1 // SPDX-License-Identifier: GPL-2.0-only 2 /**************************************************************************** 3 * Driver for Solarflare network controllers and boards 4 * Copyright 2005-2006 Fen Systems Ltd. 5 * Copyright 2005-2013 Solarflare Communications Inc. 6 */ 7 8 #include <linux/module.h> 9 #include <linux/pci.h> 10 #include <linux/netdevice.h> 11 #include <linux/etherdevice.h> 12 #include <linux/delay.h> 13 #include <linux/notifier.h> 14 #include <linux/ip.h> 15 #include <linux/tcp.h> 16 #include <linux/in.h> 17 #include <linux/ethtool.h> 18 #include <linux/topology.h> 19 #include <linux/gfp.h> 20 #include <linux/aer.h> 21 #include <linux/interrupt.h> 22 #include "net_driver.h" 23 #include <net/gre.h> 24 #include <net/udp_tunnel.h> 25 #include "efx.h" 26 #include "nic.h" 27 #include "io.h" 28 #include "selftest.h" 29 #include "sriov.h" 30 31 #include "mcdi.h" 32 #include "mcdi_pcol.h" 33 #include "workarounds.h" 34 35 /************************************************************************** 36 * 37 * Type name strings 38 * 39 ************************************************************************** 40 */ 41 42 /* Loopback mode names (see LOOPBACK_MODE()) */ 43 const unsigned int efx_loopback_mode_max = LOOPBACK_MAX; 44 const char *const efx_loopback_mode_names[] = { 45 [LOOPBACK_NONE] = "NONE", 46 [LOOPBACK_DATA] = "DATAPATH", 47 [LOOPBACK_GMAC] = "GMAC", 48 [LOOPBACK_XGMII] = "XGMII", 49 [LOOPBACK_XGXS] = "XGXS", 50 [LOOPBACK_XAUI] = "XAUI", 51 [LOOPBACK_GMII] = "GMII", 52 [LOOPBACK_SGMII] = "SGMII", 53 [LOOPBACK_XGBR] = "XGBR", 54 [LOOPBACK_XFI] = "XFI", 55 [LOOPBACK_XAUI_FAR] = "XAUI_FAR", 56 [LOOPBACK_GMII_FAR] = "GMII_FAR", 57 [LOOPBACK_SGMII_FAR] = "SGMII_FAR", 58 [LOOPBACK_XFI_FAR] = "XFI_FAR", 59 [LOOPBACK_GPHY] = "GPHY", 60 [LOOPBACK_PHYXS] = "PHYXS", 61 [LOOPBACK_PCS] = "PCS", 62 [LOOPBACK_PMAPMD] = "PMA/PMD", 63 [LOOPBACK_XPORT] = "XPORT", 64 [LOOPBACK_XGMII_WS] = "XGMII_WS", 65 [LOOPBACK_XAUI_WS] = "XAUI_WS", 66 [LOOPBACK_XAUI_WS_FAR] = "XAUI_WS_FAR", 67 [LOOPBACK_XAUI_WS_NEAR] = "XAUI_WS_NEAR", 68 [LOOPBACK_GMII_WS] = "GMII_WS", 69 [LOOPBACK_XFI_WS] = "XFI_WS", 70 [LOOPBACK_XFI_WS_FAR] = "XFI_WS_FAR", 71 [LOOPBACK_PHYXS_WS] = "PHYXS_WS", 72 }; 73 74 const unsigned int efx_reset_type_max = RESET_TYPE_MAX; 75 const char *const efx_reset_type_names[] = { 76 [RESET_TYPE_INVISIBLE] = "INVISIBLE", 77 [RESET_TYPE_ALL] = "ALL", 78 [RESET_TYPE_RECOVER_OR_ALL] = "RECOVER_OR_ALL", 79 [RESET_TYPE_WORLD] = "WORLD", 80 [RESET_TYPE_RECOVER_OR_DISABLE] = "RECOVER_OR_DISABLE", 81 [RESET_TYPE_DATAPATH] = "DATAPATH", 82 [RESET_TYPE_MC_BIST] = "MC_BIST", 83 [RESET_TYPE_DISABLE] = "DISABLE", 84 [RESET_TYPE_TX_WATCHDOG] = "TX_WATCHDOG", 85 [RESET_TYPE_INT_ERROR] = "INT_ERROR", 86 [RESET_TYPE_DMA_ERROR] = "DMA_ERROR", 87 [RESET_TYPE_TX_SKIP] = "TX_SKIP", 88 [RESET_TYPE_MC_FAILURE] = "MC_FAILURE", 89 [RESET_TYPE_MCDI_TIMEOUT] = "MCDI_TIMEOUT (FLR)", 90 }; 91 92 /* UDP tunnel type names */ 93 static const char *const efx_udp_tunnel_type_names[] = { 94 [TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN] = "vxlan", 95 [TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE] = "geneve", 96 }; 97 98 void efx_get_udp_tunnel_type_name(u16 type, char *buf, size_t buflen) 99 { 100 if (type < ARRAY_SIZE(efx_udp_tunnel_type_names) && 101 efx_udp_tunnel_type_names[type] != NULL) 102 snprintf(buf, buflen, "%s", efx_udp_tunnel_type_names[type]); 103 else 104 snprintf(buf, buflen, "type %d", type); 105 } 106 107 /* Reset workqueue. If any NIC has a hardware failure then a reset will be 108 * queued onto this work queue. This is not a per-nic work queue, because 109 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised. 110 */ 111 static struct workqueue_struct *reset_workqueue; 112 113 /* How often and how many times to poll for a reset while waiting for a 114 * BIST that another function started to complete. 115 */ 116 #define BIST_WAIT_DELAY_MS 100 117 #define BIST_WAIT_DELAY_COUNT 100 118 119 /************************************************************************** 120 * 121 * Configurable values 122 * 123 *************************************************************************/ 124 125 /* 126 * Use separate channels for TX and RX events 127 * 128 * Set this to 1 to use separate channels for TX and RX. It allows us 129 * to control interrupt affinity separately for TX and RX. 130 * 131 * This is only used in MSI-X interrupt mode 132 */ 133 bool efx_separate_tx_channels; 134 module_param(efx_separate_tx_channels, bool, 0444); 135 MODULE_PARM_DESC(efx_separate_tx_channels, 136 "Use separate channels for TX and RX"); 137 138 /* This is the weight assigned to each of the (per-channel) virtual 139 * NAPI devices. 140 */ 141 static int napi_weight = 64; 142 143 /* This is the time (in jiffies) between invocations of the hardware 144 * monitor. 145 * On Falcon-based NICs, this will: 146 * - Check the on-board hardware monitor; 147 * - Poll the link state and reconfigure the hardware as necessary. 148 * On Siena-based NICs for power systems with EEH support, this will give EEH a 149 * chance to start. 150 */ 151 static unsigned int efx_monitor_interval = 1 * HZ; 152 153 /* Initial interrupt moderation settings. They can be modified after 154 * module load with ethtool. 155 * 156 * The default for RX should strike a balance between increasing the 157 * round-trip latency and reducing overhead. 158 */ 159 static unsigned int rx_irq_mod_usec = 60; 160 161 /* Initial interrupt moderation settings. They can be modified after 162 * module load with ethtool. 163 * 164 * This default is chosen to ensure that a 10G link does not go idle 165 * while a TX queue is stopped after it has become full. A queue is 166 * restarted when it drops below half full. The time this takes (assuming 167 * worst case 3 descriptors per packet and 1024 descriptors) is 168 * 512 / 3 * 1.2 = 205 usec. 169 */ 170 static unsigned int tx_irq_mod_usec = 150; 171 172 /* This is the first interrupt mode to try out of: 173 * 0 => MSI-X 174 * 1 => MSI 175 * 2 => legacy 176 */ 177 static unsigned int interrupt_mode; 178 179 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS), 180 * i.e. the number of CPUs among which we may distribute simultaneous 181 * interrupt handling. 182 * 183 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt. 184 * The default (0) means to assign an interrupt to each core. 185 */ 186 static unsigned int rss_cpus; 187 module_param(rss_cpus, uint, 0444); 188 MODULE_PARM_DESC(rss_cpus, "Number of CPUs to use for Receive-Side Scaling"); 189 190 static bool phy_flash_cfg; 191 module_param(phy_flash_cfg, bool, 0644); 192 MODULE_PARM_DESC(phy_flash_cfg, "Set PHYs into reflash mode initially"); 193 194 static unsigned irq_adapt_low_thresh = 8000; 195 module_param(irq_adapt_low_thresh, uint, 0644); 196 MODULE_PARM_DESC(irq_adapt_low_thresh, 197 "Threshold score for reducing IRQ moderation"); 198 199 static unsigned irq_adapt_high_thresh = 16000; 200 module_param(irq_adapt_high_thresh, uint, 0644); 201 MODULE_PARM_DESC(irq_adapt_high_thresh, 202 "Threshold score for increasing IRQ moderation"); 203 204 static unsigned debug = (NETIF_MSG_DRV | NETIF_MSG_PROBE | 205 NETIF_MSG_LINK | NETIF_MSG_IFDOWN | 206 NETIF_MSG_IFUP | NETIF_MSG_RX_ERR | 207 NETIF_MSG_TX_ERR | NETIF_MSG_HW); 208 module_param(debug, uint, 0); 209 MODULE_PARM_DESC(debug, "Bitmapped debugging message enable value"); 210 211 /************************************************************************** 212 * 213 * Utility functions and prototypes 214 * 215 *************************************************************************/ 216 217 static int efx_soft_enable_interrupts(struct efx_nic *efx); 218 static void efx_soft_disable_interrupts(struct efx_nic *efx); 219 static void efx_remove_channel(struct efx_channel *channel); 220 static void efx_remove_channels(struct efx_nic *efx); 221 static const struct efx_channel_type efx_default_channel_type; 222 static void efx_remove_port(struct efx_nic *efx); 223 static void efx_init_napi_channel(struct efx_channel *channel); 224 static void efx_fini_napi(struct efx_nic *efx); 225 static void efx_fini_napi_channel(struct efx_channel *channel); 226 static void efx_fini_struct(struct efx_nic *efx); 227 static void efx_start_all(struct efx_nic *efx); 228 static void efx_stop_all(struct efx_nic *efx); 229 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog); 230 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp); 231 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 232 u32 flags); 233 234 #define EFX_ASSERT_RESET_SERIALISED(efx) \ 235 do { \ 236 if ((efx->state == STATE_READY) || \ 237 (efx->state == STATE_RECOVERY) || \ 238 (efx->state == STATE_DISABLED)) \ 239 ASSERT_RTNL(); \ 240 } while (0) 241 242 static int efx_check_disabled(struct efx_nic *efx) 243 { 244 if (efx->state == STATE_DISABLED || efx->state == STATE_RECOVERY) { 245 netif_err(efx, drv, efx->net_dev, 246 "device is disabled due to earlier errors\n"); 247 return -EIO; 248 } 249 return 0; 250 } 251 252 /************************************************************************** 253 * 254 * Event queue processing 255 * 256 *************************************************************************/ 257 258 /* Process channel's event queue 259 * 260 * This function is responsible for processing the event queue of a 261 * single channel. The caller must guarantee that this function will 262 * never be concurrently called more than once on the same channel, 263 * though different channels may be being processed concurrently. 264 */ 265 static int efx_process_channel(struct efx_channel *channel, int budget) 266 { 267 struct efx_tx_queue *tx_queue; 268 struct list_head rx_list; 269 int spent; 270 271 if (unlikely(!channel->enabled)) 272 return 0; 273 274 /* Prepare the batch receive list */ 275 EFX_WARN_ON_PARANOID(channel->rx_list != NULL); 276 INIT_LIST_HEAD(&rx_list); 277 channel->rx_list = &rx_list; 278 279 efx_for_each_channel_tx_queue(tx_queue, channel) { 280 tx_queue->pkts_compl = 0; 281 tx_queue->bytes_compl = 0; 282 } 283 284 spent = efx_nic_process_eventq(channel, budget); 285 if (spent && efx_channel_has_rx_queue(channel)) { 286 struct efx_rx_queue *rx_queue = 287 efx_channel_get_rx_queue(channel); 288 289 efx_rx_flush_packet(channel); 290 efx_fast_push_rx_descriptors(rx_queue, true); 291 } 292 293 /* Update BQL */ 294 efx_for_each_channel_tx_queue(tx_queue, channel) { 295 if (tx_queue->bytes_compl) { 296 netdev_tx_completed_queue(tx_queue->core_txq, 297 tx_queue->pkts_compl, tx_queue->bytes_compl); 298 } 299 } 300 301 /* Receive any packets we queued up */ 302 netif_receive_skb_list(channel->rx_list); 303 channel->rx_list = NULL; 304 305 return spent; 306 } 307 308 /* NAPI poll handler 309 * 310 * NAPI guarantees serialisation of polls of the same device, which 311 * provides the guarantee required by efx_process_channel(). 312 */ 313 static void efx_update_irq_mod(struct efx_nic *efx, struct efx_channel *channel) 314 { 315 int step = efx->irq_mod_step_us; 316 317 if (channel->irq_mod_score < irq_adapt_low_thresh) { 318 if (channel->irq_moderation_us > step) { 319 channel->irq_moderation_us -= step; 320 efx->type->push_irq_moderation(channel); 321 } 322 } else if (channel->irq_mod_score > irq_adapt_high_thresh) { 323 if (channel->irq_moderation_us < 324 efx->irq_rx_moderation_us) { 325 channel->irq_moderation_us += step; 326 efx->type->push_irq_moderation(channel); 327 } 328 } 329 330 channel->irq_count = 0; 331 channel->irq_mod_score = 0; 332 } 333 334 static int efx_poll(struct napi_struct *napi, int budget) 335 { 336 struct efx_channel *channel = 337 container_of(napi, struct efx_channel, napi_str); 338 struct efx_nic *efx = channel->efx; 339 int spent; 340 341 netif_vdbg(efx, intr, efx->net_dev, 342 "channel %d NAPI poll executing on CPU %d\n", 343 channel->channel, raw_smp_processor_id()); 344 345 spent = efx_process_channel(channel, budget); 346 347 xdp_do_flush_map(); 348 349 if (spent < budget) { 350 if (efx_channel_has_rx_queue(channel) && 351 efx->irq_rx_adaptive && 352 unlikely(++channel->irq_count == 1000)) { 353 efx_update_irq_mod(efx, channel); 354 } 355 356 #ifdef CONFIG_RFS_ACCEL 357 /* Perhaps expire some ARFS filters */ 358 mod_delayed_work(system_wq, &channel->filter_work, 0); 359 #endif 360 361 /* There is no race here; although napi_disable() will 362 * only wait for napi_complete(), this isn't a problem 363 * since efx_nic_eventq_read_ack() will have no effect if 364 * interrupts have already been disabled. 365 */ 366 if (napi_complete_done(napi, spent)) 367 efx_nic_eventq_read_ack(channel); 368 } 369 370 return spent; 371 } 372 373 /* Create event queue 374 * Event queue memory allocations are done only once. If the channel 375 * is reset, the memory buffer will be reused; this guards against 376 * errors during channel reset and also simplifies interrupt handling. 377 */ 378 static int efx_probe_eventq(struct efx_channel *channel) 379 { 380 struct efx_nic *efx = channel->efx; 381 unsigned long entries; 382 383 netif_dbg(efx, probe, efx->net_dev, 384 "chan %d create event queue\n", channel->channel); 385 386 /* Build an event queue with room for one event per tx and rx buffer, 387 * plus some extra for link state events and MCDI completions. */ 388 entries = roundup_pow_of_two(efx->rxq_entries + efx->txq_entries + 128); 389 EFX_WARN_ON_PARANOID(entries > EFX_MAX_EVQ_SIZE); 390 channel->eventq_mask = max(entries, EFX_MIN_EVQ_SIZE) - 1; 391 392 return efx_nic_probe_eventq(channel); 393 } 394 395 /* Prepare channel's event queue */ 396 static int efx_init_eventq(struct efx_channel *channel) 397 { 398 struct efx_nic *efx = channel->efx; 399 int rc; 400 401 EFX_WARN_ON_PARANOID(channel->eventq_init); 402 403 netif_dbg(efx, drv, efx->net_dev, 404 "chan %d init event queue\n", channel->channel); 405 406 rc = efx_nic_init_eventq(channel); 407 if (rc == 0) { 408 efx->type->push_irq_moderation(channel); 409 channel->eventq_read_ptr = 0; 410 channel->eventq_init = true; 411 } 412 return rc; 413 } 414 415 /* Enable event queue processing and NAPI */ 416 void efx_start_eventq(struct efx_channel *channel) 417 { 418 netif_dbg(channel->efx, ifup, channel->efx->net_dev, 419 "chan %d start event queue\n", channel->channel); 420 421 /* Make sure the NAPI handler sees the enabled flag set */ 422 channel->enabled = true; 423 smp_wmb(); 424 425 napi_enable(&channel->napi_str); 426 efx_nic_eventq_read_ack(channel); 427 } 428 429 /* Disable event queue processing and NAPI */ 430 void efx_stop_eventq(struct efx_channel *channel) 431 { 432 if (!channel->enabled) 433 return; 434 435 napi_disable(&channel->napi_str); 436 channel->enabled = false; 437 } 438 439 static void efx_fini_eventq(struct efx_channel *channel) 440 { 441 if (!channel->eventq_init) 442 return; 443 444 netif_dbg(channel->efx, drv, channel->efx->net_dev, 445 "chan %d fini event queue\n", channel->channel); 446 447 efx_nic_fini_eventq(channel); 448 channel->eventq_init = false; 449 } 450 451 static void efx_remove_eventq(struct efx_channel *channel) 452 { 453 netif_dbg(channel->efx, drv, channel->efx->net_dev, 454 "chan %d remove event queue\n", channel->channel); 455 456 efx_nic_remove_eventq(channel); 457 } 458 459 /************************************************************************** 460 * 461 * Channel handling 462 * 463 *************************************************************************/ 464 465 /* Allocate and initialise a channel structure. */ 466 static struct efx_channel * 467 efx_alloc_channel(struct efx_nic *efx, int i, struct efx_channel *old_channel) 468 { 469 struct efx_channel *channel; 470 struct efx_rx_queue *rx_queue; 471 struct efx_tx_queue *tx_queue; 472 int j; 473 474 channel = kzalloc(sizeof(*channel), GFP_KERNEL); 475 if (!channel) 476 return NULL; 477 478 channel->efx = efx; 479 channel->channel = i; 480 channel->type = &efx_default_channel_type; 481 482 for (j = 0; j < EFX_TXQ_TYPES; j++) { 483 tx_queue = &channel->tx_queue[j]; 484 tx_queue->efx = efx; 485 tx_queue->queue = i * EFX_TXQ_TYPES + j; 486 tx_queue->channel = channel; 487 } 488 489 #ifdef CONFIG_RFS_ACCEL 490 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); 491 #endif 492 493 rx_queue = &channel->rx_queue; 494 rx_queue->efx = efx; 495 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); 496 497 return channel; 498 } 499 500 /* Allocate and initialise a channel structure, copying parameters 501 * (but not resources) from an old channel structure. 