xref: /openbmc/linux/drivers/net/ethernet/sgi/ioc3-eth.c (revision 16ccca11088c1bdd9311a2c630b453541305c48a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Driver for SGI's IOC3 based Ethernet cards as found in the PCI card.
3  *
4  * Copyright (C) 1999, 2000, 01, 03, 06 Ralf Baechle
5  * Copyright (C) 1995, 1999, 2000, 2001 by Silicon Graphics, Inc.
6  *
7  * References:
8  *  o IOC3 ASIC specification 4.51, 1996-04-18
9  *  o IEEE 802.3 specification, 2000 edition
10  *  o DP38840A Specification, National Semiconductor, March 1997
11  *
12  * To do:
13  *
14  *  o Use prefetching for large packets.  What is a good lower limit for
15  *    prefetching?
16  *  o Use hardware checksums.
17  *  o Convert to using a IOC3 meta driver.
18  *  o Which PHYs might possibly be attached to the IOC3 in real live,
19  *    which workarounds are required for them?  Do we ever have Lucent's?
20  *  o For the 2.5 branch kill the mii-tool ioctls.
21  */
22 
23 #define IOC3_NAME	"ioc3-eth"
24 #define IOC3_VERSION	"2.6.3-4"
25 
26 #include <linux/delay.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/errno.h>
30 #include <linux/module.h>
31 #include <linux/pci.h>
32 #include <linux/crc32.h>
33 #include <linux/mii.h>
34 #include <linux/in.h>
35 #include <linux/io.h>
36 #include <linux/ip.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/gfp.h>
40 
41 #ifdef CONFIG_SERIAL_8250
42 #include <linux/serial_core.h>
43 #include <linux/serial_8250.h>
44 #include <linux/serial_reg.h>
45 #endif
46 
47 #include <linux/netdevice.h>
48 #include <linux/etherdevice.h>
49 #include <linux/ethtool.h>
50 #include <linux/skbuff.h>
51 #include <linux/dma-direct.h>
52 
53 #include <net/ip.h>
54 
55 #include <asm/byteorder.h>
56 #include <asm/pgtable.h>
57 #include <linux/uaccess.h>
58 #include <asm/sn/types.h>
59 #include <asm/sn/ioc3.h>
60 #include <asm/pci/bridge.h>
61 
62 /* Number of RX buffers.  This is tunable in the range of 16 <= x < 512.
63  * The value must be a power of two.
64  */
65 #define RX_BUFFS		64
66 #define RX_RING_ENTRIES		512		/* fixed in hardware */
67 #define RX_RING_MASK		(RX_RING_ENTRIES - 1)
68 #define RX_RING_SIZE		(RX_RING_ENTRIES * sizeof(u64))
69 
70 /* 128 TX buffers (not tunable) */
71 #define TX_RING_ENTRIES		128
72 #define TX_RING_MASK		(TX_RING_ENTRIES - 1)
73 #define TX_RING_SIZE		(TX_RING_ENTRIES * sizeof(struct ioc3_etxd))
74 
75 /* IOC3 does dma transfers in 128 byte blocks */
76 #define IOC3_DMA_XFER_LEN	128UL
77 
78 /* Every RX buffer starts with 8 byte descriptor data */
79 #define RX_OFFSET		(sizeof(struct ioc3_erxbuf) + NET_IP_ALIGN)
80 #define RX_BUF_SIZE		(13 * IOC3_DMA_XFER_LEN)
81 
82 #define ETCSR_FD   ((21 << ETCSR_IPGR2_SHIFT) | (21 << ETCSR_IPGR1_SHIFT) | 21)
83 #define ETCSR_HD   ((17 << ETCSR_IPGR2_SHIFT) | (11 << ETCSR_IPGR1_SHIFT) | 21)
84 
85 /* Private per NIC data of the driver.  */
86 struct ioc3_private {
87 	struct ioc3_ethregs *regs;
88 	struct ioc3 *all_regs;
89 	struct device *dma_dev;
90 	u32 *ssram;
91 	unsigned long *rxr;		/* pointer to receiver ring */
92 	struct ioc3_etxd *txr;
93 	dma_addr_t rxr_dma;
94 	dma_addr_t txr_dma;
95 	struct sk_buff *rx_skbs[RX_RING_ENTRIES];
96 	struct sk_buff *tx_skbs[TX_RING_ENTRIES];
97 	int rx_ci;			/* RX consumer index */
98 	int rx_pi;			/* RX producer index */
99 	int tx_ci;			/* TX consumer index */
100 	int tx_pi;			/* TX producer index */
101 	int txqlen;
102 	u32 emcr, ehar_h, ehar_l;
103 	spinlock_t ioc3_lock;
104 	struct mii_if_info mii;
105 
106 	struct net_device *dev;
107 	struct pci_dev *pdev;
108 
109 	/* Members used by autonegotiation  */
110 	struct timer_list ioc3_timer;
111 };
112 
113 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
114 static void ioc3_set_multicast_list(struct net_device *dev);
115 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev);
116 static void ioc3_timeout(struct net_device *dev);
117 static inline unsigned int ioc3_hash(const unsigned char *addr);
118 static void ioc3_start(struct ioc3_private *ip);
119 static inline void ioc3_stop(struct ioc3_private *ip);
120 static void ioc3_init(struct net_device *dev);
121 static int ioc3_alloc_rx_bufs(struct net_device *dev);
122 static void ioc3_free_rx_bufs(struct ioc3_private *ip);
123 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip);
124 
125 static const char ioc3_str[] = "IOC3 Ethernet";
126 static const struct ethtool_ops ioc3_ethtool_ops;
127 
128 
129 static inline unsigned long aligned_rx_skb_addr(unsigned long addr)
130 {
131 	return (~addr + 1) & (IOC3_DMA_XFER_LEN - 1UL);
132 }
133 
134 static inline int ioc3_alloc_skb(struct ioc3_private *ip, struct sk_buff **skb,
135 				 struct ioc3_erxbuf **rxb, dma_addr_t *rxb_dma)
136 {
137 	struct sk_buff *new_skb;
138 	dma_addr_t d;
139 	int offset;
140 
141 	new_skb = alloc_skb(RX_BUF_SIZE + IOC3_DMA_XFER_LEN - 1, GFP_ATOMIC);
142 	if (!new_skb)
143 		return -ENOMEM;
144 
145 	/* ensure buffer is aligned to IOC3_DMA_XFER_LEN */
146 	offset = aligned_rx_skb_addr((unsigned long)new_skb->data);
147 	if (offset)
148 		skb_reserve(new_skb, offset);
149 
150 	d = dma_map_single(ip->dma_dev, new_skb->data,
151 			   RX_BUF_SIZE, DMA_FROM_DEVICE);
152 
153 	if (dma_mapping_error(ip->dma_dev, d)) {
154 		dev_kfree_skb_any(new_skb);
155 		return -ENOMEM;
156 	}
157 	*rxb_dma = d;
158 	*rxb = (struct ioc3_erxbuf *)new_skb->data;
159 	skb_reserve(new_skb, RX_OFFSET);
160 	*skb = new_skb;
161 
162 	return 0;
163 }
164 
165 #ifdef CONFIG_PCI_XTALK_BRIDGE
166 static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
167 {
168 	return (addr & ~PCI64_ATTR_BAR) | attr;
169 }
170 
171 #define ERBAR_VAL	(ERBAR_BARRIER_BIT << ERBAR_RXBARR_SHIFT)
172 #else
173 static inline unsigned long ioc3_map(dma_addr_t addr, unsigned long attr)
174 {
175 	return addr;
176 }
177 
178 #define ERBAR_VAL	0
179 #endif
180 
181 #define IOC3_SIZE 0x100000
182 
183 static inline u32 mcr_pack(u32 pulse, u32 sample)
184 {
185 	return (pulse << 10) | (sample << 2);
186 }
187 
188 static int nic_wait(u32 __iomem *mcr)
189 {
190 	u32 m;
191 
192 	do {
193 		m = readl(mcr);
194 	} while (!(m & 2));
195 
196 	return m & 1;
197 }
198 
199 static int nic_reset(u32 __iomem *mcr)
200 {
201 	int presence;
202 
203 	writel(mcr_pack(500, 65), mcr);
204 	presence = nic_wait(mcr);
205 
206 	writel(mcr_pack(0, 500), mcr);
207 	nic_wait(mcr);
208 
209 	return presence;
210 }
211 
212 static inline int nic_read_bit(u32 __iomem *mcr)
213 {
214 	int result;
215 
216 	writel(mcr_pack(6, 13), mcr);
217 	result = nic_wait(mcr);
218 	writel(mcr_pack(0, 100), mcr);
219 	nic_wait(mcr);
