xref: /openbmc/linux/drivers/net/ethernet/sfc/net_driver.h (revision 68f436a80fc89faa474134edfe442d95528be17a)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2005-2013 Solarflare Communications Inc.
6  */
7 
8 /* Common definitions for all Efx net driver code */
9 
10 #ifndef EFX_NET_DRIVER_H
11 #define EFX_NET_DRIVER_H
12 
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/ethtool.h>
16 #include <linux/if_vlan.h>
17 #include <linux/timer.h>
18 #include <linux/mdio.h>
19 #include <linux/list.h>
20 #include <linux/pci.h>
21 #include <linux/device.h>
22 #include <linux/highmem.h>
23 #include <linux/workqueue.h>
24 #include <linux/mutex.h>
25 #include <linux/rwsem.h>
26 #include <linux/vmalloc.h>
27 #include <linux/mtd/mtd.h>
28 #include <net/busy_poll.h>
29 #include <net/xdp.h>
30 #include <net/netevent.h>
31 
32 #include "enum.h"
33 #include "bitfield.h"
34 #include "filter.h"
35 
36 /**************************************************************************
37  *
38  * Build definitions
39  *
40  **************************************************************************/
41 
42 #ifdef DEBUG
43 #define EFX_WARN_ON_ONCE_PARANOID(x) WARN_ON_ONCE(x)
44 #define EFX_WARN_ON_PARANOID(x) WARN_ON(x)
45 #else
46 #define EFX_WARN_ON_ONCE_PARANOID(x) do {} while (0)
47 #define EFX_WARN_ON_PARANOID(x) do {} while (0)
48 #endif
49 
50 /**************************************************************************
51  *
52  * Efx data structures
53  *
54  **************************************************************************/
55 
56 #define EFX_MAX_CHANNELS 32U
57 #define EFX_MAX_RX_QUEUES EFX_MAX_CHANNELS
58 #define EFX_EXTRA_CHANNEL_IOV	0
59 #define EFX_EXTRA_CHANNEL_PTP	1
60 #define EFX_EXTRA_CHANNEL_TC	2
61 #define EFX_MAX_EXTRA_CHANNELS	3U
62 
63 /* Checksum generation is a per-queue option in hardware, so each
64  * queue visible to the networking core is backed by two hardware TX
65  * queues. */
66 #define EFX_MAX_TX_TC		2
67 #define EFX_MAX_CORE_TX_QUEUES	(EFX_MAX_TX_TC * EFX_MAX_CHANNELS)
68 #define EFX_TXQ_TYPE_OUTER_CSUM	1	/* Outer checksum offload */
69 #define EFX_TXQ_TYPE_INNER_CSUM	2	/* Inner checksum offload */
70 #define EFX_TXQ_TYPE_HIGHPRI	4	/* High-priority (for TC) */
71 #define EFX_TXQ_TYPES		8
72 /* HIGHPRI is Siena-only, and INNER_CSUM is EF10, so no need for both */
73 #define EFX_MAX_TXQ_PER_CHANNEL	4
74 #define EFX_MAX_TX_QUEUES	(EFX_MAX_TXQ_PER_CHANNEL * EFX_MAX_CHANNELS)
75 
76 /* Maximum possible MTU the driver supports */
77 #define EFX_MAX_MTU (9 * 1024)
78 
79 /* Minimum MTU, from RFC791 (IP) */
80 #define EFX_MIN_MTU 68
81 
82 /* Maximum total header length for TSOv2 */
83 #define EFX_TSO2_MAX_HDRLEN	208
84 
85 /* Size of an RX scatter buffer.  Small enough to pack 2 into a 4K page,
86  * and should be a multiple of the cache line size.
87  */
88 #define EFX_RX_USR_BUF_SIZE	(2048 - 256)
89 
90 /* If possible, we should ensure cache line alignment at start and end
91  * of every buffer.  Otherwise, we just need to ensure 4-byte
92  * alignment of the network header.
93  */
94 #if NET_IP_ALIGN == 0
95 #define EFX_RX_BUF_ALIGNMENT	L1_CACHE_BYTES
96 #else
97 #define EFX_RX_BUF_ALIGNMENT	4
98 #endif
99 
100 /* Non-standard XDP_PACKET_HEADROOM and tailroom to satisfy XDP_REDIRECT and
101  * still fit two standard MTU size packets into a single 4K page.
102  */
103 #define EFX_XDP_HEADROOM	128
104 #define EFX_XDP_TAILROOM	SKB_DATA_ALIGN(sizeof(struct skb_shared_info))
105 
106 /* Forward declare Precision Time Protocol (PTP) support structure. */
107 struct efx_ptp_data;
108 struct hwtstamp_config;
109 
110 struct efx_self_tests;
111 
112 /**
113  * struct efx_buffer - A general-purpose DMA buffer
114  * @addr: host base address of the buffer
115  * @dma_addr: DMA base address of the buffer
116  * @len: Buffer length, in bytes
117  *
118  * The NIC uses these buffers for its interrupt status registers and
119  * MAC stats dumps.
120  */
121 struct efx_buffer {
122 	void *addr;
123 	dma_addr_t dma_addr;
124 	unsigned int len;
125 };
126 
127 /**
128  * struct efx_special_buffer - DMA buffer entered into buffer table
129  * @buf: Standard &struct efx_buffer
130  * @index: Buffer index within controller;s buffer table
131  * @entries: Number of buffer table entries
132  *
133  * The NIC has a buffer table that maps buffers of size %EFX_BUF_SIZE.
134  * Event and descriptor rings are addressed via one or more buffer
135  * table entries (and so can be physically non-contiguous, although we
136  * currently do not take advantage of that).  On Falcon and Siena we
137  * have to take care of allocating and initialising the entries
138  * ourselves.  On later hardware this is managed by the firmware and
139  * @index and @entries are left as 0.
140  */
141 struct efx_special_buffer {
142 	struct efx_buffer buf;
143 	unsigned int index;
144 	unsigned int entries;
145 };
146 
147 /**
148  * struct efx_tx_buffer - buffer state for a TX descriptor
149  * @skb: When @flags & %EFX_TX_BUF_SKB, the associated socket buffer to be
150  *	freed when descriptor completes
151  * @xdpf: When @flags & %EFX_TX_BUF_XDP, the XDP frame information; its @data
152  *	member is the associated buffer to drop a page reference on.
153  * @option: When @flags & %EFX_TX_BUF_OPTION, an EF10-specific option
154  *	descriptor.
155  * @dma_addr: DMA address of the fragment.
156  * @flags: Flags for allocation and DMA mapping type
157  * @len: Length of this fragment.
158  *	This field is zero when the queue slot is empty.
159  * @unmap_len: Length of this fragment to unmap
160  * @dma_offset: Offset of @dma_addr from the address of the backing DMA mapping.
161  * Only valid if @unmap_len != 0.
162  */
163 struct efx_tx_buffer {
164 	union {
165 		const struct sk_buff *skb;
166 		struct xdp_frame *xdpf;
167 	};
168 	union {
169 		efx_qword_t option;    /* EF10 */
170 		dma_addr_t dma_addr;
171 	};
172 	unsigned short flags;
173 	unsigned short len;
174 	unsigned short unmap_len;
175 	unsigned short dma_offset;
176 };
177 #define EFX_TX_BUF_CONT		1	/* not last descriptor of packet */
178 #define EFX_TX_BUF_SKB		2	/* buffer is last part of skb */
179 #define EFX_TX_BUF_MAP_SINGLE	8	/* buffer was mapped with dma_map_single() */
180 #define EFX_TX_BUF_OPTION	0x10	/* empty buffer for option descriptor */
181 #define EFX_TX_BUF_XDP		0x20	/* buffer was sent with XDP */
182 #define EFX_TX_BUF_TSO_V3	0x40	/* empty buffer for a TSO_V3 descriptor */
183 #define EFX_TX_BUF_EFV		0x100	/* buffer was sent from representor */
184 
185 /**
186  * struct efx_tx_queue - An Efx TX queue
187  *
188  * This is a ring buffer of TX fragments.
189  * Since the TX completion path always executes on the same
190  * CPU and the xmit path can operate on different CPUs,
191  * performance is increased by ensuring that the completion
192  * path and the xmit path operate on different cache lines.
193  * This is particularly important if the xmit path is always
194  * executing on one CPU which is different from the completion
195  * path.  There is also a cache line for members which are
196  * read but not written on the fast path.
197  *
198  * @efx: The associated Efx NIC
199  * @queue: DMA queue number
200  * @label: Label for TX completion events.
201  *	Is our index within @channel->tx_queue array.
202  * @type: configuration type of this TX queue.  A bitmask of %EFX_TXQ_TYPE_* flags.
203  * @tso_version: Version of TSO in use for this queue.
204  * @tso_encap: Is encapsulated TSO supported? Supported in TSOv2 on 8000 series.
205  * @channel: The associated channel
206  * @core_txq: The networking core TX queue structure
207  * @buffer: The software buffer ring
208  * @cb_page: Array of pages of copy buffers.  Carved up according to
209  *	%EFX_TX_CB_ORDER into %EFX_TX_CB_SIZE-sized chunks.
210  * @txd: The hardware descriptor ring
211  * @ptr_mask: The size of the ring minus 1.
212  * @piobuf: PIO buffer region for this TX queue (shared with its partner).
213  *	Size of the region is efx_piobuf_size.
214  * @piobuf_offset: Buffer offset to be specified in PIO descriptors
215  * @initialised: Has hardware queue been initialised?
216  * @timestamping: Is timestamping enabled for this channel?
217  * @xdp_tx: Is this an XDP tx queue?
218  * @read_count: Current read pointer.
219  *	This is the number of buffers that have been removed from both rings.
220  * @old_write_count: The value of @write_count when last checked.
221  *	This is here for performance reasons.  The xmit path will
222  *	only get the up-to-date value of @write_count if this
223  *	variable indicates that the queue is empty.  This is to
224  *	avoid cache-line ping-pong between the xmit path and the
225  *	completion path.
226  * @merge_events: Number of TX merged completion events
227  * @completed_timestamp_major: Top part of the most recent tx timestamp.
228  * @completed_timestamp_minor: Low part of the most recent tx timestamp.
229  * @insert_count: Current insert pointer
230  *	This is the number of buffers that have been added to the
231  *	software ring.
232  * @write_count: Current write pointer
233  *	This is the number of buffers that have been added to the
234  *	hardware ring.
235  * @packet_write_count: Completable write pointer
236  *	This is the write pointer of the last packet written.
237  *	Normally this will equal @write_count, but as option descriptors
238  *	don't produce completion events, they won't update this.
239  *	Filled in iff @efx->type->option_descriptors; only used for PIO.
240  *	Thus, this is written and used on EF10, and neither on farch.
241  * @old_read_count: The value of read_count when last checked.
242  *	This is here for performance reasons.  The xmit path will
243  *	only get the up-to-date value of read_count if this
244  *	variable indicates that the queue is full.  This is to
245  *	avoid cache-line ping-pong between the xmit path and the
246  *	completion path.
