xref: /openbmc/linux/drivers/net/ethernet/sfc/net_driver.h (revision bdaedca74d6293b6ac643a8ebe8231b52bf1171b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 /* Common definitions for all Efx net driver code */
9 
10 #ifndef EFX_NET_DRIVER_H
11 #define EFX_NET_DRIVER_H
12 
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/mtd/mtd.h>
28 #include <net/busy_poll.h>
29 #include <net/xdp.h>
30 
31 #include "enum.h"
32 #include "bitfield.h"
33 #include "filter.h"
34 
35 /**************************************************************************
36  *
37  * Build definitions
38  *
39  **************************************************************************/
40 
41 #ifdef DEBUG
42 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
43 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
44 #else
45 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
46 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
47 #endif
48 
49 /**************************************************************************
50  *
51  * Efx data structures
52  *
53  **************************************************************************/
54 
55 #define EFX_MAX_CHANNELS 32U
56 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
57 #define EFX_EXTRA_CHANNEL_IOV	0
58 #define EFX_EXTRA_CHANNEL_PTP	1
59 #define EFX_MAX_EXTRA_CHANNELS	2U
60 
61 /* Checksum generation is a per-queue option in hardware, so each
62  * queue visible to the networking core is backed by two hardware TX
63  * queues. */
64 #define EFX_MAX_TX_TC		2
65 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
66 #define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
67 #define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
68 #define EFX_TXQ_TYPE_HIGHPRI	4	/* High-priority (for TC) */
69 #define EFX_TXQ_TYPES		8
70 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
71 #define EFX_MAX_TXQ_PER_CHANNEL	4
72 #define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
73 
74 /* Maximum possible MTU the driver supports */
75 #define EFX_MAX_MTU (9 * 1024)
76 
77 /* Minimum MTU, from RFC791 (IP) */
78 #define EFX_MIN_MTU 68
79 
80 /* Maximum total header length for TSOv2 */
81 #define EFX_TSO2_MAX_HDRLEN	208
82 
83 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
84  * and should be a multiple of the cache line size.
85  */
86 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
87 
88 /* If possible, we should ensure cache line alignment at start and end
89  * of every buffer.  Otherwise, we just need to ensure 4-byte
90  * alignment of the network header.
91  */
92 #if NET_IP_ALIGN == 0
93 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
94 #else
95 #define EFX_RX_BUF_ALIGNMENT	4
96 #endif
97 
98 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
99  * still fit two standard MTU size packets into a single 4K page.
100  */
101 #define EFX_XDP_HEADROOM	128
102 #define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
103 
104 /* Forward declare Precision Time Protocol (PTP) support structure. */
105 struct efx_ptp_data;
106 struct hwtstamp_config;
107 
108 struct efx_self_tests;
109 
110 /**
111  * struct efx_buffer - A general-purpose DMA buffer
112  * @addr: host base address of the buffer
113  * @dma_addr: DMA base address of the buffer
114  * @len: Buffer length, in bytes
115  *
116  * The NIC uses these buffers for its interrupt status registers and
117  * MAC stats dumps.
118  */
119 struct efx_buffer {
120 	void *addr;
121 	dma_addr_t dma_addr;
122 	unsigned int len;
123 };
124 
125 /**
126  * struct efx_special_buffer - DMA buffer entered into buffer table
127  * @buf: Standard &struct efx_buffer
128  * @index: Buffer index within controller;s buffer table
129  * @entries: Number of buffer table entries
130  *
131  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
132  * Event and descriptor rings are addressed via one or more buffer
133  * table entries (and so can be physically non-contiguous, although we
134  * currently do not take advantage of that).  On Falcon and Siena we
135  * have to take care of allocating and initialising the entries
136  * ourselves.  On later hardware this is managed by the firmware and
137  * @index and @entries are left as 0.
138  */
139 struct efx_special_buffer {
140 	struct efx_buffer buf;
141 	unsigned int index;
142 	unsigned int entries;
143 };
144 
145 /**
146  * struct efx_tx_buffer - buffer state for a TX descriptor
147  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
148  *	freed when descriptor completes
149  * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
150  *	member is the associated buffer to drop a page reference on.
151  * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
152  *	descriptor.
153  * @dma_addr: DMA address of the fragment.
154  * @flags: Flags for allocation and DMA mapping type
155  * @len: Length of this fragment.
156  *	This field is zero when the queue slot is empty.
157  * @unmap_len: Length of this fragment to unmap
158  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
159  * Only valid if @unmap_len != 0.
160  */
161 struct efx_tx_buffer {
162 	union {
163 		const struct sk_buff *skb;
164 		struct xdp_frame *xdpf;
165 	};
166 	union {
167 		efx_qword_t option;    /* EF10 */
168 		dma_addr_t dma_addr;
169 	};
170 	unsigned short flags;
171 	unsigned short len;
172 	unsigned short unmap_len;
173 	unsigned short dma_offset;
174 };
175 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
176 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
177 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
178 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
179 #define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
180 #define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
181 
182 /**
183  * struct efx_tx_queue - An Efx TX queue
184  *
185  * This is a ring buffer of TX fragments.
186  * Since the TX completion path always executes on the same
187  * CPU and the xmit path can operate on different CPUs,
188  * performance is increased by ensuring that the completion
189  * path and the xmit path operate on different cache lines.
190  * This is particularly important if the xmit path is always
191  * executing on one CPU which is different from the completion
192  * path.  There is also a cache line for members which are
193  * read but not written on the fast path.
194  *
195  * @efx: The associated Efx NIC
196  * @queue: DMA queue number
197  * @label: Label for TX completion events.
198  *	Is our index within @channel->tx_queue array.
199  * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
200  * @tso_version: Version of TSO in use for this queue.
201  * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
202  * @channel: The associated channel
203  * @core_txq: The networking core TX queue structure
204  * @buffer: The software buffer ring
205  * @cb_page: Array of pages of copy buffers.  Carved up according to
206  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
207  * @txd: The hardware descriptor ring
208  * @ptr_mask: The size of the ring minus 1.
209  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
210  *	Size of the region is efx_piobuf_size.
211  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
212  * @initialised: Has hardware queue been initialised?
213  * @timestamping: Is timestamping enabled for this channel?
214  * @xdp_tx: Is this an XDP tx queue?
215  * @read_count: Current read pointer.
216  *	This is the number of buffers that have been removed from both rings.
217  * @old_write_count: The value of @write_count when last checked.
218  *	This is here for performance reasons.  The xmit path will
219  *	only get the up-to-date value of @write_count if this
220  *	variable indicates that the queue is empty.  This is to
221  *	avoid cache-line ping-pong between the xmit path and the
222  *	completion path.
223  * @merge_events: Number of TX merged completion events
224  * @completed_timestamp_major: Top part of the most recent tx timestamp.
225  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
226  * @insert_count: Current insert pointer
227  *	This is the number of buffers that have been added to the
228  *	software ring.
229  * @write_count: Current write pointer
230  *	This is the number of buffers that have been added to the
231  *	hardware ring.
232  * @packet_write_count: Completable write pointer
233  *	This is the write pointer of the last packet written.
234  *	Normally this will equal @write_count, but as option descriptors
235  *	don't produce completion events, they won't update this.
236  *	Filled in iff @efx->type->option_descriptors; only used for PIO.
237  *	Thus, this is written and used on EF10, and neither on farch.
238  * @old_read_count: The value of read_count when last checked.
239  *	This is here for performance reasons.  The xmit path will
240  *	only get the up-to-date value of read_count if this
241  *	variable indicates that the queue is full.  This is to
242  *	avoid cache-line ping-pong between the xmit path and the
243  *	completion path.