220 
221 	return result;
222 }
223 
224 static inline void nic_write_bit(u32 __iomem *mcr, int bit)
225 {
226 	if (bit)
227 		writel(mcr_pack(6, 110), mcr);
228 	else
229 		writel(mcr_pack(80, 30), mcr);
230 
231 	nic_wait(mcr);
232 }
233 
234 /* Read a byte from an iButton device
235  */
236 static u32 nic_read_byte(u32 __iomem *mcr)
237 {
238 	u32 result = 0;
239 	int i;
240 
241 	for (i = 0; i < 8; i++)
242 		result = (result >> 1) | (nic_read_bit(mcr) << 7);
243 
244 	return result;
245 }
246 
247 /* Write a byte to an iButton device
248  */
249 static void nic_write_byte(u32 __iomem *mcr, int byte)
250 {
251 	int i, bit;
252 
253 	for (i = 8; i; i--) {
254 		bit = byte & 1;
255 		byte >>= 1;
256 
257 		nic_write_bit(mcr, bit);
258 	}
259 }
260 
261 static u64 nic_find(u32 __iomem *mcr, int *last)
262 {
263 	int a, b, index, disc;
264 	u64 address = 0;
265 
266 	nic_reset(mcr);
267 	/* Search ROM.  */
268 	nic_write_byte(mcr, 0xf0);
269 
270 	/* Algorithm from ``Book of iButton Standards''.  */
271 	for (index = 0, disc = 0; index < 64; index++) {
272 		a = nic_read_bit(mcr);
273 		b = nic_read_bit(mcr);
274 
275 		if (a && b) {
276 			pr_warn("NIC search failed (not fatal).\n");
277 			*last = 0;
278 			return 0;
279 		}
280 
281 		if (!a && !b) {
282 			if (index == *last) {
283 				address |= 1UL << index;
284 			} else if (index > *last) {
285 				address &= ~(1UL << index);
286 				disc = index;
287 			} else if ((address & (1UL << index)) == 0) {
288 				disc = index;
289 			}
290 			nic_write_bit(mcr, address & (1UL << index));
291 			continue;
292 		} else {
293 			if (a)
294 				address |= 1UL << index;
295 			else
296 				address &= ~(1UL << index);
297 			nic_write_bit(mcr, a);
298 			continue;
299 		}
300 	}
301 
302 	*last = disc;
303 
304 	return address;
305 }
306 
307 static int nic_init(u32 __iomem *mcr)
308 {
309 	const char *unknown = "unknown";
310 	const char *type = unknown;
311 	u8 crc;
312 	u8 serial[6];
313 	int save = 0, i;
314 
315 	while (1) {
316 		u64 reg;
317 
318 		reg = nic_find(mcr, &save);
319 
320 		switch (reg & 0xff) {
321 		case 0x91:
322 			type = "DS1981U";
323 			break;
324 		default:
325 			if (save == 0) {
326 				/* Let the caller try again.  */
327 				return -1;
328 			}
329 			continue;
330 		}
331 
332 		nic_reset(mcr);
333 
334 		/* Match ROM.  */
335 		nic_write_byte(mcr, 0x55);
336 		for (i = 0; i < 8; i++)
337 			nic_write_byte(mcr, (reg >> (i << 3)) & 0xff);
338 
339 		reg >>= 8; /* Shift out type.  */
340 		for (i = 0; i < 6; i++) {
341 			serial[i] = reg & 0xff;
342 			reg >>= 8;
343 		}
344 		crc = reg & 0xff;
345 		break;
346 	}
347 
348 	pr_info("Found %s NIC", type);
349 	if (type != unknown)
350 		pr_cont(" registration number %pM, CRC %02x", serial, crc);
351 	pr_cont(".\n");
352 
353 	return 0;
354 }
355 
356 /* Read the NIC (Number-In-a-Can) device used to store the MAC address on
357  * SN0 / SN00 nodeboards and PCI cards.
358  */
359 static void ioc3_get_eaddr_nic(struct ioc3_private *ip)
360 {
361 	u32 __iomem *mcr = &ip->all_regs->mcr;
362 	int tries = 2; /* There may be some problem with the battery?  */
363 	u8 nic[14];
364 	int i;
365 
366 	writel(1 << 21, &ip->all_regs->gpcr_s);
367 
368 	while (tries--) {
369 		if (!nic_init(mcr))
370 			break;
371 		udelay(500);
372 	}
373 
374 	if (tries < 0) {
375 		pr_err("Failed to read MAC address\n");
376 		return;
377 	}
378 
379 	/* Read Memory.  */
380 	nic_write_byte(mcr, 0xf0);
381 	nic_write_byte(mcr, 0x00);
382 	nic_write_byte(mcr, 0x00);
383 
384 	for (i = 13; i >= 0; i--)
385 		nic[i] = nic_read_byte(mcr);
386 
387 	for (i = 2; i < 8; i++)
388 		ip->dev->dev_addr[i - 2] = nic[i];
389 }
390 
391 /* Ok, this is hosed by design.  It's necessary to know what machine the
392  * NIC is in in order to know how to read the NIC address.  We also have
393  * to know if it's a PCI card or a NIC in on the node board ...
394  */
395 static void ioc3_get_eaddr(struct ioc3_private *ip)
396 {
397 	ioc3_get_eaddr_nic(ip);
398 
399 	pr_info("Ethernet address is %pM.\n", ip->dev->dev_addr);
400 }
401 
402 static void __ioc3_set_mac_address(struct net_device *dev)
403 {
404 	struct ioc3_private *ip = netdev_priv(dev);
405 
406 	writel((dev->dev_addr[5] <<  8) |
407 	       dev->dev_addr[4],
408 	       &ip->regs->emar_h);
409 	writel((dev->dev_addr[3] << 24) |
410 	       (dev->dev_addr[2] << 16) |
411 	       (dev->dev_addr[1] <<  8) |
412 	       dev->dev_addr[0],
413 	       &ip->regs->emar_l);
414 }
415 
416 static int ioc3_set_mac_address(struct net_device *dev, void *addr)
417 {
418 	struct ioc3_private *ip = netdev_priv(dev);
419 	struct sockaddr *sa = addr;
420 
421 	memcpy(dev->dev_addr, sa->sa_data, dev->addr_len);
422 
423 	spin_lock_irq(&ip->ioc3_lock);
424 	__ioc3_set_mac_address(dev);
425 	spin_unlock_irq(&ip->ioc3_lock);
426 
427 	return 0;
428 }
429 
430 /* Caller must hold the ioc3_lock ever for MII readers.  This is also
431  * used to protect the transmitter side but it's low contention.
432  */
433 static int ioc3_mdio_read(struct net_device *dev, int phy, int reg)
434 {
435 	struct ioc3_private *ip = netdev_priv(dev);
436 	struct ioc3_ethregs *regs = ip->regs;
437 
438 	while (readl(&regs->micr) & MICR_BUSY)
439 		;
440 	writel((phy << MICR_PHYADDR_SHIFT) | reg | MICR_READTRIG,
441 	       &regs->micr);
442 	while (readl(&regs->micr) & MICR_BUSY)
443 		;
444 
445 	return readl(&regs->midr_r) & MIDR_DATA_MASK;
446 }
447 
448 static void ioc3_mdio_write(struct net_device *dev, int phy, int reg, int data)
449 {
450 	struct ioc3_private *ip = netdev_priv(dev);
451 	struct ioc3_ethregs *regs = ip->regs;
452 
453 	while (readl(&regs->micr) & MICR_BUSY)
454 		;
455 	writel(data, &regs->midr_w);
456 	writel((phy << MICR_PHYADDR_SHIFT) | reg, &regs->micr);
457 	while (readl(&regs->micr) & MICR_BUSY)
458 		;
459 }
460 
461 static int ioc3_mii_init(struct ioc3_private *ip);
462 
463 static struct net_device_stats *ioc3_get_stats(struct net_device *dev)
464 {
465 	struct ioc3_private *ip = netdev_priv(dev);
466 	struct ioc3_ethregs *regs = ip->regs;
467 
468 	dev->stats.collisions += readl(&regs->etcdc) & ETCDC_COLLCNT_MASK;
469 	return &dev->stats;
470 }
471 
472 static void ioc3_tcpudp_checksum(struct sk_buff *skb, u32 hwsum, int len)
473 {
474 	struct ethhdr *eh = eth_hdr(skb);
475 	unsigned int proto;
476 	unsigned char *cp;
477 	struct iphdr *ih;
478 	u32 csum, ehsum;
479 	u16 *ew;
480 
481 	/* Did hardware handle the checksum at all?  The cases we can handle
482 	 * are:
483 	 *
484 	 * - TCP and UDP checksums of IPv4 only.