247  * @tso_bursts: Number of times TSO xmit invoked by kernel
248  * @tso_long_headers: Number of packets with headers too long for standard
249  *	blocks
250  * @tso_packets: Number of packets via the TSO xmit path
251  * @tso_fallbacks: Number of times TSO fallback used
252  * @pushes: Number of times the TX push feature has been used
253  * @pio_packets: Number of times the TX PIO feature has been used
254  * @xmit_pending: Are any packets waiting to be pushed to the NIC
255  * @cb_packets: Number of times the TX copybreak feature has been used
256  * @notify_count: Count of notified descriptors to the NIC
257  * @empty_read_count: If the completion path has seen the queue as empty
258  *	and the transmission path has not yet checked this, the value of
259  *	@read_count bitwise-added to %EFX_EMPTY_COUNT_VALID; otherwise 0.
260  */
261 struct efx_tx_queue {
262 	/* Members which don't change on the fast path */
263 	struct efx_nic *efx ____cacheline_aligned_in_smp;
264 	unsigned int queue;
265 	unsigned int label;
266 	unsigned int type;
267 	unsigned int tso_version;
268 	bool tso_encap;
269 	struct efx_channel *channel;
270 	struct netdev_queue *core_txq;
271 	struct efx_tx_buffer *buffer;
272 	struct efx_buffer *cb_page;
273 	struct efx_special_buffer txd;
274 	unsigned int ptr_mask;
275 	void __iomem *piobuf;
276 	unsigned int piobuf_offset;
277 	bool initialised;
278 	bool timestamping;
279 	bool xdp_tx;
280 
281 	/* Members used mainly on the completion path */
282 	unsigned int read_count ____cacheline_aligned_in_smp;
283 	unsigned int old_write_count;
284 	unsigned int merge_events;
285 	unsigned int bytes_compl;
286 	unsigned int pkts_compl;
287 	u32 completed_timestamp_major;
288 	u32 completed_timestamp_minor;
289 
290 	/* Members used only on the xmit path */
291 	unsigned int insert_count ____cacheline_aligned_in_smp;
292 	unsigned int write_count;
293 	unsigned int packet_write_count;
294 	unsigned int old_read_count;
295 	unsigned int tso_bursts;
296 	unsigned int tso_long_headers;
297 	unsigned int tso_packets;
298 	unsigned int tso_fallbacks;
299 	unsigned int pushes;
300 	unsigned int pio_packets;
301 	bool xmit_pending;
302 	unsigned int cb_packets;
303 	unsigned int notify_count;
304 	/* Statistics to supplement MAC stats */
305 	unsigned long tx_packets;
306 
307 	/* Members shared between paths and sometimes updated */
308 	unsigned int empty_read_count ____cacheline_aligned_in_smp;
309 #define EFX_EMPTY_COUNT_VALID 0x80000000
310 	atomic_t flush_outstanding;
311 };
312 
313 #define EFX_TX_CB_ORDER	7
314 #define EFX_TX_CB_SIZE	(1 << EFX_TX_CB_ORDER) - NET_IP_ALIGN
315 
316 /**
317  * struct efx_rx_buffer - An Efx RX data buffer
318  * @dma_addr: DMA base address of the buffer
319  * @page: The associated page buffer.
320  *	Will be %NULL if the buffer slot is currently free.
321  * @page_offset: If pending: offset in @page of DMA base address.
322  *	If completed: offset in @page of Ethernet header.
323  * @len: If pending: length for DMA descriptor.
324  *	If completed: received length, excluding hash prefix.
325  * @flags: Flags for buffer and packet state.  These are only set on the
326  *	first buffer of a scattered packet.
327  */
328 struct efx_rx_buffer {
329 	dma_addr_t dma_addr;
330 	struct page *page;
331 	u16 page_offset;
332 	u16 len;
333 	u16 flags;
334 };
335 #define EFX_RX_BUF_LAST_IN_PAGE	0x0001
336 #define EFX_RX_PKT_CSUMMED	0x0002
337 #define EFX_RX_PKT_DISCARD	0x0004
338 #define EFX_RX_PKT_TCP		0x0040
339 #define EFX_RX_PKT_PREFIX_LEN	0x0080	/* length is in prefix only */
340 #define EFX_RX_PKT_CSUM_LEVEL	0x0200
341 
342 /**
343  * struct efx_rx_page_state - Page-based rx buffer state
344  *
345  * Inserted at the start of every page allocated for receive buffers.
346  * Used to facilitate sharing dma mappings between recycled rx buffers
347  * and those passed up to the kernel.
348  *
349  * @dma_addr: The dma address of this page.
350  */
351 struct efx_rx_page_state {
352 	dma_addr_t dma_addr;
353 
354 	unsigned int __pad[] ____cacheline_aligned;
355 };
356 
357 /**
358  * struct efx_rx_queue - An Efx RX queue
359  * @efx: The associated Efx NIC
360  * @core_index:  Index of network core RX queue.  Will be >= 0 iff this
361  *	is associated with a real RX queue.
362  * @buffer: The software buffer ring
363  * @rxd: The hardware descriptor ring
364  * @ptr_mask: The size of the ring minus 1.
365  * @refill_enabled: Enable refill whenever fill level is low
366  * @flush_pending: Set when a RX flush is pending. Has the same lifetime as
367  *	@rxq_flush_pending.
368  * @grant_credits: Posted RX descriptors need to be granted to the MAE with
369  *	%MC_CMD_MAE_COUNTERS_STREAM_GIVE_CREDITS.  For %EFX_EXTRA_CHANNEL_TC,
370  *	and only supported on EF100.
371  * @added_count: Number of buffers added to the receive queue.
372  * @notified_count: Number of buffers given to NIC (<= @added_count).
373  * @granted_count: Number of buffers granted to the MAE (<= @notified_count).
374  * @removed_count: Number of buffers removed from the receive queue.
375  * @scatter_n: Used by NIC specific receive code.
376  * @scatter_len: Used by NIC specific receive code.
377  * @page_ring: The ring to store DMA mapped pages for reuse.
378  * @page_add: Counter to calculate the write pointer for the recycle ring.
379  * @page_remove: Counter to calculate the read pointer for the recycle ring.
380  * @page_recycle_count: The number of pages that have been recycled.
381  * @page_recycle_failed: The number of pages that couldn't be recycled because
382  *      the kernel still held a reference to them.
383  * @page_recycle_full: The number of pages that were released because the
384  *      recycle ring was full.
385  * @page_ptr_mask: The number of pages in the RX recycle ring minus 1.
386  * @max_fill: RX descriptor maximum fill level (<= ring size)
387  * @fast_fill_trigger: RX descriptor fill level that will trigger a fast fill
388  *	(<= @max_fill)
389  * @min_fill: RX descriptor minimum non-zero fill level.
390  *	This records the minimum fill level observed when a ring
391  *	refill was triggered.
392  * @recycle_count: RX buffer recycle counter.
393  * @slow_fill: Timer used to defer efx_nic_generate_fill_event().
394  * @grant_work: workitem used to grant credits to the MAE if @grant_credits
395  * @xdp_rxq_info: XDP specific RX queue information.
396  * @xdp_rxq_info_valid: Is xdp_rxq_info valid data?.
397  */
398 struct efx_rx_queue {
399 	struct efx_nic *efx;
400 	int core_index;
401 	struct efx_rx_buffer *buffer;
402 	struct efx_special_buffer rxd;
403 	unsigned int ptr_mask;
404 	bool refill_enabled;
405 	bool flush_pending;
406 	bool grant_credits;
407 
408 	unsigned int added_count;
409 	unsigned int notified_count;
410 	unsigned int granted_count;
411 	unsigned int removed_count;
412 	unsigned int scatter_n;
413 	unsigned int scatter_len;
414 	struct page **page_ring;
415 	unsigned int page_add;
416 	unsigned int page_remove;
417 	unsigned int page_recycle_count;
418 	unsigned int page_recycle_failed;
419 	unsigned int page_recycle_full;
420 	unsigned int page_ptr_mask;
421 	unsigned int max_fill;
422 	unsigned int fast_fill_trigger;
423 	unsigned int min_fill;
424 	unsigned int min_overfill;
425 	unsigned int recycle_count;
426 	struct timer_list slow_fill;
427 	unsigned int slow_fill_count;
428 	struct work_struct grant_work;
429 	/* Statistics to supplement MAC stats */
430 	unsigned long rx_packets;
431 	struct xdp_rxq_info xdp_rxq_info;
432 	bool xdp_rxq_info_valid;
433 };
434 
435 enum efx_sync_events_state {
436 	SYNC_EVENTS_DISABLED = 0,
437 	SYNC_EVENTS_QUIESCENT,
438 	SYNC_EVENTS_REQUESTED,
439 	SYNC_EVENTS_VALID,
440 };
441 
442 /**
443  * struct efx_channel - An Efx channel
444  *
445  * A channel comprises an event queue, at least one TX queue, at least
446  * one RX queue, and an associated tasklet for processing the event
447  * queue.
