xref: /openbmc/linux/drivers/net/ethernet/samsung/sxgbe/sxgbe_main.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* 10G controller driver for Samsung SoCs
2  *
3  * Copyright (C) 2013 Samsung Electronics Co., Ltd.
4  *		http://www.samsung.com
5  *
6  * Author: Siva Reddy Kallam <siva.kallam@samsung.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License version 2 as
10  * published by the Free Software Foundation.
11  */
12 
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14 
15 #include <linux/clk.h>
16 #include <linux/crc32.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/etherdevice.h>
19 #include <linux/ethtool.h>
20 #include <linux/if.h>
21 #include <linux/if_ether.h>
22 #include <linux/if_vlan.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/kernel.h>
27 #include <linux/mii.h>
28 #include <linux/module.h>
29 #include <linux/net_tstamp.h>
30 #include <linux/netdevice.h>
31 #include <linux/phy.h>
32 #include <linux/platform_device.h>
33 #include <linux/prefetch.h>
34 #include <linux/skbuff.h>
35 #include <linux/slab.h>
36 #include <linux/tcp.h>
37 #include <linux/sxgbe_platform.h>
38 
39 #include "sxgbe_common.h"
40 #include "sxgbe_desc.h"
41 #include "sxgbe_dma.h"
42 #include "sxgbe_mtl.h"
43 #include "sxgbe_reg.h"
44 
45 #define SXGBE_ALIGN(x)	L1_CACHE_ALIGN(x)
46 #define JUMBO_LEN	9000
47 
48 /* Module parameters */
49 #define TX_TIMEO	5000
50 #define DMA_TX_SIZE	512
51 #define DMA_RX_SIZE	1024
52 #define TC_DEFAULT	64
53 #define DMA_BUFFER_SIZE	BUF_SIZE_2KiB
54 /* The default timer value as per the sxgbe specification 1 sec(1000 ms) */
55 #define SXGBE_DEFAULT_LPI_TIMER	1000
56 
57 static int debug = -1;
58 static int eee_timer = SXGBE_DEFAULT_LPI_TIMER;
59 
60 module_param(eee_timer, int, S_IRUGO | S_IWUSR);
61 
62 module_param(debug, int, S_IRUGO | S_IWUSR);
63 static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
64 				      NETIF_MSG_LINK | NETIF_MSG_IFUP |
65 				      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
66 
67 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id);
68 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id);
69 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id);
70 
71 #define SXGBE_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
72 
73 #define SXGBE_LPI_TIMER(x) (jiffies + msecs_to_jiffies(x))
74 
75 /**
76  * sxgbe_verify_args - verify the driver parameters.
77  * Description: it verifies if some wrong parameter is passed to the driver.
78  * Note that wrong parameters are replaced with the default values.
79  */
80 static void sxgbe_verify_args(void)
81 {
82 	if (unlikely(eee_timer < 0))
83 		eee_timer = SXGBE_DEFAULT_LPI_TIMER;
84 }
85 
86 static void sxgbe_enable_eee_mode(const struct sxgbe_priv_data *priv)
87 {
88 	/* Check and enter in LPI mode */
89 	if (!priv->tx_path_in_lpi_mode)
90 		priv->hw->mac->set_eee_mode(priv->ioaddr);
91 }
92 
93 void sxgbe_disable_eee_mode(struct sxgbe_priv_data * const priv)
94 {
95 	/* Exit and disable EEE in case of we are are in LPI state. */
96 	priv->hw->mac->reset_eee_mode(priv->ioaddr);
97 	del_timer_sync(&priv->eee_ctrl_timer);
98 	priv->tx_path_in_lpi_mode = false;
99 }
100 
101 /**
102  * sxgbe_eee_ctrl_timer
103  * @arg : data hook
104  * Description:
105  *  If there is no data transfer and if we are not in LPI state,
106  *  then MAC Transmitter can be moved to LPI state.
