xref: /openbmc/linux/drivers/net/ethernet/sfc/io.h (revision 3381df0954199458fa3993db72fb427f0ed1e43b)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2005-2006 Fen Systems Ltd.
5  * Copyright 2006-2013 Solarflare Communications Inc.
6  */
7 
8 #ifndef EFX_IO_H
9 #define EFX_IO_H
10 
11 #include <linux/io.h>
12 #include <linux/spinlock.h>
13 
14 /**************************************************************************
15  *
16  * NIC register I/O
17  *
18  **************************************************************************
19  *
20  * Notes on locking strategy for the Falcon architecture:
21  *
22  * Many CSRs are very wide and cannot be read or written atomically.
23  * Writes from the host are buffered by the Bus Interface Unit (BIU)
24  * up to 128 bits.  Whenever the host writes part of such a register,
25  * the BIU collects the written value and does not write to the
26  * underlying register until all 4 dwords have been written.  A
27  * similar buffering scheme applies to host access to the NIC's 64-bit
28  * SRAM.
29  *
30  * Writes to different CSRs and 64-bit SRAM words must be serialised,
31  * since interleaved access can result in lost writes.  We use
32  * efx_nic::biu_lock for this.
33  *
34  * We also serialise reads from 128-bit CSRs and SRAM with the same
35  * spinlock.  This may not be necessary, but it doesn't really matter
36  * as there are no such reads on the fast path.
37  *
38  * The DMA descriptor pointers (RX_DESC_UPD and TX_DESC_UPD) are
39  * 128-bit but are special-cased in the BIU to avoid the need for
40  * locking in the host:
41  *
42  * - They are write-only.
43  * - The semantics of writing to these registers are such that
44  *   replacing the low 96 bits with zero does not affect functionality.
45  * - If the host writes to the last dword address of such a register
46  *   (i.e. the high 32 bits) the underlying register will always be
47  *   written.  If the collector and the current write together do not
48  *   provide values for all 128 bits of the register, the low 96 bits
49  *   will be written as zero.
50  * - If the host writes to the address of any other part of such a
51  *   register while the collector already holds values for some other
52  *   register, the write is discarded and the collector maintains its
53  *   current state.
54  *
55  * The EF10 architecture exposes very few registers to the host and
56  * most of them are only 32 bits wide.  The only exceptions are the MC
57  * doorbell register pair, which has its own latching, and
58  * TX_DESC_UPD, which works in a similar way to the Falcon
59  * architecture.
60  */
61 
62 #if BITS_PER_LONG == 64
63 #define EFX_USE_QWORD_IO 1
64 #endif
65 
66 /* Hardware issue requires that only 64-bit naturally aligned writes
67  * are seen by hardware. Its not strictly necessary to restrict to
68  * x86_64 arch, but done for safety since unusual write combining behaviour
69  * can break PIO.
70  */
71 #ifdef CONFIG_X86_64
72 /* PIO is a win only if write-combining is possible */
73 #ifdef ARCH_HAS_IOREMAP_WC
74 #define EFX_USE_PIO 1
75 #endif
76 #endif
77 
78 #ifdef EFX_USE_QWORD_IO
79 static inline void _efx_writeq(struct efx_nic *efx, __le64 value,
80 				  unsigned int reg)
81 {
82 	__raw_writeq((__force u64)value, efx->membase + reg);
83 }
84 static inline __le64 _efx_readq(struct efx_nic *efx, unsigned int reg)
85 {
86 	return (__force __le64)__raw_readq(efx->membase + reg);
87 }
88 #endif
89 
90 static inline void _efx_writed(struct efx_nic *efx, __le32 value,
91 				  unsigned int reg)
92 {
93 	__raw_writel((__force u32)value, efx->membase + reg);
94 }
