle_time)
978 		return -ERANGE;
979 
980 	if (!plat->est) {
981 		plat->est = devm_kzalloc(priv->device, sizeof(*plat->est),
982 					 GFP_KERNEL);
983 		if (!plat->est)
984 			return -ENOMEM;
985 
986 		mutex_init(&priv->plat->est->lock);
987 	} else {
988 		memset(plat->est, 0, sizeof(*plat->est));
989 	}
990 
991 	size = qopt->num_entries;
992 
993 	mutex_lock(&priv->plat->est->lock);
994 	priv->plat->est->gcl_size = size;
995 	priv->plat->est->enable = qopt->cmd == TAPRIO_CMD_REPLACE;
996 	mutex_unlock(&priv->plat->est->lock);
997 
998 	for (i = 0; i < size; i++) {
999 		s64 delta_ns = qopt->entries[i].interval;
1000 		u32 gates = qopt->entries[i].gate_mask;
1001 
1002 		if (delta_ns > GENMASK(wid, 0))
1003 			return -ERANGE;
1004 		if (gates > GENMASK(31 - wid, 0))
1005 			return -ERANGE;
1006 
1007 		switch (qopt->entries[i].command) {
1008 		case TC_TAPRIO_CMD_SET_GATES:
1009 			if (fpe)
1010 				return -EINVAL;
1011 			break;
1012 		case TC_TAPRIO_CMD_SET_AND_HOLD:
1013 			gates |= BIT(0);
1014 			fpe = true;
1015 			break;
1016 		case TC_TAPRIO_CMD_SET_AND_RELEASE:
1017 			gates &= ~BIT(0);
1018 			fpe = true;
1019 			break;
1020 		default:
1021 			return -EOPNOTSUPP;
1022 		}
1023 
1024 		priv->plat->est->gcl[i] = delta_ns | (gates << wid);
1025 	}
1026 
1027 	mutex_lock(&priv->plat->est->lock);
1028 	/* Adjust for real system time */
1029 	priv->ptp_clock_ops.gettime64(&priv->ptp_clock_ops, &current_time);
1030 	current_time_ns = timespec64_to_ktime(current_time);
1031 	time = stmmac_calc_tas_basetime(qopt->base_time, current_time_ns,
1032 					qopt->cycle_time);
1033 
1034 	priv->plat->est->btr[0] = (u32)time.tv_nsec;
1035 	priv->plat->est->btr[1] = (u32)time.tv_sec;
1036 
1037 	qopt_time = ktime_to_timespec64(qopt->base_time);
1038 	priv->plat->est->btr_reserve[0] = (u32)qopt_time.tv_nsec;
1039 	priv->plat->est->btr_reserve[1] = (u32)qopt_time.tv_sec;
1040 
1041 	ctr = qopt->cycle_time;
1042 	priv->plat->est->ctr[0] = do_div(ctr, NSEC_PER_SEC);
1043 	priv->plat->est->ctr[1] = (u32)ctr;
1044 
1045 	if (fpe && !priv->dma_cap.fpesel) {
1046 		mutex_unlock(&priv->plat->est->lock);
1047 		return -EOPNOTSUPP;
1048 	}
1049 
1050 	/* Actual FPE register configuration will be done after FPE handshake
1051 	 * is success.
1052 	 */
1053 	priv->plat->fpe_cfg->enable = fpe;
1054 
1055 	ret = stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
1056 				   priv->plat->clk_ptp_rate);
1057 	mutex_unlock(&priv->plat->est->lock);
1058 	if (ret) {
1059 		netdev_err(priv->dev, "failed to configure EST\n");
1060 		goto disable;
1061 	}
1062 
1063 	netdev_info(priv->dev, "configured EST\n");
1064 
1065 	if (fpe) {
1066 		stmmac_fpe_handshake(priv, true);
1067 		netdev_info(priv->dev, "start FPE handshake\n");
1068 	}
1069 
1070 	return 0;
1071 
1072 disable:
1073 	if (priv->plat->est) {
1074 		mutex_lock(&priv->plat->est->lock);
1075 		priv->plat->est->enable = false;
1076 		stmmac_est_configure(priv, priv->ioaddr, priv->plat->est,
1077 				     priv->plat->clk_ptp_rate);
1078 		mutex_unlock(&priv->plat->est->lock);
1079 	}
1080 
1081 	priv->plat->fpe_cfg->enable = false;
1082 	stmmac_fpe_configure(priv, priv->ioaddr,
1083 			     priv->plat->fpe_cfg,
1084 			     priv->plat->tx_queues_to_use,
1085 			     priv->plat->rx_queues_to_use,
1086 			     false);
1087 	netdev_info(priv->dev, "disabled FPE\n");
1088 
1089 	stmmac_fpe_handshake(priv, false);
1090 	netdev_info(priv->dev, "stop FPE handshake\n");
1091 
1092 	return ret;
1093 }
1094 
1095 static int tc_setup_etf(struct stmmac_priv *priv,
1096 			struct tc_etf_qopt_offload *qopt)
1097 {
1098 	if (!priv->dma_cap.tbssel)
1099 		return -EOPNOTSUPP;
1100 	if (qopt->queue >= priv->plat->tx_queues_to_use)
1101 		return -EINVAL;
1102 	if (!(priv->dma_conf.tx_queue[qopt->queue].tbs & STMMAC_TBS_AVAIL))
1103 		return -EINVAL;
1104 
1105 	if (qopt->enable)
1106 		priv->dma_conf.tx_queue[qopt->queue].tbs |= STMMAC_TBS_EN;
1107 	else
1108 		priv->dma_conf.tx_queue[qopt->queue].tbs &= ~STMMAC_TBS_EN;
1109 
1110 	netdev_info(priv->dev, "%s ETF for Queue %d\n",
1111 		    qopt->enable ? "enabled" : "disabled", qopt->queue);
1112 	return 0;
1113 }
1114 
1115 static int tc_query_caps(struct stmmac_priv *priv,
1116 			 struct tc_query_caps_base *base)
1117 {
1118 	switch (base->type) {
1119 	case TC_SETUP_QDISC_TAPRIO: {
1120 		struct tc_taprio_caps *caps = base->caps;
1121 
1122 		if (!priv->dma_cap.estsel)
1123 			return -EOPNOTSUPP;
1124 
1125 		caps->gate_mask_per_txq = true;
1126 
1127 		return 0;
1128 	}
1129 	default:
1130 		return -EOPNOTSUPP;
1131 	}
1132 }
1133 
1134 const struct stmmac_tc_ops dwmac510_tc_ops = {
1135 	.init = tc_init,
1136 	.setup_cls_u32 = tc_setup_cls_u32,
1137 	.setup_cbs = tc_setup_cbs,
1138 	.setup_cls = tc_setup_cls,
1139 	.setup_taprio = tc_setup_taprio,
1140 	.setup_etf = tc_setup_etf,
1141 	.query_caps = tc_query_caps,
1142 };
1143