502 */ 503 static struct efx_channel * 504 efx_copy_channel(const struct efx_channel *old_channel) 505 { 506 struct efx_channel *channel; 507 struct efx_rx_queue *rx_queue; 508 struct efx_tx_queue *tx_queue; 509 int j; 510 511 channel = kmalloc(sizeof(*channel), GFP_KERNEL); 512 if (!channel) 513 return NULL; 514 515 *channel = *old_channel; 516 517 channel->napi_dev = NULL; 518 INIT_HLIST_NODE(&channel->napi_str.napi_hash_node); 519 channel->napi_str.napi_id = 0; 520 channel->napi_str.state = 0; 521 memset(&channel->eventq, 0, sizeof(channel->eventq)); 522 523 for (j = 0; j < EFX_TXQ_TYPES; j++) { 524 tx_queue = &channel->tx_queue[j]; 525 if (tx_queue->channel) 526 tx_queue->channel = channel; 527 tx_queue->buffer = NULL; 528 memset(&tx_queue->txd, 0, sizeof(tx_queue->txd)); 529 } 530 531 rx_queue = &channel->rx_queue; 532 rx_queue->buffer = NULL; 533 memset(&rx_queue->rxd, 0, sizeof(rx_queue->rxd)); 534 timer_setup(&rx_queue->slow_fill, efx_rx_slow_fill, 0); 535 #ifdef CONFIG_RFS_ACCEL 536 INIT_DELAYED_WORK(&channel->filter_work, efx_filter_rfs_expire); 537 #endif 538 539 return channel; 540 } 541 542 static int efx_probe_channel(struct efx_channel *channel) 543 { 544 struct efx_tx_queue *tx_queue; 545 struct efx_rx_queue *rx_queue; 546 int rc; 547 548 netif_dbg(channel->efx, probe, channel->efx->net_dev, 549 "creating channel %d\n", channel->channel); 550 551 rc = channel->type->pre_probe(channel); 552 if (rc) 553 goto fail; 554 555 rc = efx_probe_eventq(channel); 556 if (rc) 557 goto fail; 558 559 efx_for_each_channel_tx_queue(tx_queue, channel) { 560 rc = efx_probe_tx_queue(tx_queue); 561 if (rc) 562 goto fail; 563 } 564 565 efx_for_each_channel_rx_queue(rx_queue, channel) { 566 rc = efx_probe_rx_queue(rx_queue); 567 if (rc) 568 goto fail; 569 } 570 571 channel->rx_list = NULL; 572 573 return 0; 574 575 fail: 576 efx_remove_channel(channel); 577 return rc; 578 } 579 580 static void 581 efx_get_channel_name(struct efx_channel *channel, char *buf, size_t len) 582 { 583 struct efx_nic *efx = channel->efx; 584 const char *type; 585 int number; 586 587 number = channel->channel; 588 589 if (number >= efx->xdp_channel_offset && 590 !WARN_ON_ONCE(!efx->n_xdp_channels)) { 591 type = "-xdp"; 592 number -= efx->xdp_channel_offset; 593 } else if (efx->tx_channel_offset == 0) { 594 type = ""; 595 } else if (number < efx->tx_channel_offset) { 596 type = "-rx"; 597 } else { 598 type = "-tx"; 599 number -= efx->tx_channel_offset; 600 } 601 snprintf(buf, len, "%s%s-%d", efx->name, type, number); 602 } 603 604 static void efx_set_channel_names(struct efx_nic *efx) 605 { 606 struct efx_channel *channel; 607 608 efx_for_each_channel(channel, efx) 609 channel->type->get_name(channel, 610 efx->msi_context[channel->channel].name, 611 sizeof(efx->msi_context[0].name)); 612 } 613 614 static int efx_probe_channels(struct efx_nic *efx) 615 { 616 struct efx_channel *channel; 617 int rc; 618 619 /* Restart special buffer allocation */ 620 efx->next_buffer_table = 0; 621 622 /* Probe channels in reverse, so that any 'extra' channels 623 * use the start of the buffer table. This allows the traffic 624 * channels to be resized without moving them or wasting the 625 * entries before them. 626 */ 627 efx_for_each_channel_rev(channel, efx) { 628 rc = efx_probe_channel(channel); 629 if (rc) { 630 netif_err(efx, probe, efx->net_dev, 631 "failed to create channel %d\n", 632 channel->channel); 633 goto fail; 634 } 635 } 636 efx_set_channel_names(efx); 637 638 return 0; 639 640 fail: 641 efx_remove_channels(efx); 642 return rc; 643 } 644 645 /* Channels are shutdown and reinitialised whilst the NIC is running 646 * to propagate configuration changes (mtu, checksum offload), or 647 * to clear hardware error conditions 648 */ 649 static void efx_start_datapath(struct efx_nic *efx) 650 { 651 netdev_features_t old_features = efx->net_dev->features; 652 bool old_rx_scatter = efx->rx_scatter; 653 struct efx_tx_queue *tx_queue; 654 struct efx_rx_queue *rx_queue; 655 struct efx_channel *channel; 656 size_t rx_buf_len; 657 658 /* Calculate the rx buffer allocation parameters required to 659 * support the current MTU, including padding for header 660 * alignment and overruns. 661 */ 662 efx->rx_dma_len = (efx->rx_prefix_size + 663 EFX_MAX_FRAME_LEN(efx->net_dev->mtu) + 664 efx->type->rx_buffer_padding); 665 rx_buf_len = (sizeof(struct efx_rx_page_state) + XDP_PACKET_HEADROOM + 666 efx->rx_ip_align + efx->rx_dma_len); 667 if (rx_buf_len <= PAGE_SIZE) { 668 efx->rx_scatter = efx->type->always_rx_scatter; 669 efx->rx_buffer_order = 0; 670 } else if (efx->type->can_rx_scatter) { 671 BUILD_BUG_ON(EFX_RX_USR_BUF_SIZE % L1_CACHE_BYTES); 672 BUILD_BUG_ON(sizeof(struct efx_rx_page_state) + 673 2 * ALIGN(NET_IP_ALIGN + EFX_RX_USR_BUF_SIZE, 674 EFX_RX_BUF_ALIGNMENT) > 675 PAGE_SIZE); 676 efx->rx_scatter = true; 677 efx->rx_dma_len = EFX_RX_USR_BUF_SIZE; 678 efx->rx_buffer_order = 0; 679 } else { 680 efx->rx_scatter = false; 681 efx->rx_buffer_order = get_order(rx_buf_len); 682 } 683 684 efx_rx_config_page_split(efx); 685 if (efx->rx_buffer_order) 686 netif_dbg(efx, drv, efx->net_dev, 687 "RX buf len=%u; page order=%u batch=%u\n", 688 efx->rx_dma_len, efx->rx_buffer_order, 689 efx->rx_pages_per_batch); 690 else 691 netif_dbg(efx, drv, efx->net_dev, 692 "RX buf len=%u step=%u bpp=%u; page batch=%u\n", 693 efx->rx_dma_len, efx->rx_page_buf_step, 694 efx->rx_bufs_per_page, efx->rx_pages_per_batch); 695 696 /* Restore previously fixed features in hw_features and remove 697 * features which are fixed now 698 */ 699 efx->net_dev->hw_features |= efx->net_dev->features; 700 efx->net_dev->hw_features &= ~efx->fixed_features; 701 efx->net_dev->features |= efx->fixed_features; 702 if (efx->net_dev->features != old_features) 703 netdev_features_change(efx->net_dev); 704 705 /* RX filters may also have scatter-enabled flags */ 706 if (efx->rx_scatter != old_rx_scatter) 707 efx->type->filter_update_rx_scatter(efx); 708 709 /* We must keep at least one descriptor in a TX ring empty. 710 * We could avoid this when the queue size does not exactly 711 * match the hardware ring size, but it's not that important. 712 * Therefore we stop the queue when one more skb might fill 713 * the ring completely. We wake it when half way back to 714 * empty. 715 */ 716 efx->txq_stop_thresh = efx->txq_entries - efx_tx_max_skb_descs(efx); 717 efx->txq_wake_thresh = efx->txq_stop_thresh / 2; 718 719 /* Initialise the channels */ 720 efx_for_each_channel(channel, efx) { 721 efx_for_each_channel_tx_queue(tx_queue, channel) { 722 efx_init_tx_queue(tx_queue); 723 atomic_inc(&efx->active_queues); 724 } 725 726 efx_for_each_channel_rx_queue(rx_queue, channel) { 727 efx_init_rx_queue(rx_queue); 728 atomic_inc(&efx->active_queues); 729 efx_stop_eventq(channel); 730 efx_fast_push_rx_descriptors(rx_queue, false); 731 efx_start_eventq(channel); 732 } 733 734 WARN_ON(channel->rx_pkt_n_frags); 735 } 736 737 efx_ptp_start_datapath(efx); 738 739 if (netif_device_present(efx->net_dev)) 740 netif_tx_wake_all_queues(efx->net_dev); 741 } 742 743 static void efx_stop_datapath(struct efx_nic *efx) 744 { 745 struct efx_channel *channel; 746 struct efx_tx_queue *tx_queue; 747 struct efx_rx_queue *rx_queue; 748 int rc; 749 750 EFX_ASSERT_RESET_SERIALISED(efx); 751 BUG_ON(efx->port_enabled); 752 753 efx_ptp_stop_datapath(efx); 754 755 /* Stop RX refill */ 756 efx_for_each_channel(channel, efx) { 757 efx_for_each_channel_rx_queue(rx_queue, channel) 758 rx_queue->refill_enabled = false; 759 } 760 761 efx_for_each_channel(channel, efx) { 762 /* RX packet processing is pipelined, so wait for the 763 * NAPI handler to complete. At least event queue 0 764 * might be kept active by non-data events, so don't 765 * use napi_synchronize() but actually disable NAPI 766 * temporarily. 767 */ 768 if (efx_channel_has_rx_queue(channel)) { 769 efx_stop_eventq(channel); 770 efx_start_eventq(channel); 771 } 772 } 773 774 rc = efx->type->fini_dmaq(efx); 775 if (rc) { 776 netif_err(efx, drv, efx->net_dev, "failed to flush queues\n"); 777 } else { 778 netif_dbg(efx, drv, efx->net_dev, 779 "successfully flushed all queues\n"); 780 } 781 782 efx_for_each_channel(channel, efx) { 783 efx_for_each_channel_rx_queue(rx_queue, channel) 784 efx_fini_rx_queue(rx_queue); 785 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 786 efx_fini_tx_queue(tx_queue); 787 } 788 efx->xdp_rxq_info_failed = false; 789 } 790 791 static void efx_remove_channel(struct efx_channel *channel) 792 { 793 struct efx_tx_queue *tx_queue; 794 struct efx_rx_queue *rx_queue; 795 796 netif_dbg(channel->efx, drv, channel->efx->net_dev, 797 "destroy chan %d\n", channel->channel); 798 799 efx_for_each_channel_rx_queue(rx_queue, channel) 800 efx_remove_rx_queue(rx_queue); 801 efx_for_each_possible_channel_tx_queue(tx_queue, channel) 802 efx_remove_tx_queue(tx_queue); 803 efx_remove_eventq(channel); 804 channel->type->post_remove(channel); 805 } 806 807 static void efx_remove_channels(struct efx_nic *efx) 808 { 809 struct efx_channel *channel; 810 811 efx_for_each_channel(channel, efx) 812 efx_remove_channel(channel); 813 814 kfree(efx->xdp_tx_queues); 815 } 816 817 int 818 efx_realloc_channels(struct efx_nic *efx, u32 rxq_entries, u32 txq_entries) 819 { 820 struct efx_channel *other_channel[EFX_MAX_CHANNELS], *channel; 821 u32 old_rxq_entries, old_txq_entries; 822 unsigned i, next_buffer_table = 0; 823 int rc, rc2; 824 825 rc = efx_check_disabled(efx); 826 if (rc) 827 return rc; 828 829 /* Not all channels should be reallocated. We must avoid 830 * reallocating their buffer table entries. 831 */ 832 efx_for_each_channel(channel, efx) { 833 struct efx_rx_queue *rx_queue; 834 struct efx_tx_queue *tx_queue; 835 836 if (channel->type->copy) 837 continue; 838 next_buffer_table = max(next_buffer_table, 839 channel->eventq.index + 840 channel->eventq.entries); 841 efx_for_each_channel_rx_queue(rx_queue, channel) 842 next_buffer_table = max(next_buffer_table, 843 rx_queue->rxd.index + 844 rx_queue->rxd.entries); 845 efx_for_each_channel_tx_queue(tx_queue, channel) 846 next_buffer_table = max(next_buffer_table, 847 tx_queue->txd.index + 848 tx_queue->txd.entries); 849 } 850 851 efx_device_detach_sync(efx); 852 efx_stop_all(efx); 853 efx_soft_disable_interrupts(efx); 854 855 /* Clone channels (where possible) */ 856 memset(other_channel, 0, sizeof(other_channel)); 857 for (i = 0; i < efx->n_channels; i++) { 858 channel = efx->channel[i]; 859 if (channel->type->copy) 860 channel = channel->type->copy(channel); 861 if (!channel) { 862 rc = -ENOMEM; 863 goto out; 864 } 865 other_channel[i] = channel; 866 } 867 868 /* Swap entry counts and channel pointers */ 869 old_rxq_entries = efx->rxq_entries; 870 old_txq_entries = efx->txq_entries; 871 efx->rxq_entries = rxq_entries; 872 efx->txq_entries = txq_entries; 873 for (i = 0; i < efx->n_channels; i++) { 874 channel = efx->channel[i]; 875 efx->channel[i] = other_channel[i]; 876 other_channel[i] = channel; 877 } 878 879 /* Restart buffer table allocation */ 880 efx->next_buffer_table = next_buffer_table; 881 882 for (i = 0; i < efx->n_channels; i++) { 883 channel = efx->channel[i]; 884 if (!channel->type->copy) 885 continue; 886 rc = efx_probe_channel(channel); 887 if (rc) 888 goto rollback; 889 efx_init_napi_channel(efx->channel[i]); 890 } 891 892 out: 893 /* Destroy unused channel structures */ 894 for (i = 0; i < efx->n_channels; i++) { 895 channel = other_channel[i]; 896 if (channel && channel->type->copy) { 897 efx_fini_napi_channel(channel); 898 efx_remove_channel(channel); 899 kfree(channel); 900 } 901 } 902 903 rc2 = efx_soft_enable_interrupts(efx); 904 if (rc2) { 905 rc = rc ? rc : rc2; 906 netif_err(efx, drv, efx->net_dev, 907 "unable to restart interrupts on channel reallocation\n"); 908 efx_schedule_reset(efx, RESET_TYPE_DISABLE); 909 } else { 910 efx_start_all(efx); 911 efx_device_attach_if_not_resetting(efx); 912 } 913 return rc; 914 915 rollback: 916 /* Swap back */ 917 efx->rxq_entries = old_rxq_entries; 918 efx->txq_entries = old_txq_entries; 919 for (i = 0; i < efx->n_channels; i++) { 920 channel = efx->channel[i]; 921 efx->channel[i] = other_channel[i]; 922 other_channel[i] = channel; 923 } 924 goto out; 925 } 926 927 void efx_schedule_slow_fill(struct efx_rx_queue *rx_queue) 928 { 929 mod_timer(&rx_queue->slow_fill, jiffies + msecs_to_jiffies(10)); 930 } 931 932 static bool efx_default_channel_want_txqs(struct efx_channel *channel) 933 { 934 return channel->channel - channel->efx->tx_channel_offset < 935 channel->efx->n_tx_channels; 936 } 937 938 static const struct efx_channel_type efx_default_channel_type = { 939 .pre_probe = efx_channel_dummy_op_int, 940 .post_remove = efx_channel_dummy_op_void, 941 .get_name = efx_get_channel_name, 942 .copy = efx_copy_channel, 943 .want_txqs = efx_default_channel_want_txqs, 944 .keep_eventq = false, 945 .want_pio = true, 946 }; 947 948 int efx_channel_dummy_op_int(struct efx_channel *channel) 949 { 950 return 0; 951 } 952 953 void efx_channel_dummy_op_void(struct efx_channel *channel) 954 { 955 } 956 957 /************************************************************************** 958 * 959 * Port handling 960 * 961 **************************************************************************/ 962 963 /* This ensures that the kernel is kept informed (via 964 * netif_carrier_on/off) of the link status, and also maintains the 965 * link status's stop on the port's TX queue. 