244  * @tso_bursts: Number of times TSO xmit invoked by kernel
245  * @tso_long_headers: Number of packets with headers too long for standard
246  *	blocks
247  * @tso_packets: Number of packets via the TSO xmit path
248  * @tso_fallbacks: Number of times TSO fallback used
249  * @pushes: Number of times the TX push feature has been used
250  * @pio_packets: Number of times the TX PIO feature has been used
251  * @xmit_pending: Are any packets waiting to be pushed to the NIC
252  * @cb_packets: Number of times the TX copybreak feature has been used
253  * @notify_count: Count of notified descriptors to the NIC
254  * @empty_read_count: If the completion path has seen the queue as empty
255  *	and the transmission path has not yet checked this, the value of
256  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
257  */
258 struct efx_tx_queue {
259 	/* Members which don't change on the fast path */
260 	struct efx_nic *efx ____cacheline_aligned_in_smp;
261 	unsigned int queue;
262 	unsigned int label;
263 	unsigned int type;
264 	unsigned int tso_version;
265 	bool tso_encap;
266 	struct efx_channel *channel;
267 	struct netdev_queue *core_txq;
268 	struct efx_tx_buffer *buffer;
269 	struct efx_buffer *cb_page;
270 	struct efx_special_buffer txd;
271 	unsigned int ptr_mask;
272 	void __iomem *piobuf;
273 	unsigned int piobuf_offset;
274 	bool initialised;
275 	bool timestamping;
276 	bool xdp_tx;
277 
278 	/* Members used mainly on the completion path */
279 	unsigned int read_count ____cacheline_aligned_in_smp;
280 	unsigned int old_write_count;
281 	unsigned int merge_events;
282 	unsigned int bytes_compl;
283 	unsigned int pkts_compl;
284 	u32 completed_timestamp_major;
285 	u32 completed_timestamp_minor;
286 
287 	/* Members used only on the xmit path */
288 	unsigned int insert_count ____cacheline_aligned_in_smp;
289 	unsigned int write_count;
290 	unsigned int packet_write_count;
291 	unsigned int old_read_count;
292 	unsigned int tso_bursts;
293 	unsigned int tso_long_headers;
294 	unsigned int tso_packets;
295 	unsigned int tso_fallbacks;
296 	unsigned int pushes;
297 	unsigned int pio_packets;
298 	bool xmit_pending;
299 	unsigned int cb_packets;
300 	unsigned int notify_count;
301 	/* Statistics to supplement MAC stats */
302 	unsigned long tx_packets;
303 
304 	/* Members shared between paths and sometimes updated */
305 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
306 #define EFX_EMPTY_COUNT_VALID 0x80000000
307 	atomic_t flush_outstanding;
308 };
309 
310 #define EFX_TX_CB_ORDER	7
311 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
312 
313 /**
314  * struct efx_rx_buffer - An Efx RX data buffer
315  * @dma_addr: DMA base address of the buffer
316  * @page: The associated page buffer.
317  *	Will be %NULL if the buffer slot is currently free.
318  * @page_offset: If pending: offset in @page of DMA base address.
319  *	If completed: offset in @page of Ethernet header.
320  * @len: If pending: length for DMA descriptor.
321  *	If completed: received length, excluding hash prefix.
322  * @flags: Flags for buffer and packet state.  These are only set on the
323  *	first buffer of a scattered packet.
324  */
325 struct efx_rx_buffer {
326 	dma_addr_t dma_addr;
327 	struct page *page;
328 	u16 page_offset;
329 	u16 len;
330 	u16 flags;
331 };
332 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
333 #define EFX_RX_PKT_CSUMMED	0x0002
334 #define EFX_RX_PKT_DISCARD	0x0004
335 #define EFX_RX_PKT_TCP		0x0040
336 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
337 #define EFX_RX_PKT_CSUM_LEVEL	0x0200
338 
339 /**
340  * struct efx_rx_page_state - Page-based rx buffer state
341  *
342  * Inserted at the start of every page allocated for receive buffers.
343  * Used to facilitate sharing dma mappings between recycled rx buffers
344  * and those passed up to the kernel.
345  *
346  * @dma_addr: The dma address of this page.
347  */
348 struct efx_rx_page_state {
349 	dma_addr_t dma_addr;
350 
351 	unsigned int __pad[] ____cacheline_aligned;
352 };
353 
354 /**
355  * struct efx_rx_queue - An Efx RX queue
356  * @efx: The associated Efx NIC
357  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
358  *	is associated with a real RX queue.
359  * @buffer: The software buffer ring
360  * @rxd: The hardware descriptor ring
361  * @ptr_mask: The size of the ring minus 1.
362  * @refill_enabled: Enable refill whenever fill level is low
363  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
364  *	@rxq_flush_pending.
365  * @added_count: Number of buffers added to the receive queue.
366  * @notified_count: Number of buffers given to NIC (<= @added_count).
367  * @removed_count: Number of buffers removed from the receive queue.
368  * @scatter_n: Used by NIC specific receive code.
369  * @scatter_len: Used by NIC specific receive code.
370  * @page_ring: The ring to store DMA mapped pages for reuse.
371  * @page_add: Counter to calculate the write pointer for the recycle ring.
372  * @page_remove: Counter to calculate the read pointer for the recycle ring.
373  * @page_recycle_count: The number of pages that have been recycled.
374  * @page_recycle_failed: The number of pages that couldn't be recycled because
375  *      the kernel still held a reference to them.
376  * @page_recycle_full: The number of pages that were released because the
377  *      recycle ring was full.
378  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
379  * @max_fill: RX descriptor maximum fill level (<= ring size)
380  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
381  *	(<= @max_fill)
382  * @min_fill: RX descriptor minimum non-zero fill level.
383  *	This records the minimum fill level observed when a ring
384  *	refill was triggered.
385  * @recycle_count: RX buffer recycle counter.
386  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
387  * @xdp_rxq_info: XDP specific RX queue information.
388  * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
389  */
390 struct efx_rx_queue {
391 	struct efx_nic *efx;
392 	int core_index;
393 	struct efx_rx_buffer *buffer;
394 	struct efx_special_buffer rxd;
395 	unsigned int ptr_mask;
396 	bool refill_enabled;
397 	bool flush_pending;
398 
399 	unsigned int added_count;
400 	unsigned int notified_count;
401 	unsigned int removed_count;
402 	unsigned int scatter_n;
403 	unsigned int scatter_len;
404 	struct page **page_ring;
405 	unsigned int page_add;
406 	unsigned int page_remove;
407 	unsigned int page_recycle_count;
408 	unsigned int page_recycle_failed;
409 	unsigned int page_recycle_full;
410 	unsigned int page_ptr_mask;
411 	unsigned int max_fill;
412 	unsigned int fast_fill_trigger;
413 	unsigned int min_fill;
414 	unsigned int min_overfill;
415 	unsigned int recycle_count;
416 	struct timer_list slow_fill;
417 	unsigned int slow_fill_count;
418 	/* Statistics to supplement MAC stats */
419 	unsigned long rx_packets;
420 	struct xdp_rxq_info xdp_rxq_info;
421 	bool xdp_rxq_info_valid;
422 };
423 
424 enum efx_sync_events_state {
425 	SYNC_EVENTS_DISABLED = 0,
426 	SYNC_EVENTS_QUIESCENT,
427 	SYNC_EVENTS_REQUESTED,
428 	SYNC_EVENTS_VALID,
429 };
430 
431 /**
432  * struct efx_channel - An Efx channel
433  *
434  * A channel comprises an event queue, at least one TX queue, at least
435  * one RX queue, and an associated tasklet for processing the event
436  * queue.