485 	 * - IPv6 would be doable but we keep that for later ...
486 	 * - Only unfragmented packets.  Did somebody already tell you
487 	 *   fragmentation is evil?
488 	 * - don't care about packet size.  Worst case when processing a
489 	 *   malformed packet we'll try to access the packet at ip header +
490 	 *   64 bytes which is still inside the skb.  Even in the unlikely
491 	 *   case where the checksum is right the higher layers will still
492 	 *   drop the packet as appropriate.
493 	 */
494 	if (eh->h_proto != htons(ETH_P_IP))
495 		return;
496 
497 	ih = (struct iphdr *)((char *)eh + ETH_HLEN);
498 	if (ip_is_fragment(ih))
499 		return;
500 
501 	proto = ih->protocol;
502 	if (proto != IPPROTO_TCP && proto != IPPROTO_UDP)
503 		return;
504 
505 	/* Same as tx - compute csum of pseudo header  */
506 	csum = hwsum +
507 	       (ih->tot_len - (ih->ihl << 2)) +
508 	       htons((u16)ih->protocol) +
509 	       (ih->saddr >> 16) + (ih->saddr & 0xffff) +
510 	       (ih->daddr >> 16) + (ih->daddr & 0xffff);
511 
512 	/* Sum up ethernet dest addr, src addr and protocol  */
513 	ew = (u16 *)eh;
514 	ehsum = ew[0] + ew[1] + ew[2] + ew[3] + ew[4] + ew[5] + ew[6];
515 
516 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
517 	ehsum = (ehsum & 0xffff) + (ehsum >> 16);
518 
519 	csum += 0xffff ^ ehsum;
520 
521 	/* In the next step we also subtract the 1's complement
522 	 * checksum of the trailing ethernet CRC.
523 	 */
524 	cp = (char *)eh + len;	/* points at trailing CRC */
525 	if (len & 1) {
526 		csum += 0xffff ^ (u16)((cp[1] << 8) | cp[0]);
527 		csum += 0xffff ^ (u16)((cp[3] << 8) | cp[2]);
528 	} else {
529 		csum += 0xffff ^ (u16)((cp[0] << 8) | cp[1]);
530 		csum += 0xffff ^ (u16)((cp[2] << 8) | cp[3]);
531 	}
532 
533 	csum = (csum & 0xffff) + (csum >> 16);
534 	csum = (csum & 0xffff) + (csum >> 16);
535 
536 	if (csum == 0xffff)
537 		skb->ip_summed = CHECKSUM_UNNECESSARY;
538 }
539 
540 static inline void ioc3_rx(struct net_device *dev)
541 {
542 	struct ioc3_private *ip = netdev_priv(dev);
543 	struct sk_buff *skb, *new_skb;
544 	int rx_entry, n_entry, len;
545 	struct ioc3_erxbuf *rxb;
546 	unsigned long *rxr;
547 	dma_addr_t d;
548 	u32 w0, err;
549 
550 	rxr = ip->rxr;		/* Ring base */
551 	rx_entry = ip->rx_ci;				/* RX consume index */
552 	n_entry = ip->rx_pi;
553 
554 	skb = ip->rx_skbs[rx_entry];
555 	rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
556 	w0 = be32_to_cpu(rxb->w0);
557 
558 	while (w0 & ERXBUF_V) {
559 		err = be32_to_cpu(rxb->err);		/* It's valid ...  */
560 		if (err & ERXBUF_GOODPKT) {
561 			len = ((w0 >> ERXBUF_BYTECNT_SHIFT) & 0x7ff) - 4;
562 			skb_put(skb, len);
563 			skb->protocol = eth_type_trans(skb, dev);
564 
565 			if (ioc3_alloc_skb(ip, &new_skb, &rxb, &d)) {
566 				/* Ouch, drop packet and just recycle packet
567 				 * to keep the ring filled.
568 				 */
569 				dev->stats.rx_dropped++;
570 				new_skb = skb;
571 				d = rxr[rx_entry];
572 				goto next;
573 			}
574 
575 			if (likely(dev->features & NETIF_F_RXCSUM))
576 				ioc3_tcpudp_checksum(skb,
577 						     w0 & ERXBUF_IPCKSUM_MASK,
578 						     len);
579 
580 			dma_unmap_single(ip->dma_dev, rxr[rx_entry],
581 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
582 
583 			netif_rx(skb);
584 
585 			ip->rx_skbs[rx_entry] = NULL;	/* Poison  */
586 
587 			dev->stats.rx_packets++;		/* Statistics */
588 			dev->stats.rx_bytes += len;
589 		} else {
590 			/* The frame is invalid and the skb never
591 			 * reached the network layer so we can just
592 			 * recycle it.
593 			 */
594 			new_skb = skb;
595 			d = rxr[rx_entry];
596 			dev->stats.rx_errors++;
597 		}
598 		if (err & ERXBUF_CRCERR)	/* Statistics */
599 			dev->stats.rx_crc_errors++;
600 		if (err & ERXBUF_FRAMERR)
601 			dev->stats.rx_frame_errors++;
602 
603 next:
604 		ip->rx_skbs[n_entry] = new_skb;
605 		rxr[n_entry] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
606 		rxb->w0 = 0;				/* Clear valid flag */
607 		n_entry = (n_entry + 1) & RX_RING_MASK;	/* Update erpir */
608 
609 		/* Now go on to the next ring entry.  */
610 		rx_entry = (rx_entry + 1) & RX_RING_MASK;
611 		skb = ip->rx_skbs[rx_entry];
612 		rxb = (struct ioc3_erxbuf *)(skb->data - RX_OFFSET);
613 		w0 = be32_to_cpu(rxb->w0);
614 	}
615 	writel((n_entry << 3) | ERPIR_ARM, &ip->regs->erpir);
616 	ip->rx_pi = n_entry;
617 	ip->rx_ci = rx_entry;
618 }
619 
620 static inline void ioc3_tx(struct net_device *dev)
621 {
622 	struct ioc3_private *ip = netdev_priv(dev);
623 	struct ioc3_ethregs *regs = ip->regs;
624 	unsigned long packets, bytes;
625 	int tx_entry, o_entry;
626 	struct sk_buff *skb;
627 	u32 etcir;
628 
629 	spin_lock(&ip->ioc3_lock);
630 	etcir = readl(&regs->etcir);
631 
632 	tx_entry = (etcir >> 7) & TX_RING_MASK;
633 	o_entry = ip->tx_ci;
634 	packets = 0;
635 	bytes = 0;
636 
637 	while (o_entry != tx_entry) {
638 		packets++;
639 		skb = ip->tx_skbs[o_entry];
640 		bytes += skb->len;
641 		dev_consume_skb_irq(skb);
642 		ip->tx_skbs[o_entry] = NULL;
643 
644 		o_entry = (o_entry + 1) & TX_RING_MASK;	/* Next */
645 
646 		etcir = readl(&regs->etcir);		/* More pkts sent?  */
647 		tx_entry = (etcir >> 7) & TX_RING_MASK;
648 	}
649 
650 	dev->stats.tx_packets += packets;
651 	dev->stats.tx_bytes += bytes;
652 	ip->txqlen -= packets;
653 
654 	if (netif_queue_stopped(dev) && ip->txqlen < TX_RING_ENTRIES)
655 		netif_wake_queue(dev);
656 
657 	ip->tx_ci = o_entry;
658 	spin_unlock(&ip->ioc3_lock);
659 }
660 
661 /* Deal with fatal IOC3 errors.  This condition might be caused by a hard or
662  * software problems, so we should try to recover
663  * more gracefully if this ever happens.  In theory we might be flooded
664  * with such error interrupts if something really goes wrong, so we might
665  * also consider to take the interface down.
666  */
667 static void ioc3_error(struct net_device *dev, u32 eisr)
668 {
669 	struct ioc3_private *ip = netdev_priv(dev);
670 
671 	spin_lock(&ip->ioc3_lock);
672 
673 	if (eisr & EISR_RXOFLO)
674 		net_err_ratelimited("%s: RX overflow.\n", dev->name);
675 	if (eisr & EISR_RXBUFOFLO)
676 		net_err_ratelimited("%s: RX buffer overflow.\n", dev->name);
677 	if (eisr & EISR_RXMEMERR)
678 		net_err_ratelimited("%s: RX PCI error.\n", dev->name);
679 	if (eisr & EISR_RXPARERR)
680 		net_err_ratelimited("%s: RX SSRAM parity error.\n", dev->name);
681 	if (eisr & EISR_TXBUFUFLO)
682 		net_err_ratelimited("%s: TX buffer underflow.\n", dev->name);
683 	if (eisr & EISR_TXMEMERR)
684 		net_err_ratelimited("%s: TX PCI error.\n", dev->name);
685 
686 	ioc3_stop(ip);
687 	ioc3_free_rx_bufs(ip);
688 	ioc3_clean_tx_ring(ip);
689 
690 	ioc3_init(dev);
691 	if (ioc3_alloc_rx_bufs(dev)) {
692 		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
693 		spin_unlock(&ip->ioc3_lock);
694 		return;
695 	}
696 	ioc3_start(ip);
697 	ioc3_mii_init(ip);
698 
699 	netif_wake_queue(dev);
700 
701 	spin_unlock(&ip->ioc3_lock);
702 }
703 
704 /* The interrupt handler does all of the Rx thread work and cleans up
705  * after the Tx thread.