966 */ 967 void efx_link_status_changed(struct efx_nic *efx) 968 { 969 struct efx_link_state *link_state = &efx->link_state; 970 971 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure 972 * that no events are triggered between unregister_netdev() and the 973 * driver unloading. A more general condition is that NETDEV_CHANGE 974 * can only be generated between NETDEV_UP and NETDEV_DOWN */ 975 if (!netif_running(efx->net_dev)) 976 return; 977 978 if (link_state->up != netif_carrier_ok(efx->net_dev)) { 979 efx->n_link_state_changes++; 980 981 if (link_state->up) 982 netif_carrier_on(efx->net_dev); 983 else 984 netif_carrier_off(efx->net_dev); 985 } 986 987 /* Status message for kernel log */ 988 if (link_state->up) 989 netif_info(efx, link, efx->net_dev, 990 "link up at %uMbps %s-duplex (MTU %d)\n", 991 link_state->speed, link_state->fd ? "full" : "half", 992 efx->net_dev->mtu); 993 else 994 netif_info(efx, link, efx->net_dev, "link down\n"); 995 } 996 997 void efx_link_set_advertising(struct efx_nic *efx, 998 const unsigned long *advertising) 999 { 1000 memcpy(efx->link_advertising, advertising, 1001 sizeof(__ETHTOOL_DECLARE_LINK_MODE_MASK())); 1002 1003 efx->link_advertising[0] |= ADVERTISED_Autoneg; 1004 if (advertising[0] & ADVERTISED_Pause) 1005 efx->wanted_fc |= (EFX_FC_TX | EFX_FC_RX); 1006 else 1007 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 1008 if (advertising[0] & ADVERTISED_Asym_Pause) 1009 efx->wanted_fc ^= EFX_FC_TX; 1010 } 1011 1012 /* Equivalent to efx_link_set_advertising with all-zeroes, except does not 1013 * force the Autoneg bit on. 1014 */ 1015 void efx_link_clear_advertising(struct efx_nic *efx) 1016 { 1017 bitmap_zero(efx->link_advertising, __ETHTOOL_LINK_MODE_MASK_NBITS); 1018 efx->wanted_fc &= ~(EFX_FC_TX | EFX_FC_RX); 1019 } 1020 1021 void efx_link_set_wanted_fc(struct efx_nic *efx, u8 wanted_fc) 1022 { 1023 efx->wanted_fc = wanted_fc; 1024 if (efx->link_advertising[0]) { 1025 if (wanted_fc & EFX_FC_RX) 1026 efx->link_advertising[0] |= (ADVERTISED_Pause | 1027 ADVERTISED_Asym_Pause); 1028 else 1029 efx->link_advertising[0] &= ~(ADVERTISED_Pause | 1030 ADVERTISED_Asym_Pause); 1031 if (wanted_fc & EFX_FC_TX) 1032 efx->link_advertising[0] ^= ADVERTISED_Asym_Pause; 1033 } 1034 } 1035 1036 static void efx_fini_port(struct efx_nic *efx); 1037 1038 /* We assume that efx->type->reconfigure_mac will always try to sync RX 1039 * filters and therefore needs to read-lock the filter table against freeing 1040 */ 1041 void efx_mac_reconfigure(struct efx_nic *efx) 1042 { 1043 down_read(&efx->filter_sem); 1044 efx->type->reconfigure_mac(efx); 1045 up_read(&efx->filter_sem); 1046 } 1047 1048 /* Push loopback/power/transmit disable settings to the PHY, and reconfigure 1049 * the MAC appropriately. All other PHY configuration changes are pushed 1050 * through phy_op->set_settings(), and pushed asynchronously to the MAC 1051 * through efx_monitor(). 1052 * 1053 * Callers must hold the mac_lock 1054 */ 1055 int __efx_reconfigure_port(struct efx_nic *efx) 1056 { 1057 enum efx_phy_mode phy_mode; 1058 int rc; 1059 1060 WARN_ON(!mutex_is_locked(&efx->mac_lock)); 1061 1062 /* Disable PHY transmit in mac level loopbacks */ 1063 phy_mode = efx->phy_mode; 1064 if (LOOPBACK_INTERNAL(efx)) 1065 efx->phy_mode |= PHY_MODE_TX_DISABLED; 1066 else 1067 efx->phy_mode &= ~PHY_MODE_TX_DISABLED; 1068 1069 rc = efx->type->reconfigure_port(efx); 1070 1071 if (rc) 1072 efx->phy_mode = phy_mode; 1073 1074 return rc; 1075 } 1076 1077 /* Reinitialise the MAC to pick up new PHY settings, even if the port is 1078 * disabled. */ 1079 int efx_reconfigure_port(struct efx_nic *efx) 1080 { 1081 int rc; 1082 1083 EFX_ASSERT_RESET_SERIALISED(efx); 1084 1085 mutex_lock(&efx->mac_lock); 1086 rc = __efx_reconfigure_port(efx); 1087 mutex_unlock(&efx->mac_lock); 1088 1089 return rc; 1090 } 1091 1092 /* Asynchronous work item for changing MAC promiscuity and multicast 1093 * hash. Avoid a drain/rx_ingress enable by reconfiguring the current 1094 * MAC directly. */ 1095 static void efx_mac_work(struct work_struct *data) 1096 { 1097 struct efx_nic *efx = container_of(data, struct efx_nic, mac_work); 1098 1099 mutex_lock(&efx->mac_lock); 1100 if (efx->port_enabled) 1101 efx_mac_reconfigure(efx); 1102 mutex_unlock(&efx->mac_lock); 1103 } 1104 1105 static int efx_probe_port(struct efx_nic *efx) 1106 { 1107 int rc; 1108 1109 netif_dbg(efx, probe, efx->net_dev, "create port\n"); 1110 1111 if (phy_flash_cfg) 1112 efx->phy_mode = PHY_MODE_SPECIAL; 1113 1114 /* Connect up MAC/PHY operations table */ 1115 rc = efx->type->probe_port(efx); 1116 if (rc) 1117 return rc; 1118 1119 /* Initialise MAC address to permanent address */ 1120 ether_addr_copy(efx->net_dev->dev_addr, efx->net_dev->perm_addr); 1121 1122 return 0; 1123 } 1124 1125 static int efx_init_port(struct efx_nic *efx) 1126 { 1127 int rc; 1128 1129 netif_dbg(efx, drv, efx->net_dev, "init port\n"); 1130 1131 mutex_lock(&efx->mac_lock); 1132 1133 rc = efx->phy_op->init(efx); 1134 if (rc) 1135 goto fail1; 1136 1137 efx->port_initialized = true; 1138 1139 /* Reconfigure the MAC before creating dma queues (required for 1140 * Falcon/A1 where RX_INGR_EN/TX_DRAIN_EN isn't supported) */ 1141 efx_mac_reconfigure(efx); 1142 1143 /* Ensure the PHY advertises the correct flow control settings */ 1144 rc = efx->phy_op->reconfigure(efx); 1145 if (rc && rc != -EPERM) 1146 goto fail2; 1147 1148 mutex_unlock(&efx->mac_lock); 1149 return 0; 1150 1151 fail2: 1152 efx->phy_op->fini(efx); 1153 fail1: 1154 mutex_unlock(&efx->mac_lock); 1155 return rc; 1156 } 1157 1158 static void efx_start_port(struct efx_nic *efx) 1159 { 1160 netif_dbg(efx, ifup, efx->net_dev, "start port\n"); 1161 BUG_ON(efx->port_enabled); 1162 1163 mutex_lock(&efx->mac_lock); 1164 efx->port_enabled = true; 1165 1166 /* Ensure MAC ingress/egress is enabled */ 1167 efx_mac_reconfigure(efx); 1168 1169 mutex_unlock(&efx->mac_lock); 1170 } 1171 1172 /* Cancel work for MAC reconfiguration, periodic hardware monitoring 1173 * and the async self-test, wait for them to finish and prevent them 1174 * being scheduled again. This doesn't cover online resets, which 1175 * should only be cancelled when removing the device. 1176 */ 1177 static void efx_stop_port(struct efx_nic *efx) 1178 { 1179 netif_dbg(efx, ifdown, efx->net_dev, "stop port\n"); 1180 1181 EFX_ASSERT_RESET_SERIALISED(efx); 1182 1183 mutex_lock(&efx->mac_lock); 1184 efx->port_enabled = false; 1185 mutex_unlock(&efx->mac_lock); 1186 1187 /* Serialise against efx_set_multicast_list() */ 1188 netif_addr_lock_bh(efx->net_dev); 1189 netif_addr_unlock_bh(efx->net_dev); 1190 1191 cancel_delayed_work_sync(&efx->monitor_work); 1192 efx_selftest_async_cancel(efx); 1193 cancel_work_sync(&efx->mac_work); 1194 } 1195 1196 static void efx_fini_port(struct efx_nic *efx) 1197 { 1198 netif_dbg(efx, drv, efx->net_dev, "shut down port\n"); 1199 1200 if (!efx->port_initialized) 1201 return; 1202 1203 efx->phy_op->fini(efx); 1204 efx->port_initialized = false; 1205 1206 efx->link_state.up = false; 1207 efx_link_status_changed(efx); 1208 } 1209 1210 static void efx_remove_port(struct efx_nic *efx) 1211 { 1212 netif_dbg(efx, drv, efx->net_dev, "destroying port\n"); 1213 1214 efx->type->remove_port(efx); 1215 } 1216 1217 /************************************************************************** 1218 * 1219 * NIC handling 1220 * 1221 **************************************************************************/ 1222 1223 static LIST_HEAD(efx_primary_list); 1224 static LIST_HEAD(efx_unassociated_list); 1225 1226 static bool efx_same_controller(struct efx_nic *left, struct efx_nic *right) 1227 { 1228 return left->type == right->type && 1229 left->vpd_sn && right->vpd_sn && 1230 !strcmp(left->vpd_sn, right->vpd_sn); 1231 } 1232 1233 static void efx_associate(struct efx_nic *efx) 1234 { 1235 struct efx_nic *other, *next; 1236 1237 if (efx->primary == efx) { 1238 /* Adding primary function; look for secondaries */ 1239 1240 netif_dbg(efx, probe, efx->net_dev, "adding to primary list\n"); 1241 list_add_tail(&efx->node, &efx_primary_list); 1242 1243 list_for_each_entry_safe(other, next, &efx_unassociated_list, 1244 node) { 1245 if (efx_same_controller(efx, other)) { 1246 list_del(&other->node); 1247 netif_dbg(other, probe, other->net_dev, 1248 "moving to secondary list of %s %s\n", 1249 pci_name(efx->pci_dev), 1250 efx->net_dev->name); 1251 list_add_tail(&other->node, 1252 &efx->secondary_list); 1253 other->primary = efx; 1254 } 1255 } 1256 } else { 1257 /* Adding secondary function; look for primary */ 1258 1259 list_for_each_entry(other, &efx_primary_list, node) { 1260 if (efx_same_controller(efx, other)) { 1261 netif_dbg(efx, probe, efx->net_dev, 1262 "adding to secondary list of %s %s\n", 1263 pci_name(other->pci_dev), 1264 other->net_dev->name); 1265 list_add_tail(&efx->node, 1266 &other->secondary_list); 1267 efx->primary = other; 1268 return; 1269 } 1270 } 1271 1272 netif_dbg(efx, probe, efx->net_dev, 1273 "adding to unassociated list\n"); 1274 list_add_tail(&efx->node, &efx_unassociated_list); 1275 } 1276 } 1277 1278 static void efx_dissociate(struct efx_nic *efx) 1279 { 1280 struct efx_nic *other, *next; 1281 1282 list_del(&efx->node); 1283 efx->primary = NULL; 1284 1285 list_for_each_entry_safe(other, next, &efx->secondary_list, node) { 1286 list_del(&other->node); 1287 netif_dbg(other, probe, other->net_dev, 1288 "moving to unassociated list\n"); 1289 list_add_tail(&other->node, &efx_unassociated_list); 1290 other->primary = NULL; 1291 } 1292 } 1293 1294 /* This configures the PCI device to enable I/O and DMA. */ 1295 static int efx_init_io(struct efx_nic *efx) 1296 { 1297 struct pci_dev *pci_dev = efx->pci_dev; 1298 dma_addr_t dma_mask = efx->type->max_dma_mask; 1299 unsigned int mem_map_size = efx->type->mem_map_size(efx); 1300 int rc, bar; 1301 1302 netif_dbg(efx, probe, efx->net_dev, "initialising I/O\n"); 1303 1304 bar = efx->type->mem_bar(efx); 1305 1306 rc = pci_enable_device(pci_dev); 1307 if (rc) { 1308 netif_err(efx, probe, efx->net_dev, 1309 "failed to enable PCI device\n"); 1310 goto fail1; 1311 } 1312 1313 pci_set_master(pci_dev); 1314 1315 /* Set the PCI DMA mask. Try all possibilities from our genuine mask 1316 * down to 32 bits, because some architectures will allow 40 bit 1317 * masks event though they reject 46 bit masks. 1318 */ 1319 while (dma_mask > 0x7fffffffUL) { 1320 rc = dma_set_mask_and_coherent(&pci_dev->dev, dma_mask); 1321 if (rc == 0) 1322 break; 1323 dma_mask >>= 1; 1324 } 1325 if (rc) { 1326 netif_err(efx, probe, efx->net_dev, 1327 "could not find a suitable DMA mask\n"); 1328 goto fail2; 1329 } 1330 netif_dbg(efx, probe, efx->net_dev, 1331 "using DMA mask %llx\n", (unsigned long long) dma_mask); 1332 1333 efx->membase_phys = pci_resource_start(efx->pci_dev, bar); 1334 rc = pci_request_region(pci_dev, bar, "sfc"); 1335 if (rc) { 1336 netif_err(efx, probe, efx->net_dev, 1337 "request for memory BAR failed\n"); 1338 rc = -EIO; 1339 goto fail3; 1340 } 1341 efx->membase = ioremap_nocache(efx->membase_phys, mem_map_size); 1342 if (!efx->membase) { 1343 netif_err(efx, probe, efx->net_dev, 1344 "could not map memory BAR at %llx+%x\n", 1345 (unsigned long long)efx->membase_phys, mem_map_size); 1346 rc = -ENOMEM; 1347 goto fail4; 1348 } 1349 netif_dbg(efx, probe, efx->net_dev, 1350 "memory BAR at %llx+%x (virtual %p)\n", 1351 (unsigned long long)efx->membase_phys, mem_map_size, 1352 efx->membase); 1353 1354 return 0; 1355 1356 fail4: 1357 pci_release_region(efx->pci_dev, bar); 1358 fail3: 1359 efx->membase_phys = 0; 1360 fail2: 1361 pci_disable_device(efx->pci_dev); 1362 fail1: 1363 return rc; 1364 } 1365 1366 static void efx_fini_io(struct efx_nic *efx) 1367 { 1368 int bar; 1369 1370 netif_dbg(efx, drv, efx->net_dev, "shutting down I/O\n"); 1371 1372 if (efx->membase) { 1373 iounmap(efx->membase); 1374 efx->membase = NULL; 1375 } 1376 1377 if (efx->membase_phys) { 1378 bar = efx->type->mem_bar(efx); 1379 pci_release_region(efx->pci_dev, bar); 1380 efx->membase_phys = 0; 1381 } 1382 1383 /* Don't disable bus-mastering if VFs are assigned */ 1384 if (!pci_vfs_assigned(efx->pci_dev)) 1385 pci_disable_device(efx->pci_dev); 1386 } 1387 1388 void efx_set_default_rx_indir_table(struct efx_nic *efx, 1389 struct efx_rss_context *ctx) 1390 { 1391 size_t i; 1392 1393 for (i = 0; i < ARRAY_SIZE(ctx->rx_indir_table); i++) 1394 ctx->rx_indir_table[i] = 1395 ethtool_rxfh_indir_default(i, efx->rss_spread); 1396 } 1397 1398 static unsigned int efx_wanted_parallelism(struct efx_nic *efx) 1399 { 1400 cpumask_var_t thread_mask; 1401 unsigned int count; 1402 int cpu; 1403 1404 if (rss_cpus) { 1405 count = rss_cpus; 1406 } else { 1407 if (unlikely(!zalloc_cpumask_var(&thread_mask, GFP_KERNEL))) { 1408 netif_warn(efx, probe, efx->net_dev, 1409 "RSS disabled due to allocation failure\n"); 1410 return 1; 1411 } 1412 1413 count = 0; 1414 for_each_online_cpu(cpu) { 1415 if (!cpumask_test_cpu(cpu, thread_mask)) { 1416 ++count; 1417 cpumask_or(thread_mask, thread_mask, 1418 topology_sibling_cpumask(cpu)); 1419 } 1420 } 1421 1422 free_cpumask_var(thread_mask); 1423 } 1424 1425 if (count > EFX_MAX_RX_QUEUES) { 1426 netif_cond_dbg(efx, probe, efx->net_dev, !rss_cpus, warn, 1427 "Reducing number of rx queues from %u to %u.\n", 1428 count, EFX_MAX_RX_QUEUES); 1429 count = EFX_MAX_RX_QUEUES; 1430 } 1431 1432 /* If RSS is requested for the PF *and* VFs then we can't write RSS 1433 * table entries that are inaccessible to VFs 1434 */ 1435 #ifdef CONFIG_SFC_SRIOV 1436 if (efx->type->sriov_wanted) { 1437 if (efx->type->sriov_wanted(efx) && efx_vf_size(efx) > 1 && 1438 count > efx_vf_size(efx)) { 1439 netif_warn(efx, probe, efx->net_dev, 1440 "Reducing number of RSS channels from %u to %u for " 1441 "VF support. Increase vf-msix-limit to use more " 1442 "channels on the PF.\n", 1443 count, efx_vf_size(efx)); 1444 count = efx_vf_size(efx); 1445 } 1446 } 1447 #endif 1448 1449 return count; 1450 } 1451 1452 static int efx_allocate_msix_channels(struct efx_nic *efx, 1453 unsigned int max_channels, 1454 unsigned int extra_channels, 1455 unsigned int parallelism) 1456 { 1457 unsigned int n_channels = parallelism; 1458 int vec_count; 1459 int n_xdp_tx; 1460 int n_xdp_ev; 1461 1462 if (efx_separate_tx_channels) 1463 n_channels *= 2; 1464 n_channels += extra_channels; 1465 1466 /* To allow XDP transmit to happen from arbitrary NAPI contexts 1467 * we allocate a TX queue per CPU. We share event queues across 1468 * multiple tx queues, assuming tx and ev queues are both 1469 * maximum size. 1470 */ 1471 1472 n_xdp_tx = num_possible_cpus(); 1473 n_xdp_ev = DIV_ROUND_UP(n_xdp_tx, EFX_TXQ_TYPES); 1474 1475 /* Check resources. 1476 * We need a channel per event queue, plus a VI per tx queue. 1477 * This may be more pessimistic than it needs to be. 1478 */ 1479 if (n_channels + n_xdp_ev > max_channels) { 1480 netif_err(efx, drv, efx->net_dev, 1481 "Insufficient resources for %d XDP event queues (%d other channels, max %d)\n", 1482 n_xdp_ev, n_channels, max_channels); 1483 efx->n_xdp_channels = 0; 1484 efx->xdp_tx_per_channel = 0; 1485 efx->xdp_tx_queue_count = 0; 1486 } else { 1487 efx->n_xdp_channels = n_xdp_ev; 1488 efx->xdp_tx_per_channel = EFX_TXQ_TYPES; 1489 efx->xdp_tx_queue_count = n_xdp_tx; 1490 n_channels += n_xdp_ev; 1491 netif_dbg(efx, drv, efx->net_dev, 1492 "Allocating %d TX and %d event queues for XDP\n", 1493 n_xdp_tx, n_xdp_ev); 1494 } 1495 1496 n_channels = min(n_channels, max_channels); 1497 1498 vec_count = pci_msix_vec_count(efx->pci_dev); 1499 if (vec_count < 0) 1500 return vec_count; 1501 if (vec_count < n_channels) { 1502 netif_err(efx, drv, efx->net_dev, 1503 "WARNING: Insufficient MSI-X vectors available (%d < %u).\n", 1504 vec_count, n_channels); 1505 netif_err(efx, drv, efx->net_dev, 1506 "WARNING: Performance may be reduced.