437  *
438  * @efx: Associated Efx NIC
439  * @channel: Channel instance number
440  * @type: Channel type definition
441  * @eventq_init: Event queue initialised flag
442  * @enabled: Channel enabled indicator
443  * @irq: IRQ number (MSI and MSI-X only)
444  * @irq_moderation_us: IRQ moderation value (in microseconds)
445  * @napi_dev: Net device used with NAPI
446  * @napi_str: NAPI control structure
447  * @state: state for NAPI vs busy polling
448  * @state_lock: lock protecting @state
449  * @eventq: Event queue buffer
450  * @eventq_mask: Event queue pointer mask
451  * @eventq_read_ptr: Event queue read pointer
452  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
453  * @irq_count: Number of IRQs since last adaptive moderation decision
454  * @irq_mod_score: IRQ moderation score
455  * @rfs_filter_count: number of accelerated RFS filters currently in place;
456  *	equals the count of @rps_flow_id slots filled
457  * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
458  *	were checked for expiry
459  * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
460  * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
461  * @n_rfs_failed: number of failed accelerated RFS filter insertions
462  * @filter_work: Work item for efx_filter_rfs_expire()
463  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
464  *      indexed by filter ID
465  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
466  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
467  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
468  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
469  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
470  * @n_rx_overlength: Count of RX_OVERLENGTH errors
471  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
472  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
473  *	lack of descriptors
474  * @n_rx_merge_events: Number of RX merged completion events
475  * @n_rx_merge_packets: Number of RX packets completed by merged events
476  * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
477  * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
478  * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
479  * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
480  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
481  *	__efx_rx_packet(), or zero if there is none
482  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
483  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
484  * @rx_list: list of SKBs from current RX, awaiting processing
485  * @rx_queue: RX queue for this channel
486  * @tx_queue: TX queues for this channel
487  * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
488  * @sync_events_state: Current state of sync events on this channel
489  * @sync_timestamp_major: Major part of the last ptp sync event
490  * @sync_timestamp_minor: Minor part of the last ptp sync event
491  */
492 struct efx_channel {
493 	struct efx_nic *efx;
494 	int channel;
495 	const struct efx_channel_type *type;
496 	bool eventq_init;
497 	bool enabled;
498 	int irq;
499 	unsigned int irq_moderation_us;
500 	struct net_device *napi_dev;
501 	struct napi_struct napi_str;
502 #ifdef CONFIG_NET_RX_BUSY_POLL
503 	unsigned long busy_poll_state;
504 #endif
505 	struct efx_special_buffer eventq;
506 	unsigned int eventq_mask;
507 	unsigned int eventq_read_ptr;
508 	int event_test_cpu;
509 
510 	unsigned int irq_count;
511 	unsigned int irq_mod_score;
512 #ifdef CONFIG_RFS_ACCEL
513 	unsigned int rfs_filter_count;
514 	unsigned int rfs_last_expiry;
515 	unsigned int rfs_expire_index;
516 	unsigned int n_rfs_succeeded;
517 	unsigned int n_rfs_failed;
518 	struct delayed_work filter_work;
519 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
520 	u32 *rps_flow_id;
521 #endif
522 
523 	unsigned int n_rx_tobe_disc;
524 	unsigned int n_rx_ip_hdr_chksum_err;
525 	unsigned int n_rx_tcp_udp_chksum_err;
526 	unsigned int n_rx_outer_ip_hdr_chksum_err;
527 	unsigned int n_rx_outer_tcp_udp_chksum_err;
528 	unsigned int n_rx_inner_ip_hdr_chksum_err;
529 	unsigned int n_rx_inner_tcp_udp_chksum_err;
530 	unsigned int n_rx_eth_crc_err;
531 	unsigned int n_rx_mcast_mismatch;
532 	unsigned int n_rx_frm_trunc;
533 	unsigned int n_rx_overlength;
534 	unsigned int n_skbuff_leaks;
535 	unsigned int n_rx_nodesc_trunc;
536 	unsigned int n_rx_merge_events;
537 	unsigned int n_rx_merge_packets;
538 	unsigned int n_rx_xdp_drops;
539 	unsigned int n_rx_xdp_bad_drops;
540 	unsigned int n_rx_xdp_tx;
541 	unsigned int n_rx_xdp_redirect;
542 
543 	unsigned int rx_pkt_n_frags;
544 	unsigned int rx_pkt_index;
545 
546 	struct list_head *rx_list;
547 
548 	struct efx_rx_queue rx_queue;
549 	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
550 	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
551 
552 	enum efx_sync_events_state sync_events_state;
553 	u32 sync_timestamp_major;
554 	u32 sync_timestamp_minor;
555 };
556 
557 /**
558  * struct efx_msi_context - Context for each MSI
559  * @efx: The associated NIC
560  * @index: Index of the channel/IRQ
561  * @name: Name of the channel/IRQ
562  *
563  * Unlike &struct efx_channel, this is never reallocated and is always
564  * safe for the IRQ handler to access.
565  */
566 struct efx_msi_context {
567 	struct efx_nic *efx;
568 	unsigned int index;
569 	char name[IFNAMSIZ + 6];
570 };
571 
572 /**
573  * struct efx_channel_type - distinguishes traffic and extra channels
574  * @handle_no_channel: Handle failure to allocate an extra channel
575  * @pre_probe: Set up extra state prior to initialisation
576  * @post_remove: Tear down extra state after finalisation, if allocated.
577  *	May be called on channels that have not been probed.
578  * @get_name: Generate the channel's name (used for its IRQ handler)
579  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
580  *	reallocation is not supported.
581  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
582  * @want_txqs: Determine whether this channel should have TX queues
583  *	created.  If %NULL, TX queues are not created.
584  * @keep_eventq: Flag for whether event queue should be kept initialised
585  *	while the device is stopped
586  * @want_pio: Flag for whether PIO buffers should be linked to this
587  *	channel's TX queues.