107  */
108 static void sxgbe_eee_ctrl_timer(unsigned long arg)
109 {
110 	struct sxgbe_priv_data *priv = (struct sxgbe_priv_data *)arg;
111 
112 	sxgbe_enable_eee_mode(priv);
113 	mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
114 }
115 
116 /**
117  * sxgbe_eee_init
118  * @priv: private device pointer
119  * Description:
120  *  If the EEE support has been enabled while configuring the driver,
121  *  if the GMAC actually supports the EEE (from the HW cap reg) and the
122  *  phy can also manage EEE, so enable the LPI state and start the timer
123  *  to verify if the tx path can enter in LPI state.
124  */
125 bool sxgbe_eee_init(struct sxgbe_priv_data * const priv)
126 {
127 	bool ret = false;
128 
129 	/* MAC core supports the EEE feature. */
130 	if (priv->hw_cap.eee) {
131 		/* Check if the PHY supports EEE */
132 		if (phy_init_eee(priv->phydev, 1))
133 			return false;
134 
135 		priv->eee_active = 1;
136 		setup_timer(&priv->eee_ctrl_timer, sxgbe_eee_ctrl_timer,
137 			    (unsigned long)priv);
138 		priv->eee_ctrl_timer.expires = SXGBE_LPI_TIMER(eee_timer);
139 		add_timer(&priv->eee_ctrl_timer);
140 
141 		priv->hw->mac->set_eee_timer(priv->ioaddr,
142 					     SXGBE_DEFAULT_LPI_TIMER,
143 					     priv->tx_lpi_timer);
144 
145 		pr_info("Energy-Efficient Ethernet initialized\n");
146 
147 		ret = true;
148 	}
149 
150 	return ret;
151 }
152 
153 static void sxgbe_eee_adjust(const struct sxgbe_priv_data *priv)
154 {
155 	/* When the EEE has been already initialised we have to
156 	 * modify the PLS bit in the LPI ctrl & status reg according
157 	 * to the PHY link status. For this reason.
158 	 */
159 	if (priv->eee_enabled)
160 		priv->hw->mac->set_eee_pls(priv->ioaddr, priv->phydev->link);
161 }
162 
163 /**
164  * sxgbe_clk_csr_set - dynamically set the MDC clock
165  * @priv: driver private structure
166  * Description: this is to dynamically set the MDC clock according to the csr
167  * clock input.
168  */
169 static void sxgbe_clk_csr_set(struct sxgbe_priv_data *priv)
170 {
171 	u32 clk_rate = clk_get_rate(priv->sxgbe_clk);
172 
173 	/* assign the proper divider, this will be used during
174 	 * mdio communication
175 	 */
176 	if (clk_rate < SXGBE_CSR_F_150M)
177 		priv->clk_csr = SXGBE_CSR_100_150M;
178 	else if (clk_rate <= SXGBE_CSR_F_250M)
179 		priv->clk_csr = SXGBE_CSR_150_250M;
180 	else if (clk_rate <= SXGBE_CSR_F_300M)
181 		priv->clk_csr = SXGBE_CSR_250_300M;
182 	else if (clk_rate <= SXGBE_CSR_F_350M)
183 		priv->clk_csr = SXGBE_CSR_300_350M;
184 	else if (clk_rate <= SXGBE_CSR_F_400M)
185 		priv->clk_csr = SXGBE_CSR_350_400M;
186 	else if (clk_rate <= SXGBE_CSR_F_500M)
187 		priv->clk_csr = SXGBE_CSR_400_500M;
188 }
189 
190 /* minimum number of free TX descriptors required to wake up TX process */
191 #define SXGBE_TX_THRESH(x)	(x->dma_tx_size/4)
192 
193 static inline u32 sxgbe_tx_avail(struct sxgbe_tx_queue *queue, int tx_qsize)
194 {
195 	return queue->dirty_tx + tx_qsize - queue->cur_tx - 1;
196 }
197 
198 /**
199  * sxgbe_adjust_link
200  * @dev: net device structure
201  * Description: it adjusts the link parameters.