448  *
449  * @efx: Associated Efx NIC
450  * @channel: Channel instance number
451  * @type: Channel type definition
452  * @eventq_init: Event queue initialised flag
453  * @enabled: Channel enabled indicator
454  * @irq: IRQ number (MSI and MSI-X only)
455  * @irq_moderation_us: IRQ moderation value (in microseconds)
456  * @napi_dev: Net device used with NAPI
457  * @napi_str: NAPI control structure
458  * @state: state for NAPI vs busy polling
459  * @state_lock: lock protecting @state
460  * @eventq: Event queue buffer
461  * @eventq_mask: Event queue pointer mask
462  * @eventq_read_ptr: Event queue read pointer
463  * @event_test_cpu: Last CPU to handle interrupt or test event for this channel
464  * @irq_count: Number of IRQs since last adaptive moderation decision
465  * @irq_mod_score: IRQ moderation score
466  * @rfs_filter_count: number of accelerated RFS filters currently in place;
467  *	equals the count of @rps_flow_id slots filled
468  * @rfs_last_expiry: value of jiffies last time some accelerated RFS filters
469  *	were checked for expiry
470  * @rfs_expire_index: next accelerated RFS filter ID to check for expiry
471  * @n_rfs_succeeded: number of successful accelerated RFS filter insertions
472  * @n_rfs_failed: number of failed accelerated RFS filter insertions
473  * @filter_work: Work item for efx_filter_rfs_expire()
474  * @rps_flow_id: Flow IDs of filters allocated for accelerated RFS,
475  *      indexed by filter ID
476  * @n_rx_tobe_disc: Count of RX_TOBE_DISC errors
477  * @n_rx_ip_hdr_chksum_err: Count of RX IP header checksum errors
478  * @n_rx_tcp_udp_chksum_err: Count of RX TCP and UDP checksum errors
479  * @n_rx_mcast_mismatch: Count of unmatched multicast frames
480  * @n_rx_frm_trunc: Count of RX_FRM_TRUNC errors
481  * @n_rx_overlength: Count of RX_OVERLENGTH errors
482  * @n_skbuff_leaks: Count of skbuffs leaked due to RX overrun
483  * @n_rx_nodesc_trunc: Number of RX packets truncated and then dropped due to
484  *	lack of descriptors
485  * @n_rx_merge_events: Number of RX merged completion events
486  * @n_rx_merge_packets: Number of RX packets completed by merged events
487  * @n_rx_xdp_drops: Count of RX packets intentionally dropped due to XDP
488  * @n_rx_xdp_bad_drops: Count of RX packets dropped due to XDP errors
489  * @n_rx_xdp_tx: Count of RX packets retransmitted due to XDP
490  * @n_rx_xdp_redirect: Count of RX packets redirected to a different NIC by XDP
491  * @n_rx_mport_bad: Count of RX packets dropped because their ingress mport was
492  *	not recognised
493  * @rx_pkt_n_frags: Number of fragments in next packet to be delivered by
494  *	__efx_rx_packet(), or zero if there is none
495  * @rx_pkt_index: Ring index of first buffer for next packet to be delivered
496  *	by __efx_rx_packet(), if @rx_pkt_n_frags != 0
497  * @rx_list: list of SKBs from current RX, awaiting processing
498  * @rx_queue: RX queue for this channel
499  * @tx_queue: TX queues for this channel
500  * @tx_queue_by_type: pointers into @tx_queue, or %NULL, indexed by txq type
501  * @sync_events_state: Current state of sync events on this channel
502  * @sync_timestamp_major: Major part of the last ptp sync event
503  * @sync_timestamp_minor: Minor part of the last ptp sync event
504  */
505 struct efx_channel {
506 	struct efx_nic *efx;
507 	int channel;
508 	const struct efx_channel_type *type;
509 	bool eventq_init;
510 	bool enabled;
511 	int irq;
512 	unsigned int irq_moderation_us;
513 	struct net_device *napi_dev;
514 	struct napi_struct napi_str;
515 #ifdef CONFIG_NET_RX_BUSY_POLL
516 	unsigned long busy_poll_state;
517 #endif
518 	struct efx_special_buffer eventq;
519 	unsigned int eventq_mask;
520 	unsigned int eventq_read_ptr;
521 	int event_test_cpu;
522 
523 	unsigned int irq_count;
524 	unsigned int irq_mod_score;
525 #ifdef CONFIG_RFS_ACCEL
526 	unsigned int rfs_filter_count;
527 	unsigned int rfs_last_expiry;
528 	unsigned int rfs_expire_index;
529 	unsigned int n_rfs_succeeded;
530 	unsigned int n_rfs_failed;
531 	struct delayed_work filter_work;
532 #define RPS_FLOW_ID_INVALID 0xFFFFFFFF
533 	u32 *rps_flow_id;
534 #endif
535 
536 	unsigned int n_rx_tobe_disc;
537 	unsigned int n_rx_ip_hdr_chksum_err;
538 	unsigned int n_rx_tcp_udp_chksum_err;
539 	unsigned int n_rx_outer_ip_hdr_chksum_err;
540 	unsigned int n_rx_outer_tcp_udp_chksum_err;
541 	unsigned int n_rx_inner_ip_hdr_chksum_err;
542 	unsigned int n_rx_inner_tcp_udp_chksum_err;
543 	unsigned int n_rx_eth_crc_err;
544 	unsigned int n_rx_mcast_mismatch;
545 	unsigned int n_rx_frm_trunc;
546 	unsigned int n_rx_overlength;
547 	unsigned int n_skbuff_leaks;
548 	unsigned int n_rx_nodesc_trunc;
549 	unsigned int n_rx_merge_events;
550 	unsigned int n_rx_merge_packets;
551 	unsigned int n_rx_xdp_drops;
552 	unsigned int n_rx_xdp_bad_drops;
553 	unsigned int n_rx_xdp_tx;
554 	unsigned int n_rx_xdp_redirect;
555 	unsigned int n_rx_mport_bad;
556 
557 	unsigned int rx_pkt_n_frags;
558 	unsigned int rx_pkt_index;
559 
560 	struct list_head *rx_list;
561 
562 	struct efx_rx_queue rx_queue;
563 	struct efx_tx_queue tx_queue[EFX_MAX_TXQ_PER_CHANNEL];
564 	struct efx_tx_queue *tx_queue_by_type[EFX_TXQ_TYPES];
565 
566 	enum efx_sync_events_state sync_events_state;
567 	u32 sync_timestamp_major;
568 	u32 sync_timestamp_minor;
569 };
570 
571 /**
572  * struct efx_msi_context - Context for each MSI
573  * @efx: The associated NIC
574  * @index: Index of the channel/IRQ
575  * @name: Name of the channel/IRQ
576  *
577  * Unlike &struct efx_channel, this is never reallocated and is always
578  * safe for the IRQ handler to access.
579  */
580 struct efx_msi_context {
581 	struct efx_nic *efx;
582 	unsigned int index;
583 	char name[IFNAMSIZ + 6];
584 };
585 
586 /**
587  * struct efx_channel_type - distinguishes traffic and extra channels
588  * @handle_no_channel: Handle failure to allocate an extra channel
589  * @pre_probe: Set up extra state prior to initialisation
590  * @start: called early in efx_start_channels()
591  * @stop: called early in efx_stop_channels()
592  * @post_remove: Tear down extra state after finalisation, if allocated.
593  *	May be called on channels that have not been probed.
594  * @get_name: Generate the channel's name (used for its IRQ handler)
595  * @copy: Copy the channel state prior to reallocation.  May be %NULL if
596  *	reallocation is not supported.
597  * @receive_skb: Handle an skb ready to be passed to netif_receive_skb()
598  * @receive_raw: Handle an RX buffer ready to be passed to __efx_rx_packet()
599  * @want_txqs: Determine whether this channel should have TX queues
600  *	created.  If %NULL, TX queues are not created.
601  * @keep_eventq: Flag for whether event queue should be kept initialised
602  *	while the device is stopped
603  * @want_pio: Flag for whether PIO buffers should be linked to this
604  *	channel's TX queues.
605  */
606 struct efx_channel_type {
607 	void (*handle_no_channel)(struct efx_nic *);
608 	int (*pre_probe)(struct efx_channel *);
609 	int (*start)(struct efx_channel *);
610 	void (*stop)(struct efx_channel *);
611 	void (*post_remove)(struct efx_channel *);
612 	void (*get_name)(struct efx_channel *, char *buf, size_t len);
613 	struct efx_channel *(*copy)(const struct efx_channel *);
614 	bool (*receive_skb)(struct efx_channel *, struct sk_buff *);
615 	bool (*receive_raw)(struct efx_rx_queue *, u32);
616 	bool (*want_txqs)(struct efx_channel *);
617 	bool keep_eventq;
618 	bool want_pio;
619 };
620 
621 enum efx_led_mode {
622 	EFX_LED_OFF	= 0,
623 	EFX_LED_ON	= 1,
624 	EFX_LED_DEFAULT	= 2
625 };
626 
627 #define STRING_TABLE_LOOKUP(val, member) \
628 	((val) < member ## _max) ? member ## _names[val] : "(invalid)"
629 
630 extern const char *const efx_loopback_mode_names[];
631 extern const unsigned int efx_loopback_mode_max;
632 #define LOOPBACK_MODE(efx) \
633 	STRING_TABLE_LOOKUP((efx)->loopback_mode, efx_loopback_mode)
634 
635 enum efx_int_mode {
636 	/* Be careful if altering to correct macro below */
637 	EFX_INT_MODE_MSIX = 0,
638 	EFX_INT_MODE_MSI = 1,
639 	EFX_INT_MODE_LEGACY = 2,
640 	EFX_INT_MODE_MAX	/* Insert any new items before this */
641 };
642 #define EFX_INT_MODE_USE_MSI(x) (((x)->interrupt_mode) <= EFX_INT_MODE_MSI)
643 
644 enum nic_state {
645 	STATE_UNINIT = 0,	/* device being probed/removed */
646 	STATE_PROBED,		/* hardware probed */
647 	STATE_NET_DOWN,		/* netdev registered */
648 	STATE_NET_UP,		/* ready for traffic */
649 	STATE_DISABLED,		/* device disabled due to hardware errors */
650 
651 	STATE_RECOVERY = 0x100,/* recovering from PCI error */
652 	STATE_FROZEN = 0x200,	/* frozen by power management */
653 };
654 
655 static inline bool efx_net_active(enum nic_state state)
656 {
657 	return state == STATE_NET_DOWN || state == STATE_NET_UP;
658 }
659 
660 static inline bool efx_frozen(enum nic_state state)
661 {
662 	return state & STATE_FROZEN;
663 }
664 
665 static inline bool efx_recovering(enum nic_state state)
666 {
667 	return state & STATE_RECOVERY;
668 }
669 
670 static inline enum nic_state efx_freeze(enum nic_state state)
671 {
672 	WARN_ON(!efx_net_active(state));
673 	return state | STATE_FROZEN;
674 }
675 
676 static inline enum nic_state efx_thaw(enum nic_state state)
677 {
678 	WARN_ON(!efx_frozen(state));
679 	return state & ~STATE_FROZEN;
680 }
681 
682 static inline enum nic_state efx_recover(enum nic_state state)
683 {
684 	WARN_ON(!efx_net_active(state));
685 	return state | STATE_RECOVERY;
686 }
687 
688 static inline enum nic_state efx_recovered(enum nic_state state)
689 {
690 	WARN_ON(!efx_recovering(state));
691 	return state & ~STATE_RECOVERY;
692 }
693 
694 /* Forward declaration */
695 struct efx_nic;
696 
697 /* Pseudo bit-mask flow control field */
698 #define EFX_FC_RX	FLOW_CTRL_RX
699 #define EFX_FC_TX	FLOW_CTRL_TX
700 #define EFX_FC_AUTO	4
701 
702 /**
703  * struct efx_link_state - Current state of the link
704  * @up: Link is up
705  * @fd: Link is full-duplex
706  * @fc: Actual flow control flags
707  * @speed: Link speed (Mbps)
708  */
709 struct efx_link_state {
710 	bool up;
711 	bool fd;
712 	u8 fc;
713 	unsigned int speed;
714 };
715 
716 static inline bool efx_link_state_equal(const struct efx_link_state *left,
717 					const struct efx_link_state *right)
718 {
719 	return left->up == right->up && left->fd == right->fd &&
720 		left->fc == right->fc && left->speed == right->speed;
721 }
722 
723 /**
724  * enum efx_phy_mode - PHY operating mode flags
725  * @PHY_MODE_NORMAL: on and should pass traffic
726  * @PHY_MODE_TX_DISABLED: on with TX disabled
727  * @PHY_MODE_LOW_POWER: set to low power through MDIO
728  * @PHY_MODE_OFF: switched off through external control
729  * @PHY_MODE_SPECIAL: on but will not pass traffic
730  */
731 enum efx_phy_mode {
732 	PHY_MODE_NORMAL		= 0,
733 	PHY_MODE_TX_DISABLED	= 1,
734 	PHY_MODE_LOW_POWER	= 2,
735 	PHY_MODE_OFF		= 4,
736 	PHY_MODE_SPECIAL	= 8,
737 };
738 
739 static inline bool efx_phy_mode_disabled(enum efx_phy_mode mode)
740 {
741 	return !!(mode & ~PHY_MODE_TX_DISABLED);
742 }
743 
744 /**
745  * struct efx_hw_stat_desc - Description of a hardware statistic
746  * @name: Name of the statistic as visible through ethtool, or %NULL if
747  *	it should not be exposed
748  * @dma_width: Width in bits (0 for non-DMA statistics)
749  * @offset: Offset within stats (ignored for non-DMA statistics)
750  */
751 struct efx_hw_stat_desc {
752 	const char *name;
753 	u16 dma_width;
754 	u16 offset;
755 };
756 
757 /* Number of bits used in a multicast filter hash address */
758 #define EFX_MCAST_HASH_BITS 8
759 
760 /* Number of (single-bit) entries in a multicast filter hash */
761 #define EFX_MCAST_HASH_ENTRIES (1 << EFX_MCAST_HASH_BITS)
762 
763 /* An Efx multicast filter hash */
764 union efx_multicast_hash {
765 	u8 byte[EFX_MCAST_HASH_ENTRIES / 8];
766 	efx_oword_t oword[EFX_MCAST_HASH_ENTRIES / sizeof(efx_oword_t) / 8];
767 };
768 
769 struct vfdi_status;
770 
771 /* The reserved RSS context value */
772 #define EFX_MCDI_RSS_CONTEXT_INVALID	0xffffffff
773 /**
774  * struct efx_rss_context - A user-defined RSS context for filtering
775  * @list: node of linked list on which this struct is stored
776  * @context_id: the RSS_CONTEXT_ID returned by MC firmware, or
777  *	%EFX_MCDI_RSS_CONTEXT_INVALID if this context is not present on the NIC.