706  */
707 static irqreturn_t ioc3_interrupt(int irq, void *dev_id)
708 {
709 	struct ioc3_private *ip = netdev_priv(dev_id);
710 	struct ioc3_ethregs *regs = ip->regs;
711 	u32 eisr;
712 
713 	eisr = readl(&regs->eisr);
714 	writel(eisr, &regs->eisr);
715 	readl(&regs->eisr);				/* Flush */
716 
717 	if (eisr & (EISR_RXOFLO | EISR_RXBUFOFLO | EISR_RXMEMERR |
718 		    EISR_RXPARERR | EISR_TXBUFUFLO | EISR_TXMEMERR))
719 		ioc3_error(dev_id, eisr);
720 	if (eisr & EISR_RXTIMERINT)
721 		ioc3_rx(dev_id);
722 	if (eisr & EISR_TXEXPLICIT)
723 		ioc3_tx(dev_id);
724 
725 	return IRQ_HANDLED;
726 }
727 
728 static inline void ioc3_setup_duplex(struct ioc3_private *ip)
729 {
730 	struct ioc3_ethregs *regs = ip->regs;
731 
732 	spin_lock_irq(&ip->ioc3_lock);
733 
734 	if (ip->mii.full_duplex) {
735 		writel(ETCSR_FD, &regs->etcsr);
736 		ip->emcr |= EMCR_DUPLEX;
737 	} else {
738 		writel(ETCSR_HD, &regs->etcsr);
739 		ip->emcr &= ~EMCR_DUPLEX;
740 	}
741 	writel(ip->emcr, &regs->emcr);
742 
743 	spin_unlock_irq(&ip->ioc3_lock);
744 }
745 
746 static void ioc3_timer(struct timer_list *t)
747 {
748 	struct ioc3_private *ip = from_timer(ip, t, ioc3_timer);
749 
750 	/* Print the link status if it has changed */
751 	mii_check_media(&ip->mii, 1, 0);
752 	ioc3_setup_duplex(ip);
753 
754 	ip->ioc3_timer.expires = jiffies + ((12 * HZ) / 10); /* 1.2s */
755 	add_timer(&ip->ioc3_timer);
756 }
757 
758 /* Try to find a PHY.  There is no apparent relation between the MII addresses
759  * in the SGI documentation and what we find in reality, so we simply probe
760  * for the PHY.  It seems IOC3 PHYs usually live on address 31.  One of my
761  * onboard IOC3s has the special oddity that probing doesn't seem to find it
762  * yet the interface seems to work fine, so if probing fails we for now will
763  * simply default to PHY 31 instead of bailing out.
764  */
765 static int ioc3_mii_init(struct ioc3_private *ip)
766 {
767 	int ioc3_phy_workaround = 1;
768 	int i, found = 0, res = 0;
769 	u16 word;
770 
771 	for (i = 0; i < 32; i++) {
772 		word = ioc3_mdio_read(ip->dev, i, MII_PHYSID1);
773 
774 		if (word != 0xffff && word != 0x0000) {
775 			found = 1;
776 			break;			/* Found a PHY		*/
777 		}
778 	}
779 
780 	if (!found) {
781 		if (ioc3_phy_workaround) {
782 			i = 31;
783 		} else {
784 			ip->mii.phy_id = -1;
785 			res = -ENODEV;
786 			goto out;
787 		}
788 	}
789 
790 	ip->mii.phy_id = i;
791 
792 out:
793 	return res;
794 }
795 
796 static void ioc3_mii_start(struct ioc3_private *ip)
797 {
798 	ip->ioc3_timer.expires = jiffies + (12 * HZ) / 10;  /* 1.2 sec. */
799 	add_timer(&ip->ioc3_timer);
800 }
801 
802 static inline void ioc3_tx_unmap(struct ioc3_private *ip, int entry)
803 {
804 	struct ioc3_etxd *desc;
805 	u32 cmd, bufcnt, len;
806 
807 	desc = &ip->txr[entry];
808 	cmd = be32_to_cpu(desc->cmd);
809 	bufcnt = be32_to_cpu(desc->bufcnt);
810 	if (cmd & ETXD_B1V) {
811 		len = (bufcnt & ETXD_B1CNT_MASK) >> ETXD_B1CNT_SHIFT;
812 		dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p1),
813 				 len, DMA_TO_DEVICE);
814 	}
815 	if (cmd & ETXD_B2V) {
816 		len = (bufcnt & ETXD_B2CNT_MASK) >> ETXD_B2CNT_SHIFT;
817 		dma_unmap_single(ip->dma_dev, be64_to_cpu(desc->p2),
818 				 len, DMA_TO_DEVICE);
819 	}
820 }
821 
822 static inline void ioc3_clean_tx_ring(struct ioc3_private *ip)
823 {
824 	struct sk_buff *skb;
825 	int i;
826 
827 	for (i = 0; i < TX_RING_ENTRIES; i++) {
828 		skb = ip->tx_skbs[i];
829 		if (skb) {
830 			ioc3_tx_unmap(ip, i);
831 			ip->tx_skbs[i] = NULL;
832 			dev_kfree_skb_any(skb);
833 		}
834 		ip->txr[i].cmd = 0;
835 	}
836 	ip->tx_pi = 0;
837 	ip->tx_ci = 0;
838 }
839 
840 static void ioc3_free_rx_bufs(struct ioc3_private *ip)
841 {
842 	int rx_entry, n_entry;
843 	struct sk_buff *skb;
844 
845 	n_entry = ip->rx_ci;
846 	rx_entry = ip->rx_pi;
847 
848 	while (n_entry != rx_entry) {
849 		skb = ip->rx_skbs[n_entry];
850 		if (skb) {
851 			dma_unmap_single(ip->dma_dev,
852 					 be64_to_cpu(ip->rxr[n_entry]),
853 					 RX_BUF_SIZE, DMA_FROM_DEVICE);
854 			dev_kfree_skb_any(skb);
855 		}
856 		n_entry = (n_entry + 1) & RX_RING_MASK;
857 	}
858 }
859 
860 static int ioc3_alloc_rx_bufs(struct net_device *dev)
861 {
862 	struct ioc3_private *ip = netdev_priv(dev);
863 	struct ioc3_erxbuf *rxb;
864 	dma_addr_t d;
865 	int i;
866 
867 	/* Now the rx buffers.  The RX ring may be larger but
868 	 * we only allocate 16 buffers for now.  Need to tune
869 	 * this for performance and memory later.