\n"); 1507 n_channels = vec_count; 1508 } 1509 1510 efx->n_channels = n_channels; 1511 1512 /* Do not create the PTP TX queue(s) if PTP uses the MC directly. */ 1513 if (extra_channels && !efx_ptp_use_mac_tx_timestamps(efx)) 1514 n_channels--; 1515 1516 /* Ignore XDP tx channels when creating rx channels. */ 1517 n_channels -= efx->n_xdp_channels; 1518 1519 if (efx_separate_tx_channels) { 1520 efx->n_tx_channels = 1521 min(max(n_channels / 2, 1U), 1522 efx->max_tx_channels); 1523 efx->tx_channel_offset = 1524 n_channels - efx->n_tx_channels; 1525 efx->n_rx_channels = 1526 max(n_channels - 1527 efx->n_tx_channels, 1U); 1528 } else { 1529 efx->n_tx_channels = min(n_channels, efx->max_tx_channels); 1530 efx->tx_channel_offset = 0; 1531 efx->n_rx_channels = n_channels; 1532 } 1533 1534 if (efx->n_xdp_channels) 1535 efx->xdp_channel_offset = efx->tx_channel_offset + 1536 efx->n_tx_channels; 1537 else 1538 efx->xdp_channel_offset = efx->n_channels; 1539 1540 netif_dbg(efx, drv, efx->net_dev, 1541 "Allocating %u RX channels\n", 1542 efx->n_rx_channels); 1543 1544 return efx->n_channels; 1545 } 1546 1547 /* Probe the number and type of interrupts we are able to obtain, and 1548 * the resulting numbers of channels and RX queues. 1549 */ 1550 static int efx_probe_interrupts(struct efx_nic *efx) 1551 { 1552 unsigned int extra_channels = 0; 1553 unsigned int i, j; 1554 int rc; 1555 1556 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) 1557 if (efx->extra_channel_type[i]) 1558 ++extra_channels; 1559 1560 if (efx->interrupt_mode == EFX_INT_MODE_MSIX) { 1561 unsigned int parallelism = efx_wanted_parallelism(efx); 1562 struct msix_entry xentries[EFX_MAX_CHANNELS]; 1563 unsigned int n_channels; 1564 1565 rc = efx_allocate_msix_channels(efx, efx->max_channels, 1566 extra_channels, parallelism); 1567 if (rc >= 0) { 1568 n_channels = rc; 1569 for (i = 0; i < n_channels; i++) 1570 xentries[i].entry = i; 1571 rc = pci_enable_msix_range(efx->pci_dev, xentries, 1, 1572 n_channels); 1573 } 1574 if (rc < 0) { 1575 /* Fall back to single channel MSI */ 1576 netif_err(efx, drv, efx->net_dev, 1577 "could not enable MSI-X\n"); 1578 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_MSI) 1579 efx->interrupt_mode = EFX_INT_MODE_MSI; 1580 else 1581 return rc; 1582 } else if (rc < n_channels) { 1583 netif_err(efx, drv, efx->net_dev, 1584 "WARNING: Insufficient MSI-X vectors" 1585 " available (%d < %u).\n", rc, n_channels); 1586 netif_err(efx, drv, efx->net_dev, 1587 "WARNING: Performance may be reduced.\n"); 1588 n_channels = rc; 1589 } 1590 1591 if (rc > 0) { 1592 for (i = 0; i < efx->n_channels; i++) 1593 efx_get_channel(efx, i)->irq = 1594 xentries[i].vector; 1595 } 1596 } 1597 1598 /* Try single interrupt MSI */ 1599 if (efx->interrupt_mode == EFX_INT_MODE_MSI) { 1600 efx->n_channels = 1; 1601 efx->n_rx_channels = 1; 1602 efx->n_tx_channels = 1; 1603 efx->n_xdp_channels = 0; 1604 efx->xdp_channel_offset = efx->n_channels; 1605 rc = pci_enable_msi(efx->pci_dev); 1606 if (rc == 0) { 1607 efx_get_channel(efx, 0)->irq = efx->pci_dev->irq; 1608 } else { 1609 netif_err(efx, drv, efx->net_dev, 1610 "could not enable MSI\n"); 1611 if (efx->type->min_interrupt_mode >= EFX_INT_MODE_LEGACY) 1612 efx->interrupt_mode = EFX_INT_MODE_LEGACY; 1613 else 1614 return rc; 1615 } 1616 } 1617 1618 /* Assume legacy interrupts */ 1619 if (efx->interrupt_mode == EFX_INT_MODE_LEGACY) { 1620 efx->n_channels = 1 + (efx_separate_tx_channels ? 1 : 0); 1621 efx->n_rx_channels = 1; 1622 efx->n_tx_channels = 1; 1623 efx->n_xdp_channels = 0; 1624 efx->xdp_channel_offset = efx->n_channels; 1625 efx->legacy_irq = efx->pci_dev->irq; 1626 } 1627 1628 /* Assign extra channels if possible, before XDP channels */ 1629 efx->n_extra_tx_channels = 0; 1630 j = efx->xdp_channel_offset; 1631 for (i = 0; i < EFX_MAX_EXTRA_CHANNELS; i++) { 1632 if (!efx->extra_channel_type[i]) 1633 continue; 1634 if (efx->interrupt_mode != EFX_INT_MODE_MSIX || 1635 efx->n_channels <= extra_channels) { 1636 efx->extra_channel_type[i]->handle_no_channel(efx); 1637 } else { 1638 --j; 1639 efx_get_channel(efx, j)->type = 1640 efx->extra_channel_type[i]; 1641 if (efx_channel_has_tx_queues(efx_get_channel(efx, j))) 1642 efx->n_extra_tx_channels++; 1643 } 1644 } 1645 1646 /* RSS might be usable on VFs even if it is disabled on the PF */ 1647 #ifdef CONFIG_SFC_SRIOV 1648 if (efx->type->sriov_wanted) { 1649 efx->rss_spread = ((efx->n_rx_channels > 1 || 1650 !efx->type->sriov_wanted(efx)) ? 1651 efx->n_rx_channels : efx_vf_size(efx)); 1652 return 0; 1653 } 1654 #endif 1655 efx->rss_spread = efx->n_rx_channels; 1656 1657 return 0; 1658 } 1659 1660 #if defined(CONFIG_SMP) 1661 static void efx_set_interrupt_affinity(struct efx_nic *efx) 1662 { 1663 struct efx_channel *channel; 1664 unsigned int cpu; 1665 1666 efx_for_each_channel(channel, efx) { 1667 cpu = cpumask_local_spread(channel->channel, 1668 pcibus_to_node(efx->pci_dev->bus)); 1669 irq_set_affinity_hint(channel->irq, cpumask_of(cpu)); 1670 } 1671 } 1672 1673 static void efx_clear_interrupt_affinity(struct efx_nic *efx) 1674 { 1675 struct efx_channel *channel; 1676 1677 efx_for_each_channel(channel, efx) 1678 irq_set_affinity_hint(channel->irq, NULL); 1679 } 1680 #else 1681 static void 1682 efx_set_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) 1683 { 1684 } 1685 1686 static void 1687 efx_clear_interrupt_affinity(struct efx_nic *efx __attribute__ ((unused))) 1688 { 1689 } 1690 #endif /* CONFIG_SMP */ 1691 1692 static int efx_soft_enable_interrupts(struct efx_nic *efx) 1693 { 1694 struct efx_channel *channel, *end_channel; 1695 int rc; 1696 1697 BUG_ON(efx->state == STATE_DISABLED); 1698 1699 efx->irq_soft_enabled = true; 1700 smp_wmb(); 1701 1702 efx_for_each_channel(channel, efx) { 1703 if (!channel->type->keep_eventq) { 1704 rc = efx_init_eventq(channel); 1705 if (rc) 1706 goto fail; 1707 } 1708 efx_start_eventq(channel); 1709 } 1710 1711 efx_mcdi_mode_event(efx); 1712 1713 return 0; 1714 fail: 1715 end_channel = channel; 1716 efx_for_each_channel(channel, efx) { 1717 if (channel == end_channel) 1718 break; 1719 efx_stop_eventq(channel); 1720 if (!channel->type->keep_eventq) 1721 efx_fini_eventq(channel); 1722 } 1723 1724 return rc; 1725 } 1726 1727 static void efx_soft_disable_interrupts(struct efx_nic *efx) 1728 { 1729 struct efx_channel *channel; 1730 1731 if (efx->state == STATE_DISABLED) 1732 return; 1733 1734 efx_mcdi_mode_poll(efx); 1735 1736 efx->irq_soft_enabled = false; 1737 smp_wmb(); 1738 1739 if (efx->legacy_irq) 1740 synchronize_irq(efx->legacy_irq); 1741 1742 efx_for_each_channel(channel, efx) { 1743 if (channel->irq) 1744 synchronize_irq(channel->irq); 1745 1746 efx_stop_eventq(channel); 1747 if (!channel->type->keep_eventq) 1748 efx_fini_eventq(channel); 1749 } 1750 1751 /* Flush the asynchronous MCDI request queue */ 1752 efx_mcdi_flush_async(efx); 1753 } 1754 1755 static int efx_enable_interrupts(struct efx_nic *efx) 1756 { 1757 struct efx_channel *channel, *end_channel; 1758 int rc; 1759 1760 BUG_ON(efx->state == STATE_DISABLED); 1761 1762 if (efx->eeh_disabled_legacy_irq) { 1763 enable_irq(efx->legacy_irq); 1764 efx->eeh_disabled_legacy_irq = false; 1765 } 1766 1767 efx->type->irq_enable_master(efx); 1768 1769 efx_for_each_channel(channel, efx) { 1770 if (channel->type->keep_eventq) { 1771 rc = efx_init_eventq(channel); 1772 if (rc) 1773 goto fail; 1774 } 1775 } 1776 1777 rc = efx_soft_enable_interrupts(efx); 1778 if (rc) 1779 goto fail; 1780 1781 return 0; 1782 1783 fail: 1784 end_channel = channel; 1785 efx_for_each_channel(channel, efx) { 1786 if (channel == end_channel) 1787 break; 1788 if (channel->type->keep_eventq) 1789 efx_fini_eventq(channel); 1790 } 1791 1792 efx->type->irq_disable_non_ev(efx); 1793 1794 return rc; 1795 } 1796 1797 static void efx_disable_interrupts(struct efx_nic *efx) 1798 { 1799 struct efx_channel *channel; 1800 1801 efx_soft_disable_interrupts(efx); 1802 1803 efx_for_each_channel(channel, efx) { 1804 if (channel->type->keep_eventq) 1805 efx_fini_eventq(channel); 1806 } 1807 1808 efx->type->irq_disable_non_ev(efx); 1809 } 1810 1811 static void efx_remove_interrupts(struct efx_nic *efx) 1812 { 1813 struct efx_channel *channel; 1814 1815 /* Remove MSI/MSI-X interrupts */ 1816 efx_for_each_channel(channel, efx) 1817 channel->irq = 0; 1818 pci_disable_msi(efx->pci_dev); 1819 pci_disable_msix(efx->pci_dev); 1820 1821 /* Remove legacy interrupt */ 1822 efx->legacy_irq = 0; 1823 } 1824 1825 static int efx_set_channels(struct efx_nic *efx) 1826 { 1827 struct efx_channel *channel; 1828 struct efx_tx_queue *tx_queue; 1829 int xdp_queue_number; 1830 1831 efx->tx_channel_offset = 1832 efx_separate_tx_channels ? 1833 efx->n_channels - efx->n_tx_channels : 0; 1834 1835 if (efx->xdp_tx_queue_count) { 1836 EFX_WARN_ON_PARANOID(efx->xdp_tx_queues); 1837 1838 /* Allocate array for XDP TX queue lookup. */ 1839 efx->xdp_tx_queues = kcalloc(efx->xdp_tx_queue_count, 1840 sizeof(*efx->xdp_tx_queues), 1841 GFP_KERNEL); 1842 if (!efx->xdp_tx_queues) 1843 return -ENOMEM; 1844 } 1845 1846 /* We need to mark which channels really have RX and TX 1847 * queues, and adjust the TX queue numbers if we have separate 1848 * RX-only and TX-only channels. 1849 */ 1850 xdp_queue_number = 0; 1851 efx_for_each_channel(channel, efx) { 1852 if (channel->channel < efx->n_rx_channels) 1853 channel->rx_queue.core_index = channel->channel; 1854 else 1855 channel->rx_queue.core_index = -1; 1856 1857 efx_for_each_channel_tx_queue(tx_queue, channel) { 1858 tx_queue->queue -= (efx->tx_channel_offset * 1859 EFX_TXQ_TYPES); 1860 1861 if (efx_channel_is_xdp_tx(channel) && 1862 xdp_queue_number < efx->xdp_tx_queue_count) { 1863 efx->xdp_tx_queues[xdp_queue_number] = tx_queue; 1864 xdp_queue_number++; 1865 } 1866 } 1867 } 1868 return 0; 1869 } 1870 1871 static int efx_probe_nic(struct efx_nic *efx) 1872 { 1873 int rc; 1874 1875 netif_dbg(efx, probe, efx->net_dev, "creating NIC\n"); 1876 1877 /* Carry out hardware-type specific initialisation */ 1878 rc = efx->type->probe(efx); 1879 if (rc) 1880 return rc; 1881 1882 do { 1883 if (!efx->max_channels || !efx->max_tx_channels) { 1884 netif_err(efx, drv, efx->net_dev, 1885 "Insufficient resources to allocate" 1886 " any channels\n"); 1887 rc = -ENOSPC; 1888 goto fail1; 1889 } 1890 1891 /* Determine the number of channels and queues by trying 1892 * to hook in MSI-X interrupts. 1893 */ 1894 rc = efx_probe_interrupts(efx); 1895 if (rc) 1896 goto fail1; 1897 1898 rc = efx_set_channels(efx); 1899 if (rc) 1900 goto fail1; 1901 1902 /* dimension_resources can fail with EAGAIN */ 1903 rc = efx->type->dimension_resources(efx); 1904 if (rc != 0 && rc != -EAGAIN) 1905 goto fail2; 1906 1907 if (rc == -EAGAIN) 1908 /* try again with new max_channels */ 1909 efx_remove_interrupts(efx); 1910 1911 } while (rc == -EAGAIN); 1912 1913 if (efx->n_channels > 1) 1914 netdev_rss_key_fill(efx->rss_context.rx_hash_key, 1915 sizeof(efx->rss_context.rx_hash_key)); 1916 efx_set_default_rx_indir_table(efx, &efx->rss_context); 1917 1918 netif_set_real_num_tx_queues(efx->net_dev, efx->n_tx_channels); 1919 netif_set_real_num_rx_queues(efx->net_dev, efx->n_rx_channels); 1920 1921 /* Initialise the interrupt moderation settings */ 1922 efx->irq_mod_step_us = DIV_ROUND_UP(efx->timer_quantum_ns, 1000); 1923 efx_init_irq_moderation(efx, tx_irq_mod_usec, rx_irq_mod_usec, true, 1924 true); 1925 1926 return 0; 1927 1928 fail2: 1929 efx_remove_interrupts(efx); 1930 fail1: 1931 efx->type->remove(efx); 1932 return rc; 1933 } 1934 1935 static void efx_remove_nic(struct efx_nic *efx) 1936 { 1937 netif_dbg(efx, drv, efx->net_dev, "destroying NIC\n"); 1938 1939 efx_remove_interrupts(efx); 1940 efx->type->remove(efx); 1941 } 1942 1943 static int efx_probe_filters(struct efx_nic *efx) 1944 { 1945 int rc; 1946 1947 init_rwsem(&efx->filter_sem); 1948 mutex_lock(&efx->mac_lock); 1949 down_write(&efx->filter_sem); 1950 rc = efx->type->filter_table_probe(efx); 1951 if (rc) 1952 goto out_unlock; 1953 1954 #ifdef CONFIG_RFS_ACCEL 1955 if (efx->type->offload_features & NETIF_F_NTUPLE) { 1956 struct efx_channel *channel; 1957 int i, success = 1; 1958 1959 efx_for_each_channel(channel, efx) { 1960 channel->rps_flow_id = 1961 kcalloc(efx->type->max_rx_ip_filters, 1962 sizeof(*channel->rps_flow_id), 1963 GFP_KERNEL); 1964 if (!channel->rps_flow_id) 1965 success = 0; 1966 else 1967 for (i = 0; 1968 i < efx->type->max_rx_ip_filters; 1969 ++i) 1970 channel->rps_flow_id[i] = 1971 RPS_FLOW_ID_INVALID; 1972 channel->rfs_expire_index = 0; 1973 channel->rfs_filter_count = 0; 1974 } 1975 1976 if (!success) { 1977 efx_for_each_channel(channel, efx) 1978 kfree(channel->rps_flow_id); 1979 efx->type->filter_table_remove(efx); 1980 rc = -ENOMEM; 1981 goto out_unlock; 1982 } 1983 } 1984 #endif 1985 out_unlock: 1986 up_write(&efx->filter_sem); 1987 mutex_unlock(&efx->mac_lock); 1988 return rc; 1989 } 1990 1991 static void efx_remove_filters(struct efx_nic *efx) 1992 { 1993 #ifdef CONFIG_RFS_ACCEL 1994 struct efx_channel *channel; 1995 1996 efx_for_each_channel(channel, efx) { 1997 cancel_delayed_work_sync(&channel->filter_work); 1998 kfree(channel->rps_flow_id); 1999 } 2000 #endif 2001 down_write(&efx->filter_sem); 2002 efx->type->filter_table_remove(efx); 2003 up_write(&efx->filter_sem); 2004 } 2005 2006 2007 /************************************************************************** 2008 * 2009 * NIC startup/shutdown 2010 * 2011 *************************************************************************/ 2012 2013 static int efx_probe_all(struct efx_nic *efx) 2014 { 2015 int rc; 2016 2017 rc = efx_probe_nic(efx); 2018 if (rc) { 2019 netif_err(efx, probe, efx->net_dev, "failed to create NIC\n"); 2020 goto fail1; 2021 } 2022 2023 rc = efx_probe_port(efx); 2024 if (rc) { 2025 netif_err(efx, probe, efx->net_dev, "failed to create port\n"); 2026 goto fail2; 2027 } 2028 2029 BUILD_BUG_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_RXQ_MIN_ENT); 2030 if (WARN_ON(EFX_DEFAULT_DMAQ_SIZE < EFX_TXQ_MIN_ENT(efx))) { 2031 rc = -EINVAL; 2032 goto fail3; 2033 } 2034 efx->rxq_entries = efx->txq_entries = EFX_DEFAULT_DMAQ_SIZE; 2035 2036 #ifdef CONFIG_SFC_SRIOV 2037 rc = efx->type->vswitching_probe(efx); 2038 if (rc) /* not fatal; the PF will still work fine */ 2039 netif_warn(efx, probe, efx->net_dev, 2040 "failed to setup vswitching rc=%d;" 2041 " VFs may not function\n", rc); 2042 #endif 2043 2044 rc = efx_probe_filters(efx); 2045 if (rc) { 2046 netif_err(efx, probe, efx->net_dev, 2047 "failed to create filter tables\n"); 2048 goto fail4; 2049 } 2050 2051 rc = efx_probe_channels(efx); 2052 if (rc) 2053 goto fail5; 2054 2055 return 0; 2056 2057 fail5: 2058 efx_remove_filters(efx); 2059 fail4: 2060 #ifdef CONFIG_SFC_SRIOV 2061 efx->type->vswitching_remove(efx); 2062 #endif 2063 fail3: 2064 efx_remove_port(efx); 2065 fail2: 2066 efx_remove_nic(efx); 2067 fail1: 2068 return rc; 2069 } 2070 2071 /* If the interface is supposed to be running but is not, start 2072 * the hardware and software data path, regular activity for the port 2073 * (MAC statistics, link polling, etc.) and schedule the port to be 2074 * reconfigured. Interrupts must already be enabled. This function 2075 * is safe to call multiple times, so long as the NIC is not disabled. 