xref: /openbmc/linux/drivers/net/ethernet/sfc/nic_common.h (revision d73e77153b4db65fccb49e8a6849c496e6f2e9f2)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  * Copyright 2019-2020 Xilinx Inc.
7  */
8 
9 #ifndef EFX_NIC_COMMON_H
10 #define EFX_NIC_COMMON_H
11 
12 #include "net_driver.h"
13 #include "efx_common.h"
14 #include "mcdi.h"
15 #include "ptp.h"
16 
17 enum {
18 	/* Revisions 0-3 were Falcon A0, A1, B0 and Siena respectively.
19 	 * They are not supported by this driver but these revision numbers
20 	 * form part of the ethtool API for register dumping.
21 	 */
22 	EFX_REV_HUNT_A0 = 4,
23 	EFX_REV_EF100 = 5,
24 };
25 
26 static inline int efx_nic_rev(struct efx_nic *efx)
27 {
28 	return efx->type->revision;
29 }
30 
31 /* Read the current event from the event queue */
32 static inline efx_qword_t *efx_event(struct efx_channel *channel,
33 				     unsigned int index)
34 {
35 	return ((efx_qword_t *)(channel->eventq.addr)) +
36 		(index & channel->eventq_mask);
37 }
38 
39 /* See if an event is present
40  *
41  * We check both the high and low dword of the event for all ones.  We
42  * wrote all ones when we cleared the event, and no valid event can
43  * have all ones in either its high or low dwords.  This approach is
44  * robust against reordering.
45  *
46  * Note that using a single 64-bit comparison is incorrect; even
47  * though the CPU read will be atomic, the DMA write may not be.
48  */
49 static inline int efx_event_present(efx_qword_t *event)
50 {
51 	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
52 		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
53 }
54 
55 /* Returns a pointer to the specified transmit descriptor in the TX
56  * descriptor queue belonging to the specified channel.
57  */
58 static inline efx_qword_t *
59 efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
60 {
61 	return ((efx_qword_t *)(tx_queue->txd.addr)) + index;
62 }
63 
64 /* Report whether this TX queue would be empty for the given write_count.
65  * May return false negative.
66  */
67 static inline bool efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue, unsigned int write_count)
68 {
69 	unsigned int empty_read_count = READ_ONCE(tx_queue->empty_read_count);
70 
71 	if (empty_read_count == 0)
72 		return false;
73 
74 	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
75 }
76 
77 int efx_enqueue_skb_tso(struct efx_tx_queue *tx_queue, struct sk_buff *skb,
78 			bool *data_mapped);
79 
80 /* Decide whether to push a TX descriptor to the NIC vs merely writing
81  * the doorbell.  This can reduce latency when we are adding a single
82  * descriptor to an empty queue, but is otherwise pointless.  Further,
83  * Falcon and Siena have hardware bugs (SF bug 33851) that may be
84  * triggered if we don't check this.
85  * We use the write_count used for the last doorbell push, to get the
86  * NIC's view of the tx queue.
87  */
88 static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
89 					    unsigned int write_count)
90 {
91 	bool was_empty = efx_nic_tx_is_empty(tx_queue, write_count);
92 
93 	tx_queue->empty_read_count = 0;
94 	return was_empty && tx_queue->write_count - write_count == 1;
95 }
96 
97 /* Returns a pointer to the specified descriptor in the RX descriptor queue */
98 static inline efx_qword_t *
99 efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
100 {
101 	return ((efx_qword_t *)(rx_queue->rxd.addr)) + index;
102 }
103 
104 /* Alignment of PCIe DMA boundaries (4KB) */
105 #define EFX_PAGE_SIZE	4096
106 /* Size and alignment of buffer table entries (same) */
107 #define EFX_BUF_SIZE	EFX_PAGE_SIZE
108 
109 /* NIC-generic software stats */
110 enum {
111 	GENERIC_STAT_rx_noskb_drops,
112 	GENERIC_STAT_rx_nodesc_trunc,
113 	GENERIC_STAT_COUNT
114 };
115 
116 #define EFX_GENERIC_SW_STAT(ext_name)				\
117 	[GENERIC_STAT_ ## ext_name] = { #ext_name, 0, 0 }
118 
119 /* TX data path */
120 static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
121 {
122 	return tx_queue->efx->type->tx_probe(tx_queue);
123 }
124 static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
125 {
126 	tx_queue->efx->type->tx_init(tx_queue);
127 }
128 static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
129 {
130 	if (tx_queue->efx->type->tx_remove)
131 		tx_queue->efx->type->tx_remove(tx_queue);
132 }
133 static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
134 {