778  *	For Siena, 0 if RSS is active, else %EFX_MCDI_RSS_CONTEXT_INVALID.
779  * @user_id: the rss_context ID exposed to userspace over ethtool.
780  * @rx_hash_udp_4tuple: UDP 4-tuple hashing enabled
781  * @rx_hash_key: Toeplitz hash key for this RSS context
782  * @indir_table: Indirection table for this RSS context
783  */
784 struct efx_rss_context {
785 	struct list_head list;
786 	u32 context_id;
787 	u32 user_id;
788 	bool rx_hash_udp_4tuple;
789 	u8 rx_hash_key[40];
790 	u32 rx_indir_table[128];
791 };
792 
793 #ifdef CONFIG_RFS_ACCEL
794 /* Order of these is important, since filter_id >= %EFX_ARFS_FILTER_ID_PENDING
795  * is used to test if filter does or will exist.
796  */
797 #define EFX_ARFS_FILTER_ID_PENDING	-1
798 #define EFX_ARFS_FILTER_ID_ERROR	-2
799 #define EFX_ARFS_FILTER_ID_REMOVING	-3
800 /**
801  * struct efx_arfs_rule - record of an ARFS filter and its IDs
802  * @node: linkage into hash table
803  * @spec: details of the filter (used as key for hash table).  Use efx->type to
804  *	determine which member to use.
805  * @rxq_index: channel to which the filter will steer traffic.
806  * @arfs_id: filter ID which was returned to ARFS
807  * @filter_id: index in software filter table.  May be
808  *	%EFX_ARFS_FILTER_ID_PENDING if filter was not inserted yet,
809  *	%EFX_ARFS_FILTER_ID_ERROR if filter insertion failed, or
810  *	%EFX_ARFS_FILTER_ID_REMOVING if expiry is currently removing the filter.
811  */
812 struct efx_arfs_rule {
813 	struct hlist_node node;
814 	struct efx_filter_spec spec;
815 	u16 rxq_index;
816 	u16 arfs_id;
817 	s32 filter_id;
818 };
819 
820 /* Size chosen so that the table is one page (4kB) */
821 #define EFX_ARFS_HASH_TABLE_SIZE	512
822 
823 /**
824  * struct efx_async_filter_insertion - Request to asynchronously insert a filter
825  * @net_dev: Reference to the netdevice
826  * @spec: The filter to insert
827  * @work: Workitem for this request
828  * @rxq_index: Identifies the channel for which this request was made
829  * @flow_id: Identifies the kernel-side flow for which this request was made
830  */
831 struct efx_async_filter_insertion {
832 	struct net_device *net_dev;
833 	struct efx_filter_spec spec;
834 	struct work_struct work;
835 	u16 rxq_index;
836 	u32 flow_id;
837 };
838 
839 /* Maximum number of ARFS workitems that may be in flight on an efx_nic */
840 #define EFX_RPS_MAX_IN_FLIGHT	8
841 #endif /* CONFIG_RFS_ACCEL */
842 
843 enum efx_xdp_tx_queues_mode {
844 	EFX_XDP_TX_QUEUES_DEDICATED,	/* one queue per core, locking not needed */
845 	EFX_XDP_TX_QUEUES_SHARED,	/* each queue used by more than 1 core */
846 	EFX_XDP_TX_QUEUES_BORROWED	/* queues borrowed from net stack */
847 };
848 
849 struct efx_mae;
850 
851 /**
852  * struct efx_nic - an Efx NIC
853  * @name: Device name (net device name or bus id before net device registered)
854  * @pci_dev: The PCI device
855  * @node: List node for maintaning primary/secondary function lists
856  * @primary: &struct efx_nic instance for the primary function of this
857  *	controller.  May be the same structure, and may be %NULL if no
858  *	primary function is bound.  Serialised by rtnl_lock.
859  * @secondary_list: List of &struct efx_nic instances for the secondary PCI
860  *	functions of the controller, if this is for the primary function.
861  *	Serialised by rtnl_lock.
862  * @type: Controller type attributes
863  * @legacy_irq: IRQ number
864  * @workqueue: Workqueue for port reconfigures and the HW monitor.
865  *	Work items do not hold and must not acquire RTNL.
866  * @workqueue_name: Name of workqueue
867  * @reset_work: Scheduled reset workitem
868  * @membase_phys: Memory BAR value as physical address
869  * @membase: Memory BAR value
870  * @vi_stride: step between per-VI registers / memory regions
871  * @interrupt_mode: Interrupt mode
872  * @timer_quantum_ns: Interrupt timer quantum, in nanoseconds
873  * @timer_max_ns: Interrupt timer maximum value, in nanoseconds
874  * @irq_rx_adaptive: Adaptive IRQ moderation enabled for RX event queues
875  * @irqs_hooked: Channel interrupts are hooked
876  * @irq_rx_mod_step_us: Step size for IRQ moderation for RX event queues
877  * @irq_rx_moderation_us: IRQ moderation time for RX event queues
878  * @msg_enable: Log message enable flags
879  * @state: Device state number (%STATE_*). Serialised by the rtnl_lock.
880  * @reset_pending: Bitmask for pending resets
881  * @tx_queue: TX DMA queues
882  * @rx_queue: RX DMA queues
883  * @channel: Channels
884  * @msi_context: Context for each MSI
885  * @extra_channel_types: Types of extra (non-traffic) channels that
886  *	should be allocated for this NIC
887  * @mae: Details of the Match Action Engine
888  * @xdp_tx_queue_count: Number of entries in %xdp_tx_queues.
889  * @xdp_tx_queues: Array of pointers to tx queues used for XDP transmit.
890  * @xdp_txq_queues_mode: XDP TX queues sharing strategy.
891  * @rxq_entries: Size of receive queues requested by user.
892  * @txq_entries: Size of transmit queues requested by user.
893  * @txq_stop_thresh: TX queue fill level at or above which we stop it.
894  * @txq_wake_thresh: TX queue fill level at or below which we wake it.
895  * @tx_dc_base: Base qword address in SRAM of TX queue descriptor caches
896  * @rx_dc_base: Base qword address in SRAM of RX queue descriptor caches
897  * @sram_lim_qw: Qword address limit of SRAM
898  * @next_buffer_table: First available buffer table id
899  * @n_channels: Number of channels in use
900  * @n_rx_channels: Number of channels used for RX (= number of RX queues)
901  * @n_tx_channels: Number of channels used for TX
902  * @n_extra_tx_channels: Number of extra channels with TX queues
903  * @tx_queues_per_channel: number of TX queues probed on each channel
904  * @n_xdp_channels: Number of channels used for XDP TX
905  * @xdp_channel_offset: Offset of zeroth channel used for XPD TX.
906  * @xdp_tx_per_channel: Max number of TX queues on an XDP TX channel.
907  * @rx_ip_align: RX DMA address offset to have IP header aligned in
908  *	in accordance with NET_IP_ALIGN
909  * @rx_dma_len: Current maximum RX DMA length
910  * @rx_buffer_order: Order (log2) of number of pages for each RX buffer
911  * @rx_buffer_truesize: Amortised allocation size of an RX buffer,
912  *	for use in sk_buff::truesize
913  * @rx_prefix_size: Size of RX prefix before packet data
914  * @rx_packet_hash_offset: Offset of RX flow hash from start of packet data
915  *	(valid only if @rx_prefix_size != 0; always negative)
916  * @rx_packet_len_offset: Offset of RX packet length from start of packet data
917  *	(valid only for NICs that set %EFX_RX_PKT_PREFIX_LEN; always negative)
918  * @rx_packet_ts_offset: Offset of timestamp from start of packet data
919  *	(valid only if channel->sync_timestamps_enabled; always negative)
920  * @rx_scatter: Scatter mode enabled for receives
921  * @rss_context: Main RSS context.  Its @list member is the head of the list of
922  *	RSS contexts created by user requests
923  * @rss_lock: Protects custom RSS context software state in @rss_context.list
924  * @vport_id: The function's vport ID, only relevant for PFs
925  * @int_error_count: Number of internal errors seen recently
926  * @int_error_expire: Time at which error count will be expired
927  * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
928  * @irq_soft_enabled: Are IRQs soft-enabled? If not, IRQ handler will
929  *	acknowledge but do nothing else.
930  * @irq_status: Interrupt status buffer
931  * @irq_zero_count: Number of legacy IRQs seen with queue flags == 0
932  * @irq_level: IRQ level/index for IRQs not triggered by an event queue
933  * @selftest_work: Work item for asynchronous self-test
934  * @mtd_list: List of MTDs attached to the NIC
935  * @nic_data: Hardware dependent state
936  * @mcdi: Management-Controller-to-Driver Interface state
937  * @mac_lock: MAC access lock. Protects @port_enabled, @phy_mode,
938  *	efx_monitor() and efx_reconfigure_port()
939  * @port_enabled: Port enabled indicator.
940  *	Serialises efx_stop_all(), efx_start_all(), efx_monitor() and
941  *	efx_mac_work() with kernel interfaces. Safe to read under any
942  *	one of the rtnl_lock, mac_lock, or netif_tx_lock, but all three must
943  *	be held to modify it.
944  * @port_initialized: Port initialized?