2076 * Requires the RTNL lock. 2077 */ 2078 static void efx_start_all(struct efx_nic *efx) 2079 { 2080 EFX_ASSERT_RESET_SERIALISED(efx); 2081 BUG_ON(efx->state == STATE_DISABLED); 2082 2083 /* Check that it is appropriate to restart the interface. All 2084 * of these flags are safe to read under just the rtnl lock */ 2085 if (efx->port_enabled || !netif_running(efx->net_dev) || 2086 efx->reset_pending) 2087 return; 2088 2089 efx_start_port(efx); 2090 efx_start_datapath(efx); 2091 2092 /* Start the hardware monitor if there is one */ 2093 if (efx->type->monitor != NULL) 2094 queue_delayed_work(efx->workqueue, &efx->monitor_work, 2095 efx_monitor_interval); 2096 2097 /* Link state detection is normally event-driven; we have 2098 * to poll now because we could have missed a change 2099 */ 2100 mutex_lock(&efx->mac_lock); 2101 if (efx->phy_op->poll(efx)) 2102 efx_link_status_changed(efx); 2103 mutex_unlock(&efx->mac_lock); 2104 2105 efx->type->start_stats(efx); 2106 efx->type->pull_stats(efx); 2107 spin_lock_bh(&efx->stats_lock); 2108 efx->type->update_stats(efx, NULL, NULL); 2109 spin_unlock_bh(&efx->stats_lock); 2110 } 2111 2112 /* Quiesce the hardware and software data path, and regular activity 2113 * for the port without bringing the link down. Safe to call multiple 2114 * times with the NIC in almost any state, but interrupts should be 2115 * enabled. Requires the RTNL lock. 2116 */ 2117 static void efx_stop_all(struct efx_nic *efx) 2118 { 2119 EFX_ASSERT_RESET_SERIALISED(efx); 2120 2121 /* port_enabled can be read safely under the rtnl lock */ 2122 if (!efx->port_enabled) 2123 return; 2124 2125 /* update stats before we go down so we can accurately count 2126 * rx_nodesc_drops 2127 */ 2128 efx->type->pull_stats(efx); 2129 spin_lock_bh(&efx->stats_lock); 2130 efx->type->update_stats(efx, NULL, NULL); 2131 spin_unlock_bh(&efx->stats_lock); 2132 efx->type->stop_stats(efx); 2133 efx_stop_port(efx); 2134 2135 /* Stop the kernel transmit interface. This is only valid if 2136 * the device is stopped or detached; otherwise the watchdog 2137 * may fire immediately. 2138 */ 2139 WARN_ON(netif_running(efx->net_dev) && 2140 netif_device_present(efx->net_dev)); 2141 netif_tx_disable(efx->net_dev); 2142 2143 efx_stop_datapath(efx); 2144 } 2145 2146 static void efx_remove_all(struct efx_nic *efx) 2147 { 2148 rtnl_lock(); 2149 efx_xdp_setup_prog(efx, NULL); 2150 rtnl_unlock(); 2151 2152 efx_remove_channels(efx); 2153 efx_remove_filters(efx); 2154 #ifdef CONFIG_SFC_SRIOV 2155 efx->type->vswitching_remove(efx); 2156 #endif 2157 efx_remove_port(efx); 2158 efx_remove_nic(efx); 2159 } 2160 2161 /************************************************************************** 2162 * 2163 * Interrupt moderation 2164 * 2165 **************************************************************************/ 2166 unsigned int efx_usecs_to_ticks(struct efx_nic *efx, unsigned int usecs) 2167 { 2168 if (usecs == 0) 2169 return 0; 2170 if (usecs * 1000 < efx->timer_quantum_ns) 2171 return 1; /* never round down to 0 */ 2172 return usecs * 1000 / efx->timer_quantum_ns; 2173 } 2174 2175 unsigned int efx_ticks_to_usecs(struct efx_nic *efx, unsigned int ticks) 2176 { 2177 /* We must round up when converting ticks to microseconds 2178 * because we round down when converting the other way. 2179 */ 2180 return DIV_ROUND_UP(ticks * efx->timer_quantum_ns, 1000); 2181 } 2182 2183 /* Set interrupt moderation parameters */ 2184 int efx_init_irq_moderation(struct efx_nic *efx, unsigned int tx_usecs, 2185 unsigned int rx_usecs, bool rx_adaptive, 2186 bool rx_may_override_tx) 2187 { 2188 struct efx_channel *channel; 2189 unsigned int timer_max_us; 2190 2191 EFX_ASSERT_RESET_SERIALISED(efx); 2192 2193 timer_max_us = efx->timer_max_ns / 1000; 2194 2195 if (tx_usecs > timer_max_us || rx_usecs > timer_max_us) 2196 return -EINVAL; 2197 2198 if (tx_usecs != rx_usecs && efx->tx_channel_offset == 0 && 2199 !rx_may_override_tx) { 2200 netif_err(efx, drv, efx->net_dev, "Channels are shared. " 2201 "RX and TX IRQ moderation must be equal\n"); 2202 return -EINVAL; 2203 } 2204 2205 efx->irq_rx_adaptive = rx_adaptive; 2206 efx->irq_rx_moderation_us = rx_usecs; 2207 efx_for_each_channel(channel, efx) { 2208 if (efx_channel_has_rx_queue(channel)) 2209 channel->irq_moderation_us = rx_usecs; 2210 else if (efx_channel_has_tx_queues(channel)) 2211 channel->irq_moderation_us = tx_usecs; 2212 else if (efx_channel_is_xdp_tx(channel)) 2213 channel->irq_moderation_us = tx_usecs; 2214 } 2215 2216 return 0; 2217 } 2218 2219 void efx_get_irq_moderation(struct efx_nic *efx, unsigned int *tx_usecs, 2220 unsigned int *rx_usecs, bool *rx_adaptive) 2221 { 2222 *rx_adaptive = efx->irq_rx_adaptive; 2223 *rx_usecs = efx->irq_rx_moderation_us; 2224 2225 /* If channels are shared between RX and TX, so is IRQ 2226 * moderation. Otherwise, IRQ moderation is the same for all 2227 * TX channels and is not adaptive. 2228 */ 2229 if (efx->tx_channel_offset == 0) { 2230 *tx_usecs = *rx_usecs; 2231 } else { 2232 struct efx_channel *tx_channel; 2233 2234 tx_channel = efx->channel[efx->tx_channel_offset]; 2235 *tx_usecs = tx_channel->irq_moderation_us; 2236 } 2237 } 2238 2239 /************************************************************************** 2240 * 2241 * Hardware monitor 2242 * 2243 **************************************************************************/ 2244 2245 /* Run periodically off the general workqueue */ 2246 static void efx_monitor(struct work_struct *data) 2247 { 2248 struct efx_nic *efx = container_of(data, struct efx_nic, 2249 monitor_work.work); 2250 2251 netif_vdbg(efx, timer, efx->net_dev, 2252 "hardware monitor executing on CPU %d\n", 2253 raw_smp_processor_id()); 2254 BUG_ON(efx->type->monitor == NULL); 2255 2256 /* If the mac_lock is already held then it is likely a port 2257 * reconfiguration is already in place, which will likely do 2258 * most of the work of monitor() anyway. */ 2259 if (mutex_trylock(&efx->mac_lock)) { 2260 if (efx->port_enabled) 2261 efx->type->monitor(efx); 2262 mutex_unlock(&efx->mac_lock); 2263 } 2264 2265 queue_delayed_work(efx->workqueue, &efx->monitor_work, 2266 efx_monitor_interval); 2267 } 2268 2269 /************************************************************************** 2270 * 2271 * ioctls 2272 * 2273 *************************************************************************/ 2274 2275 /* Net device ioctl 2276 * Context: process, rtnl_lock() held. 2277 */ 2278 static int efx_ioctl(struct net_device *net_dev, struct ifreq *ifr, int cmd) 2279 { 2280 struct efx_nic *efx = netdev_priv(net_dev); 2281 struct mii_ioctl_data *data = if_mii(ifr); 2282 2283 if (cmd == SIOCSHWTSTAMP) 2284 return efx_ptp_set_ts_config(efx, ifr); 2285 if (cmd == SIOCGHWTSTAMP) 2286 return efx_ptp_get_ts_config(efx, ifr); 2287 2288 /* Convert phy_id from older PRTAD/DEVAD format */ 2289 if ((cmd == SIOCGMIIREG || cmd == SIOCSMIIREG) && 2290 (data->phy_id & 0xfc00) == 0x0400) 2291 data->phy_id ^= MDIO_PHY_ID_C45 | 0x0400; 2292 2293 return mdio_mii_ioctl(&efx->mdio, data, cmd); 2294 } 2295 2296 /************************************************************************** 2297 * 2298 * NAPI interface 2299 * 2300 **************************************************************************/ 2301 2302 static void efx_init_napi_channel(struct efx_channel *channel) 2303 { 2304 struct efx_nic *efx = channel->efx; 2305 2306 channel->napi_dev = efx->net_dev; 2307 netif_napi_add(channel->napi_dev, &channel->napi_str, 2308 efx_poll, napi_weight); 2309 } 2310 2311 static void efx_init_napi(struct efx_nic *efx) 2312 { 2313 struct efx_channel *channel; 2314 2315 efx_for_each_channel(channel, efx) 2316 efx_init_napi_channel(channel); 2317 } 2318 2319 static void efx_fini_napi_channel(struct efx_channel *channel) 2320 { 2321 if (channel->napi_dev) 2322 netif_napi_del(&channel->napi_str); 2323 2324 channel->napi_dev = NULL; 2325 } 2326 2327 static void efx_fini_napi(struct efx_nic *efx) 2328 { 2329 struct efx_channel *channel; 2330 2331 efx_for_each_channel(channel, efx) 2332 efx_fini_napi_channel(channel); 2333 } 2334 2335 /************************************************************************** 2336 * 2337 * Kernel net device interface 2338 * 2339 *************************************************************************/ 2340 2341 /* Context: process, rtnl_lock() held. */ 2342 int efx_net_open(struct net_device *net_dev) 2343 { 2344 struct efx_nic *efx = netdev_priv(net_dev); 2345 int rc; 2346 2347 netif_dbg(efx, ifup, efx->net_dev, "opening device on CPU %d\n", 2348 raw_smp_processor_id()); 2349 2350 rc = efx_check_disabled(efx); 2351 if (rc) 2352 return rc; 2353 if (efx->phy_mode & PHY_MODE_SPECIAL) 2354 return -EBUSY; 2355 if (efx_mcdi_poll_reboot(efx) && efx_reset(efx, RESET_TYPE_ALL)) 2356 return -EIO; 2357 2358 /* Notify the kernel of the link state polled during driver load, 2359 * before the monitor starts running */ 2360 efx_link_status_changed(efx); 2361 2362 efx_start_all(efx); 2363 if (efx->state == STATE_DISABLED || efx->reset_pending) 2364 netif_device_detach(efx->net_dev); 2365 efx_selftest_async_start(efx); 2366 return 0; 2367 } 2368 2369 /* Context: process, rtnl_lock() held. 2370 * Note that the kernel will ignore our return code; this method 2371 * should really be a void. 2372 */ 2373 int efx_net_stop(struct net_device *net_dev) 2374 { 2375 struct efx_nic *efx = netdev_priv(net_dev); 2376 2377 netif_dbg(efx, ifdown, efx->net_dev, "closing on CPU %d\n", 2378 raw_smp_processor_id()); 2379 2380 /* Stop the device and flush all the channels */ 2381 efx_stop_all(efx); 2382 2383 return 0; 2384 } 2385 2386 /* Context: process, dev_base_lock or RTNL held, non-blocking. */ 2387 static void efx_net_stats(struct net_device *net_dev, 2388 struct rtnl_link_stats64 *stats) 2389 { 2390 struct efx_nic *efx = netdev_priv(net_dev); 2391 2392 spin_lock_bh(&efx->stats_lock); 2393 efx->type->update_stats(efx, NULL, stats); 2394 spin_unlock_bh(&efx->stats_lock); 2395 } 2396 2397 /* Context: netif_tx_lock held, BHs disabled. */ 2398 static void efx_watchdog(struct net_device *net_dev) 2399 { 2400 struct efx_nic *efx = netdev_priv(net_dev); 2401 2402 netif_err(efx, tx_err, efx->net_dev, 2403 "TX stuck with port_enabled=%d: resetting channels\n", 2404 efx->port_enabled); 2405 2406 efx_schedule_reset(efx, RESET_TYPE_TX_WATCHDOG); 2407 } 2408 2409 static unsigned int efx_xdp_max_mtu(struct efx_nic *efx) 2410 { 2411 /* The maximum MTU that we can fit in a single page, allowing for 2412 * framing, overhead and XDP headroom. 2413 */ 2414 int overhead = EFX_MAX_FRAME_LEN(0) + sizeof(struct efx_rx_page_state) + 2415 efx->rx_prefix_size + efx->type->rx_buffer_padding + 2416 efx->rx_ip_align + XDP_PACKET_HEADROOM; 2417 2418 return PAGE_SIZE - overhead; 2419 } 2420 2421 /* Context: process, rtnl_lock() held. */ 2422 static int efx_change_mtu(struct net_device *net_dev, int new_mtu) 2423 { 2424 struct efx_nic *efx = netdev_priv(net_dev); 2425 int rc; 2426 2427 rc = efx_check_disabled(efx); 2428 if (rc) 2429 return rc; 2430 2431 if (rtnl_dereference(efx->xdp_prog) && 2432 new_mtu > efx_xdp_max_mtu(efx)) { 2433 netif_err(efx, drv, efx->net_dev, 2434 "Requested MTU of %d too big for XDP (max: %d)\n", 2435 new_mtu, efx_xdp_max_mtu(efx)); 2436 return -EINVAL; 2437 } 2438 2439 netif_dbg(efx, drv, efx->net_dev, "changing MTU to %d\n", new_mtu); 2440 2441 efx_device_detach_sync(efx); 2442 efx_stop_all(efx); 2443 2444 mutex_lock(&efx->mac_lock); 2445 net_dev->mtu = new_mtu; 2446 efx_mac_reconfigure(efx); 2447 mutex_unlock(&efx->mac_lock); 2448 2449 efx_start_all(efx); 2450 efx_device_attach_if_not_resetting(efx); 2451 return 0; 2452 } 2453 2454 static int efx_set_mac_address(struct net_device *net_dev, void *data) 2455 { 2456 struct efx_nic *efx = netdev_priv(net_dev); 2457 struct sockaddr *addr = data; 2458 u8 *new_addr = addr->sa_data; 2459 u8 old_addr[6]; 2460 int rc; 2461 2462 if (!is_valid_ether_addr(new_addr)) { 2463 netif_err(efx, drv, efx->net_dev, 2464 "invalid ethernet MAC address requested: %pM\n", 2465 new_addr); 2466 return -EADDRNOTAVAIL; 2467 } 2468 2469 /* save old address */ 2470 ether_addr_copy(old_addr, net_dev->dev_addr); 2471 ether_addr_copy(net_dev->dev_addr, new_addr); 2472 if (efx->type->set_mac_address) { 2473 rc = efx->type->set_mac_address(efx); 2474 if (rc) { 2475 ether_addr_copy(net_dev->dev_addr, old_addr); 2476 return rc; 2477 } 2478 } 2479 2480 /* Reconfigure the MAC */ 2481 mutex_lock(&efx->mac_lock); 2482 efx_mac_reconfigure(efx); 2483 mutex_unlock(&efx->mac_lock); 2484 2485 return 0; 2486 } 2487 2488 /* Context: netif_addr_lock held, BHs disabled. */ 2489 static void efx_set_rx_mode(struct net_device *net_dev) 2490 { 2491 struct efx_nic *efx = netdev_priv(net_dev); 2492 2493 if (efx->port_enabled) 2494 queue_work(efx->workqueue, &efx->mac_work); 2495 /* Otherwise efx_start_port() will do this */ 2496 } 2497 2498 static int efx_set_features(struct net_device *net_dev, netdev_features_t data) 2499 { 2500 struct efx_nic *efx = netdev_priv(net_dev); 2501 int rc; 2502 2503 /* If disabling RX n-tuple filtering, clear existing filters */ 2504 if (net_dev->features & ~data & NETIF_F_NTUPLE) { 2505 rc = efx->type->filter_clear_rx(efx, EFX_FILTER_PRI_MANUAL); 2506 if (rc) 2507 return rc; 2508 } 2509 2510 /* If Rx VLAN filter is changed, update filters via mac_reconfigure. 2511 * If rx-fcs is changed, mac_reconfigure updates that too. 2512 */ 2513 if ((net_dev->features ^ data) & (NETIF_F_HW_VLAN_CTAG_FILTER | 2514 NETIF_F_RXFCS)) { 2515 /* efx_set_rx_mode() will schedule MAC work to update filters 2516 * when a new features are finally set in net_dev. 2517 */ 2518 efx_set_rx_mode(net_dev); 2519 } 2520 2521 return 0; 2522 } 2523 2524 static int efx_get_phys_port_id(struct net_device *net_dev, 2525 struct netdev_phys_item_id *ppid) 2526 { 2527 struct efx_nic *efx = netdev_priv(net_dev); 2528 2529 if (efx->type->get_phys_port_id) 2530 return efx->type->get_phys_port_id(efx, ppid); 2531 else 2532 return -EOPNOTSUPP; 2533 } 2534 2535 static int efx_get_phys_port_name(struct net_device *net_dev, 2536 char *name, size_t len) 2537 { 2538 struct efx_nic *efx = netdev_priv(net_dev); 2539 2540 if (snprintf(name, len, "p%u", efx->port_num) >= len) 2541 return -EINVAL; 2542 return 0; 2543 } 2544 2545 static int efx_vlan_rx_add_vid(struct net_device *net_dev, __be16 proto, u16 vid) 2546 { 2547 struct efx_nic *efx = netdev_priv(net_dev); 2548 2549 if (efx->type->vlan_rx_add_vid) 2550 return efx->type->vlan_rx_add_vid(efx, proto, vid); 2551 else 2552 return -EOPNOTSUPP; 2553 } 2554 2555 static int efx_vlan_rx_kill_vid(struct net_device *net_dev, __be16 proto, u16 vid) 2556 { 2557 struct efx_nic *efx = netdev_priv(net_dev); 2558 2559 if (efx->type->vlan_rx_kill_vid) 2560 return efx->type->vlan_rx_kill_vid(efx, proto, vid); 2561 else 2562 return -EOPNOTSUPP; 2563 } 2564 2565 static int efx_udp_tunnel_type_map(enum udp_parsable_tunnel_type in) 2566 { 2567 switch (in) { 2568 case UDP_TUNNEL_TYPE_VXLAN: 2569 return TUNNEL_ENCAP_UDP_PORT_ENTRY_VXLAN; 2570 case UDP_TUNNEL_TYPE_GENEVE: 2571 return TUNNEL_ENCAP_UDP_PORT_ENTRY_GENEVE; 2572 default: 2573 return -1; 2574 } 2575 } 2576 2577 static void efx_udp_tunnel_add(struct net_device *dev, struct udp_tunnel_info *ti) 2578 { 2579 struct efx_nic *efx = netdev_priv(dev); 2580 struct efx_udp_tunnel tnl; 2581 int efx_tunnel_type; 2582 2583 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 2584 if (efx_tunnel_type < 0) 2585 return; 2586 2587 tnl.type = (u16)efx_tunnel_type; 2588 tnl.port = ti->port; 2589 2590 if (efx->type->udp_tnl_add_port) 2591 (void)efx->type->udp_tnl_add_port(efx, tnl); 2592 } 2593 2594 static void efx_udp_tunnel_del(struct net_device *dev, struct udp_tunnel_info *ti) 2595 { 2596 struct efx_nic *efx = netdev_priv(dev); 2597 struct efx_udp_tunnel tnl; 2598 int efx_tunnel_type; 2599 2600 efx_tunnel_type = efx_udp_tunnel_type_map(ti->type); 2601 if (efx_tunnel_type < 0) 2602 return; 2603 2604 tnl.type = (u16)efx_tunnel_type; 2605 tnl.port = ti->port; 2606 2607 if (efx->type->udp_tnl_del_port) 2608 (void)efx->type->udp_tnl_del_port(efx, tnl); 2609 } 2610 2611 static const struct net_device_ops efx_netdev_ops = { 2612 .ndo_open = efx_net_open, 2613 .ndo_stop = efx_net_stop, 2614 .ndo_get_stats64 = efx_net_stats, 2615 .ndo_tx_timeout = efx_watchdog, 2616 .ndo_start_xmit = efx_hard_start_xmit, 2617 .ndo_validate_addr = eth_validate_addr, 2618 .ndo_do_ioctl = efx_ioctl, 2619 .ndo_change_mtu = efx_change_mtu, 2620 .ndo_set_mac_address = efx_set_mac_address, 2621 .ndo_set_rx_mode = efx_set_rx_mode, 2622 .ndo_set_features = efx_set_features, 2623 .ndo_vlan_rx_add_vid = efx_vlan_rx_add_vid, 2624 .ndo_vlan_rx_kill_vid = efx_vlan_rx_kill_vid, 2625 #ifdef CONFIG_SFC_SRIOV 2626 .ndo_set_vf_mac = efx_sriov_set_vf_mac, 2627 .ndo_set_vf_vlan = efx_sriov_set_vf_vlan, 2628 .ndo_set_vf_spoofchk = efx_sriov_set_vf_spoofchk, 2629 .ndo_get_vf_config = efx_sriov_get_vf_config, 2630 .ndo_set_vf_link_state = efx_sriov_set_vf_link_state, 2631 #endif 2632 .ndo_get_phys_port_id = efx_get_phys_port_id, 2633 .ndo_get_phys_port_name = efx_get_phys_port_name, 2634 .ndo_setup_tc = efx_setup_tc, 2635 #ifdef CONFIG_RFS_ACCEL 2636 .ndo_rx_flow_steer = efx_filter_rfs, 2637 #endif 2638 .ndo_udp_tunnel_add = efx_udp_tunnel_add, 2639 .ndo_udp_tunnel_del = efx_udp_tunnel_del, 2640 .ndo_xdp_xmit = efx_xdp_xmit, 2641 .ndo_bpf = efx_xdp 2642 }; 2643 2644 static int efx_xdp_setup_prog(struct efx_nic *efx, struct bpf_prog *prog) 2645 { 2646 struct bpf_prog *old_prog; 2647 2648 if (efx->xdp_rxq_info_failed) { 2649 netif_err(efx, drv, efx->net_dev, 2650 "Unable to bind XDP program due to previous failure of rxq_info\n"); 2651 return -EINVAL; 2652 } 2653 2654 if (prog && efx->net_dev->mtu > efx_xdp_max_mtu(efx)) { 2655 netif_err(efx, drv, efx->net_dev, 2656 "Unable to configure XDP with MTU of %d (max: %d)\n", 2657 efx->net_dev->mtu, efx_xdp_max_mtu(efx)); 2658 return -EINVAL; 2659 } 2660 2661 old_prog = rtnl_dereference(efx->xdp_prog); 2662 rcu_assign_pointer(efx->xdp_prog, prog); 2663 /* Release the reference that was originally passed by the caller. */ 2664 if (old_prog) 2665 bpf_prog_put(old_prog); 2666 2667 return 0; 2668 } 2669 2670 /* Context: process, rtnl_lock() held. */ 2671 static int efx_xdp(struct net_device *dev, struct netdev_bpf *xdp) 2672 { 2673 struct efx_nic *efx = netdev_priv(dev); 2674 struct bpf_prog *xdp_prog; 2675 2676 switch (xdp->command) { 2677 case XDP_SETUP_PROG: 2678 return efx_xdp_setup_prog(efx, xdp->prog); 2679 case XDP_QUERY_PROG: 2680 xdp_prog = rtnl_dereference(efx->xdp_prog); 2681 xdp->prog_id = xdp_prog ? xdp_prog->aux->id : 0; 2682 return 0; 2683 default: 2684 return -EINVAL; 2685 } 2686 } 2687 2688 static int efx_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **xdpfs, 2689 u32 flags) 2690 { 2691 struct efx_nic *efx = netdev_priv(dev); 2692 2693 if (!netif_running(dev)) 2694 return -EINVAL; 2695 2696 return efx_xdp_tx_buffers(efx, n, xdpfs, flags & XDP_XMIT_FLUSH); 2697 } 2698 2699 static void efx_update_name(struct efx_nic *efx) 2700 { 2701 strcpy(efx->name, efx->net_dev->name); 2702 efx_mtd_rename(efx); 2703 efx_set_channel_names(efx); 2704 } 2705 2706 static int efx_netdev_event(struct notifier_block *this, 2707 unsigned long event, void *ptr) 2708 { 2709 struct net_device *net_dev = netdev_notifier_info_to_dev(ptr); 2710 2711 if ((net_dev->netdev_ops == &efx_netdev_ops) && 2712 event == NETDEV_CHANGENAME) 2713 efx_update_name(netdev_priv(net_dev)); 2714 2715 return NOTIFY_DONE; 2716 } 2717 2718 static struct notifier_block efx_netdev_notifier = { 2719 .notifier_call = efx_netdev_event, 2720 }; 2721 2722 static ssize_t 2723 show_phy_type(struct device *dev, struct device_attribute *attr, char *buf) 2724 { 2725 struct efx_nic *efx = dev_get_drvdata(dev); 2726 return sprintf(buf, "%d\n", efx->phy_type); 2727 } 2728 static DEVICE_ATTR(phy_type, 0444, show_phy_type, NULL); 2729 2730 #ifdef CONFIG_SFC_MCDI_LOGGING 2731 static ssize_t show_mcdi_log(struct device *dev, struct device_attribute *attr, 2732 char *buf) 2733 { 2734 struct efx_nic *efx = dev_get_drvdata(dev); 2735 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2736 2737 return scnprintf(buf, PAGE_SIZE, "%d\n", mcdi->logging_enabled); 2738 } 2739 static ssize_t set_mcdi_log(struct device *dev, struct device_attribute *attr, 2740 const char *buf, size_t count) 2741 { 2742 struct efx_nic *efx = dev_get_drvdata(dev); 2743 struct efx_mcdi_iface *mcdi = efx_mcdi(efx); 2744 bool enable = count > 0 && *buf != '0'; 2745 2746 mcdi->logging_enabled = enable; 2747 return count; 2748 } 2749 static DEVICE_ATTR(mcdi_logging, 0644, show_mcdi_log, set_mcdi_log); 2750 #endif 2751 2752 static int efx_register_netdev(struct efx_nic *efx) 2753 { 2754 struct net_device *net_dev = efx->net_dev; 2755 struct efx_channel *channel; 2756 int rc; 2757 2758 net_dev->watchdog_timeo = 5 * HZ; 2759 net_dev->irq = efx->pci_dev->irq; 2760 net_dev->netdev_ops = &efx_netdev_ops; 2761 if (efx_nic_rev(efx) >= EFX_REV_HUNT_A0) 2762 net_dev->priv_flags |= IFF_UNICAST_FLT; 2763 net_dev->ethtool_ops = &efx_ethtool_ops; 2764 net_dev->gso_max_segs = EFX_TSO_MAX_SEGS; 2765 net_dev->min_mtu = EFX_MIN_MTU; 2766 net_dev->max_mtu = EFX_MAX_MTU; 2767 2768 rtnl_lock(); 2769 2770 /* Enable resets to be scheduled and check whether any were 2771 * already requested. If so, the NIC is probably hosed so we 2772 * abort. 2773 */ 2774 efx->state = STATE_READY; 2775 smp_mb(); /* ensure we change state before checking reset_pending */ 2776 if (efx->reset_pending) { 2777 netif_err(efx, probe, efx->net_dev, 2778 "aborting probe due to scheduled reset\n"); 2779 rc = -EIO; 2780 goto fail_locked; 2781 } 2782 2783 rc = dev_alloc_name(net_dev, net_dev->name); 2784 if (rc < 0) 2785 goto fail_locked; 2786 efx_update_name(efx); 2787 2788 /* Always start with carrier off; PHY events will detect the link */ 2789 netif_carrier_off(net_dev); 2790 2791 rc = register_netdevice(net_dev); 2792 if (rc) 2793 goto fail_locked; 2794 2795 efx_for_each_channel(channel, efx) { 2796 struct efx_tx_queue *tx_queue; 2797 efx_for_each_channel_tx_queue(tx_queue, channel) 2798 efx_init_tx_queue_core_txq(tx_queue); 2799 } 2800 2801 efx_associate(efx); 2802 2803 rtnl_unlock(); 2804 2805 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2806 if (rc) { 2807 netif_err(efx, drv, efx->net_dev, 2808 "failed to init net dev attributes\n"); 2809 goto fail_registered; 2810 } 2811 #ifdef CONFIG_SFC_MCDI_LOGGING 2812 rc = device_create_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2813 if (rc) { 2814 netif_err(efx, drv, efx->net_dev, 2815 "failed to init net dev attributes\n"); 2816 goto fail_attr_mcdi_logging; 2817 } 2818 #endif 2819 2820 return 0; 2821 2822 #ifdef CONFIG_SFC_MCDI_LOGGING 2823 fail_attr_mcdi_logging: 2824 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2825 #endif 2826 fail_registered: 2827 rtnl_lock(); 2828 efx_dissociate(efx); 2829 unregister_netdevice(net_dev); 2830 fail_locked: 2831 efx->state = STATE_UNINIT; 2832 rtnl_unlock(); 2833 netif_err(efx, drv, efx->net_dev, "could not register net dev\n"); 2834 return rc; 2835 } 2836 2837 static void efx_unregister_netdev(struct efx_nic *efx) 2838 { 2839 if (!efx->net_dev) 2840 return; 2841 2842 BUG_ON(netdev_priv(efx->net_dev) != efx); 2843 2844 if (efx_dev_registered(efx)) { 2845 strlcpy(efx->name, pci_name(efx->pci_dev), sizeof(efx->name)); 2846 #ifdef CONFIG_SFC_MCDI_LOGGING 2847 device_remove_file(&efx->pci_dev->dev, &dev_attr_mcdi_logging); 2848 #endif 2849 device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_type); 2850 unregister_netdev(efx->net_dev); 2851 } 2852 } 2853 2854 /************************************************************************** 2855 * 2856 * Device reset and suspend 2857 * 2858 **************************************************************************/ 2859 2860 /* Tears down the entire software state and most of the hardware state 2861 * before reset. */ 2862 void efx_reset_down(struct efx_nic *efx, enum reset_type method) 2863 { 2864 EFX_ASSERT_RESET_SERIALISED(efx); 2865 2866 if (method == RESET_TYPE_MCDI_TIMEOUT) 2867 efx->type->prepare_flr(efx); 2868 2869 efx_stop_all(efx); 2870 efx_disable_interrupts(efx); 2871 2872 mutex_lock(&efx->mac_lock); 2873 down_write(&efx->filter_sem); 2874 mutex_lock(&efx->rss_lock); 2875 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2876 method != RESET_TYPE_DATAPATH) 2877 efx->phy_op->fini(efx); 2878 efx->type->fini(efx); 2879 } 2880 2881 /* This function will always ensure that the locks acquired in 2882 * efx_reset_down() are released. A failure return code indicates 2883 * that we were unable to reinitialise the hardware, and the 2884 * driver should be disabled. If ok is false, then the rx and tx 2885 * engines are not restarted, pending a RESET_DISABLE. */ 2886 int efx_reset_up(struct efx_nic *efx, enum reset_type method, bool ok) 2887 { 2888 int rc; 2889 2890 EFX_ASSERT_RESET_SERIALISED(efx); 2891 2892 if (method == RESET_TYPE_MCDI_TIMEOUT) 2893 efx->type->finish_flr(efx); 2894 2895 /* Ensure that SRAM is initialised even if we're disabling the device */ 2896 rc = efx->type->init(efx); 2897 if (rc) { 2898 netif_err(efx, drv, efx->net_dev, "failed to initialise NIC\n"); 2899 goto fail; 2900 } 2901 2902 if (!ok) 2903 goto fail; 2904 2905 if (efx->port_initialized && method != RESET_TYPE_INVISIBLE && 2906 method != RESET_TYPE_DATAPATH) { 2907 rc = efx->phy_op->init(efx); 2908 if (rc) 2909 goto fail; 2910 rc = efx->phy_op->reconfigure(efx); 2911 if (rc && rc != -EPERM) 2912 netif_err(efx, drv, efx->net_dev, 2913 "could not restore PHY settings\n"); 2914 } 2915 2916 rc = efx_enable_interrupts(efx); 2917 if (rc) 2918 goto fail; 2919 2920 #ifdef CONFIG_SFC_SRIOV 2921 rc = efx->type->vswitching_restore(efx); 2922 if (rc) /* not fatal; the PF will still work fine */ 2923 netif_warn(efx, probe, efx->net_dev, 2924 "failed to restore vswitching rc=%d;" 2925 " VFs may not function\n", rc); 2926 #endif 2927 2928 if (efx->type->rx_restore_rss_contexts) 2929 efx->type->rx_restore_rss_contexts(efx); 2930 mutex_unlock(&efx->rss_lock); 2931 efx->type->filter_table_restore(efx); 2932 up_write(&efx->filter_sem); 2933 if (efx->type->sriov_reset) 2934 efx->type->sriov_reset(efx); 2935 2936 mutex_unlock(&efx->mac_lock); 2937 2938 efx_start_all(efx); 2939 2940 if (efx->type->udp_tnl_push_ports) 2941 efx->type->udp_tnl_push_ports(efx); 2942 2943 return 0; 2944 2945 fail: 2946 efx->port_initialized = false; 2947 2948 mutex_unlock(&efx->rss_lock); 2949 up_write(&efx->filter_sem); 2950 mutex_unlock(&efx->mac_lock); 2951 2952 return rc; 2953 } 2954 2955 /* Reset the NIC using the specified method. Note that the reset may 2956 * fail, in which case the card will be left in an unusable state. 2957 * 2958 * Caller must hold the rtnl_lock. 2959 */ 2960 int efx_reset(struct efx_nic *efx, enum reset_type method) 2961 { 2962 int rc, rc2; 2963 bool disabled; 2964 2965 netif_info(efx, drv, efx->net_dev, "resetting (%s)\n", 2966 RESET_TYPE(method)); 2967 2968 efx_device_detach_sync(efx); 2969 efx_reset_down(efx, method); 2970 2971 rc = efx->type->reset(efx, method); 2972 if (rc) { 2973 netif_err(efx, drv, efx->net_dev, "failed to reset hardware\n"); 2974 goto out; 2975 } 2976 2977 /* Clear flags for the scopes we covered. We assume the NIC and 2978 * driver are now quiescent so that there is no race here. 2979 */ 2980 if (method < RESET_TYPE_MAX_METHOD) 2981 efx->reset_pending &= -(1 << (method + 1)); 2982 else /* it doesn't fit into the well-ordered scope hierarchy */ 2983 __clear_bit(method, &efx->reset_pending); 2984 2985 /* Reinitialise bus-mastering, which may have been turned off before 2986 * the reset was scheduled. This is still appropriate, even in the 2987 * RESET_TYPE_DISABLE since this driver generally assumes the hardware 2988 * can respond to requests. */ 2989 pci_set_master(efx->pci_dev); 2990 2991 out: 2992 /* Leave device stopped if necessary */ 2993 disabled = rc || 2994 method == RESET_TYPE_DISABLE || 2995 method == RESET_TYPE_RECOVER_OR_DISABLE; 2996 rc2 = efx_reset_up(efx, method, !disabled); 2997 if (rc2) { 2998 disabled = true; 2999 if (!rc) 3000 rc = rc2; 3001 } 3002 3003 if (disabled) { 3004 dev_close(efx->net_dev); 3005 netif_err(efx, drv, efx->net_dev, "has been disabled\n"); 3006 efx->state = STATE_DISABLED; 3007 } else { 3008 netif_dbg(efx, drv, efx->net_dev, "reset complete\n"); 3009 efx_device_attach_if_not_resetting(efx); 3010 } 3011 return rc; 3012 } 3013 3014 /* Try recovery mechanisms. 3015 * For now only EEH is supported. 3016 * Returns 0 if the recovery mechanisms are unsuccessful. 3017 * Returns a non-zero value otherwise. 3018 */ 3019 int efx_try_recovery(struct efx_nic *efx) 3020 { 3021 #ifdef CONFIG_EEH 3022 /* A PCI error can occur and not be seen by EEH because nothing 3023 * happens on the PCI bus. In this case the driver may fail and 3024 * schedule a 'recover or reset', leading to this recovery handler. 3025 * Manually call the eeh failure check function. 3026 */ 3027 struct eeh_dev *eehdev = pci_dev_to_eeh_dev(efx->pci_dev); 3028 if (eeh_dev_check_failure(eehdev)) { 3029 /* The EEH mechanisms will handle the error and reset the 3030 * device if necessary. 3031 */ 3032 return 1; 3033 } 3034 #endif 3035 return 0; 3036 } 3037 3038 static void efx_wait_for_bist_end(struct efx_nic *efx) 3039 { 3040 int i; 3041 3042 for (i = 0; i < BIST_WAIT_DELAY_COUNT; ++i) { 3043 if (efx_mcdi_poll_reboot(efx)) 3044 goto out; 3045 msleep(BIST_WAIT_DELAY_MS); 3046 } 3047 3048 netif_err(efx, drv, efx->net_dev, "Warning: No MC reboot after BIST mode\n"); 3049 out: 3050 /* Either way unset the BIST flag. If we found no reboot we probably 3051 * won't recover, but we should try. 3052 */ 3053 efx->mc_bist_for_other_fn = false; 3054 } 3055 3056 /* The worker thread exists so that code that cannot sleep can 3057 * schedule a reset for later. 3058 */ 3059 static void efx_reset_work(struct work_struct *data) 3060 { 3061 struct efx_nic *efx = container_of(data, struct efx_nic, reset_work); 3062 unsigned long pending; 3063 enum reset_type method; 3064 3065 pending = READ_ONCE(efx->reset_pending); 3066 method = fls(pending) - 1; 3067 3068 if (method == RESET_TYPE_MC_BIST) 3069 efx_wait_for_bist_end(efx); 3070 3071 if ((method == RESET_TYPE_RECOVER_OR_DISABLE || 3072 method == RESET_TYPE_RECOVER_OR_ALL) && 3073 efx_try_recovery(efx)) 3074 return; 3075 3076 if (!pending) 3077 return; 3078 3079 rtnl_lock(); 3080 3081 /* We checked the state in efx_schedule_reset() but it may 3082 * have changed by now. Now that we have the RTNL lock, 3083 * it cannot change again. 3084 */ 3085 if (efx->state == STATE_READY) 3086 (void)efx_reset(efx, method); 3087 3088 rtnl_unlock(); 3089 } 3090 3091 void efx_schedule_reset(struct efx_nic *efx, enum reset_type type) 3092 { 3093 enum reset_type method; 3094 3095 if (efx->state == STATE_RECOVERY) { 3096 netif_dbg(efx, drv, efx->net_dev, 3097 "recovering: skip scheduling %s reset\n", 3098 RESET_TYPE(type)); 3099 return; 3100 } 3101 3102 switch (type) { 3103 case RESET_TYPE_INVISIBLE: 3104 case RESET_TYPE_ALL: 3105 case RESET_TYPE_RECOVER_OR_ALL: 3106 case RESET_TYPE_WORLD: 3107 case RESET_TYPE_DISABLE: 3108 case RESET_TYPE_RECOVER_OR_DISABLE: 3109 case RESET_TYPE_DATAPATH: 3110 case RESET_TYPE_MC_BIST: 3111 case RESET_TYPE_MCDI_TIMEOUT: 3112 method = type; 3113 netif_dbg(efx, drv, efx->net_dev, "scheduling %s reset\n", 3114 RESET_TYPE(method)); 3115 break; 3116 default: 3117 method = efx->type->map_reset_reason(type); 3118 netif_dbg(efx, drv, efx->net_dev, 3119 "scheduling %s reset for %s\n", 3120 RESET_TYPE(method), RESET_TYPE(type)); 3121 break; 3122 } 3123 3124 set_bit(method, &efx->reset_pending); 3125 smp_mb(); /* ensure we change reset_pending before checking state */ 3126 3127 /* If we're not READY then just leave the flags set as the cue 3128 * to abort probing or reschedule the reset later. 