135 	tx_queue->efx->type->tx_write(tx_queue);
136 }
137 
138 /* RX data path */
139 static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
140 {
141 	return rx_queue->efx->type->rx_probe(rx_queue);
142 }
143 static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
144 {
145 	rx_queue->efx->type->rx_init(rx_queue);
146 }
147 static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
148 {
149 	rx_queue->efx->type->rx_remove(rx_queue);
150 }
151 static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
152 {
153 	rx_queue->efx->type->rx_write(rx_queue);
154 }
155 static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
156 {
157 	rx_queue->efx->type->rx_defer_refill(rx_queue);
158 }
159 
160 /* Event data path */
161 static inline int efx_nic_probe_eventq(struct efx_channel *channel)
162 {
163 	return channel->efx->type->ev_probe(channel);
164 }
165 static inline int efx_nic_init_eventq(struct efx_channel *channel)
166 {
167 	return channel->efx->type->ev_init(channel);
168 }
169 static inline void efx_nic_fini_eventq(struct efx_channel *channel)
170 {
171 	channel->efx->type->ev_fini(channel);
172 }
173 static inline void efx_nic_remove_eventq(struct efx_channel *channel)
174 {
175 	channel->efx->type->ev_remove(channel);
176 }
177 static inline int
178 efx_nic_process_eventq(struct efx_channel *channel, int quota)
179 {
180 	return channel->efx->type->ev_process(channel, quota);
181 }
182 static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
183 {
184 	channel->efx->type->ev_read_ack(channel);
185 }
186 
187 void efx_nic_event_test_start(struct efx_channel *channel);
188 
189 bool efx_nic_event_present(struct efx_channel *channel);
190 
191 static inline void efx_sensor_event(struct efx_nic *efx, efx_qword_t *ev)
192 {
193 	if (efx->type->sensor_event)
194 		efx->type->sensor_event(efx, ev);
195 }
196 
197 static inline unsigned int efx_rx_recycle_ring_size(const struct efx_nic *efx)
198 {
199 	return efx->type->rx_recycle_ring_size(efx);
200 }
201 
202 /* Some statistics are computed as A - B where A and B each increase
203  * linearly with some hardware counter(s) and the counters are read
204  * asynchronously.  If the counters contributing to B are always read
205  * after those contributing to A, the computed value may be lower than
206  * the true value by some variable amount, and may decrease between
207  * subsequent computations.
208  *
209  * We should never allow statistics to decrease or to exceed the true
210  * value.  Since the computed value will never be greater than the
211  * true value, we can achieve this by only storing the computed value
212  * when it increases.
213  */
214 static inline void efx_update_diff_stat(u64 *stat, u64 diff)
215 {
216 	if ((s64)(diff - *stat) > 0)
217 		*stat = diff;
218 }
219 
220 /* Interrupts */
221 int efx_nic_init_interrupt(struct efx_nic *efx);
222 int efx_nic_irq_test_start(struct efx_nic *efx);
223 void efx_nic_fini_interrupt(struct efx_nic *efx);
224 
225 static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
226 {
227 	return READ_ONCE(channel->event_test_cpu);
228 }
229 static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
230 {
231 	return READ_ONCE(efx->last_irq_cpu);
232 }
233 
234 /* Global Resources */
235 int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
236 			 unsigned int len, gfp_t gfp_flags);
237 void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
238 
239 size_t efx_nic_get_regs_len(struct efx_nic *efx);
240 void efx_nic_get_regs(struct efx_nic *efx, void *buf);
241 
242 #define EFX_MC_STATS_GENERATION_INVALID ((__force __le64)(-1))
243 
244 size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
245 			      const unsigned long *mask, u8 *names);
246 int efx_nic_copy_stats(struct efx_nic *efx, __le64 *dest);
247 void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
248 			  const unsigned long *mask, u64 *stats,
249 			  const void *dma_buf, bool accumulate);
250 void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
251 static inline size_t efx_nic_update_stats_atomic(struct efx_nic *efx, u64 *full_stats,
252 						 struct rtnl_link_stats64 *core_stats)
253 {
254 	if (efx->type->update_stats_atomic)
255 		return efx->type->update_stats_atomic(efx, full_stats, core_stats);
256 	return efx->type->update_stats(efx, full_stats, core_stats);
257 }
258 
259 #define EFX_MAX_FLUSH_TIME 5000
260 
261 #endif /* EFX_NIC_COMMON_H */
262