95 static inline __le32 _efx_readd(struct efx_nic *efx, unsigned int reg)
96 {
97 	return (__force __le32)__raw_readl(efx->membase + reg);
98 }
99 
100 /* Write a normal 128-bit CSR, locking as appropriate. */
101 static inline void efx_writeo(struct efx_nic *efx, const efx_oword_t *value,
102 			      unsigned int reg)
103 {
104 	unsigned long flags __attribute__ ((unused));
105 
106 	netif_vdbg(efx, hw, efx->net_dev,
107 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
108 		   EFX_OWORD_VAL(*value));
109 
110 	spin_lock_irqsave(&efx->biu_lock, flags);
111 #ifdef EFX_USE_QWORD_IO
112 	_efx_writeq(efx, value->u64[0], reg + 0);
113 	_efx_writeq(efx, value->u64[1], reg + 8);
114 #else
115 	_efx_writed(efx, value->u32[0], reg + 0);
116 	_efx_writed(efx, value->u32[1], reg + 4);
117 	_efx_writed(efx, value->u32[2], reg + 8);
118 	_efx_writed(efx, value->u32[3], reg + 12);
119 #endif
120 	spin_unlock_irqrestore(&efx->biu_lock, flags);
121 }
122 
123 /* Write 64-bit SRAM through the supplied mapping, locking as appropriate. */
124 static inline void efx_sram_writeq(struct efx_nic *efx, void __iomem *membase,
125 				   const efx_qword_t *value, unsigned int index)
126 {
127 	unsigned int addr = index * sizeof(*value);
128 	unsigned long flags __attribute__ ((unused));
129 
130 	netif_vdbg(efx, hw, efx->net_dev,
131 		   "writing SRAM address %x with " EFX_QWORD_FMT "\n",
132 		   addr, EFX_QWORD_VAL(*value));
133 
134 	spin_lock_irqsave(&efx->biu_lock, flags);
135 #ifdef EFX_USE_QWORD_IO
136 	__raw_writeq((__force u64)value->u64[0], membase + addr);
137 #else
138 	__raw_writel((__force u32)value->u32[0], membase + addr);
139 	__raw_writel((__force u32)value->u32[1], membase + addr + 4);
140 #endif
141 	spin_unlock_irqrestore(&efx->biu_lock, flags);
142 }
143 
144 /* Write a 32-bit CSR or the last dword of a special 128-bit CSR */
145 static inline void efx_writed(struct efx_nic *efx, const efx_dword_t *value,
146 			      unsigned int reg)
147 {
148 	netif_vdbg(efx, hw, efx->net_dev,
149 		   "writing register %x with "EFX_DWORD_FMT"\n",
150 		   reg, EFX_DWORD_VAL(*value));
151 
152 	/* No lock required */
153 	_efx_writed(efx, value->u32[0], reg);
154 }
155 
156 /* Read a 128-bit CSR, locking as appropriate. */
157 static inline void efx_reado(struct efx_nic *efx, efx_oword_t *value,
158 			     unsigned int reg)
159 {
160 	unsigned long flags __attribute__ ((unused));
161 
162 	spin_lock_irqsave(&efx->biu_lock, flags);
163 	value->u32[0] = _efx_readd(efx, reg + 0);
164 	value->u32[1] = _efx_readd(efx, reg + 4);
165 	value->u32[2] = _efx_readd(efx, reg + 8);
166 	value->u32[3] = _efx_readd(efx, reg + 12);
167 	spin_unlock_irqrestore(&efx->biu_lock, flags);
168 
169 	netif_vdbg(efx, hw, efx->net_dev,
170 		   "read from register %x, got " EFX_OWORD_FMT "\n", reg,
171 		   EFX_OWORD_VAL(*value));
172 }
173 
174 /* Read 64-bit SRAM through the supplied mapping, locking as appropriate. */
175 static inline void efx_sram_readq(struct efx_nic *efx, void __iomem *membase,
176 				  efx_qword_t *value, unsigned int index)
177 {
178 	unsigned int addr = index * sizeof(*value);
179 	unsigned long flags __attribute__ ((unused));
180 
181 	spin_lock_irqsave(&efx->biu_lock, flags);
182 #ifdef EFX_USE_QWORD_IO
183 	value->u64[0] = (__force __le64)__raw_readq(membase + addr);
184 #else
185 	value->u32[0] = (__force __le32)__raw_readl(membase + addr);
186 	value->u32[1] = (__force __le32)__raw_readl(membase + addr + 4);
187 #endif
188 	spin_unlock_irqrestore(&efx->biu_lock, flags);
189 
190 	netif_vdbg(efx, hw, efx->net_dev,
191 		   "read from SRAM address %x, got "EFX_QWORD_FMT"\n",
192 		   addr, EFX_QWORD_VAL(*value));
193 }
194 