3129 */ 3130 if (READ_ONCE(efx->state) != STATE_READY) 3131 return; 3132 3133 /* efx_process_channel() will no longer read events once a 3134 * reset is scheduled. So switch back to poll'd MCDI completions. */ 3135 efx_mcdi_mode_poll(efx); 3136 3137 queue_work(reset_workqueue, &efx->reset_work); 3138 } 3139 3140 /************************************************************************** 3141 * 3142 * List of NICs we support 3143 * 3144 **************************************************************************/ 3145 3146 /* PCI device ID table */ 3147 static const struct pci_device_id efx_pci_table[] = { 3148 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0803), /* SFC9020 */ 3149 .driver_data = (unsigned long) &siena_a0_nic_type}, 3150 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0813), /* SFL9021 */ 3151 .driver_data = (unsigned long) &siena_a0_nic_type}, 3152 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0903), /* SFC9120 PF */ 3153 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 3154 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1903), /* SFC9120 VF */ 3155 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 3156 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0923), /* SFC9140 PF */ 3157 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 3158 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1923), /* SFC9140 VF */ 3159 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 3160 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0a03), /* SFC9220 PF */ 3161 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 3162 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1a03), /* SFC9220 VF */ 3163 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 3164 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x0b03), /* SFC9250 PF */ 3165 .driver_data = (unsigned long) &efx_hunt_a0_nic_type}, 3166 {PCI_DEVICE(PCI_VENDOR_ID_SOLARFLARE, 0x1b03), /* SFC9250 VF */ 3167 .driver_data = (unsigned long) &efx_hunt_a0_vf_nic_type}, 3168 {0} /* end of list */ 3169 }; 3170 3171 /************************************************************************** 3172 * 3173 * Dummy PHY/MAC operations 3174 * 3175 * Can be used for some unimplemented operations 3176 * Needed so all function pointers are valid and do not have to be tested 3177 * before use 3178 * 3179 **************************************************************************/ 3180 int efx_port_dummy_op_int(struct efx_nic *efx) 3181 { 3182 return 0; 3183 } 3184 void efx_port_dummy_op_void(struct efx_nic *efx) {} 3185 3186 static bool efx_port_dummy_op_poll(struct efx_nic *efx) 3187 { 3188 return false; 3189 } 3190 3191 static const struct efx_phy_operations efx_dummy_phy_operations = { 3192 .init = efx_port_dummy_op_int, 3193 .reconfigure = efx_port_dummy_op_int, 3194 .poll = efx_port_dummy_op_poll, 3195 .fini = efx_port_dummy_op_void, 3196 }; 3197 3198 /************************************************************************** 3199 * 3200 * Data housekeeping 3201 * 3202 **************************************************************************/ 3203 3204 /* This zeroes out and then fills in the invariants in a struct 3205 * efx_nic (including all sub-structures). 3206 */ 3207 static int efx_init_struct(struct efx_nic *efx, 3208 struct pci_dev *pci_dev, struct net_device *net_dev) 3209 { 3210 int rc = -ENOMEM, i; 3211 3212 /* Initialise common structures */ 3213 INIT_LIST_HEAD(&efx->node); 3214 INIT_LIST_HEAD(&efx->secondary_list); 3215 spin_lock_init(&efx->biu_lock); 3216 #ifdef CONFIG_SFC_MTD 3217 INIT_LIST_HEAD(&efx->mtd_list); 3218 #endif 3219 INIT_WORK(&efx->reset_work, efx_reset_work); 3220 INIT_DELAYED_WORK(&efx->monitor_work, efx_monitor); 3221 INIT_DELAYED_WORK(&efx->selftest_work, efx_selftest_async_work); 3222 efx->pci_dev = pci_dev; 3223 efx->msg_enable = debug; 3224 efx->state = STATE_UNINIT; 3225 strlcpy(efx->name, pci_name(pci_dev), sizeof(efx->name)); 3226 3227 efx->net_dev = net_dev; 3228 efx->rx_prefix_size = efx->type->rx_prefix_size; 3229 efx->rx_ip_align = 3230 NET_IP_ALIGN ? (efx->rx_prefix_size + NET_IP_ALIGN) % 4 : 0; 3231 efx->rx_packet_hash_offset = 3232 efx->type->rx_hash_offset - efx->type->rx_prefix_size; 3233 efx->rx_packet_ts_offset = 3234 efx->type->rx_ts_offset - efx->type->rx_prefix_size; 3235 INIT_LIST_HEAD(&efx->rss_context.list); 3236 mutex_init(&efx->rss_lock); 3237 spin_lock_init(&efx->stats_lock); 3238 efx->vi_stride = EFX_DEFAULT_VI_STRIDE; 3239 efx->num_mac_stats = MC_CMD_MAC_NSTATS; 3240 BUILD_BUG_ON(MC_CMD_MAC_NSTATS - 1 != MC_CMD_MAC_GENERATION_END); 3241 mutex_init(&efx->mac_lock); 3242 #ifdef CONFIG_RFS_ACCEL 3243 mutex_init(&efx->rps_mutex); 3244 spin_lock_init(&efx->rps_hash_lock); 3245 /* Failure to allocate is not fatal, but may degrade ARFS performance */ 3246 efx->rps_hash_table = kcalloc(EFX_ARFS_HASH_TABLE_SIZE, 3247 sizeof(*efx->rps_hash_table), GFP_KERNEL); 3248 #endif 3249 efx->phy_op = &efx_dummy_phy_operations; 3250 efx->mdio.dev = net_dev; 3251 INIT_WORK(&efx->mac_work, efx_mac_work); 3252 init_waitqueue_head(&efx->flush_wq); 3253 3254 for (i = 0; i < EFX_MAX_CHANNELS; i++) { 3255 efx->channel[i] = efx_alloc_channel(efx, i, NULL); 3256 if (!efx->channel[i]) 3257 goto fail; 3258 efx->msi_context[i].efx = efx; 3259 efx->msi_context[i].index = i; 3260 } 3261 3262 /* Higher numbered interrupt modes are less capable! */ 3263 if (WARN_ON_ONCE(efx->type->max_interrupt_mode > 3264 efx->type->min_interrupt_mode)) { 3265 rc = -EIO; 3266 goto fail; 3267 } 3268 efx->interrupt_mode = max(efx->type->max_interrupt_mode, 3269 interrupt_mode); 3270 efx->interrupt_mode = min(efx->type->min_interrupt_mode, 3271 interrupt_mode); 3272 3273 /* Would be good to use the net_dev name, but we're too early */ 3274 snprintf(efx->workqueue_name, sizeof(efx->workqueue_name), "sfc%s", 3275 pci_name(pci_dev)); 3276 efx->workqueue = create_singlethread_workqueue(efx->workqueue_name); 3277 if (!efx->workqueue) 3278 goto fail; 3279 3280 return 0; 3281 3282 fail: 3283 efx_fini_struct(efx); 3284 return rc; 3285 } 3286 3287 static void efx_fini_struct(struct efx_nic *efx) 3288 { 3289 int i; 3290 3291 #ifdef CONFIG_RFS_ACCEL 3292 kfree(efx->rps_hash_table); 3293 #endif 3294 3295 for (i = 0; i < EFX_MAX_CHANNELS; i++) 3296 kfree(efx->channel[i]); 3297 3298 kfree(efx->vpd_sn); 3299 3300 if (efx->workqueue) { 3301 destroy_workqueue(efx->workqueue); 3302 efx->workqueue = NULL; 3303 } 3304 } 3305 3306 void efx_update_sw_stats(struct efx_nic *efx, u64 *stats) 3307 { 3308 u64 n_rx_nodesc_trunc = 0; 3309 struct efx_channel *channel; 3310 3311 efx_for_each_channel(channel, efx) 3312 n_rx_nodesc_trunc += channel->n_rx_nodesc_trunc; 3313 stats[GENERIC_STAT_rx_nodesc_trunc] = n_rx_nodesc_trunc; 3314 stats[GENERIC_STAT_rx_noskb_drops] = atomic_read(&efx->n_rx_noskb_drops); 3315 } 3316 3317 bool efx_filter_spec_equal(const struct efx_filter_spec *left, 3318 const struct efx_filter_spec *right) 3319 { 3320 if ((left->match_flags ^ right->match_flags) | 3321 ((left->flags ^ right->flags) & 3322 (EFX_FILTER_FLAG_RX | EFX_FILTER_FLAG_TX))) 3323 return false; 3324 3325 return memcmp(&left->outer_vid, &right->outer_vid, 3326 sizeof(struct efx_filter_spec) - 3327 offsetof(struct efx_filter_spec, outer_vid)) == 0; 3328 } 3329 3330 u32 efx_filter_spec_hash(const struct efx_filter_spec *spec) 3331 { 3332 BUILD_BUG_ON(offsetof(struct efx_filter_spec, outer_vid) & 3); 3333 return jhash2((const u32 *)&spec->outer_vid, 3334 (sizeof(struct efx_filter_spec) - 3335 offsetof(struct efx_filter_spec, outer_vid)) / 4, 3336 0); 3337 } 3338 3339 #ifdef CONFIG_RFS_ACCEL 3340 bool efx_rps_check_rule(struct efx_arfs_rule *rule, unsigned int filter_idx, 3341 bool *force) 3342 { 3343 if (rule->filter_id == EFX_ARFS_FILTER_ID_PENDING) { 3344 /* ARFS is currently updating this entry, leave it */ 3345 return false; 3346 } 3347 if (rule->filter_id == EFX_ARFS_FILTER_ID_ERROR) { 3348 /* ARFS tried and failed to update this, so it's probably out 3349 * of date. Remove the filter and the ARFS rule entry. 3350 */ 3351 rule->filter_id = EFX_ARFS_FILTER_ID_REMOVING; 3352 *force = true; 3353 return true; 3354 } else if (WARN_ON(rule->filter_id != filter_idx)) { /* can't happen */ 3355 /* ARFS has moved on, so old filter is not needed. Since we did 3356 * not mark the rule with EFX_ARFS_FILTER_ID_REMOVING, it will 3357 * not be removed by efx_rps_hash_del() subsequently. 3358 */ 3359 *force = true; 3360 return true; 3361 } 3362 /* Remove it iff ARFS wants to. */ 3363 return true; 3364 } 3365 3366 static 3367 struct hlist_head *efx_rps_hash_bucket(struct efx_nic *efx, 3368 const struct efx_filter_spec *spec) 3369 { 3370 u32 hash = efx_filter_spec_hash(spec); 3371 3372 lockdep_assert_held(&efx->rps_hash_lock); 3373 if (!efx->rps_hash_table) 3374 return NULL; 3375 return &efx->rps_hash_table[hash % EFX_ARFS_HASH_TABLE_SIZE]; 3376 } 3377 3378 struct efx_arfs_rule *efx_rps_hash_find(struct efx_nic *efx, 3379 const struct efx_filter_spec *spec) 3380 { 3381 struct efx_arfs_rule *rule; 3382 struct hlist_head *head; 3383 struct hlist_node *node; 3384 3385 head = efx_rps_hash_bucket(efx, spec); 3386 if (!head) 3387 return NULL; 3388 hlist_for_each(node, head) { 3389 rule = container_of(node, struct efx_arfs_rule, node); 3390 if (efx_filter_spec_equal(spec, &rule->spec)) 3391 return rule; 3392 } 3393 return NULL; 3394 } 3395 3396 struct efx_arfs_rule *efx_rps_hash_add(struct efx_nic *efx, 3397 const struct efx_filter_spec *spec, 3398 bool *new) 3399 { 3400 struct efx_arfs_rule *rule; 3401 struct hlist_head *head; 3402 struct hlist_node *node; 3403 3404 head = efx_rps_hash_bucket(efx, spec); 3405 if (!head) 3406 return NULL; 3407 hlist_for_each(node, head) { 3408 rule = container_of(node, struct efx_arfs_rule, node); 3409 if (efx_filter_spec_equal(spec, &rule->spec)) { 3410 *new = false; 3411 return rule; 3412 } 3413 } 3414 rule = kmalloc(sizeof(*rule), GFP_ATOMIC); 3415 *new = true; 3416 if (rule) { 3417 memcpy(&rule->spec, spec, sizeof(rule->spec)); 3418 hlist_add_head(&rule->node, head); 3419 } 3420 return rule; 3421 } 3422 3423 void efx_rps_hash_del(struct efx_nic *efx, const struct efx_filter_spec *spec) 3424 { 3425 struct efx_arfs_rule *rule; 3426 struct hlist_head *head; 3427 struct hlist_node *node; 3428 3429 head = efx_rps_hash_bucket(efx, spec); 3430 if (WARN_ON(!head)) 3431 return; 3432 hlist_for_each(node, head) { 3433 rule = container_of(node, struct efx_arfs_rule, node); 3434 if (efx_filter_spec_equal(spec, &rule->spec)) { 3435 /* Someone already reused the entry. We know that if 3436 * this check doesn't fire (i.e. filter_id == REMOVING) 3437 * then the REMOVING mark was put there by our caller, 3438 * because caller is holding a lock on filter table and 3439 * only holders of that lock set REMOVING. 3440 */ 3441 if (rule->filter_id != EFX_ARFS_FILTER_ID_REMOVING) 3442 return; 3443 hlist_del(node); 3444 kfree(rule); 3445 return; 3446 } 3447 } 3448 /* We didn't find it. */ 3449 WARN_ON(1); 3450 } 3451 #endif 3452 3453 /* RSS contexts. We're using linked lists and crappy O(n) algorithms, because 3454 * (a) this is an infrequent control-plane operation and (b) n is small (max 64) 3455 */ 3456 struct efx_rss_context *efx_alloc_rss_context_entry(struct efx_nic *efx) 3457 { 3458 struct list_head *head = &efx->rss_context.list; 3459 struct efx_rss_context *ctx, *new; 3460 u32 id = 1; /* Don't use zero, that refers to the master RSS context */ 3461 3462 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 3463 3464 /* Search for first gap in the numbering */ 3465 list_for_each_entry(ctx, head, list) { 3466 if (ctx->user_id != id) 3467 break; 3468 id++; 3469 /* Check for wrap. If this happens, we have nearly 2^32 3470 * allocated RSS contexts, which seems unlikely. 3471 */ 3472 if (WARN_ON_ONCE(!id)) 3473 return NULL; 3474 } 3475 3476 /* Create the new entry */ 3477 new = kmalloc(sizeof(struct efx_rss_context), GFP_KERNEL); 3478 if (!new) 3479 return NULL; 3480 new->context_id = EFX_EF10_RSS_CONTEXT_INVALID; 3481 new->rx_hash_udp_4tuple = false; 3482 3483 /* Insert the new entry into the gap */ 3484 new->user_id = id; 3485 list_add_tail(&new->list, &ctx->list); 3486 return new; 3487 } 3488 3489 struct efx_rss_context *efx_find_rss_context_entry(struct efx_nic *efx, u32 id) 3490 { 3491 struct list_head *head = &efx->rss_context.list; 3492 struct efx_rss_context *ctx; 3493 3494 WARN_ON(!mutex_is_locked(&efx->rss_lock)); 3495 3496 list_for_each_entry(ctx, head, list) 3497 if (ctx->user_id == id) 3498 return ctx; 3499 return NULL; 3500 } 3501 3502 void efx_free_rss_context_entry(struct efx_rss_context *ctx) 3503 { 3504 list_del(&ctx->list); 3505 kfree(ctx); 3506 } 3507 3508 /************************************************************************** 3509 * 3510 * PCI interface 3511 * 3512 **************************************************************************/ 3513 3514 /* Main body of final NIC shutdown code 3515 * This is called only at module unload (or hotplug removal). 3516 */ 3517 static void efx_pci_remove_main(struct efx_nic *efx) 3518 { 3519 /* Flush reset_work. It can no longer be scheduled since we 3520 * are not READY. 3521 */ 3522 BUG_ON(efx->state == STATE_READY); 3523 cancel_work_sync(&efx->reset_work); 3524 3525 efx_disable_interrupts(efx); 3526 efx_clear_interrupt_affinity(efx); 3527 efx_nic_fini_interrupt(efx); 3528 efx_fini_port(efx); 3529 efx->type->fini(efx); 3530 efx_fini_napi(efx); 3531 efx_remove_all(efx); 3532 } 3533 3534 /* Final NIC shutdown 3535 * This is called only at module unload (or hotplug removal). A PF can call 3536 * this on its VFs to ensure they are unbound first. 3537 */ 3538 static void efx_pci_remove(struct pci_dev *pci_dev) 3539 { 3540 struct efx_nic *efx; 3541 3542 efx = pci_get_drvdata(pci_dev); 3543 if (!efx) 3544 return; 3545 3546 /* Mark the NIC as fini, then stop the interface */ 3547 rtnl_lock(); 3548 efx_dissociate(efx); 3549 dev_close(efx->net_dev); 3550 efx_disable_interrupts(efx); 3551 efx->state = STATE_UNINIT; 3552 rtnl_unlock(); 3553 3554 if (efx->type->sriov_fini) 3555 efx->type->sriov_fini(efx); 3556 3557 efx_unregister_netdev(efx); 3558 3559 efx_mtd_remove(efx); 3560 3561 efx_pci_remove_main(efx); 3562 3563 efx_fini_io(efx); 3564 netif_dbg(efx, drv, efx->net_dev, "shutdown successful\n"); 3565 3566 efx_fini_struct(efx); 3567 free_netdev(efx->net_dev); 3568 3569 pci_disable_pcie_error_reporting(pci_dev); 3570 }; 3571 3572 /* NIC VPD information 3573 * Called during probe to display the part number of the 3574 * installed NIC. VPD is potentially very large but this should 3575 * always appear within the first 512 bytes. 