588  */
589 struct efx_channel_type {
590 	void (*handle_no_channel)(struct efx_nic *);
591 	int (*pre_probe)(struct efx_channel *);
592 	void (*post_remove)(struct efx_channel *);
593 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
594 	struct efx_channel *(*copy)(const struct efx_channel *);
595 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
596 	bool (*want_txqs)(struct efx_channel *);
597 	bool keep_eventq;
598 	bool want_pio;
599 };
600 
601 enum efx_led_mode {
602 	EFX_LED_OFF	= 0,
603 	EFX_LED_ON	= 1,
604 	EFX_LED_DEFAULT	= 2
605 };
606 
607 #define STRING_TABLE_LOOKUP(val, member) \
608 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
609 
610 extern const char *const efx_loopback_mode_names[];
611 extern const unsigned int efx_loopback_mode_max;
612 #define LOOPBACK_MODE(efx) \
613 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
614 
615 extern const char *const efx_reset_type_names[];
616 extern const unsigned int efx_reset_type_max;
617 #define RESET_TYPE(type) \
618 	STRING_TABLE_LOOKUP(type, efx_reset_type)
619 
620 enum efx_int_mode {
621 	/* Be careful if altering to correct macro below */
622 	EFX_INT_MODE_MSIX = 0,
623 	EFX_INT_MODE_MSI = 1,
624 	EFX_INT_MODE_LEGACY = 2,
625 	EFX_INT_MODE_MAX	/* Insert any new items before this */
626 };
627 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
628 
629 enum nic_state {
630 	STATE_UNINIT = 0,	/* device being probed/removed or is frozen */
631 	STATE_READY = 1,	/* hardware ready and netdev registered */
632 	STATE_DISABLED = 2,	/* device disabled due to hardware errors */
633 	STATE_RECOVERY = 3,	/* device recovering from PCI error */
634 };
635 
636 /* Forward declaration */
637 struct efx_nic;
638 
639 /* Pseudo bit-mask flow control field */
640 #define EFX_FC_RX	FLOW_CTRL_RX
641 #define EFX_FC_TX	FLOW_CTRL_TX
642 #define EFX_FC_AUTO	4
643 
644 /**
645  * struct efx_link_state - Current state of the link
646  * @up: Link is up
647  * @fd: Link is full-duplex
648  * @fc: Actual flow control flags
649  * @speed: Link speed (Mbps)
650  */
651 struct efx_link_state {
652 	bool up;
653 	bool fd;
654 	u8 fc;
655 	unsigned int speed;
656 };
657 
658 static inline bool efx_link_state_equal(const struct efx_link_state *left,
659 					const struct efx_link_state *right)
660 {
661 	return left->up == right->up && left->fd == right->fd &&
662 		left->fc == right->fc && left->speed == right->speed;
663 }
664 
665 /**
666  * enum efx_phy_mode - PHY operating mode flags
667  * @PHY_MODE_NORMAL: on and should pass traffic
668  * @PHY_MODE_TX_DISABLED: on with TX disabled
669  * @PHY_MODE_LOW_POWER: set to low power through MDIO
670  * @PHY_MODE_OFF: switched off through external control
671  * @PHY_MODE_SPECIAL: on but will not pass traffic
672  */
673 enum efx_phy_mode {
674 	PHY_MODE_NORMAL		= 0,
675 	PHY_MODE_TX_DISABLED	= 1,
676 	PHY_MODE_LOW_POWER	= 2,
677 	PHY_MODE_OFF		= 4,
678 	PHY_MODE_SPECIAL	= 8,
679 };
680 
681 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
682 {
683 	return !!(mode & ~PHY_MODE_TX_DISABLED);
684 }
685 
686 /**
687  * struct efx_hw_stat_desc - Description of a hardware statistic
688  * @name: Name of the statistic as visible through ethtool, or %NULL if
689  *	it should not be exposed
690  * @dma_width: Width in bits (0 for non-DMA statistics)
691  * @offset: Offset within stats (ignored for non-DMA statistics)
692  */
693 struct efx_hw_stat_desc {
694 	const char *name;
695 	u16 dma_width;
696 	u16 offset;
697 };
698 
699 /* Number of bits used in a multicast filter hash address */
700 #define EFX_MCAST_HASH_BITS 8
701 
702 /* Number of (single-bit) entries in a multicast filter hash */
703 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
704 
705 /* An Efx multicast filter hash */
706 union efx_multicast_hash {
707 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
708 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
709 };
710 
711 struct vfdi_status;
712 
713 /* The reserved RSS context value */
714 #define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
715 /**
716  * struct efx_rss_context - A user-defined RSS context for filtering
717  * @list: node of linked list on which this struct is stored
718  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
719  *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
720  *	For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
721  * @user_id: the rss_context ID exposed to userspace over ethtool.
722  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
723  * @rx_hash_key: Toeplitz hash key for this RSS context
724  * @indir_table: Indirection table for this RSS context
725  */
726 struct efx_rss_context {
727 	struct list_head list;
728 	u32 context_id;
729 	u32 user_id;
730 	bool rx_hash_udp_4tuple;
731 	u8 rx_hash_key[40];
732 	u32 rx_indir_table[128];
733 };
734 
735 #ifdef CONFIG_RFS_ACCEL
736 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
737  * is used to test if filter does or will exist.
738  */
739 #define EFX_ARFS_FILTER_ID_PENDING	-1
740 #define EFX_ARFS_FILTER_ID_ERROR	-2
741 #define EFX_ARFS_FILTER_ID_REMOVING	-3
742 /**
743  * struct efx_arfs_rule - record of an ARFS filter and its IDs
744  * @node: linkage into hash table
745  * @spec: details of the filter (used as key for hash table).  Use efx->type to
746  *	determine which member to use.
747  * @rxq_index: channel to which the filter will steer traffic.
748  * @arfs_id: filter ID which was returned to ARFS
749  * @filter_id: index in software filter table.  May be
750  *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
751  *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
752  *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
753  */
754 struct efx_arfs_rule {
755 	struct hlist_node node;
756 	struct efx_filter_spec spec;
757 	u16 rxq_index;
758 	u16 arfs_id;
759 	s32 filter_id;
760 };
761 
762 /* Size chosen so that the table is one page (4kB) */
763 #define EFX_ARFS_HASH_TABLE_SIZE	512
764 
765 /**
766  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
767  * @net_dev: Reference to the netdevice
768  * @spec: The filter to insert
769  * @work: Workitem for this request
770  * @rxq_index: Identifies the channel for which this request was made
771  * @flow_id: Identifies the kernel-side flow for which this request was made
772  */
773 struct efx_async_filter_insertion {
774 	struct net_device *net_dev;
775 	struct efx_filter_spec spec;
776 	struct work_struct work;
777 	u16 rxq_index;
778 	u32 flow_id;
779 };
780 
781 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
782 #define EFX_RPS_MAX_IN_FLIGHT	8
783 #endif /* CONFIG_RFS_ACCEL */
784 
785 /**
786  * struct efx_nic - an Efx NIC
787  * @name: Device name (net device name or bus id before net device registered)
788  * @pci_dev: The PCI device
789  * @node: List node for maintaning primary/secondary function lists
790  * @primary: &struct efx_nic instance for the primary function of this
791  *	controller.  May be the same structure, and may be %NULL if no
792  *	primary function is bound.  Serialised by rtnl_lock.
793  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
794  *	functions of the controller, if this is for the primary function.
795  *	Serialised by rtnl_lock.
796  * @type: Controller type attributes
797  * @legacy_irq: IRQ number
798  * @workqueue: Workqueue for port reconfigures and the HW monitor.
799  *	Work items do not hold and must not acquire RTNL.
800  * @workqueue_name: Name of workqueue
801  * @reset_work: Scheduled reset workitem
802  * @membase_phys: Memory BAR value as physical address
803  * @membase: Memory BAR value
804  * @vi_stride: step between per-VI registers / memory regions
805  * @interrupt_mode: Interrupt mode
806  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
807  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
808  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
809  * @irqs_hooked: Channel interrupts are hooked
810  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
811  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
812  * @msg_enable: Log message enable flags
813  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
814  * @reset_pending: Bitmask for pending resets
815  * @tx_queue: TX DMA queues
816  * @rx_queue: RX DMA queues
817  * @channel: Channels
818  * @msi_context: Context for each MSI
819  * @extra_channel_types: Types of extra (non-traffic) channels that
820  *	should be allocated for this NIC
821  * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
822  * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
823  * @rxq_entries: Size of receive queues requested by user.
824  * @txq_entries: Size of transmit queues requested by user.
825  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
826  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
827  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
828  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
829  * @sram_lim_qw: Qword address limit of SRAM
830  * @next_buffer_table: First available buffer table id
831  * @n_channels: Number of channels in use
832  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
833  * @n_tx_channels: Number of channels used for TX
834  * @n_extra_tx_channels: Number of extra channels with TX queues
835  * @tx_queues_per_channel: number of TX queues probed on each channel
836  * @n_xdp_channels: Number of channels used for XDP TX
837  * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
838  * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
839  * @rx_ip_align: RX DMA address offset to have IP header aligned in
840  *	in accordance with NET_IP_ALIGN
841  * @rx_dma_len: Current maximum RX DMA length
842  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
843  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
844  *	for use in sk_buff::truesize
845  * @rx_prefix_size: Size of RX prefix before packet data
846  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
847  *	(valid only if @rx_prefix_size != 0; always negative)
848  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
849  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
850  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
851  *	(valid only if channel->sync_timestamps_enabled; always negative)
852  * @rx_scatter: Scatter mode enabled for receives
853  * @rss_context: Main RSS context.  Its @list member is the head of the list of
854  *	RSS contexts created by user requests
855  * @rss_lock: Protects custom RSS context software state in @rss_context.list
856  * @vport_id: The function's vport ID, only relevant for PFs
857  * @int_error_count: Number of internal errors seen recently
858  * @int_error_expire: Time at which error count will be expired
859  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
860  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
861  *	acknowledge but do nothing else.