195 /* Read a 32-bit CSR or SRAM */
196 static inline void efx_readd(struct efx_nic *efx, efx_dword_t *value,
197 				unsigned int reg)
198 {
199 	value->u32[0] = _efx_readd(efx, reg);
200 	netif_vdbg(efx, hw, efx->net_dev,
201 		   "read from register %x, got "EFX_DWORD_FMT"\n",
202 		   reg, EFX_DWORD_VAL(*value));
203 }
204 
205 /* Write a 128-bit CSR forming part of a table */
206 static inline void
207 efx_writeo_table(struct efx_nic *efx, const efx_oword_t *value,
208 		 unsigned int reg, unsigned int index)
209 {
210 	efx_writeo(efx, value, reg + index * sizeof(efx_oword_t));
211 }
212 
213 /* Read a 128-bit CSR forming part of a table */
214 static inline void efx_reado_table(struct efx_nic *efx, efx_oword_t *value,
215 				     unsigned int reg, unsigned int index)
216 {
217 	efx_reado(efx, value, reg + index * sizeof(efx_oword_t));
218 }
219 
220 /* default VI stride (step between per-VI registers) is 8K */
221 #define EFX_DEFAULT_VI_STRIDE 0x2000
222 
223 /* Calculate offset to page-mapped register */
224 static inline unsigned int efx_paged_reg(struct efx_nic *efx, unsigned int page,
225 					 unsigned int reg)
226 {
227 	return page * efx->vi_stride + reg;
228 }
229 
230 /* Write the whole of RX_DESC_UPD or TX_DESC_UPD */
231 static inline void _efx_writeo_page(struct efx_nic *efx, efx_oword_t *value,
232 				    unsigned int reg, unsigned int page)
233 {
234 	reg = efx_paged_reg(efx, page, reg);
235 
236 	netif_vdbg(efx, hw, efx->net_dev,
237 		   "writing register %x with " EFX_OWORD_FMT "\n", reg,
238 		   EFX_OWORD_VAL(*value));
239 
240 #ifdef EFX_USE_QWORD_IO
241 	_efx_writeq(efx, value->u64[0], reg + 0);
242 	_efx_writeq(efx, value->u64[1], reg + 8);
243 #else
244 	_efx_writed(efx, value->u32[0], reg + 0);
245 	_efx_writed(efx, value->u32[1], reg + 4);
246 	_efx_writed(efx, value->u32[2], reg + 8);
247 	_efx_writed(efx, value->u32[3], reg + 12);
248 #endif
249 }
250 #define efx_writeo_page(efx, value, reg, page)				\
251 	_efx_writeo_page(efx, value,					\
252 			 reg +						\
253 			 BUILD_BUG_ON_ZERO((reg) != 0x830 && (reg) != 0xa10), \
254 			 page)
255 
256 /* Write a page-mapped 32-bit CSR (EVQ_RPTR, EVQ_TMR (EF10), or the
257  * high bits of RX_DESC_UPD or TX_DESC_UPD)
258  */
259 static inline void
260 _efx_writed_page(struct efx_nic *efx, const efx_dword_t *value,
261 		 unsigned int reg, unsigned int page)
262 {
263 	efx_writed(efx, value, efx_paged_reg(efx, page, reg));
264 }
265 #define efx_writed_page(efx, value, reg, page)				\
266 	_efx_writed_page(efx, value,					\
267 			 reg +						\
268 			 BUILD_BUG_ON_ZERO((reg) != 0x400 &&		\
269 					   (reg) != 0x420 &&		\
270 					   (reg) != 0x830 &&		\
271 					   (reg) != 0x83c &&		\
272 					   (reg) != 0xa18 &&		\
273 					   (reg) != 0xa1c),		\
274 			 page)
275 
276 /* Write TIMER_COMMAND.  This is a page-mapped 32-bit CSR, but a bug
277  * in the BIU means that writes to TIMER_COMMAND[0] invalidate the
278  * collector register.
279  */
280 static inline void _efx_writed_page_locked(struct efx_nic *efx,
281 					   const efx_dword_t *value,
282 					   unsigned int reg,
283 					   unsigned int page)
284 {
285 	unsigned long flags __attribute__ ((unused));
286 
287 	if (page == 0) {
288 		spin_lock_irqsave(&efx->biu_lock, flags);
289 		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
290 		spin_unlock_irqrestore(&efx->biu_lock, flags);
291 	} else {
292 		efx_writed(efx, value, efx_paged_reg(efx, page, reg));
293 	}
294 }
295 #define efx_writed_page_locked(efx, value, reg, page)			\
296 	_efx_writed_page_locked(efx, value,				\
297 				reg + BUILD_BUG_ON_ZERO((reg) != 0x420), \
298 				page)
299 
300 #endif /* EFX_IO_H */
301