945  * @net_dev: Operating system network device. Consider holding the rtnl lock
946  * @fixed_features: Features which cannot be turned off
947  * @num_mac_stats: Number of MAC stats reported by firmware (MAC_STATS_NUM_STATS
948  *	field of %MC_CMD_GET_CAPABILITIES_V4 response, or %MC_CMD_MAC_NSTATS)
949  * @stats_buffer: DMA buffer for statistics
950  * @phy_type: PHY type
951  * @phy_data: PHY private data (including PHY-specific stats)
952  * @mdio: PHY MDIO interface
953  * @mdio_bus: PHY MDIO bus ID (only used by Siena)
954  * @phy_mode: PHY operating mode. Serialised by @mac_lock.
955  * @link_advertising: Autonegotiation advertising flags
956  * @fec_config: Forward Error Correction configuration flags.  For bit positions
957  *	see &enum ethtool_fec_config_bits.
958  * @link_state: Current state of the link
959  * @n_link_state_changes: Number of times the link has changed state
960  * @unicast_filter: Flag for Falcon-arch simple unicast filter.
961  *	Protected by @mac_lock.
962  * @multicast_hash: Multicast hash table for Falcon-arch.
963  *	Protected by @mac_lock.
964  * @wanted_fc: Wanted flow control flags
965  * @fc_disable: When non-zero flow control is disabled. Typically used to
966  *	ensure that network back pressure doesn't delay dma queue flushes.
967  *	Serialised by the rtnl lock.
968  * @mac_work: Work item for changing MAC promiscuity and multicast hash
969  * @loopback_mode: Loopback status
970  * @loopback_modes: Supported loopback mode bitmask
971  * @loopback_selftest: Offline self-test private state
972  * @xdp_prog: Current XDP programme for this interface
973  * @filter_sem: Filter table rw_semaphore, protects existence of @filter_state
974  * @filter_state: Architecture-dependent filter table state
975  * @rps_mutex: Protects RPS state of all channels
976  * @rps_slot_map: bitmap of in-flight entries in @rps_slot
977  * @rps_slot: array of ARFS insertion requests for efx_filter_rfs_work()
978  * @rps_hash_lock: Protects ARFS filter mapping state (@rps_hash_table and
979  *	@rps_next_id).
980  * @rps_hash_table: Mapping between ARFS filters and their various IDs
981  * @rps_next_id: next arfs_id for an ARFS filter
982  * @active_queues: Count of RX and TX queues that haven't been flushed and drained.
983  * @rxq_flush_pending: Count of number of receive queues that need to be flushed.
984  *	Decremented when the efx_flush_rx_queue() is called.
985  * @rxq_flush_outstanding: Count of number of RX flushes started but not yet
986  *	completed (either success or failure). Not used when MCDI is used to
987  *	flush receive queues.
988  * @flush_wq: wait queue used by efx_nic_flush_queues() to wait for flush completions.
989  * @vf_count: Number of VFs intended to be enabled.
990  * @vf_init_count: Number of VFs that have been fully initialised.
991  * @vi_scale: log2 number of vnics per VF.
992  * @vf_reps_lock: Protects vf_reps list
993  * @vf_reps: local VF reps
994  * @ptp_data: PTP state data
995  * @ptp_warned: has this NIC seen and warned about unexpected PTP events?
996  * @vpd_sn: Serial number read from VPD
997  * @xdp_rxq_info_failed: Have any of the rx queues failed to initialise their
998  *      xdp_rxq_info structures?
999  * @netdev_notifier: Netdevice notifier.
1000  * @netevent_notifier: Netevent notifier (for neighbour updates).
1001  * @tc: state for TC offload (EF100).
1002  * @devlink: reference to devlink structure owned by this device
1003  * @dl_port: devlink port associated with the PF
1004  * @mem_bar: The BAR that is mapped into membase.
1005  * @reg_base: Offset from the start of the bar to the function control window.
1006  * @monitor_work: Hardware monitor workitem
1007  * @biu_lock: BIU (bus interface unit) lock
1008  * @last_irq_cpu: Last CPU to handle a possible test interrupt.  This
1009  *	field is used by efx_test_interrupts() to verify that an
1010  *	interrupt has occurred.
1011  * @stats_lock: Statistics update lock. Must be held when calling
1012  *	efx_nic_type::{update,start,stop}_stats.
1013  * @n_rx_noskb_drops: Count of RX packets dropped due to failure to allocate an skb
1014  *
1015  * This is stored in the private area of the &struct net_device.
1016  */
1017 struct efx_nic {
1018 	/* The following fields should be written very rarely */
1019 
1020 	char name[IFNAMSIZ];
1021 	struct list_head node;
1022 	struct efx_nic *primary;
1023 	struct list_head secondary_list;
1024 	struct pci_dev *pci_dev;
1025 	unsigned int port_num;
1026 	const struct efx_nic_type *type;
1027 	int legacy_irq;
1028 	bool eeh_disabled_legacy_irq;
1029 	struct workqueue_struct *workqueue;
1030 	char workqueue_name[16];
1031 	struct work_struct reset_work;
1032 	resource_size_t membase_phys;
1033 	void __iomem *membase;
1034 
1035 	unsigned int vi_stride;
1036 
1037 	enum efx_int_mode interrupt_mode;
1038 	unsigned int timer_quantum_ns;
1039 	unsigned int timer_max_ns;
1040 	bool irq_rx_adaptive;
1041 	bool irqs_hooked;
1042 	unsigned int irq_mod_step_us;
1043 	unsigned int irq_rx_moderation_us;
1044 	u32 msg_enable;
1045 
1046 	enum nic_state state;
1047 	unsigned long reset_pending;
1048 
1049 	struct efx_channel *channel[EFX_MAX_CHANNELS];
1050 	struct efx_msi_context msi_context[EFX_MAX_CHANNELS];
1051 	const struct efx_channel_type *
1052 	extra_channel_type[EFX_MAX_EXTRA_CHANNELS];
1053 	struct efx_mae *mae;
1054 
1055 	unsigned int xdp_tx_queue_count;
1056 	struct efx_tx_queue **xdp_tx_queues;
1057 	enum efx_xdp_tx_queues_mode xdp_txq_queues_mode;
1058 
1059 	unsigned rxq_entries;
1060 	unsigned txq_entries;
1061 	unsigned int txq_stop_thresh;
1062 	unsigned int txq_wake_thresh;
1063 
1064 	unsigned tx_dc_base;
1065 	unsigned rx_dc_base;
1066 	unsigned sram_lim_qw;
1067 	unsigned next_buffer_table;
1068 
1069 	unsigned int max_channels;
1070 	unsigned int max_vis;
1071 	unsigned int max_tx_channels;
1072 	unsigned n_channels;
1073 	unsigned n_rx_channels;
1074 	unsigned rss_spread;
1075 	unsigned tx_channel_offset;
1076 	unsigned n_tx_channels;
1077 	unsigned n_extra_tx_channels;
1078 	unsigned int tx_queues_per_channel;
1079 	unsigned int n_xdp_channels;
1080 	unsigned int xdp_channel_offset;
1081 	unsigned int xdp_tx_per_channel;
1082 	unsigned int rx_ip_align;
1083 	unsigned int rx_dma_len;
1084 	unsigned int rx_buffer_order;
1085 	unsigned int rx_buffer_truesize;
1086 	unsigned int rx_page_buf_step;
1087 	unsigned int rx_bufs_per_page;
1088 	unsigned int rx_pages_per_batch;
1089 	unsigned int rx_prefix_size;
1090 	int rx_packet_hash_offset;
1091 	int rx_packet_len_offset;
1092 	int rx_packet_ts_offset;
1093 	bool rx_scatter;
1094 	struct efx_rss_context rss_context;
1095 	struct mutex rss_lock;
1096 	u32 vport_id;
1097 
1098 	unsigned int_error_count;
1099 	unsigned long int_error_expire;
1100 
1101 	bool must_realloc_vis;
1102 	bool irq_soft_enabled;
1103 	struct efx_buffer irq_status;
1104 	unsigned irq_zero_count;
1105 	unsigned irq_level;
1106 	struct delayed_work selftest_work;
1107 
1108 #ifdef CONFIG_SFC_MTD
1109 	struct list_head mtd_list;
1110 #endif
1111 
1112 	void *nic_data;
1113 	struct efx_mcdi_data *mcdi;
1114 
1115 	struct mutex mac_lock;
1116 	struct work_struct mac_work;
1117 	bool port_enabled;
1118 
1119 	bool mc_bist_for_other_fn;
1120 	bool port_initialized;
1121 	struct net_device *net_dev;
1122 
1123 	netdev_features_t fixed_features;
1124 
1125 	u16 num_mac_stats;
1126 	struct efx_buffer stats_buffer;
1127 	u64 rx_nodesc_drops_total;
1128 	u64 rx_nodesc_drops_while_down;
1129 	bool rx_nodesc_drops_prev_state;
1130 
1131 	unsigned int phy_type;
1132 	void *phy_data;
1133 	struct mdio_if_info mdio;
1134 	unsigned int mdio_bus;
1135 	enum efx_phy_mode phy_mode;
1136 
1137 	__ETHTOOL_DECLARE_LINK_MODE_MASK(link_advertising);
1138 	u32 fec_config;
1139 	struct efx_link_state link_state;
1140 	unsigned int n_link_state_changes;
1141 
1142 	bool unicast_filter;
1143 	union efx_multicast_hash multicast_hash;
1144 	u8 wanted_fc;
1145 	unsigned fc_disable;
1146 
1147 	atomic_t rx_reset;
1148 	enum efx_loopback_mode loopback_mode;
1149 	u64 loopback_modes;
1150 
1151 	void *loopback_selftest;
1152 	/* We access loopback_selftest immediately before running XDP,
1153 	 * so we want them next to each other.