862  * @irq_status: Interrupt status buffer
863  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
864  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
865  * @selftest_work: Work item for asynchronous self-test
866  * @mtd_list: List of MTDs attached to the NIC
867  * @nic_data: Hardware dependent state
868  * @mcdi: Management-Controller-to-Driver Interface state
869  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
870  *	efx_monitor() and efx_reconfigure_port()
871  * @port_enabled: Port enabled indicator.
872  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
873  *	efx_mac_work() with kernel interfaces. Safe to read under any
874  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
875  *	be held to modify it.
876  * @port_initialized: Port initialized?
877  * @net_dev: Operating system network device. Consider holding the rtnl lock
878  * @fixed_features: Features which cannot be turned off
879  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
880  *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
881  * @stats_buffer: DMA buffer for statistics
882  * @phy_type: PHY type
883  * @phy_data: PHY private data (including PHY-specific stats)
884  * @mdio: PHY MDIO interface
885  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
886  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
887  * @link_advertising: Autonegotiation advertising flags
888  * @fec_config: Forward Error Correction configuration flags.  For bit positions
889  *	see &enum ethtool_fec_config_bits.
890  * @link_state: Current state of the link
891  * @n_link_state_changes: Number of times the link has changed state
892  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
893  *	Protected by @mac_lock.
894  * @multicast_hash: Multicast hash table for Falcon-arch.
895  *	Protected by @mac_lock.
896  * @wanted_fc: Wanted flow control flags
897  * @fc_disable: When non-zero flow control is disabled. Typically used to
898  *	ensure that network back pressure doesn't delay dma queue flushes.
899  *	Serialised by the rtnl lock.
900  * @mac_work: Work item for changing MAC promiscuity and multicast hash
901  * @loopback_mode: Loopback status
902  * @loopback_modes: Supported loopback mode bitmask
903  * @loopback_selftest: Offline self-test private state
904  * @xdp_prog: Current XDP programme for this interface
905  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
906  * @filter_state: Architecture-dependent filter table state
907  * @rps_mutex: Protects RPS state of all channels
908  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
909  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
910  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
911  *	@rps_next_id).
912  * @rps_hash_table: Mapping between ARFS filters and their various IDs
913  * @rps_next_id: next arfs_id for an ARFS filter
914  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
915  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
916  *	Decremented when the efx_flush_rx_queue() is called.
917  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
918  *	completed (either success or failure). Not used when MCDI is used to
919  *	flush receive queues.
920  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
921  * @vf_count: Number of VFs intended to be enabled.
922  * @vf_init_count: Number of VFs that have been fully initialised.
923  * @vi_scale: log2 number of vnics per VF.
924  * @ptp_data: PTP state data
925  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
926  * @vpd_sn: Serial number read from VPD
927  * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
928  *      xdp_rxq_info structures?
929  * @netdev_notifier: Netdevice notifier.
930  * @mem_bar: The BAR that is mapped into membase.
931  * @reg_base: Offset from the start of the bar to the function control window.
932  * @monitor_work: Hardware monitor workitem
933  * @biu_lock: BIU (bus interface unit) lock
934  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
935  *	field is used by efx_test_interrupts() to verify that an
936  *	interrupt has occurred.
937  * @stats_lock: Statistics update lock. Must be held when calling
938  *	efx_nic_type::{update,start,stop}_stats.
939  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
940  *
941  * This is stored in the private area of the &struct net_device.
942  */
943 struct efx_nic {
944 	/* The following fields should be written very rarely */
945 
946 	char name[IFNAMSIZ];
947 	struct list_head node;
948 	struct efx_nic *primary;
949 	struct list_head secondary_list;
950 	struct pci_dev *pci_dev;
951 	unsigned int port_num;
952 	const struct efx_nic_type *type;
953 	int legacy_irq;
954 	bool eeh_disabled_legacy_irq;
955 	struct workqueue_struct *workqueue;
956 	char workqueue_name[16];
957 	struct work_struct reset_work;
958 	resource_size_t membase_phys;
959 	void __iomem *membase;
960 
961 	unsigned int vi_stride;
962 
963 	enum efx_int_mode interrupt_mode;
964 	unsigned int timer_quantum_ns;
965 	unsigned int timer_max_ns;
966 	bool irq_rx_adaptive;
967 	bool irqs_hooked;
968 	unsigned int irq_mod_step_us;
969 	unsigned int irq_rx_moderation_us;
970 	u32 msg_enable;
971 
972 	enum nic_state state;
973 	unsigned long reset_pending;
974 
975 	struct efx_channel *channel[EFX_MAX_CHANNELS];
976 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
977 	const struct efx_channel_type *
978 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
979 
980 	unsigned int xdp_tx_queue_count;
981 	struct efx_tx_queue **xdp_tx_queues;
982 
983 	unsigned rxq_entries;
984 	unsigned txq_entries;
985 	unsigned int txq_stop_thresh;
986 	unsigned int txq_wake_thresh;
987 
988 	unsigned tx_dc_base;
989 	unsigned rx_dc_base;
990 	unsigned sram_lim_qw;
991 	unsigned next_buffer_table;
992 
993 	unsigned int max_channels;
994 	unsigned int max_vis;
995 	unsigned int max_tx_channels;
996 	unsigned n_channels;
997 	unsigned n_rx_channels;
998 	unsigned rss_spread;
999 	unsigned tx_channel_offset;
1000 	unsigned n_tx_channels;
1001 	unsigned n_extra_tx_channels;
1002 	unsigned int tx_queues_per_channel;
1003 	unsigned int n_xdp_channels;
1004 	unsigned int xdp_channel_offset;
1005 	unsigned int xdp_tx_per_channel;
1006 	unsigned int rx_ip_align;
1007 	unsigned int rx_dma_len;
1008 	unsigned int rx_buffer_order;
1009 	unsigned int rx_buffer_truesize;
1010 	unsigned int rx_page_buf_step;
1011 	unsigned int rx_bufs_per_page;
1012 	unsigned int rx_pages_per_batch;
1013 	unsigned int rx_prefix_size;
1014 	int rx_packet_hash_offset;
1015 	int rx_packet_len_offset;
1016 	int rx_packet_ts_offset;
1017 	bool rx_scatter;
1018 	struct efx_rss_context rss_context;
1019 	struct mutex rss_lock;
1020 	u32 vport_id;
1021 
1022 	unsigned int_error_count;
1023 	unsigned long int_error_expire;
1024 
1025 	bool must_realloc_vis;
1026 	bool irq_soft_enabled;
1027 	struct efx_buffer irq_status;
1028 	unsigned irq_zero_count;
1029 	unsigned irq_level;
1030 	struct delayed_work selftest_work;
1031 
1032 #ifdef CONFIG_SFC_MTD
1033 	struct list_head mtd_list;
1034 #endif
1035 
1036 	void *nic_data;
1037 	struct efx_mcdi_data *mcdi;
1038 
1039 	struct mutex mac_lock;
1040 	struct work_struct mac_work;
1041 	bool port_enabled;
1042 
1043 	bool mc_bist_for_other_fn;
1044 	bool port_initialized;
1045 	struct net_device *net_dev;
1046 
1047 	netdev_features_t fixed_features;
1048 
1049 	u16 num_mac_stats;
1050 	struct efx_buffer stats_buffer;
1051 	u64 rx_nodesc_drops_total;
1052 	u64 rx_nodesc_drops_while_down;
1053 	bool rx_nodesc_drops_prev_state;
1054 
1055 	unsigned int phy_type;
1056 	void *phy_data;
1057 	struct mdio_if_info mdio;
1058 	unsigned int mdio_bus;
1059 	enum efx_phy_mode phy_mode;
1060 
1061 	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1062 	u32 fec_config;
1063 	struct efx_link_state link_state;
1064 	unsigned int n_link_state_changes;
1065 
1066 	bool unicast_filter;
1067 	union efx_multicast_hash multicast_hash;
1068 	u8 wanted_fc;
1069 	unsigned fc_disable;
1070 
1071 	atomic_t rx_reset;
1072 	enum efx_loopback_mode loopback_mode;
1073 	u64 loopback_modes;
1074 
1075 	void *loopback_selftest;
1076 	/* We access loopback_selftest immediately before running XDP,
1077 	 * so we want them next to each other.