3576 */ 3577 #define SFC_VPD_LEN 512 3578 static void efx_probe_vpd_strings(struct efx_nic *efx) 3579 { 3580 struct pci_dev *dev = efx->pci_dev; 3581 char vpd_data[SFC_VPD_LEN]; 3582 ssize_t vpd_size; 3583 int ro_start, ro_size, i, j; 3584 3585 /* Get the vpd data from the device */ 3586 vpd_size = pci_read_vpd(dev, 0, sizeof(vpd_data), vpd_data); 3587 if (vpd_size <= 0) { 3588 netif_err(efx, drv, efx->net_dev, "Unable to read VPD\n"); 3589 return; 3590 } 3591 3592 /* Get the Read only section */ 3593 ro_start = pci_vpd_find_tag(vpd_data, 0, vpd_size, PCI_VPD_LRDT_RO_DATA); 3594 if (ro_start < 0) { 3595 netif_err(efx, drv, efx->net_dev, "VPD Read-only not found\n"); 3596 return; 3597 } 3598 3599 ro_size = pci_vpd_lrdt_size(&vpd_data[ro_start]); 3600 j = ro_size; 3601 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3602 if (i + j > vpd_size) 3603 j = vpd_size - i; 3604 3605 /* Get the Part number */ 3606 i = pci_vpd_find_info_keyword(vpd_data, i, j, "PN"); 3607 if (i < 0) { 3608 netif_err(efx, drv, efx->net_dev, "Part number not found\n"); 3609 return; 3610 } 3611 3612 j = pci_vpd_info_field_size(&vpd_data[i]); 3613 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3614 if (i + j > vpd_size) { 3615 netif_err(efx, drv, efx->net_dev, "Incomplete part number\n"); 3616 return; 3617 } 3618 3619 netif_info(efx, drv, efx->net_dev, 3620 "Part Number : %.*s\n", j, &vpd_data[i]); 3621 3622 i = ro_start + PCI_VPD_LRDT_TAG_SIZE; 3623 j = ro_size; 3624 i = pci_vpd_find_info_keyword(vpd_data, i, j, "SN"); 3625 if (i < 0) { 3626 netif_err(efx, drv, efx->net_dev, "Serial number not found\n"); 3627 return; 3628 } 3629 3630 j = pci_vpd_info_field_size(&vpd_data[i]); 3631 i += PCI_VPD_INFO_FLD_HDR_SIZE; 3632 if (i + j > vpd_size) { 3633 netif_err(efx, drv, efx->net_dev, "Incomplete serial number\n"); 3634 return; 3635 } 3636 3637 efx->vpd_sn = kmalloc(j + 1, GFP_KERNEL); 3638 if (!efx->vpd_sn) 3639 return; 3640 3641 snprintf(efx->vpd_sn, j + 1, "%s", &vpd_data[i]); 3642 } 3643 3644 3645 /* Main body of NIC initialisation 3646 * This is called at module load (or hotplug insertion, theoretically). 3647 */ 3648 static int efx_pci_probe_main(struct efx_nic *efx) 3649 { 3650 int rc; 3651 3652 /* Do start-of-day initialisation */ 3653 rc = efx_probe_all(efx); 3654 if (rc) 3655 goto fail1; 3656 3657 efx_init_napi(efx); 3658 3659 down_write(&efx->filter_sem); 3660 rc = efx->type->init(efx); 3661 up_write(&efx->filter_sem); 3662 if (rc) { 3663 netif_err(efx, probe, efx->net_dev, 3664 "failed to initialise NIC\n"); 3665 goto fail3; 3666 } 3667 3668 rc = efx_init_port(efx); 3669 if (rc) { 3670 netif_err(efx, probe, efx->net_dev, 3671 "failed to initialise port\n"); 3672 goto fail4; 3673 } 3674 3675 rc = efx_nic_init_interrupt(efx); 3676 if (rc) 3677 goto fail5; 3678 3679 efx_set_interrupt_affinity(efx); 3680 rc = efx_enable_interrupts(efx); 3681 if (rc) 3682 goto fail6; 3683 3684 return 0; 3685 3686 fail6: 3687 efx_clear_interrupt_affinity(efx); 3688 efx_nic_fini_interrupt(efx); 3689 fail5: 3690 efx_fini_port(efx); 3691 fail4: 3692 efx->type->fini(efx); 3693 fail3: 3694 efx_fini_napi(efx); 3695 efx_remove_all(efx); 3696 fail1: 3697 return rc; 3698 } 3699 3700 static int efx_pci_probe_post_io(struct efx_nic *efx) 3701 { 3702 struct net_device *net_dev = efx->net_dev; 3703 int rc = efx_pci_probe_main(efx); 3704 3705 if (rc) 3706 return rc; 3707 3708 if (efx->type->sriov_init) { 3709 rc = efx->type->sriov_init(efx); 3710 if (rc) 3711 netif_err(efx, probe, efx->net_dev, 3712 "SR-IOV can't be enabled rc %d\n", rc); 3713 } 3714 3715 /* Determine netdevice features */ 3716 net_dev->features |= (efx->type->offload_features | NETIF_F_SG | 3717 NETIF_F_TSO | NETIF_F_RXCSUM | NETIF_F_RXALL); 3718 if (efx->type->offload_features & (NETIF_F_IPV6_CSUM | NETIF_F_HW_CSUM)) 3719 net_dev->features |= NETIF_F_TSO6; 3720 /* Check whether device supports TSO */ 3721 if (!efx->type->tso_versions || !efx->type->tso_versions(efx)) 3722 net_dev->features &= ~NETIF_F_ALL_TSO; 3723 /* Mask for features that also apply to VLAN devices */ 3724 net_dev->vlan_features |= (NETIF_F_HW_CSUM | NETIF_F_SG | 3725 NETIF_F_HIGHDMA | NETIF_F_ALL_TSO | 3726 NETIF_F_RXCSUM); 3727 3728 net_dev->hw_features |= net_dev->features & ~efx->fixed_features; 3729 3730 /* Disable receiving frames with bad FCS, by default. */ 3731 net_dev->features &= ~NETIF_F_RXALL; 3732 3733 /* Disable VLAN filtering by default. It may be enforced if 3734 * the feature is fixed (i.e. VLAN filters are required to 3735 * receive VLAN tagged packets due to vPort restrictions). 3736 */ 3737 net_dev->features &= ~NETIF_F_HW_VLAN_CTAG_FILTER; 3738 net_dev->features |= efx->fixed_features; 3739 3740 rc = efx_register_netdev(efx); 3741 if (!rc) 3742 return 0; 3743 3744 efx_pci_remove_main(efx); 3745 return rc; 3746 } 3747 3748 /* NIC initialisation 3749 * 3750 * This is called at module load (or hotplug insertion, 3751 * theoretically). It sets up PCI mappings, resets the NIC, 3752 * sets up and registers the network devices with the kernel and hooks 3753 * the interrupt service routine. It does not prepare the device for 3754 * transmission; this is left to the first time one of the network 3755 * interfaces is brought up (i.e. efx_net_open). 3756 */ 3757 static int efx_pci_probe(struct pci_dev *pci_dev, 3758 const struct pci_device_id *entry) 3759 { 3760 struct net_device *net_dev; 3761 struct efx_nic *efx; 3762 int rc; 3763 3764 /* Allocate and initialise a struct net_device and struct efx_nic */ 3765 net_dev = alloc_etherdev_mqs(sizeof(*efx), EFX_MAX_CORE_TX_QUEUES, 3766 EFX_MAX_RX_QUEUES); 3767 if (!net_dev) 3768 return -ENOMEM; 3769 efx = netdev_priv(net_dev); 3770 efx->type = (const struct efx_nic_type *) entry->driver_data; 3771 efx->fixed_features |= NETIF_F_HIGHDMA; 3772 3773 pci_set_drvdata(pci_dev, efx); 3774 SET_NETDEV_DEV(net_dev, &pci_dev->dev); 3775 rc = efx_init_struct(efx, pci_dev, net_dev); 3776 if (rc) 3777 goto fail1; 3778 3779 netif_info(efx, probe, efx->net_dev, 3780 "Solarflare NIC detected\n"); 3781 3782 if (!efx->type->is_vf) 3783 efx_probe_vpd_strings(efx); 3784 3785 /* Set up basic I/O (BAR mappings etc) */ 3786 rc = efx_init_io(efx); 3787 if (rc) 3788 goto fail2; 3789 3790 rc = efx_pci_probe_post_io(efx); 3791 if (rc) { 3792 /* On failure, retry once immediately. 3793 * If we aborted probe due to a scheduled reset, dismiss it. 3794 */ 3795 efx->reset_pending = 0; 3796 rc = efx_pci_probe_post_io(efx); 3797 if (rc) { 3798 /* On another failure, retry once more 3799 * after a 50-305ms delay. 3800 */ 3801 unsigned char r; 3802 3803 get_random_bytes(&r, 1); 3804 msleep((unsigned int)r + 50); 3805 efx->reset_pending = 0; 3806 rc = efx_pci_probe_post_io(efx); 3807 } 3808 } 3809 if (rc) 3810 goto fail3; 3811 3812 netif_dbg(efx, probe, efx->net_dev, "initialisation successful\n"); 3813 3814 /* Try to create MTDs, but allow this to fail */ 3815 rtnl_lock(); 3816 rc = efx_mtd_probe(efx); 3817 rtnl_unlock(); 3818 if (rc && rc != -EPERM) 3819 netif_warn(efx, probe, efx->net_dev, 3820 "failed to create MTDs (%d)\n", rc); 3821 3822 (void)pci_enable_pcie_error_reporting(pci_dev); 3823 3824 if (efx->type->udp_tnl_push_ports) 3825 efx->type->udp_tnl_push_ports(efx); 3826 3827 return 0; 3828 3829 fail3: 3830 efx_fini_io(efx); 3831 fail2: 3832 efx_fini_struct(efx); 3833 fail1: 3834 WARN_ON(rc > 0); 3835 netif_dbg(efx, drv, efx->net_dev, "initialisation failed. rc=%d\n", rc); 3836 free_netdev(net_dev); 3837 return rc; 3838 } 3839 3840 /* efx_pci_sriov_configure returns the actual number of Virtual Functions 3841 * enabled on success 3842 */ 3843 #ifdef CONFIG_SFC_SRIOV 3844 static int efx_pci_sriov_configure(struct pci_dev *dev, int num_vfs) 3845 { 3846 int rc; 3847 struct efx_nic *efx = pci_get_drvdata(dev); 3848 3849 if (efx->type->sriov_configure) { 3850 rc = efx->type->sriov_configure(efx, num_vfs); 3851 if (rc) 3852 return rc; 3853 else 3854 return num_vfs; 3855 } else 3856 return -EOPNOTSUPP; 3857 } 3858 #endif 3859 3860 static int efx_pm_freeze(struct device *dev) 3861 { 3862 struct efx_nic *efx = dev_get_drvdata(dev); 3863 3864 rtnl_lock(); 3865 3866 if (efx->state != STATE_DISABLED) { 3867 efx->state = STATE_UNINIT; 3868 3869 efx_device_detach_sync(efx); 3870 3871 efx_stop_all(efx); 3872 efx_disable_interrupts(efx); 3873 } 3874 3875 rtnl_unlock(); 3876 3877 return 0; 3878 } 3879 3880 static int efx_pm_thaw(struct device *dev) 3881 { 3882 int rc; 3883 struct efx_nic *efx = dev_get_drvdata(dev); 3884 3885 rtnl_lock(); 3886 3887 if (efx->state != STATE_DISABLED) { 3888 rc = efx_enable_interrupts(efx); 3889 if (rc) 3890 goto fail; 3891 3892 mutex_lock(&efx->mac_lock); 3893 efx->phy_op->reconfigure(efx); 3894 mutex_unlock(&efx->mac_lock); 3895 3896 efx_start_all(efx); 3897 3898 efx_device_attach_if_not_resetting(efx); 3899 3900 efx->state = STATE_READY; 3901 3902 efx->type->resume_wol(efx); 3903 } 3904 3905 rtnl_unlock(); 3906 3907 /* Reschedule any quenched resets scheduled during efx_pm_freeze() */ 3908 queue_work(reset_workqueue, &efx->reset_work); 3909 3910 return 0; 3911 3912 fail: 3913 rtnl_unlock(); 3914 3915 return rc; 3916 } 3917 3918 static int efx_pm_poweroff(struct device *dev) 3919 { 3920 struct pci_dev *pci_dev = to_pci_dev(dev); 3921 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3922 3923 efx->type->fini(efx); 3924 3925 efx->reset_pending = 0; 3926 3927 pci_save_state(pci_dev); 3928 return pci_set_power_state(pci_dev, PCI_D3hot); 3929 } 3930 3931 /* Used for both resume and restore */ 3932 static int efx_pm_resume(struct device *dev) 3933 { 3934 struct pci_dev *pci_dev = to_pci_dev(dev); 3935 struct efx_nic *efx = pci_get_drvdata(pci_dev); 3936 int rc; 3937 3938 rc = pci_set_power_state(pci_dev, PCI_D0); 3939 if (rc) 3940 return rc; 3941 pci_restore_state(pci_dev); 3942 rc = pci_enable_device(pci_dev); 3943 if (rc) 3944 return rc; 3945 pci_set_master(efx->pci_dev); 3946 rc = efx->type->reset(efx, RESET_TYPE_ALL); 3947 if (rc) 3948 return rc; 3949 down_write(&efx->filter_sem); 3950 rc = efx->type->init(efx); 3951 up_write(&efx->filter_sem); 3952 if (rc) 3953 return rc; 3954 rc = efx_pm_thaw(dev); 3955 return rc; 3956 } 3957 3958 static int efx_pm_suspend(struct device *dev) 3959 { 3960 int rc; 3961 3962 efx_pm_freeze(dev); 3963 rc = efx_pm_poweroff(dev); 3964 if (rc) 3965 efx_pm_resume(dev); 3966 return rc; 3967 } 3968 3969 static const struct dev_pm_ops efx_pm_ops = { 3970 .suspend = efx_pm_suspend, 3971 .resume = efx_pm_resume, 3972 .freeze = efx_pm_freeze, 3973 .thaw = efx_pm_thaw, 3974 .poweroff = efx_pm_poweroff, 3975 .restore = efx_pm_resume, 3976 }; 3977 3978 /* A PCI error affecting this device was detected. 3979 * At this point MMIO and DMA may be disabled. 3980 * Stop the software path and request a slot reset. 3981 */ 3982 static pci_ers_result_t efx_io_error_detected(struct pci_dev *pdev, 3983 enum pci_channel_state state) 3984 { 3985 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 3986 struct efx_nic *efx = pci_get_drvdata(pdev); 3987 3988 if (state == pci_channel_io_perm_failure) 3989 return PCI_ERS_RESULT_DISCONNECT; 3990 3991 rtnl_lock(); 3992 3993 if (efx->state != STATE_DISABLED) { 3994 efx->state = STATE_RECOVERY; 3995 efx->reset_pending = 0; 3996 3997 efx_device_detach_sync(efx); 3998 3999 efx_stop_all(efx); 4000 efx_disable_interrupts(efx); 4001 4002 status = PCI_ERS_RESULT_NEED_RESET; 4003 } else { 4004 /* If the interface is disabled we don't want to do anything 4005 * with it. 4006 */ 4007 status = PCI_ERS_RESULT_RECOVERED; 4008 } 4009 4010 rtnl_unlock(); 4011 4012 pci_disable_device(pdev); 4013 4014 return status; 4015 } 4016 4017 /* Fake a successful reset, which will be performed later in efx_io_resume. */ 4018 static pci_ers_result_t efx_io_slot_reset(struct pci_dev *pdev) 4019 { 4020 struct efx_nic *efx = pci_get_drvdata(pdev); 4021 pci_ers_result_t status = PCI_ERS_RESULT_RECOVERED; 4022 4023 if (pci_enable_device(pdev)) { 4024 netif_err(efx, hw, efx->net_dev, 4025 "Cannot re-enable PCI device after reset.\n"); 4026 status = PCI_ERS_RESULT_DISCONNECT; 4027 } 4028 4029 return status; 4030 } 4031 4032 /* Perform the actual reset and resume I/O operations. */ 4033 static void efx_io_resume(struct pci_dev *pdev) 4034 { 4035 struct efx_nic *efx = pci_get_drvdata(pdev); 4036 int rc; 4037 4038 rtnl_lock(); 4039 4040 if (efx->state == STATE_DISABLED) 4041 goto out; 4042 4043 rc = efx_reset(efx, RESET_TYPE_ALL); 4044 if (rc) { 4045 netif_err(efx, hw, efx->net_dev, 4046 "efx_reset failed after PCI error (%d)\n", rc); 4047 } else { 4048 efx->state = STATE_READY; 4049 netif_dbg(efx, hw, efx->net_dev, 4050 "Done resetting and resuming IO after PCI error.\n"); 4051 } 4052 4053 out: 4054 rtnl_unlock(); 4055 } 4056 4057 /* For simplicity and reliability, we always require a slot reset and try to 4058 * reset the hardware when a pci error affecting the device is detected. 4059 * We leave both the link_reset and mmio_enabled callback unimplemented: 4060 * with our request for slot reset the mmio_enabled callback will never be 4061 * called, and the link_reset callback is not used by AER or EEH mechanisms. 4062 */ 4063 static const struct pci_error_handlers efx_err_handlers = { 4064 .error_detected = efx_io_error_detected, 4065 .slot_reset = efx_io_slot_reset, 4066 .resume = efx_io_resume, 4067 }; 4068 4069 static struct pci_driver efx_pci_driver = { 4070 .name = KBUILD_MODNAME, 4071 .id_table = efx_pci_table, 4072 .probe = efx_pci_probe, 4073 .remove = efx_pci_remove, 4074 .driver.pm = &efx_pm_ops, 4075 .err_handler = &efx_err_handlers, 4076 #ifdef CONFIG_SFC_SRIOV 4077 .sriov_configure = efx_pci_sriov_configure, 4078 #endif 4079 }; 4080 4081 /************************************************************************** 4082 * 4083 * Kernel module interface 4084 * 4085 *************************************************************************/ 4086 4087 module_param(interrupt_mode, uint, 0444); 4088 MODULE_PARM_DESC(interrupt_mode, 4089 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)"); 4090 4091 static int __init efx_init_module(void) 4092 { 4093 int rc; 4094 4095 printk(KERN_INFO "Solarflare NET driver v" EFX_DRIVER_VERSION "\n"); 4096 4097 rc = register_netdevice_notifier(&efx_netdev_notifier); 4098 if (rc) 4099 goto err_notifier; 4100 4101 #ifdef CONFIG_SFC_SRIOV 4102 rc = efx_init_sriov(); 4103 if (rc) 4104 goto err_sriov; 4105 #endif 4106 4107 reset_workqueue = create_singlethread_workqueue("sfc_reset"); 4108 if (!reset_workqueue) { 4109 rc = -ENOMEM; 4110 goto err_reset; 4111 } 4112 4113 rc = pci_register_driver(&efx_pci_driver); 4114 if (rc < 0) 4115 goto err_pci; 4116 4117 return 0; 4118 4119 err_pci: 4120 destroy_workqueue(reset_workqueue); 4121 err_reset: 4122 #ifdef CONFIG_SFC_SRIOV 4123 efx_fini_sriov(); 4124 err_sriov: 4125 #endif 4126 unregister_netdevice_notifier(&efx_netdev_notifier); 4127 err_notifier: 4128 return rc; 4129 } 4130 4131 static void __exit efx_exit_module(void) 4132 { 4133 printk(KERN_INFO "Solarflare NET driver unloading\n"); 4134 4135 pci_unregister_driver(&efx_pci_driver); 4136 destroy_workqueue(reset_workqueue); 4137 #ifdef CONFIG_SFC_SRIOV 4138 efx_fini_sriov(); 4139 #endif 4140 unregister_netdevice_notifier(&efx_netdev_notifier); 4141 4142 } 4143 4144 module_init(efx_init_module); 4145 module_exit(efx_exit_module); 4146 4147 MODULE_AUTHOR("Solarflare Communications and " 4148 "Michael Brown <mbrown@fensystems.co.uk>"); 4149 MODULE_DESCRIPTION("Solarflare network driver"); 4150 MODULE_LICENSE("GPL"); 4151 MODULE_DEVICE_TABLE(pci, efx_pci_table); 4152 MODULE_VERSION(EFX_DRIVER_VERSION); 4153