1154 	 */
1155 	struct bpf_prog __rcu *xdp_prog;
1156 
1157 	struct rw_semaphore filter_sem;
1158 	void *filter_state;
1159 #ifdef CONFIG_RFS_ACCEL
1160 	struct mutex rps_mutex;
1161 	unsigned long rps_slot_map;
1162 	struct efx_async_filter_insertion rps_slot[EFX_RPS_MAX_IN_FLIGHT];
1163 	spinlock_t rps_hash_lock;
1164 	struct hlist_head *rps_hash_table;
1165 	u32 rps_next_id;
1166 #endif
1167 
1168 	atomic_t active_queues;
1169 	atomic_t rxq_flush_pending;
1170 	atomic_t rxq_flush_outstanding;
1171 	wait_queue_head_t flush_wq;
1172 
1173 #ifdef CONFIG_SFC_SRIOV
1174 	unsigned vf_count;
1175 	unsigned vf_init_count;
1176 	unsigned vi_scale;
1177 #endif
1178 	spinlock_t vf_reps_lock;
1179 	struct list_head vf_reps;
1180 
1181 	struct efx_ptp_data *ptp_data;
1182 	bool ptp_warned;
1183 
1184 	char *vpd_sn;
1185 	bool xdp_rxq_info_failed;
1186 
1187 	struct notifier_block netdev_notifier;
1188 	struct notifier_block netevent_notifier;
1189 	struct efx_tc_state *tc;
1190 
1191 	struct devlink *devlink;
1192 	struct devlink_port *dl_port;
1193 	unsigned int mem_bar;
1194 	u32 reg_base;
1195 
1196 	/* The following fields may be written more often */
1197 
1198 	struct delayed_work monitor_work ____cacheline_aligned_in_smp;
1199 	spinlock_t biu_lock;
1200 	int last_irq_cpu;
1201 	spinlock_t stats_lock;
1202 	atomic_t n_rx_noskb_drops;
1203 };
1204 
1205 /**
1206  * struct efx_probe_data - State after hardware probe
1207  * @pci_dev: The PCI device
1208  * @efx: Efx NIC details
1209  */
1210 struct efx_probe_data {
1211 	struct pci_dev *pci_dev;
1212 	struct efx_nic efx;
1213 };
1214 
1215 static inline struct efx_nic *efx_netdev_priv(struct net_device *dev)
1216 {
1217 	struct efx_probe_data **probe_ptr = netdev_priv(dev);
1218 	struct efx_probe_data *probe_data = *probe_ptr;
1219 
1220 	return &probe_data->efx;
1221 }
1222 
1223 static inline int efx_dev_registered(struct efx_nic *efx)
1224 {
1225 	return efx->net_dev->reg_state == NETREG_REGISTERED;
1226 }
1227 
1228 static inline unsigned int efx_port_num(struct efx_nic *efx)
1229 {
1230 	return efx->port_num;
1231 }
1232 
1233 struct efx_mtd_partition {
1234 	struct list_head node;
1235 	struct mtd_info mtd;
1236 	const char *dev_type_name;
1237 	const char *type_name;
1238 	char name[IFNAMSIZ + 20];
1239 };
1240 
1241 struct efx_udp_tunnel {
1242 #define TUNNEL_ENCAP_UDP_PORT_ENTRY_INVALID	0xffff
1243 	u16 type; /* TUNNEL_ENCAP_UDP_PORT_ENTRY_foo, see mcdi_pcol.h */
1244 	__be16 port;
1245 };
1246 
1247 /**
1248  * struct efx_nic_type - Efx device type definition
1249  * @mem_bar: Get the memory BAR
1250  * @mem_map_size: Get memory BAR mapped size
1251  * @probe: Probe the controller
1252  * @remove: Free resources allocated by probe()
1253  * @init: Initialise the controller
1254  * @dimension_resources: Dimension controller resources (buffer table,
1255  *	and VIs once the available interrupt resources are clear)
1256  * @fini: Shut down the controller
1257  * @monitor: Periodic function for polling link state and hardware monitor
1258  * @map_reset_reason: Map ethtool reset reason to a reset method
1259  * @map_reset_flags: Map ethtool reset flags to a reset method, if possible
1260  * @reset: Reset the controller hardware and possibly the PHY.  This will
1261  *	be called while the controller is uninitialised.
1262  * @probe_port: Probe the MAC and PHY
1263  * @remove_port: Free resources allocated by probe_port()
1264  * @handle_global_event: Handle a "global" event (may be %NULL)
1265  * @fini_dmaq: Flush and finalise DMA queues (RX and TX queues)
1266  * @prepare_flush: Prepare the hardware for flushing the DMA queues
1267  *	(for Falcon architecture)
1268  * @finish_flush: Clean up after flushing the DMA queues (for Falcon
1269  *	architecture)
1270  * @prepare_flr: Prepare for an FLR
1271  * @finish_flr: Clean up after an FLR
1272  * @describe_stats: Describe statistics for ethtool
1273  * @update_stats: Update statistics not provided by event handling.
1274  *	Either argument may be %NULL.
1275  * @update_stats_atomic: Update statistics while in atomic context, if that
1276  *	is more limiting than @update_stats.  Otherwise, leave %NULL and
1277  *	driver core will call @update_stats.
1278  * @start_stats: Start the regular fetching of statistics
1279  * @pull_stats: Pull stats from the NIC and wait until they arrive.
1280  * @stop_stats: Stop the regular fetching of statistics
1281  * @push_irq_moderation: Apply interrupt moderation value
1282  * @reconfigure_port: Push loopback/power/txdis changes to the MAC and PHY
1283  * @prepare_enable_fc_tx: Prepare MAC to enable pause frame TX (may be %NULL)
1284  * @reconfigure_mac: Push MAC address, MTU, flow control and filter settings
1285  *	to the hardware.  Serialised by the mac_lock.
1286  * @check_mac_fault: Check MAC fault state. True if fault present.
1287  * @get_wol: Get WoL configuration from driver state
1288  * @set_wol: Push WoL configuration to the NIC
1289  * @resume_wol: Synchronise WoL state between driver and MC (e.g. after resume)
1290  * @get_fec_stats: Get standard FEC statistics.
1291  * @test_chip: Test registers.  May use efx_farch_test_registers(), and is
1292  *	expected to reset the NIC.
1293  * @test_nvram: Test validity of NVRAM contents
1294  * @mcdi_request: Send an MCDI request with the given header and SDU.
1295  *	The SDU length may be any value from 0 up to the protocol-
1296  *	defined maximum, but its buffer will be padded to a multiple
1297  *	of 4 bytes.
1298  * @mcdi_poll_response: Test whether an MCDI response is available.
1299  * @mcdi_read_response: Read the MCDI response PDU.  The offset will
1300  *	be a multiple of 4.  The length may not be, but the buffer
1301  *	will be padded so it is safe to round up.
1302  * @mcdi_poll_reboot: Test whether the MCDI has rebooted.  If so,
1303  *	return an appropriate error code for aborting any current
1304  *	request; otherwise return 0.
1305  * @irq_enable_master: Enable IRQs on the NIC.  Each event queue must
1306  *	be separately enabled after this.
1307  * @irq_test_generate: Generate a test IRQ
1308  * @irq_disable_non_ev: Disable non-event IRQs on the NIC.  Each event
1309  *	queue must be separately disabled before this.
1310  * @irq_handle_msi: Handle MSI for a channel.  The @dev_id argument is
1311  *	a pointer to the &struct efx_msi_context for the channel.
1312  * @irq_handle_legacy: Handle legacy interrupt.  The @dev_id argument
1313  *	is a pointer to the &struct efx_nic.
1314  * @tx_probe: Allocate resources for TX queue (and select TXQ type)
1315  * @tx_init: Initialise TX queue on the NIC
1316  * @tx_remove: Free resources for TX queue
1317  * @tx_write: Write TX descriptors and doorbell
1318  * @tx_enqueue: Add an SKB to TX queue
1319  * @rx_push_rss_config: Write RSS hash key and indirection table to the NIC
1320  * @rx_pull_rss_config: Read RSS hash key and indirection table back from the NIC
1321  * @rx_push_rss_context_config: Write RSS hash key and indirection table for
1322  *	user RSS context to the NIC
1323  * @rx_pull_rss_context_config: Read RSS hash key and indirection table for user
1324  *	RSS context back from the NIC
1325  * @rx_probe: Allocate resources for RX queue
1326  * @rx_init: Initialise RX queue on the NIC
1327  * @rx_remove: Free resources for RX queue
1328  * @rx_write: Write RX descriptors and doorbell
1329  * @rx_defer_refill: Generate a refill reminder event
1330  * @rx_packet: Receive the queued RX buffer on a channel
1331  * @rx_buf_hash_valid: Determine whether the RX prefix contains a valid hash
1332  * @ev_probe: Allocate resources for event queue
1333  * @ev_init: Initialise event queue on the NIC
1334  * @ev_fini: Deinitialise event queue on the NIC
1335  * @ev_remove: Free resources for event queue
1336  * @ev_process: Process events for a queue, up to the given NAPI quota
1337  * @ev_read_ack: Acknowledge read events on a queue, rearming its IRQ
1338  * @ev_test_generate: Generate a test event
1339  * @filter_table_probe: Probe filter capabilities and set up filter software state
1340  * @filter_table_restore: Restore filters removed from hardware
1341  * @filter_table_remove: Remove filters from hardware and tear down software state
1342  * @filter_update_rx_scatter: Update filters after change to rx scatter setting
1343  * @filter_insert: add or replace a filter
1344  * @filter_remove_safe: remove a filter by ID, carefully
1345  * @filter_get_safe: retrieve a filter by ID, carefully
1346  * @filter_clear_rx: Remove all RX filters whose priority is less than or
1347  *	equal to the given priority and is not %EFX_FILTER_PRI_AUTO
1348  * @filter_count_rx_used: Get the number of filters in use at a given priority
1349  * @filter_get_rx_id_limit: Get maximum value of a filter id, plus 1
1350  * @filter_get_rx_ids: Get list of RX filters at a given priority
1351  * @filter_rfs_expire_one: Consider expiring a filter inserted for RFS.
1352  *	This must check whether the specified table entry is used by RFS
1353  *	and that rps_may_expire_flow() returns true for it.
1354  * @mtd_probe: Probe and add MTD partitions associated with this net device,
1355  *	 using efx_mtd_add()
1356  * @mtd_rename: Set an MTD partition name using the net device name
1357  * @mtd_read: Read from an MTD partition
1358  * @mtd_erase: Erase part of an MTD partition
1359  * @mtd_write: Write to an MTD partition
1360  * @mtd_sync: Wait for write-back to complete on MTD partition.  This
1361  *	also notifies the driver that a writer has finished using this
1362  *	partition.
1363  * @ptp_write_host_time: Send host time to MC as part of sync protocol
1364  * @ptp_set_ts_sync_events: Enable or disable sync events for inline RX
1365  *	timestamping, possibly only temporarily for the purposes of a reset.
1366  * @ptp_set_ts_config: Set hardware timestamp configuration.  The flags
1367  *	and tx_type will already have been validated but this operation
1368  *	must validate and update rx_filter.
1369  * @get_phys_port_id: Get the underlying physical port id.
1370  * @set_mac_address: Set the MAC address of the device
1371  * @tso_versions: Returns mask of firmware-assisted TSO versions supported.
1372  *	If %NULL, then device does not support any TSO version.
1373  * @udp_tnl_push_ports: Push the list of UDP tunnel ports to the NIC if required.
1374  * @udp_tnl_has_port: Check if a port has been added as UDP tunnel
1375  * @print_additional_fwver: Dump NIC-specific additional FW version info
1376  * @sensor_event: Handle a sensor event from MCDI
1377  * @rx_recycle_ring_size: Size of the RX recycle ring
1378  * @revision: Hardware architecture revision
1379  * @txd_ptr_tbl_base: TX descriptor ring base address
1380  * @rxd_ptr_tbl_base: RX descriptor ring base address
1381  * @buf_tbl_base: Buffer table base address
1382  * @evq_ptr_tbl_base: Event queue pointer table base address
1383  * @evq_rptr_tbl_base: Event queue read-pointer table base address
1384  * @max_dma_mask: Maximum possible DMA mask
1385  * @rx_prefix_size: Size of RX prefix before packet data
1386  * @rx_hash_offset: Offset of RX flow hash within prefix
1387  * @rx_ts_offset: Offset of timestamp within prefix
1388  * @rx_buffer_padding: Size of padding at end of RX packet
1389  * @can_rx_scatter: NIC is able to scatter packets to multiple buffers
1390  * @always_rx_scatter: NIC will always scatter packets to multiple buffers
1391  * @option_descriptors: NIC supports TX option descriptors
1392  * @min_interrupt_mode: Lowest capability interrupt mode supported
1393  *	from &enum efx_int_mode.