1078 	 */
1079 	struct bpf_prog __rcu *xdp_prog;
1080 
1081 	struct rw_semaphore filter_sem;
1082 	void *filter_state;
1083 #ifdef CONFIG_RFS_ACCEL
1084 	struct mutex rps_mutex;
1085 	unsigned long rps_slot_map;
1086 	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1087 	spinlock_t rps_hash_lock;
1088 	struct hlist_head *rps_hash_table;
1089 	u32 rps_next_id;
1090 #endif
1091 
1092 	atomic_t active_queues;
1093 	atomic_t rxq_flush_pending;
1094 	atomic_t rxq_flush_outstanding;
1095 	wait_queue_head_t flush_wq;
1096 
1097 #ifdef CONFIG_SFC_SRIOV
1098 	unsigned vf_count;
1099 	unsigned vf_init_count;
1100 	unsigned vi_scale;
1101 #endif
1102 
1103 	struct efx_ptp_data *ptp_data;
1104 	bool ptp_warned;
1105 
1106 	char *vpd_sn;
1107 	bool xdp_rxq_info_failed;
1108 
1109 	struct notifier_block netdev_notifier;
1110 
1111 	unsigned int mem_bar;
1112 	u32 reg_base;
1113 
1114 	/* The following fields may be written more often */
1115 
1116 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1117 	spinlock_t biu_lock;
1118 	int last_irq_cpu;
1119 	spinlock_t stats_lock;
1120 	atomic_t n_rx_noskb_drops;
1121 };
1122 
1123 static inline int efx_dev_registered(struct efx_nic *efx)
1124 {
1125 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1126 }
1127 
1128 static inline unsigned int efx_port_num(struct efx_nic *efx)
1129 {
1130 	return efx->port_num;
1131 }
1132 
1133 struct efx_mtd_partition {
1134 	struct list_head node;
1135 	struct mtd_info mtd;
1136 	const char *dev_type_name;
1137 	const char *type_name;
1138 	char name[IFNAMSIZ + 20];
1139 };
1140 
1141 struct efx_udp_tunnel {
1142 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1143 	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1144 	__be16 port;
1145 };
1146 
1147 /**
1148  * struct efx_nic_type - Efx device type definition
1149  * @mem_bar: Get the memory BAR
1150  * @mem_map_size: Get memory BAR mapped size
1151  * @probe: Probe the controller
1152  * @remove: Free resources allocated by probe()
1153  * @init: Initialise the controller
1154  * @dimension_resources: Dimension controller resources (buffer table,
1155  *	and VIs once the available interrupt resources are clear)
1156  * @fini: Shut down the controller
1157  * @monitor: Periodic function for polling link state and hardware monitor
1158  * @map_reset_reason: Map ethtool reset reason to a reset method
1159  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1160  * @reset: Reset the controller hardware and possibly the PHY.  This will
1161  *	be called while the controller is uninitialised.
1162  * @probe_port: Probe the MAC and PHY
1163  * @remove_port: Free resources allocated by probe_port()
1164  * @handle_global_event: Handle a "global" event (may be %NULL)
1165  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1166  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1167  *	(for Falcon architecture)
1168  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1169  *	architecture)
1170  * @prepare_flr: Prepare for an FLR
1171  * @finish_flr: Clean up after an FLR
1172  * @describe_stats: Describe statistics for ethtool
1173  * @update_stats: Update statistics not provided by event handling.
1174  *	Either argument may be %NULL.
1175  * @update_stats_atomic: Update statistics while in atomic context, if that
1176  *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1177  *	driver core will call @update_stats.
1178  * @start_stats: Start the regular fetching of statistics
1179  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1180  * @stop_stats: Stop the regular fetching of statistics
1181  * @push_irq_moderation: Apply interrupt moderation value
1182  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1183  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1184  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1185  *	to the hardware.  Serialised by the mac_lock.
1186  * @check_mac_fault: Check MAC fault state. True if fault present.
1187  * @get_wol: Get WoL configuration from driver state
1188  * @set_wol: Push WoL configuration to the NIC
1189  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1190  * @get_fec_stats: Get standard FEC statistics.
1191  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1192  *	expected to reset the NIC.
1193  * @test_nvram: Test validity of NVRAM contents
1194  * @mcdi_request: Send an MCDI request with the given header and SDU.
1195  *	The SDU length may be any value from 0 up to the protocol-
1196  *	defined maximum, but its buffer will be padded to a multiple
1197  *	of 4 bytes.
1198  * @mcdi_poll_response: Test whether an MCDI response is available.
1199  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1200  *	be a multiple of 4.  The length may not be, but the buffer
1201  *	will be padded so it is safe to round up.
1202  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1203  *	return an appropriate error code for aborting any current
1204  *	request; otherwise return 0.
1205  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1206  *	be separately enabled after this.
1207  * @irq_test_generate: Generate a test IRQ
1208  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1209  *	queue must be separately disabled before this.
1210  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1211  *	a pointer to the &struct efx_msi_context for the channel.
1212  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1213  *	is a pointer to the &struct efx_nic.
1214  * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1215  * @tx_init: Initialise TX queue on the NIC
1216  * @tx_remove: Free resources for TX queue
1217  * @tx_write: Write TX descriptors and doorbell
1218  * @tx_enqueue: Add an SKB to TX queue
1219  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1220  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1221  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1222  *	user RSS context to the NIC
1223  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1224  *	RSS context back from the NIC
1225  * @rx_probe: Allocate resources for RX queue
1226  * @rx_init: Initialise RX queue on the NIC
1227  * @rx_remove: Free resources for RX queue
1228  * @rx_write: Write RX descriptors and doorbell
1229  * @rx_defer_refill: Generate a refill reminder event
1230  * @rx_packet: Receive the queued RX buffer on a channel
1231  * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1232  * @ev_probe: Allocate resources for event queue
1233  * @ev_init: Initialise event queue on the NIC
1234  * @ev_fini: Deinitialise event queue on the NIC
1235  * @ev_remove: Free resources for event queue
1236  * @ev_process: Process events for a queue, up to the given NAPI quota
1237  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1238  * @ev_test_generate: Generate a test event
1239  * @filter_table_probe: Probe filter capabilities and set up filter software state
1240  * @filter_table_restore: Restore filters removed from hardware
1241  * @filter_table_remove: Remove filters from hardware and tear down software state
1242  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1243  * @filter_insert: add or replace a filter
1244  * @filter_remove_safe: remove a filter by ID, carefully
1245  * @filter_get_safe: retrieve a filter by ID, carefully
1246  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1247  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1248  * @filter_count_rx_used: Get the number of filters in use at a given priority
1249  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1250  * @filter_get_rx_ids: Get list of RX filters at a given priority
1251  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1252  *	This must check whether the specified table entry is used by RFS
1253  *	and that rps_may_expire_flow() returns true for it.
1254  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1255  *	 using efx_mtd_add()
1256  * @mtd_rename: Set an MTD partition name using the net device name
1257  * @mtd_read: Read from an MTD partition
1258  * @mtd_erase: Erase part of an MTD partition
1259  * @mtd_write: Write to an MTD partition
1260  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1261  *	also notifies the driver that a writer has finished using this
1262  *	partition.
1263  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1264  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1265  *	timestamping, possibly only temporarily for the purposes of a reset.
1266  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1267  *	and tx_type will already have been validated but this operation
1268  *	must validate and update rx_filter.