870 	 */
871 	for (i = 0; i < RX_BUFFS; i++) {
872 		if (ioc3_alloc_skb(ip, &ip->rx_skbs[i], &rxb, &d))
873 			return -ENOMEM;
874 
875 		rxb->w0 = 0;	/* Clear valid flag */
876 		ip->rxr[i] = cpu_to_be64(ioc3_map(d, PCI64_ATTR_BAR));
877 	}
878 	ip->rx_ci = 0;
879 	ip->rx_pi = RX_BUFFS;
880 
881 	return 0;
882 }
883 
884 static inline void ioc3_ssram_disc(struct ioc3_private *ip)
885 {
886 	struct ioc3_ethregs *regs = ip->regs;
887 	u32 *ssram0 = &ip->ssram[0x0000];
888 	u32 *ssram1 = &ip->ssram[0x4000];
889 	u32 pattern = 0x5555;
890 
891 	/* Assume the larger size SSRAM and enable parity checking */
892 	writel(readl(&regs->emcr) | (EMCR_BUFSIZ | EMCR_RAMPAR), &regs->emcr);
893 	readl(&regs->emcr); /* Flush */
894 
895 	writel(pattern, ssram0);
896 	writel(~pattern & IOC3_SSRAM_DM, ssram1);
897 
898 	if ((readl(ssram0) & IOC3_SSRAM_DM) != pattern ||
899 	    (readl(ssram1) & IOC3_SSRAM_DM) != (~pattern & IOC3_SSRAM_DM)) {
900 		/* set ssram size to 64 KB */
901 		ip->emcr |= EMCR_RAMPAR;
902 		writel(readl(&regs->emcr) & ~EMCR_BUFSIZ, &regs->emcr);
903 	} else {
904 		ip->emcr |= EMCR_BUFSIZ | EMCR_RAMPAR;
905 	}
906 }
907 
908 static void ioc3_init(struct net_device *dev)
909 {
910 	struct ioc3_private *ip = netdev_priv(dev);
911 	struct ioc3_ethregs *regs = ip->regs;
912 
913 	del_timer_sync(&ip->ioc3_timer);	/* Kill if running	*/
914 
915 	writel(EMCR_RST, &regs->emcr);		/* Reset		*/
916 	readl(&regs->emcr);			/* Flush WB		*/
917 	udelay(4);				/* Give it time ...	*/
918 	writel(0, &regs->emcr);
919 	readl(&regs->emcr);
920 
921 	/* Misc registers  */
922 	writel(ERBAR_VAL, &regs->erbar);
923 	readl(&regs->etcdc);			/* Clear on read */
924 	writel(15, &regs->ercsr);		/* RX low watermark  */
925 	writel(0, &regs->ertr);			/* Interrupt immediately */
926 	__ioc3_set_mac_address(dev);
927 	writel(ip->ehar_h, &regs->ehar_h);
928 	writel(ip->ehar_l, &regs->ehar_l);
929 	writel(42, &regs->ersr);		/* XXX should be random */
930 }
931 
932 static void ioc3_start(struct ioc3_private *ip)
933 {
934 	struct ioc3_ethregs *regs = ip->regs;
935 	unsigned long ring;
936 
937 	/* Now the rx ring base, consume & produce registers.  */
938 	ring = ioc3_map(ip->rxr_dma, PCI64_ATTR_PREC);
939 	writel(ring >> 32, &regs->erbr_h);
940 	writel(ring & 0xffffffff, &regs->erbr_l);
941 	writel(ip->rx_ci << 3, &regs->ercir);
942 	writel((ip->rx_pi << 3) | ERPIR_ARM, &regs->erpir);
943 
944 	ring = ioc3_map(ip->txr_dma, PCI64_ATTR_PREC);
945 
946 	ip->txqlen = 0;					/* nothing queued  */
947 
948 	/* Now the tx ring base, consume & produce registers.  */
949 	writel(ring >> 32, &regs->etbr_h);
950 	writel(ring & 0xffffffff, &regs->etbr_l);
951 	writel(ip->tx_pi << 7, &regs->etpir);
952 	writel(ip->tx_ci << 7, &regs->etcir);
953 	readl(&regs->etcir);				/* Flush */
954 
955 	ip->emcr |= ((RX_OFFSET / 2) << EMCR_RXOFF_SHIFT) | EMCR_TXDMAEN |
956 		    EMCR_TXEN | EMCR_RXDMAEN | EMCR_RXEN | EMCR_PADEN;
957 	writel(ip->emcr, &regs->emcr);
958 	writel(EISR_RXTIMERINT | EISR_RXOFLO | EISR_RXBUFOFLO |
959 	       EISR_RXMEMERR | EISR_RXPARERR | EISR_TXBUFUFLO |
960 	       EISR_TXEXPLICIT | EISR_TXMEMERR, &regs->eier);
961 	readl(&regs->eier);
962 }
963 
964 static inline void ioc3_stop(struct ioc3_private *ip)
965 {
966 	struct ioc3_ethregs *regs = ip->regs;
967 
968 	writel(0, &regs->emcr);			/* Shutup */
969 	writel(0, &regs->eier);			/* Disable interrupts */
970 	readl(&regs->eier);			/* Flush */
971 }
972 
973 static int ioc3_open(struct net_device *dev)
974 {
975 	struct ioc3_private *ip = netdev_priv(dev);
976 
977 	if (request_irq(dev->irq, ioc3_interrupt, IRQF_SHARED, ioc3_str, dev)) {
978 		netdev_err(dev, "Can't get irq %d\n", dev->irq);
979 
980 		return -EAGAIN;
981 	}
982 
983 	ip->ehar_h = 0;
984 	ip->ehar_l = 0;
985 
986 	ioc3_init(dev);
987 	if (ioc3_alloc_rx_bufs(dev)) {
988 		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
989 		return -ENOMEM;
990 	}
991 	ioc3_start(ip);
992 	ioc3_mii_start(ip);
993 
994 	netif_start_queue(dev);
995 	return 0;
996 }
997 
998 static int ioc3_close(struct net_device *dev)
999 {
1000 	struct ioc3_private *ip = netdev_priv(dev);
1001 
1002 	del_timer_sync(&ip->ioc3_timer);
1003 
1004 	netif_stop_queue(dev);
1005 
1006 	ioc3_stop(ip);
1007 	free_irq(dev->irq, dev);
1008 
1009 	ioc3_free_rx_bufs(ip);
1010 	ioc3_clean_tx_ring(ip);
1011 
1012 	return 0;
1013 }
1014 
1015 /* MENET cards have four IOC3 chips, which are attached to two sets of
1016  * PCI slot resources each: the primary connections are on slots
1017  * 0..3 and the secondaries are on 4..7
1018  *
1019  * All four ethernets are brought out to connectors; six serial ports
1020  * (a pair from each of the first three IOC3s) are brought out to
1021  * MiniDINs; all other subdevices are left swinging in the wind, leave
1022  * them disabled.
1023  */
1024 
1025 static int ioc3_adjacent_is_ioc3(struct pci_dev *pdev, int slot)
1026 {
1027 	struct pci_dev *dev = pci_get_slot(pdev->bus, PCI_DEVFN(slot, 0));
1028 	int ret = 0;
1029 
1030 	if (dev) {
1031 		if (dev->vendor == PCI_VENDOR_ID_SGI &&
1032 		    dev->device == PCI_DEVICE_ID_SGI_IOC3)
1033 			ret = 1;
1034 		pci_dev_put(dev);
1035 	}
1036 
1037 	return ret;
1038 }
1039 
1040 static int ioc3_is_menet(struct pci_dev *pdev)
1041 {
1042 	return !pdev->bus->parent &&
1043 	       ioc3_adjacent_is_ioc3(pdev, 0) &&
1044 	       ioc3_adjacent_is_ioc3(pdev, 1) &&
1045 	       ioc3_adjacent_is_ioc3(pdev, 2);
1046 }
1047 
1048 #ifdef CONFIG_SERIAL_8250
1049 /* Note about serial ports and consoles:
1050  * For console output, everyone uses the IOC3 UARTA (offset 0x178)
1051  * connected to the master node (look in ip27_setup_console() and
1052  * ip27prom_console_write()).
1053  *
1054  * For serial (/dev/ttyS0 etc), we can not have hardcoded serial port
1055  * addresses on a partitioned machine. Since we currently use the ioc3
1056  * serial ports, we use dynamic serial port discovery that the serial.c
1057  * driver uses for pci/pnp ports (there is an entry for the SGI ioc3
1058  * boards in pci_boards[]). Unfortunately, UARTA's pio address is greater
1059  * than UARTB's, although UARTA on o200s has traditionally been known as
1060  * port 0. So, we just use one serial port from each ioc3 (since the
1061  * serial driver adds addresses to get to higher ports).
1062  *
1063  * The first one to do a register_console becomes the preferred console
1064  * (if there is no kernel command line console= directive). /dev/console
1065  * (ie 5, 1) is then "aliased" into the device number returned by the
1066  * "device" routine referred to in this console structure
1067  * (ip27prom_console_dev).
1068  *
1069  * Also look in ip27-pci.c:pci_fixup_ioc3() for some comments on working
1070  * around ioc3 oddities in this respect.
1071  *
1072  * The IOC3 serials use a 22MHz clock rate with an additional divider which
1073  * can be programmed in the SCR register if the DLAB bit is set.
1074  *
1075  * Register to interrupt zero because we share the interrupt with
1076  * the serial driver which we don't properly support yet.
1077  *
1078  * Can't use UPF_IOREMAP as the whole of IOC3 resources have already been
1079  * registered.