1394  * @timer_period_max: Maximum period of interrupt timer (in ticks)
1395  * @offload_features: net_device feature flags for protocol offload
1396  *	features implemented in hardware
1397  * @mcdi_max_ver: Maximum MCDI version supported
1398  * @hwtstamp_filters: Mask of hardware timestamp filter types supported
1399  */
1400 struct efx_nic_type {
1401 	bool is_vf;
1402 	unsigned int (*mem_bar)(struct efx_nic *efx);
1403 	unsigned int (*mem_map_size)(struct efx_nic *efx);
1404 	int (*probe)(struct efx_nic *efx);
1405 	void (*remove)(struct efx_nic *efx);
1406 	int (*init)(struct efx_nic *efx);
1407 	int (*dimension_resources)(struct efx_nic *efx);
1408 	void (*fini)(struct efx_nic *efx);
1409 	void (*monitor)(struct efx_nic *efx);
1410 	enum reset_type (*map_reset_reason)(enum reset_type reason);
1411 	int (*map_reset_flags)(u32 *flags);
1412 	int (*reset)(struct efx_nic *efx, enum reset_type method);
1413 	int (*probe_port)(struct efx_nic *efx);
1414 	void (*remove_port)(struct efx_nic *efx);
1415 	bool (*handle_global_event)(struct efx_channel *channel, efx_qword_t *);
1416 	int (*fini_dmaq)(struct efx_nic *efx);
1417 	void (*prepare_flush)(struct efx_nic *efx);
1418 	void (*finish_flush)(struct efx_nic *efx);
1419 	void (*prepare_flr)(struct efx_nic *efx);
1420 	void (*finish_flr)(struct efx_nic *efx);
1421 	size_t (*describe_stats)(struct efx_nic *efx, u8 *names);
1422 	size_t (*update_stats)(struct efx_nic *efx, u64 *full_stats,
1423 			       struct rtnl_link_stats64 *core_stats);
1424 	size_t (*update_stats_atomic)(struct efx_nic *efx, u64 *full_stats,
1425 				      struct rtnl_link_stats64 *core_stats);
1426 	void (*start_stats)(struct efx_nic *efx);
1427 	void (*pull_stats)(struct efx_nic *efx);
1428 	void (*stop_stats)(struct efx_nic *efx);
1429 	void (*push_irq_moderation)(struct efx_channel *channel);
1430 	int (*reconfigure_port)(struct efx_nic *efx);
1431 	void (*prepare_enable_fc_tx)(struct efx_nic *efx);
1432 	int (*reconfigure_mac)(struct efx_nic *efx, bool mtu_only);
1433 	bool (*check_mac_fault)(struct efx_nic *efx);
1434 	void (*get_wol)(struct efx_nic *efx, struct ethtool_wolinfo *wol);
1435 	int (*set_wol)(struct efx_nic *efx, u32 type);
1436 	void (*resume_wol)(struct efx_nic *efx);
1437 	void (*get_fec_stats)(struct efx_nic *efx,
1438 			      struct ethtool_fec_stats *fec_stats);
1439 	unsigned int (*check_caps)(const struct efx_nic *efx,
1440 				   u8 flag,
1441 				   u32 offset);
1442 	int (*test_chip)(struct efx_nic *efx, struct efx_self_tests *tests);
1443 	int (*test_nvram)(struct efx_nic *efx);
1444 	void (*mcdi_request)(struct efx_nic *efx,
1445 			     const efx_dword_t *hdr, size_t hdr_len,
1446 			     const efx_dword_t *sdu, size_t sdu_len);
1447 	bool (*mcdi_poll_response)(struct efx_nic *efx);
1448 	void (*mcdi_read_response)(struct efx_nic *efx, efx_dword_t *pdu,
1449 				   size_t pdu_offset, size_t pdu_len);
1450 	int (*mcdi_poll_reboot)(struct efx_nic *efx);
1451 	void (*mcdi_reboot_detected)(struct efx_nic *efx);
1452 	void (*irq_enable_master)(struct efx_nic *efx);
1453 	int (*irq_test_generate)(struct efx_nic *efx);
1454 	void (*irq_disable_non_ev)(struct efx_nic *efx);
1455 	irqreturn_t (*irq_handle_msi)(int irq, void *dev_id);
1456 	irqreturn_t (*irq_handle_legacy)(int irq, void *dev_id);
1457 	int (*tx_probe)(struct efx_tx_queue *tx_queue);
1458 	void (*tx_init)(struct efx_tx_queue *tx_queue);
1459 	void (*tx_remove)(struct efx_tx_queue *tx_queue);
1460 	void (*tx_write)(struct efx_tx_queue *tx_queue);
1461 	netdev_tx_t (*tx_enqueue)(struct efx_tx_queue *tx_queue, struct sk_buff *skb);
1462 	unsigned int (*tx_limit_len)(struct efx_tx_queue *tx_queue,
1463 				     dma_addr_t dma_addr, unsigned int len);
1464 	int (*rx_push_rss_config)(struct efx_nic *efx, bool user,
1465 				  const u32 *rx_indir_table, const u8 *key);
1466 	int (*rx_pull_rss_config)(struct efx_nic *efx);
1467 	int (*rx_push_rss_context_config)(struct efx_nic *efx,
1468 					  struct efx_rss_context *ctx,
1469 					  const u32 *rx_indir_table,
1470 					  const u8 *key);
1471 	int (*rx_pull_rss_context_config)(struct efx_nic *efx,
1472 					  struct efx_rss_context *ctx);
1473 	void (*rx_restore_rss_contexts)(struct efx_nic *efx);
1474 	int (*rx_probe)(struct efx_rx_queue *rx_queue);
1475 	void (*rx_init)(struct efx_rx_queue *rx_queue);
1476 	void (*rx_remove)(struct efx_rx_queue *rx_queue);
1477 	void (*rx_write)(struct efx_rx_queue *rx_queue);
1478 	void (*rx_defer_refill)(struct efx_rx_queue *rx_queue);
1479 	void (*rx_packet)(struct efx_channel *channel);
1480 	bool (*rx_buf_hash_valid)(const u8 *prefix);
1481 	int (*ev_probe)(struct efx_channel *channel);
1482 	int (*ev_init)(struct efx_channel *channel);
1483 	void (*ev_fini)(struct efx_channel *channel);
1484 	void (*ev_remove)(struct efx_channel *channel);
1485 	int (*ev_process)(struct efx_channel *channel, int quota);
1486 	void (*ev_read_ack)(struct efx_channel *channel);
1487 	void (*ev_test_generate)(struct efx_channel *channel);
1488 	int (*filter_table_probe)(struct efx_nic *efx);
1489 	void (*filter_table_restore)(struct efx_nic *efx);
1490 	void (*filter_table_remove)(struct efx_nic *efx);
1491 	void (*filter_update_rx_scatter)(struct efx_nic *efx);
1492 	s32 (*filter_insert)(struct efx_nic *efx,
1493 			     struct efx_filter_spec *spec, bool replace);
1494 	int (*filter_remove_safe)(struct efx_nic *efx,
1495 				  enum efx_filter_priority priority,
1496 				  u32 filter_id);
1497 	int (*filter_get_safe)(struct efx_nic *efx,
1498 			       enum efx_filter_priority priority,
1499 			       u32 filter_id, struct efx_filter_spec *);
1500 	int (*filter_clear_rx)(struct efx_nic *efx,
1501 			       enum efx_filter_priority priority);
1502 	u32 (*filter_count_rx_used)(struct efx_nic *efx,
1503 				    enum efx_filter_priority priority);
1504 	u32 (*filter_get_rx_id_limit)(struct efx_nic *efx);
1505 	s32 (*filter_get_rx_ids)(struct efx_nic *efx,
1506 				 enum efx_filter_priority priority,
1507 				 u32 *buf, u32 size);
1508 #ifdef CONFIG_RFS_ACCEL
1509 	bool (*filter_rfs_expire_one)(struct efx_nic *efx, u32 flow_id,
1510 				      unsigned int index);
1511 #endif
1512 #ifdef CONFIG_SFC_MTD
1513 	int (*mtd_probe)(struct efx_nic *efx);
1514 	void (*mtd_rename)(struct efx_mtd_partition *part);
1515 	int (*mtd_read)(struct mtd_info *mtd, loff_t start, size_t len,
1516 			size_t *retlen, u8 *buffer);
1517 	int (*mtd_erase)(struct mtd_info *mtd, loff_t start, size_t len);
1518 	int (*mtd_write)(struct mtd_info *mtd, loff_t start, size_t len,
1519 			 size_t *retlen, const u8 *buffer);
1520 	int (*mtd_sync)(struct mtd_info *mtd);
1521 #endif
1522 	void (*ptp_write_host_time)(struct efx_nic *efx, u32 host_time);
1523 	int (*ptp_set_ts_sync_events)(struct efx_nic *efx, bool en, bool temp);
1524 	int (*ptp_set_ts_config)(struct efx_nic *efx,
1525 				 struct hwtstamp_config *init);
1526 	int (*sriov_configure)(struct efx_nic *efx, int num_vfs);
1527 	int (*vlan_rx_add_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1528 	int (*vlan_rx_kill_vid)(struct efx_nic *efx, __be16 proto, u16 vid);
1529 	int (*get_phys_port_id)(struct efx_nic *efx,
1530 				struct netdev_phys_item_id *ppid);
1531 	int (*sriov_init)(struct efx_nic *efx);
1532 	void (*sriov_fini)(struct efx_nic *efx);
1533 	bool (*sriov_wanted)(struct efx_nic *efx);
1534 	void (*sriov_reset)(struct efx_nic *efx);
1535 	void (*sriov_flr)(struct efx_nic *efx, unsigned vf_i);
1536 	int (*sriov_set_vf_mac)(struct efx_nic *efx, int vf_i, const u8 *mac);
1537 	int (*sriov_set_vf_vlan)(struct efx_nic *efx, int vf_i, u16 vlan,
1538 				 u8 qos);
1539 	int (*sriov_set_vf_spoofchk)(struct efx_nic *efx, int vf_i,
1540 				     bool spoofchk);
1541 	int (*sriov_get_vf_config)(struct efx_nic *efx, int vf_i,
1542 				   struct ifla_vf_info *ivi);
1543 	int (*sriov_set_vf_link_state)(struct efx_nic *efx, int vf_i,
1544 				       int link_state);
1545 	int (*vswitching_probe)(struct efx_nic *efx);
1546 	int (*vswitching_restore)(struct efx_nic *efx);
1547 	void (*vswitching_remove)(struct efx_nic *efx);
1548 	int (*get_mac_address)(struct efx_nic *efx, unsigned char *perm_addr);
1549 	int (*set_mac_address)(struct efx_nic *efx);
1550 	u32 (*tso_versions)(struct efx_nic *efx);
1551 	int (*udp_tnl_push_ports)(struct efx_nic *efx);
1552 	bool (*udp_tnl_has_port)(struct efx_nic *efx, __be16 port);
1553 	size_t (*print_additional_fwver)(struct efx_nic *efx, char *buf,
1554 					 size_t len);
1555 	void (*sensor_event)(struct efx_nic *efx, efx_qword_t *ev);
1556 	unsigned int (*rx_recycle_ring_size)(const struct efx_nic *efx);
1557 
1558 	int revision;
1559 	unsigned int txd_ptr_tbl_base;
1560 	unsigned int rxd_ptr_tbl_base;
1561 	unsigned int buf_tbl_base;
1562 	unsigned int evq_ptr_tbl_base;
1563 	unsigned int evq_rptr_tbl_base;