1269  * @get_phys_port_id: Get the underlying physical port id.
1270  * @set_mac_address: Set the MAC address of the device
1271  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1272  *	If %NULL, then device does not support any TSO version.
1273  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1274  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1275  * @print_additional_fwver: Dump NIC-specific additional FW version info
1276  * @sensor_event: Handle a sensor event from MCDI
1277  * @revision: Hardware architecture revision
1278  * @txd_ptr_tbl_base: TX descriptor ring base address
1279  * @rxd_ptr_tbl_base: RX descriptor ring base address
1280  * @buf_tbl_base: Buffer table base address
1281  * @evq_ptr_tbl_base: Event queue pointer table base address
1282  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1283  * @max_dma_mask: Maximum possible DMA mask
1284  * @rx_prefix_size: Size of RX prefix before packet data
1285  * @rx_hash_offset: Offset of RX flow hash within prefix
1286  * @rx_ts_offset: Offset of timestamp within prefix
1287  * @rx_buffer_padding: Size of padding at end of RX packet
1288  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1289  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1290  * @option_descriptors: NIC supports TX option descriptors
1291  * @min_interrupt_mode: Lowest capability interrupt mode supported
1292  *	from &enum efx_int_mode.
1293  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1294  * @offload_features: net_device feature flags for protocol offload
1295  *	features implemented in hardware
1296  * @mcdi_max_ver: Maximum MCDI version supported
1297  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1298  */
1299 struct efx_nic_type {
1300 	bool is_vf;
1301 	unsigned int (*mem_bar)(struct efx_nic *efx);
1302 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1303 	int (*probe)(struct efx_nic *efx);
1304 	void (*remove)(struct efx_nic *efx);
1305 	int (*init)(struct efx_nic *efx);
1306 	int (*dimension_resources)(struct efx_nic *efx);
1307 	void (*fini)(struct efx_nic *efx);
1308 	void (*monitor)(struct efx_nic *efx);
1309 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1310 	int (*map_reset_flags)(u32 *flags);
1311 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1312 	int (*probe_port)(struct efx_nic *efx);
1313 	void (*remove_port)(struct efx_nic *efx);
1314 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1315 	int (*fini_dmaq)(struct efx_nic *efx);
1316 	void (*prepare_flush)(struct efx_nic *efx);
1317 	void (*finish_flush)(struct efx_nic *efx);
1318 	void (*prepare_flr)(struct efx_nic *efx);
1319 	void (*finish_flr)(struct efx_nic *efx);
1320 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1321 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1322 			       struct rtnl_link_stats64 *core_stats);
1323 	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1324 				      struct rtnl_link_stats64 *core_stats);
1325 	void (*start_stats)(struct efx_nic *efx);
1326 	void (*pull_stats)(struct efx_nic *efx);
1327 	void (*stop_stats)(struct efx_nic *efx);
1328 	void (*push_irq_moderation)(struct efx_channel *channel);
1329 	int (*reconfigure_port)(struct efx_nic *efx);
1330 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1331 	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1332 	bool (*check_mac_fault)(struct efx_nic *efx);
1333 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1334 	int (*set_wol)(struct efx_nic *efx, u32 type);
1335 	void (*resume_wol)(struct efx_nic *efx);
1336 	void (*get_fec_stats)(struct efx_nic *efx,
1337 			      struct ethtool_fec_stats *fec_stats);
1338 	unsigned int (*check_caps)(const struct efx_nic *efx,
1339 				   u8 flag,
1340 				   u32 offset);
1341 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1342 	int (*test_nvram)(struct efx_nic *efx);
1343 	void (*mcdi_request)(struct efx_nic *efx,
1344 			     const efx_dword_t *hdr, size_t hdr_len,
1345 			     const efx_dword_t *sdu, size_t sdu_len);
1346 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1347 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1348 				   size_t pdu_offset, size_t pdu_len);
1349 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1350 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1351 	void (*irq_enable_master)(struct efx_nic *efx);
1352 	int (*irq_test_generate)(struct efx_nic *efx);
1353 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1354 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1355 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1356 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1357 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1358 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1359 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1360 	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1361 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1362 				     dma_addr_t dma_addr, unsigned int len);
1363 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1364 				  const u32 *rx_indir_table, const u8 *key);
1365 	int (*rx_pull_rss_config)(struct efx_nic *efx);
1366 	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1367 					  struct efx_rss_context *ctx,
1368 					  const u32 *rx_indir_table,
1369 					  const u8 *key);
1370 	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1371 					  struct efx_rss_context *ctx);
1372 	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1373 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1374 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1375 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1376 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1377 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1378 	void (*rx_packet)(struct efx_channel *channel);
1379 	bool (*rx_buf_hash_valid)(const u8 *prefix);
1380 	int (*ev_probe)(struct efx_channel *channel);
1381 	int (*ev_init)(struct efx_channel *channel);
1382 	void (*ev_fini)(struct efx_channel *channel);
1383 	void (*ev_remove)(struct efx_channel *channel);
1384 	int (*ev_process)(struct efx_channel *channel, int quota);
1385 	void (*ev_read_ack)(struct efx_channel *channel);
1386 	void (*ev_test_generate)(struct efx_channel *channel);
1387 	int (*filter_table_probe)(struct efx_nic *efx);
1388 	void (*filter_table_restore)(struct efx_nic *efx);
1389 	void (*filter_table_remove)(struct efx_nic *efx);
1390 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1391 	s32 (*filter_insert)(struct efx_nic *efx,
1392 			     struct efx_filter_spec *spec, bool replace);
1393 	int (*filter_remove_safe)(struct efx_nic *efx,
1394 				  enum efx_filter_priority priority,
1395 				  u32 filter_id);
1396 	int (*filter_get_safe)(struct efx_nic *efx,
1397 			       enum efx_filter_priority priority,
1398 			       u32 filter_id, struct efx_filter_spec *);
1399 	int (*filter_clear_rx)(struct efx_nic *efx,
1400 			       enum efx_filter_priority priority);
1401 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1402 				    enum efx_filter_priority priority);
1403 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1404 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1405 				 enum efx_filter_priority priority,
1406 				 u32 *buf, u32 size);
1407 #ifdef CONFIG_RFS_ACCEL
1408 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1409 				      unsigned int index);
1410 #endif
1411 #ifdef CONFIG_SFC_MTD
1412 	int (*mtd_probe)(struct efx_nic *efx);
1413 	void (*mtd_rename)(struct efx_mtd_partition *part);
1414 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1415 			size_t *retlen, u8 *buffer);
1416 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1417 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1418 			 size_t *retlen, const u8 *buffer);
1419 	int (*mtd_sync)(struct mtd_info *mtd);
1420 #endif
1421 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1422 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1423 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1424 				 struct hwtstamp_config *init);
1425 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1426 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1427 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1428 	int (*get_phys_port_id)(struct efx_nic *efx,
1429 				struct netdev_phys_item_id *ppid);
1430 	int (*sriov_init)(struct efx_nic *efx);
1431 	void (*sriov_fini)(struct efx_nic *efx);
1432 	bool (*sriov_wanted)(struct efx_nic *efx);
1433 	void (*sriov_reset)(struct efx_nic *efx);
1434 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1435 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, u8 *mac);
1436 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1437 				 u8 qos);
1438 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1439 				     bool spoofchk);
1440 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1441 				   struct ifla_vf_info *ivi);
1442 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1443 				       int link_state);