1080  */
1081 static void ioc3_8250_register(struct ioc3_uartregs __iomem *uart)
1082 {
1083 #define COSMISC_CONSTANT 6
1084 
1085 	struct uart_8250_port port = {
1086 		.port = {
1087 			.irq		= 0,
1088 			.flags		= UPF_SKIP_TEST | UPF_BOOT_AUTOCONF,
1089 			.iotype		= UPIO_MEM,
1090 			.regshift	= 0,
1091 			.uartclk	= (22000000 << 1) / COSMISC_CONSTANT,
1092 
1093 			.membase	= (unsigned char __iomem *)uart,
1094 			.mapbase	= (unsigned long)uart,
1095 		}
1096 	};
1097 	unsigned char lcr;
1098 
1099 	lcr = readb(&uart->iu_lcr);
1100 	writeb(lcr | UART_LCR_DLAB, &uart->iu_lcr);
1101 	writeb(COSMISC_CONSTANT, &uart->iu_scr);
1102 	writeb(lcr, &uart->iu_lcr);
1103 	readb(&uart->iu_lcr);
1104 	serial8250_register_8250_port(&port);
1105 }
1106 
1107 static void ioc3_serial_probe(struct pci_dev *pdev, struct ioc3 *ioc3)
1108 {
1109 	u32 sio_iec;
1110 
1111 	/* We need to recognice and treat the fourth MENET serial as it
1112 	 * does not have an SuperIO chip attached to it, therefore attempting
1113 	 * to access it will result in bus errors.  We call something an
1114 	 * MENET if PCI slot 0, 1, 2 and 3 of a master PCI bus all have an IOC3
1115 	 * in it.  This is paranoid but we want to avoid blowing up on a
1116 	 * showhorn PCI box that happens to have 4 IOC3 cards in it so it's
1117 	 * not paranoid enough ...
1118 	 */
1119 	if (ioc3_is_menet(pdev) && PCI_SLOT(pdev->devfn) == 3)
1120 		return;
1121 
1122 	/* Switch IOC3 to PIO mode.  It probably already was but let's be
1123 	 * paranoid
1124 	 */
1125 	writel(GPCR_UARTA_MODESEL | GPCR_UARTB_MODESEL, &ioc3->gpcr_s);
1126 	readl(&ioc3->gpcr_s);
1127 	writel(0, &ioc3->gppr[6]);
1128 	readl(&ioc3->gppr[6]);
1129 	writel(0, &ioc3->gppr[7]);
1130 	readl(&ioc3->gppr[7]);
1131 	writel(readl(&ioc3->port_a.sscr) & ~SSCR_DMA_EN, &ioc3->port_a.sscr);
1132 	readl(&ioc3->port_a.sscr);
1133 	writel(readl(&ioc3->port_b.sscr) & ~SSCR_DMA_EN, &ioc3->port_b.sscr);
1134 	readl(&ioc3->port_b.sscr);
1135 	/* Disable all SA/B interrupts except for SA/B_INT in SIO_IEC. */
1136 	sio_iec = readl(&ioc3->sio_iec);
1137 	sio_iec &= ~(SIO_IR_SA_TX_MT | SIO_IR_SA_RX_FULL |
1138 		     SIO_IR_SA_RX_HIGH | SIO_IR_SA_RX_TIMER |
1139 		     SIO_IR_SA_DELTA_DCD | SIO_IR_SA_DELTA_CTS |
1140 		     SIO_IR_SA_TX_EXPLICIT | SIO_IR_SA_MEMERR);
1141 	sio_iec |= SIO_IR_SA_INT;
1142 	sio_iec &= ~(SIO_IR_SB_TX_MT | SIO_IR_SB_RX_FULL |
1143 		     SIO_IR_SB_RX_HIGH | SIO_IR_SB_RX_TIMER |
1144 		     SIO_IR_SB_DELTA_DCD | SIO_IR_SB_DELTA_CTS |
1145 		     SIO_IR_SB_TX_EXPLICIT | SIO_IR_SB_MEMERR);
1146 	sio_iec |= SIO_IR_SB_INT;
1147 	writel(sio_iec, &ioc3->sio_iec);
1148 	writel(0, &ioc3->port_a.sscr);
1149 	writel(0, &ioc3->port_b.sscr);
1150 
1151 	ioc3_8250_register(&ioc3->sregs.uarta);
1152 	ioc3_8250_register(&ioc3->sregs.uartb);
1153 }
1154 #endif
1155 
1156 static const struct net_device_ops ioc3_netdev_ops = {
1157 	.ndo_open		= ioc3_open,
1158 	.ndo_stop		= ioc3_close,
1159 	.ndo_start_xmit		= ioc3_start_xmit,
1160 	.ndo_tx_timeout		= ioc3_timeout,
1161 	.ndo_get_stats		= ioc3_get_stats,
1162 	.ndo_set_rx_mode	= ioc3_set_multicast_list,
1163 	.ndo_do_ioctl		= ioc3_ioctl,
1164 	.ndo_validate_addr	= eth_validate_addr,
1165 	.ndo_set_mac_address	= ioc3_set_mac_address,
1166 };
1167 
1168 static int ioc3_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1169 {
1170 	unsigned int sw_physid1, sw_physid2;
1171 	struct net_device *dev = NULL;
1172 	struct ioc3_private *ip;
1173 	struct ioc3 *ioc3;
1174 	unsigned long ioc3_base, ioc3_size;
1175 	u32 vendor, model, rev;
1176 	int err, pci_using_dac;
1177 
1178 	/* Configure DMA attributes. */
1179 	err = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
1180 	if (!err) {
1181 		pci_using_dac = 1;
1182 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
1183 		if (err < 0) {
1184 			pr_err("%s: Unable to obtain 64 bit DMA for consistent allocations\n",
1185 			       pci_name(pdev));
1186 			goto out;
1187 		}
1188 	} else {
1189 		err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1190 		if (err) {
1191 			pr_err("%s: No usable DMA configuration, aborting.\n",
1192 			       pci_name(pdev));
1193 			goto out;
1194 		}
1195 		pci_using_dac = 0;
1196 	}
1197 
1198 	if (pci_enable_device(pdev))
1199 		return -ENODEV;
1200 
1201 	dev = alloc_etherdev(sizeof(struct ioc3_private));
1202 	if (!dev) {
1203 		err = -ENOMEM;
1204 		goto out_disable;
1205 	}
1206 
1207 	if (pci_using_dac)
1208 		dev->features |= NETIF_F_HIGHDMA;
1209 
1210 	err = pci_request_regions(pdev, "ioc3");
1211 	if (err)
1212 		goto out_free;
1213 
1214 	SET_NETDEV_DEV(dev, &pdev->dev);
1215 
1216 	ip = netdev_priv(dev);
1217 	ip->dev = dev;
1218 	ip->dma_dev = &pdev->dev;
1219 
1220 	dev->irq = pdev->irq;
1221 
1222 	ioc3_base = pci_resource_start(pdev, 0);
1223 	ioc3_size = pci_resource_len(pdev, 0);
1224 	ioc3 = (struct ioc3 *)ioremap(ioc3_base, ioc3_size);
1225 	if (!ioc3) {
1226 		pr_err("ioc3eth(%s): ioremap failed, goodbye.\n",
1227 		       pci_name(pdev));
1228 		err = -ENOMEM;
1229 		goto out_res;
1230 	}
1231 	ip->regs = &ioc3->eth;
1232 	ip->ssram = ioc3->ssram;
1233 	ip->all_regs = ioc3;
1234 
1235 #ifdef CONFIG_SERIAL_8250
1236 	ioc3_serial_probe(pdev, ioc3);
1237 #endif
1238 
1239 	spin_lock_init(&ip->ioc3_lock);
1240 	timer_setup(&ip->ioc3_timer, ioc3_timer, 0);
1241 
1242 	ioc3_stop(ip);
1243 
1244 	/* Allocate rx ring.  4kb = 512 entries, must be 4kb aligned */
1245 	ip->rxr = dma_direct_alloc_pages(ip->dma_dev, RX_RING_SIZE,
1246 					 &ip->rxr_dma, GFP_ATOMIC, 0);
1247 	if (!ip->rxr) {
1248 		pr_err("ioc3-eth: rx ring allocation failed\n");
1249 		err = -ENOMEM;
1250 		goto out_stop;
1251 	}
1252 
1253 	/* Allocate tx rings.  16kb = 128 bufs, must be 16kb aligned  */
1254 	ip->txr = dma_direct_alloc_pages(ip->dma_dev, TX_RING_SIZE,
1255 					 &ip->txr_dma,
1256 					 GFP_KERNEL | __GFP_ZERO, 0);
1257 	if (!ip->txr) {
1258 		pr_err("ioc3-eth: tx ring allocation failed\n");
1259 		err = -ENOMEM;
1260 		goto out_stop;
1261 	}
1262 
1263 	ioc3_init(dev);
1264 
1265 	ip->pdev = pdev;
1266 
1267 	ip->mii.phy_id_mask = 0x1f;
1268 	ip->mii.reg_num_mask = 0x1f;
1269 	ip->mii.dev = dev;
1270 	ip->mii.mdio_read = ioc3_mdio_read;
1271 	ip->mii.mdio_write = ioc3_mdio_write;
1272 
1273 	ioc3_mii_init(ip);
1274 
1275 	if (ip->mii.phy_id == -1) {
1276 		pr_err("ioc3-eth(%s): Didn't find a PHY, goodbye.\n",
1277 		       pci_name(pdev));
1278 		err = -ENODEV;
1279 		goto out_stop;
1280 	}
1281 
1282 	ioc3_mii_start(ip);
1283 	ioc3_ssram_disc(ip);
1284 	ioc3_get_eaddr(ip);
1285 
1286 	/* The IOC3-specific entries in the device structure. */
1287 	dev->watchdog_timeo	= 5 * HZ;
1288 	dev->netdev_ops		= &ioc3_netdev_ops;
1289 	dev->ethtool_ops	= &ioc3_ethtool_ops;
1290 	dev->hw_features	= NETIF_F_IP_CSUM | NETIF_F_RXCSUM;
1291 	dev->features		= NETIF_F_IP_CSUM;
1292 
1293 	sw_physid1 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID1);
1294 	sw_physid2 = ioc3_mdio_read(dev, ip->mii.phy_id, MII_PHYSID2);
1295 
1296 	err = register_netdev(dev);
1297 	if (err)
1298 		goto out_stop;
1299 
1300 	mii_check_media(&ip->mii, 1, 1);
1301 	ioc3_setup_duplex(ip);
1302 
1303 	vendor = (sw_physid1 << 12) | (sw_physid2 >> 4);
1304 	model  = (sw_physid2 >> 4) & 0x3f;
1305 	rev    = sw_physid2 & 0xf;
1306 	netdev_info(dev, "Using PHY %d, vendor 0x%x, model %d, rev %d.\n",
1307 		    ip->mii.phy_id, vendor, model, rev);
1308 	netdev_info(dev, "IOC3 SSRAM has %d kbyte.\n",
1309 		    ip->emcr & EMCR_BUFSIZ ? 128 : 64);
1310 
1311 	return 0;
1312 
1313 out_stop:
1314 	del_timer_sync(&ip->ioc3_timer);
1315 	if (ip->rxr)
1316 		dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1317 				      ip->rxr_dma, 0);
1318 	if (ip->txr)
1319 		dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1320 				      ip->txr_dma, 0);
1321 out_res:
1322 	pci_release_regions(pdev);
1323 out_free:
1324 	free_netdev(dev);
1325 out_disable:
1326 	/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1327 	 * such a weird device ...