1564 	u64 max_dma_mask;
1565 	unsigned int rx_prefix_size;
1566 	unsigned int rx_hash_offset;
1567 	unsigned int rx_ts_offset;
1568 	unsigned int rx_buffer_padding;
1569 	bool can_rx_scatter;
1570 	bool always_rx_scatter;
1571 	bool option_descriptors;
1572 	unsigned int min_interrupt_mode;
1573 	unsigned int timer_period_max;
1574 	netdev_features_t offload_features;
1575 	int mcdi_max_ver;
1576 	unsigned int max_rx_ip_filters;
1577 	u32 hwtstamp_filters;
1578 	unsigned int rx_hash_key_size;
1579 };
1580 
1581 /**************************************************************************
1582  *
1583  * Prototypes and inline functions
1584  *
1585  *************************************************************************/
1586 
1587 static inline struct efx_channel *
1588 efx_get_channel(struct efx_nic *efx, unsigned index)
1589 {
1590 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_channels);
1591 	return efx->channel[index];
1592 }
1593 
1594 /* Iterate over all used channels */
1595 #define efx_for_each_channel(_channel, _efx)				\
1596 	for (_channel = (_efx)->channel[0];				\
1597 	     _channel;							\
1598 	     _channel = (_channel->channel + 1 < (_efx)->n_channels) ?	\
1599 		     (_efx)->channel[_channel->channel + 1] : NULL)
1600 
1601 /* Iterate over all used channels in reverse */
1602 #define efx_for_each_channel_rev(_channel, _efx)			\
1603 	for (_channel = (_efx)->channel[(_efx)->n_channels - 1];	\
1604 	     _channel;							\
1605 	     _channel = _channel->channel ?				\
1606 		     (_efx)->channel[_channel->channel - 1] : NULL)
1607 
1608 static inline struct efx_channel *
1609 efx_get_tx_channel(struct efx_nic *efx, unsigned int index)
1610 {
1611 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_tx_channels);
1612 	return efx->channel[efx->tx_channel_offset + index];
1613 }
1614 
1615 static inline struct efx_channel *
1616 efx_get_xdp_channel(struct efx_nic *efx, unsigned int index)
1617 {
1618 	EFX_WARN_ON_ONCE_PARANOID(index >= efx->n_xdp_channels);
1619 	return efx->channel[efx->xdp_channel_offset + index];
1620 }
1621 
1622 static inline bool efx_channel_is_xdp_tx(struct efx_channel *channel)
1623 {
1624 	return channel->channel - channel->efx->xdp_channel_offset <
1625 	       channel->efx->n_xdp_channels;
1626 }
1627 
1628 static inline bool efx_channel_has_tx_queues(struct efx_channel *channel)
1629 {
1630 	return channel && channel->channel >= channel->efx->tx_channel_offset;
1631 }
1632 
1633 static inline unsigned int efx_channel_num_tx_queues(struct efx_channel *channel)
1634 {
1635 	if (efx_channel_is_xdp_tx(channel))
1636 		return channel->efx->xdp_tx_per_channel;
1637 	return channel->efx->tx_queues_per_channel;
1638 }
1639 
1640 static inline struct efx_tx_queue *
1641 efx_channel_get_tx_queue(struct efx_channel *channel, unsigned int type)
1642 {
1643 	EFX_WARN_ON_ONCE_PARANOID(type >= EFX_TXQ_TYPES);
1644 	return channel->tx_queue_by_type[type];
1645 }
1646 
1647 static inline struct efx_tx_queue *
1648 efx_get_tx_queue(struct efx_nic *efx, unsigned int index, unsigned int type)
1649 {
1650 	struct efx_channel *channel = efx_get_tx_channel(efx, index);
1651 
1652 	return efx_channel_get_tx_queue(channel, type);
1653 }
1654 
1655 /* Iterate over all TX queues belonging to a channel */
1656 #define efx_for_each_channel_tx_queue(_tx_queue, _channel)		\
1657 	if (!efx_channel_has_tx_queues(_channel))			\
1658 		;							\
1659 	else								\
1660 		for (_tx_queue = (_channel)->tx_queue;			\
1661 		     _tx_queue < (_channel)->tx_queue +			\
1662 				 efx_channel_num_tx_queues(_channel);		\
1663 		     _tx_queue++)
1664 
1665 static inline bool efx_channel_has_rx_queue(struct efx_channel *channel)
1666 {
1667 	return channel->rx_queue.core_index >= 0;
1668 }
1669 
1670 static inline struct efx_rx_queue *
1671 efx_channel_get_rx_queue(struct efx_channel *channel)
1672 {
1673 	EFX_WARN_ON_ONCE_PARANOID(!efx_channel_has_rx_queue(channel));
1674 	return &channel->rx_queue;
1675 }
1676 
1677 /* Iterate over all RX queues belonging to a channel */
1678 #define efx_for_each_channel_rx_queue(_rx_queue, _channel)		\
1679 	if (!efx_channel_has_rx_queue(_channel))			\
1680 		;							\
1681 	else								\
1682 		for (_rx_queue = &(_channel)->rx_queue;			\
1683 		     _rx_queue;						\
1684 		     _rx_queue = NULL)
1685 
1686 static inline struct efx_channel *
1687 efx_rx_queue_channel(struct efx_rx_queue *rx_queue)
1688 {
1689 	return container_of(rx_queue, struct efx_channel, rx_queue);
1690 }
1691 
1692 static inline int efx_rx_queue_index(struct efx_rx_queue *rx_queue)
1693 {
1694 	return efx_rx_queue_channel(rx_queue)->channel;
1695 }
1696 
1697 /* Returns a pointer to the specified receive buffer in the RX
1698  * descriptor queue.
1699  */
1700 static inline struct efx_rx_buffer *efx_rx_buffer(struct efx_rx_queue *rx_queue,
1701 						  unsigned int index)
1702 {
1703 	return &rx_queue->buffer[index];
1704 }
1705 
1706 static inline struct efx_rx_buffer *
1707 efx_rx_buf_next(struct efx_rx_queue *rx_queue, struct efx_rx_buffer *rx_buf)
1708 {
1709 	if (unlikely(rx_buf == efx_rx_buffer(rx_queue, rx_queue->ptr_mask)))
1710 		return efx_rx_buffer(rx_queue, 0);
1711 	else
1712 		return rx_buf + 1;
1713 }
1714 
1715 /**
1716  * EFX_MAX_FRAME_LEN - calculate maximum frame length
1717  *
1718  * This calculates the maximum frame length that will be used for a
1719  * given MTU.  The frame length will be equal to the MTU plus a
1720  * constant amount of header space and padding.  This is the quantity
1721  * that the net driver will program into the MAC as the maximum frame
1722  * length.
1723  *
1724  * The 10G MAC requires 8-byte alignment on the frame
1725  * length, so we round up to the nearest 8.
1726  *
1727  * Re-clocking by the XGXS on RX can reduce an IPG to 32 bits (half an
1728  * XGMII cycle).  If the frame length reaches the maximum value in the
1729  * same cycle, the XMAC can miss the IPG altogether.  We work around
1730  * this by adding a further 16 bytes.
1731  */
1732 #define EFX_FRAME_PAD	16
1733 #define EFX_MAX_FRAME_LEN(mtu) \
1734 	(ALIGN(((mtu) + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN + EFX_FRAME_PAD), 8))
1735 
1736 static inline bool efx_xmit_with_hwtstamp(struct sk_buff *skb)
1737 {
1738 	return skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP;
1739 }
1740 static inline void efx_xmit_hwtstamp_pending(struct sk_buff *skb)
1741 {
1742 	skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1743 }
1744 
1745 /* Get the max fill level of the TX queues on this channel */
1746 static inline unsigned int
1747 efx_channel_tx_fill_level(struct efx_channel *channel)
1748 {
1749 	struct efx_tx_queue *tx_queue;
1750 	unsigned int fill_level = 0;
1751 
1752 	efx_for_each_channel_tx_queue(tx_queue, channel)
1753 		fill_level = max(fill_level,
1754 				 tx_queue->insert_count - tx_queue->read_count);
1755 
1756 	return fill_level;
1757 }
1758 
1759 /* Conservative approximation of efx_channel_tx_fill_level using cached value */
1760 static inline unsigned int
1761 efx_channel_tx_old_fill_level(struct efx_channel *channel)
1762 {
1763 	struct efx_tx_queue *tx_queue;
1764 	unsigned int fill_level = 0;
1765 
1766 	efx_for_each_channel_tx_queue(tx_queue, channel)
1767 		fill_level = max(fill_level,
1768 				 tx_queue->insert_count - tx_queue->old_read_count);
1769 
1770 	return fill_level;
1771 }
1772 
1773 /* Get all supported features.
1774  * If a feature is not fixed, it is present in hw_features.
1775  * If a feature is fixed, it does not present in hw_features, but
1776  * always in features.
1777  */
1778 static inline netdev_features_t efx_supported_features(const struct efx_nic *efx)
1779 {
1780 	const struct net_device *net_dev = efx->net_dev;
1781 
1782 	return net_dev->features | net_dev->hw_features;
1783 }
1784 
1785 /* Get the current TX queue insert index. */
1786 static inline unsigned int
1787 efx_tx_queue_get_insert_index(const struct efx_tx_queue *tx_queue)
1788 {
1789 	return tx_queue->insert_count & tx_queue->ptr_mask;
1790 }
1791 
1792 /* Get a TX buffer. */
1793 static inline struct efx_tx_buffer *
1794 __efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1795 {
1796 	return &tx_queue->buffer[efx_tx_queue_get_insert_index(tx_queue)];
1797 }
1798 
1799 /* Get a TX buffer, checking it's not currently in use. */
1800 static inline struct efx_tx_buffer *
1801 efx_tx_queue_get_insert_buffer(const struct efx_tx_queue *tx_queue)
1802 {
1803 	struct efx_tx_buffer *buffer =
1804 		__efx_tx_queue_get_insert_buffer(tx_queue);
1805 
1806 	EFX_WARN_ON_ONCE_PARANOID(buffer->len);
1807 	EFX_WARN_ON_ONCE_PARANOID(buffer->flags);
1808 	EFX_WARN_ON_ONCE_PARANOID(buffer->unmap_len);
1809 
1810 	return buffer;
1811 }
1812 
1813 #endif /* EFX_NET_DRIVER_H */
1814