1444 	int (*vswitching_probe)(struct efx_nic *efx);
1445 	int (*vswitching_restore)(struct efx_nic *efx);
1446 	void (*vswitching_remove)(struct efx_nic *efx);
1447 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1448 	int (*set_mac_address)(struct efx_nic *efx);
1449 	u32 (*tso_versions)(struct efx_nic *efx);
1450 	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1451 	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1452 	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1453 					 size_t len);
1454 	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1455 
1456 	int revision;
1457 	unsigned int txd_ptr_tbl_base;
1458 	unsigned int rxd_ptr_tbl_base;
1459 	unsigned int buf_tbl_base;
1460 	unsigned int evq_ptr_tbl_base;
1461 	unsigned int evq_rptr_tbl_base;
1462 	u64 max_dma_mask;
1463 	unsigned int rx_prefix_size;
1464 	unsigned int rx_hash_offset;
1465 	unsigned int rx_ts_offset;
1466 	unsigned int rx_buffer_padding;
1467 	bool can_rx_scatter;
1468 	bool always_rx_scatter;
1469 	bool option_descriptors;
1470 	unsigned int min_interrupt_mode;
1471 	unsigned int timer_period_max;
1472 	netdev_features_t offload_features;
1473 	int mcdi_max_ver;
1474 	unsigned int max_rx_ip_filters;
1475 	u32 hwtstamp_filters;
1476 	unsigned int rx_hash_key_size;
1477 };
1478 
1479 /**************************************************************************
1480  *
1481  * Prototypes and inline functions
1482  *
1483  *************************************************************************/
1484 
1485 static inline struct efx_channel *
1486 efx_get_channel(struct efx_nic *efx, unsigned index)
1487 {
1488 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1489 	return efx->channel[index];
1490 }
1491 
1492 /* Iterate over all used channels */
1493 #define efx_for_each_channel(_channel, _efx)				\
1494 	for (_channel = (_efx)->channel[0];				\
1495 	     _channel;							\
1496 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1497 		     (_efx)->channel[_channel->channel + 1] : NULL)
1498 
1499 /* Iterate over all used channels in reverse */
1500 #define efx_for_each_channel_rev(_channel, _efx)			\
1501 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1502 	     _channel;							\
1503 	     _channel = _channel->channel ?				\
1504 		     (_efx)->channel[_channel->channel - 1] : NULL)
1505 
1506 static inline struct efx_channel *
1507 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1508 {
1509 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1510 	return efx->channel[efx->tx_channel_offset + index];
1511 }
1512 
1513 static inline struct efx_channel *
1514 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1515 {
1516 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1517 	return efx->channel[efx->xdp_channel_offset + index];
1518 }
1519 
1520 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1521 {
1522 	return channel->channel - channel->efx->xdp_channel_offset <
1523 	       channel->efx->n_xdp_channels;
1524 }
1525 
1526 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1527 {
1528 	return true;
1529 }
1530 
1531 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1532 {
1533 	if (efx_channel_is_xdp_tx(channel))
1534 		return channel->efx->xdp_tx_per_channel;
1535 	return channel->efx->tx_queues_per_channel;
1536 }
1537 
1538 static inline struct efx_tx_queue *
1539 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1540 {
1541 	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1542 	return channel->tx_queue_by_type[type];
1543 }
1544 
1545 static inline struct efx_tx_queue *
1546 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1547 {
1548 	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1549 
1550 	return efx_channel_get_tx_queue(channel, type);
1551 }
1552 
1553 /* Iterate over all TX queues belonging to a channel */
1554 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1555 	if (!efx_channel_has_tx_queues(_channel))			\
1556 		;							\
1557 	else								\
1558 		for (_tx_queue = (_channel)->tx_queue;			\
1559 		     _tx_queue < (_channel)->tx_queue +			\
1560 				 efx_channel_num_tx_queues(_channel);		\
1561 		     _tx_queue++)
1562 
1563 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1564 {
1565 	return channel->rx_queue.core_index >= 0;
1566 }
1567 
1568 static inline struct efx_rx_queue *
1569 efx_channel_get_rx_queue(struct efx_channel *channel)
1570 {
1571 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1572 	return &channel->rx_queue;
1573 }
1574 
1575 /* Iterate over all RX queues belonging to a channel */
1576 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1577 	if (!efx_channel_has_rx_queue(_channel))			\
1578 		;							\
1579 	else								\
1580 		for (_rx_queue = &(_channel)->rx_queue;			\
1581 		     _rx_queue;						\
1582 		     _rx_queue = NULL)
1583 
1584 static inline struct efx_channel *
1585 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1586 {
1587 	return container_of(rx_queue, struct efx_channel, rx_queue);
1588 }
1589 
1590 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1591 {
1592 	return efx_rx_queue_channel(rx_queue)->channel;
1593 }
1594 
1595 /* Returns a pointer to the specified receive buffer in the RX
1596  * descriptor queue.
1597  */
1598 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1599 						  unsigned int index)
1600 {
1601 	return &rx_queue->buffer[index];
1602 }
1603 
1604 static inline struct efx_rx_buffer *
1605 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1606 {
1607 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1608 		return efx_rx_buffer(rx_queue, 0);
1609 	else
1610 		return rx_buf + 1;
1611 }
1612 
1613 /**
1614  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1615  *
1616  * This calculates the maximum frame length that will be used for a
1617  * given MTU.  The frame length will be equal to the MTU plus a
1618  * constant amount of header space and padding.  This is the quantity
1619  * that the net driver will program into the MAC as the maximum frame
1620  * length.
1621  *
1622  * The 10G MAC requires 8-byte alignment on the frame
1623  * length, so we round up to the nearest 8.
1624  *
1625  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1626  * XGMII cycle).  If the frame length reaches the maximum value in the
1627  * same cycle, the XMAC can miss the IPG altogether.  We work around
1628  * this by adding a further 16 bytes.
1629  */
1630 #define EFX_FRAME_PAD	16
1631 #define EFX_MAX_FRAME_LEN(mtu) \
1632 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1633 
1634 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1635 {
1636 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1637 }
1638 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1639 {
1640 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1641 }
1642 
1643 /* Get the max fill level of the TX queues on this channel */
1644 static inline unsigned int
1645 efx_channel_tx_fill_level(struct efx_channel *channel)
1646 {
1647 	struct efx_tx_queue *tx_queue;
1648 	unsigned int fill_level = 0;
1649 
1650 	efx_for_each_channel_tx_queue(tx_queue, channel)
1651 		fill_level = max(fill_level,
1652 				 tx_queue->insert_count - tx_queue->read_count);
1653 
1654 	return fill_level;
1655 }
1656 
1657 /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1658 static inline unsigned int
1659 efx_channel_tx_old_fill_level(struct efx_channel *channel)
1660 {
1661 	struct efx_tx_queue *tx_queue;
1662 	unsigned int fill_level = 0;
1663 
1664 	efx_for_each_channel_tx_queue(tx_queue, channel)
1665 		fill_level = max(fill_level,
1666 				 tx_queue->insert_count - tx_queue->old_read_count);
1667 
1668 	return fill_level;
1669 }
1670 
1671 /* Get all supported features.
1672  * If a feature is not fixed, it is present in hw_features.
1673  * If a feature is fixed, it does not present in hw_features, but
1674  * always in features.
1675  */
1676 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1677 {
1678 	const struct net_device *net_dev = efx->net_dev;
1679 
1680 	return net_dev->features | net_dev->hw_features;
1681 }
1682 
1683 /* Get the current TX queue insert index. */
1684 static inline unsigned int
1685 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1686 {
1687 	return tx_queue->insert_count & tx_queue->ptr_mask;
1688 }
1689 
1690 /* Get a TX buffer. */
1691 static inline struct efx_tx_buffer *
1692 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1693 {
1694 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1695 }
1696 
1697 /* Get a TX buffer, checking it's not currently in use. */
1698 static inline struct efx_tx_buffer *
1699 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1700 {
1701 	struct efx_tx_buffer *buffer =
1702 		__efx_tx_queue_get_insert_buffer(tx_queue);
1703 
1704 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1705 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1706 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1707 
1708 	return buffer;
1709 }
1710 
1711 #endif /* EFX_NET_DRIVER_H */
1712