1328 	 */
1329 out:
1330 	return err;
1331 }
1332 
1333 static void ioc3_remove_one(struct pci_dev *pdev)
1334 {
1335 	struct net_device *dev = pci_get_drvdata(pdev);
1336 	struct ioc3_private *ip = netdev_priv(dev);
1337 
1338 	dma_direct_free_pages(ip->dma_dev, RX_RING_SIZE, ip->rxr,
1339 			      ip->rxr_dma, 0);
1340 	dma_direct_free_pages(ip->dma_dev, TX_RING_SIZE, ip->txr,
1341 			      ip->txr_dma, 0);
1342 
1343 	unregister_netdev(dev);
1344 	del_timer_sync(&ip->ioc3_timer);
1345 
1346 	iounmap(ip->all_regs);
1347 	pci_release_regions(pdev);
1348 	free_netdev(dev);
1349 	/* We should call pci_disable_device(pdev); here if the IOC3 wasn't
1350 	 * such a weird device ...
1351 	 */
1352 }
1353 
1354 static const struct pci_device_id ioc3_pci_tbl[] = {
1355 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_IOC3, PCI_ANY_ID, PCI_ANY_ID },
1356 	{ 0 }
1357 };
1358 MODULE_DEVICE_TABLE(pci, ioc3_pci_tbl);
1359 
1360 static struct pci_driver ioc3_driver = {
1361 	.name		= "ioc3-eth",
1362 	.id_table	= ioc3_pci_tbl,
1363 	.probe		= ioc3_probe,
1364 	.remove		= ioc3_remove_one,
1365 };
1366 
1367 static netdev_tx_t ioc3_start_xmit(struct sk_buff *skb, struct net_device *dev)
1368 {
1369 	struct ioc3_private *ip = netdev_priv(dev);
1370 	struct ioc3_etxd *desc;
1371 	unsigned long data;
1372 	unsigned int len;
1373 	int produce;
1374 	u32 w0 = 0;
1375 
1376 	/* IOC3 has a fairly simple minded checksumming hardware which simply
1377 	 * adds up the 1's complement checksum for the entire packet and
1378 	 * inserts it at an offset which can be specified in the descriptor
1379 	 * into the transmit packet.  This means we have to compensate for the
1380 	 * MAC header which should not be summed and the TCP/UDP pseudo headers
1381 	 * manually.
1382 	 */
1383 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1384 		const struct iphdr *ih = ip_hdr(skb);
1385 		const int proto = ntohs(ih->protocol);
1386 		unsigned int csoff;
1387 		u32 csum, ehsum;
1388 		u16 *eh;
1389 
1390 		/* The MAC header.  skb->mac seem the logic approach
1391 		 * to find the MAC header - except it's a NULL pointer ...
1392 		 */
1393 		eh = (u16 *)skb->data;
1394 
1395 		/* Sum up dest addr, src addr and protocol  */
1396 		ehsum = eh[0] + eh[1] + eh[2] + eh[3] + eh[4] + eh[5] + eh[6];
1397 
1398 		/* Skip IP header; it's sum is always zero and was
1399 		 * already filled in by ip_output.c
1400 		 */
1401 		csum = csum_tcpudp_nofold(ih->saddr, ih->daddr,
1402 					  ih->tot_len - (ih->ihl << 2),
1403 					  proto, csum_fold(ehsum));
1404 
1405 		csum = (csum & 0xffff) + (csum >> 16);	/* Fold again */
1406 		csum = (csum & 0xffff) + (csum >> 16);
1407 
1408 		csoff = ETH_HLEN + (ih->ihl << 2);
1409 		if (proto == IPPROTO_UDP) {
1410 			csoff += offsetof(struct udphdr, check);
1411 			udp_hdr(skb)->check = csum;
1412 		}
1413 		if (proto == IPPROTO_TCP) {
1414 			csoff += offsetof(struct tcphdr, check);
1415 			tcp_hdr(skb)->check = csum;
1416 		}
1417 
1418 		w0 = ETXD_DOCHECKSUM | (csoff << ETXD_CHKOFF_SHIFT);
1419 	}
1420 
1421 	spin_lock_irq(&ip->ioc3_lock);
1422 
1423 	data = (unsigned long)skb->data;
1424 	len = skb->len;
1425 
1426 	produce = ip->tx_pi;
1427 	desc = &ip->txr[produce];
1428 
1429 	if (len <= 104) {
1430 		/* Short packet, let's copy it directly into the ring.  */
1431 		skb_copy_from_linear_data(skb, desc->data, skb->len);
1432 		if (len < ETH_ZLEN) {
1433 			/* Very short packet, pad with zeros at the end. */
1434 			memset(desc->data + len, 0, ETH_ZLEN - len);
1435 			len = ETH_ZLEN;
1436 		}
1437 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_D0V | w0);
1438 		desc->bufcnt = cpu_to_be32(len);
1439 	} else if ((data ^ (data + len - 1)) & 0x4000) {
1440 		unsigned long b2 = (data | 0x3fffUL) + 1UL;
1441 		unsigned long s1 = b2 - data;
1442 		unsigned long s2 = data + len - b2;
1443 		dma_addr_t d1, d2;
1444 
1445 		desc->cmd    = cpu_to_be32(len | ETXD_INTWHENDONE |
1446 					   ETXD_B1V | ETXD_B2V | w0);
1447 		desc->bufcnt = cpu_to_be32((s1 << ETXD_B1CNT_SHIFT) |
1448 					   (s2 << ETXD_B2CNT_SHIFT));
1449 		d1 = dma_map_single(ip->dma_dev, skb->data, s1, DMA_TO_DEVICE);
1450 		if (dma_mapping_error(ip->dma_dev, d1))
1451 			goto drop_packet;
1452 		d2 = dma_map_single(ip->dma_dev, (void *)b2, s1, DMA_TO_DEVICE);
1453 		if (dma_mapping_error(ip->dma_dev, d2)) {
1454 			dma_unmap_single(ip->dma_dev, d1, len, DMA_TO_DEVICE);
1455 			goto drop_packet;
1456 		}
1457 		desc->p1     = cpu_to_be64(ioc3_map(d1, PCI64_ATTR_PREF));
1458 		desc->p2     = cpu_to_be64(ioc3_map(d2, PCI64_ATTR_PREF));
1459 	} else {
1460 		dma_addr_t d;
1461 
1462 		/* Normal sized packet that doesn't cross a page boundary. */
1463 		desc->cmd = cpu_to_be32(len | ETXD_INTWHENDONE | ETXD_B1V | w0);
1464 		desc->bufcnt = cpu_to_be32(len << ETXD_B1CNT_SHIFT);
1465 		d = dma_map_single(ip->dma_dev, skb->data, len, DMA_TO_DEVICE);
1466 		if (dma_mapping_error(ip->dma_dev, d))
1467 			goto drop_packet;
1468 		desc->p1     = cpu_to_be64(ioc3_map(d, PCI64_ATTR_PREF));
1469 	}
1470 
1471 	mb(); /* make sure all descriptor changes are visible */
1472 
1473 	ip->tx_skbs[produce] = skb;			/* Remember skb */
1474 	produce = (produce + 1) & TX_RING_MASK;
1475 	ip->tx_pi = produce;
1476 	writel(produce << 7, &ip->regs->etpir);		/* Fire ... */
1477 
1478 	ip->txqlen++;
1479 
1480 	if (ip->txqlen >= (TX_RING_ENTRIES - 1))
1481 		netif_stop_queue(dev);
1482 
1483 	spin_unlock_irq(&ip->ioc3_lock);
1484 
1485 	return NETDEV_TX_OK;
1486 
1487 drop_packet:
1488 	dev_kfree_skb_any(skb);
1489 	dev->stats.tx_dropped++;
1490 
1491 	spin_unlock_irq(&ip->ioc3_lock);
1492 
1493 	return NETDEV_TX_OK;
1494 }
1495 
1496 static void ioc3_timeout(struct net_device *dev)
1497 {
1498 	struct ioc3_private *ip = netdev_priv(dev);
1499 
1500 	netdev_err(dev, "transmit timed out, resetting\n");
1501 
1502 	spin_lock_irq(&ip->ioc3_lock);
1503 
1504 	ioc3_stop(ip);
1505 	ioc3_free_rx_bufs(ip);
1506 	ioc3_clean_tx_ring(ip);
1507 
1508 	ioc3_init(dev);
1509 	if (ioc3_alloc_rx_bufs(dev)) {
1510 		netdev_err(dev, "%s: rx buffer allocation failed\n", __func__);
1511 		spin_unlock_irq(&ip->ioc3_lock);
1512 		return;
1513 	}
1514 	ioc3_start(ip);
1515 	ioc3_mii_init(ip);
1516 	ioc3_mii_start(ip);
1517 
1518 	spin_unlock_irq(&ip->ioc3_lock);
1519 
1520 	netif_wake_queue(dev);
1521 }
1522 
1523 /* Given a multicast ethernet address, this routine calculates the
1524  * address's bit index in the logical address filter mask
1525  */
1526 static inline unsigned int ioc3_hash(const unsigned char *addr)
1527 {
1528 	unsigned int temp = 0;
1529 	int bits;
1530 	u32 crc;
1531 
1532 	crc = ether_crc_le(ETH_ALEN, addr);
1533 
1534 	crc &= 0x3f;    /* bit reverse lowest 6 bits for hash index */
1535 	for (bits = 6; --bits >= 0; ) {
1536 		temp <<= 1;
1537 		temp |= (crc & 0x1);
1538 		crc >>= 1;
1539 	}
1540 
1541 	return temp;
1542 }
1543 
1544 static void ioc3_get_drvinfo(struct net_device *dev,
1545 			     struct ethtool_drvinfo *info)
1546 {
1547 	struct ioc3_private *ip = netdev_priv(dev);
1548 
1549 	strlcpy(info->driver, IOC3_NAME, sizeof(info->driver));
1550 	strlcpy(info->version, IOC3_VERSION, sizeof(info->version));
1551 	strlcpy(info->bus_info, pci_name(ip->pdev), sizeof(info->bus_info));
1552 }
1553 
1554 static int ioc3_get_link_ksettings(struct net_device *dev,
1555 				   struct ethtool_link_ksettings *cmd)
1556 {
1557 	struct ioc3_private *ip = netdev_priv(dev);
1558 
1559 	spin_lock_irq(&ip->ioc3_lock);
1560 	mii_ethtool_get_link_ksettings(&ip->mii, cmd);
1561 	spin_unlock_irq(&ip->ioc3_lock);
1562 
1563 	return 0;
1564 }
1565 
1566 static int ioc3_set_link_ksettings(struct net_device *dev,
1567 				   const struct ethtool_link_ksettings *cmd)
1568 {
1569 	struct ioc3_private *ip = netdev_priv(dev);
1570 	int rc;
1571 
1572 	spin_lock_irq(&ip->ioc3_lock);
1573 	rc = mii_ethtool_set_link_ksettings(&ip->mii, cmd);
1574 	spin_unlock_irq(&ip->ioc3_lock);
1575 
1576 	return rc;
1577 }
1578 
1579 static int ioc3_nway_reset(struct net_device *dev)
1580 {
1581 	struct ioc3_private *ip = netdev_priv(dev);
1582 	int rc;
1583 
1584 	spin_lock_irq(&ip->ioc3_lock);
1585 	rc = mii_nway_restart(&ip->mii);
1586 	spin_unlock_irq(&ip->ioc3_lock);
1587 
1588 	return rc;
1589 }
1590 
1591 static u32 ioc3_get_link(struct net_device *dev)
1592 {
1593 	struct ioc3_private *ip = netdev_priv(dev);
1594 	int rc;
1595 
1596 	spin_lock_irq(&ip->ioc3_lock);
1597 	rc = mii_link_ok(&ip->mii);
1598 	spin_unlock_irq(&ip->ioc3_lock);
1599 
1600 	return rc;
1601 }
1602 
1603 static const struct ethtool_ops ioc3_ethtool_ops = {
1604 	.get_drvinfo		= ioc3_get_drvinfo,
1605 	.nway_reset		= ioc3_nway_reset,
1606 	.get_link		= ioc3_get_link,
1607 	.get_link_ksettings	= ioc3_get_link_ksettings,
1608 	.set_link_ksettings	= ioc3_set_link_ksettings,
1609 };
1610 
1611 static int ioc3_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1612 {
1613 	struct ioc3_private *ip = netdev_priv(dev);
1614 	int rc;
1615 
1616 	spin_lock_irq(&ip->ioc3_lock);
1617 	rc = generic_mii_ioctl(&ip->mii, if_mii(rq), cmd, NULL);
1618 	spin_unlock_irq(&ip->ioc3_lock);
1619 
1620 	return rc;
1621 }
1622 
1623 static void ioc3_set_multicast_list(struct net_device *dev)
1624 {
1625 	struct ioc3_private *ip = netdev_priv(dev);
1626 	struct ioc3_ethregs *regs = ip->regs;
1627 	struct netdev_hw_addr *ha;
1628 	u64 ehar = 0;
1629 
1630 	spin_lock_irq(&ip->ioc3_lock);
1631 
1632 	if (dev->flags & IFF_PROMISC) {			/* Set promiscuous.  */
1633 		ip->emcr |= EMCR_PROMISC;
1634 		writel(ip->emcr, &regs->emcr);
1635 		readl(&regs->emcr);
1636 	} else {
1637 		ip->emcr &= ~EMCR_PROMISC;
1638 		writel(ip->emcr, &regs->emcr);		/* Clear promiscuous. */
1639 		readl(&regs->emcr);
1640 
1641 		if ((dev->flags & IFF_ALLMULTI) ||
1642 		    (netdev_mc_count(dev) > 64)) {
1643 			/* Too many for hashing to make sense or we want all
1644 			 * multicast packets anyway,  so skip computing all the
1645 			 * hashes and just accept all packets.
1646 			 */
1647 			ip->ehar_h = 0xffffffff;
1648 			ip->ehar_l = 0xffffffff;
1649 		} else {
1650 			netdev_for_each_mc_addr(ha, dev) {
1651 				ehar |= (1UL << ioc3_hash(ha->addr));
1652 			}
1653 			ip->ehar_h = ehar >> 32;
1654 			ip->ehar_l = ehar & 0xffffffff;
1655 		}
1656 		writel(ip->ehar_h, &regs->ehar_h);
1657 		writel(ip->ehar_l, &regs->ehar_l);
1658 	}
1659 
1660 	spin_unlock_irq(&ip->ioc3_lock);
1661 }
1662 
1663 module_pci_driver(ioc3_driver);
1664 MODULE_AUTHOR("Ralf Baechle <ralf@linux-mips.org>");
1665 MODULE_DESCRIPTION("SGI IOC3 Ethernet driver");
1666 MODULE_LICENSE("GPL");
1667