202  */
203 static void sxgbe_adjust_link(struct net_device *dev)
204 {
205 	struct sxgbe_priv_data *priv = netdev_priv(dev);
206 	struct phy_device *phydev = priv->phydev;
207 	u8 new_state = 0;
208 	u8 speed = 0xff;
209 
210 	if (!phydev)
211 		return;
212 
213 	/* SXGBE is not supporting auto-negotiation and
214 	 * half duplex mode. so, not handling duplex change
215 	 * in this function. only handling speed and link status
216 	 */
217 	if (phydev->link) {
218 		if (phydev->speed != priv->speed) {
219 			new_state = 1;
220 			switch (phydev->speed) {
221 			case SPEED_10000:
222 				speed = SXGBE_SPEED_10G;
223 				break;
224 			case SPEED_2500:
225 				speed = SXGBE_SPEED_2_5G;
226 				break;
227 			case SPEED_1000:
228 				speed = SXGBE_SPEED_1G;
229 				break;
230 			default:
231 				netif_err(priv, link, dev,
232 					  "Speed (%d) not supported\n",
233 					  phydev->speed);
234 			}
235 
236 			priv->speed = phydev->speed;
237 			priv->hw->mac->set_speed(priv->ioaddr, speed);
238 		}
239 
240 		if (!priv->oldlink) {
241 			new_state = 1;
242 			priv->oldlink = 1;
243 		}
244 	} else if (priv->oldlink) {
245 		new_state = 1;
246 		priv->oldlink = 0;
247 		priv->speed = SPEED_UNKNOWN;
248 	}
249 
250 	if (new_state & netif_msg_link(priv))
251 		phy_print_status(phydev);
252 
253 	/* Alter the MAC settings for EEE */
254 	sxgbe_eee_adjust(priv);
255 }
256 
257 /**
258  * sxgbe_init_phy - PHY initialization
259  * @dev: net device structure
260  * Description: it initializes the driver's PHY state, and attaches the PHY
261  * to the mac driver.
262  *  Return value:
263  *  0 on success
264  */
265 static int sxgbe_init_phy(struct net_device *ndev)
266 {
267 	char phy_id_fmt[MII_BUS_ID_SIZE + 3];
268 	char bus_id[MII_BUS_ID_SIZE];
269 	struct phy_device *phydev;
270 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
271 	int phy_iface = priv->plat->interface;
272 
273 	/* assign default link status */
274 	priv->oldlink = 0;
275 	priv->speed = SPEED_UNKNOWN;
276 	priv->oldduplex = DUPLEX_UNKNOWN;
277 
278 	if (priv->plat->phy_bus_name)
279 		snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
280 			 priv->plat->phy_bus_name, priv->plat->bus_id);
281 	else
282 		snprintf(bus_id, MII_BUS_ID_SIZE, "sxgbe-%x",
283 			 priv->plat->bus_id);
284 
285 	snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
286 		 priv->plat->phy_addr);
287 	netdev_dbg(ndev, "%s: trying to attach to %s\n", __func__, phy_id_fmt);
288 
289 	phydev = phy_connect(ndev, phy_id_fmt, &sxgbe_adjust_link, phy_iface);
290 
291 	if (IS_ERR(phydev)) {
292 		netdev_err(ndev, "Could not attach to PHY\n");
293 		return PTR_ERR(phydev);
294 	}
295 
296 	/* Stop Advertising 1000BASE Capability if interface is not GMII */
297 	if ((phy_iface == PHY_INTERFACE_MODE_MII) ||
298 	    (phy_iface == PHY_INTERFACE_MODE_RMII))
299 		phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
300 					 SUPPORTED_1000baseT_Full);
301 	if (phydev->phy_id == 0) {
302 		phy_disconnect(phydev);
303 		return -ENODEV;
304 	}
305 
306 	netdev_dbg(ndev, "%s: attached to PHY (UID 0x%x) Link = %d\n",
307 		   __func__, phydev->phy_id, phydev->link);
308 
309 	/* save phy device in private structure */
310 	priv->phydev = phydev;
311 
312 	return 0;
313 }
314 
315 /**
316  * sxgbe_clear_descriptors: clear descriptors
317  * @priv: driver private structure
318  * Description: this function is called to clear the tx and rx descriptors
319  * in case of both basic and extended descriptors are used.
320  */
321 static void sxgbe_clear_descriptors(struct sxgbe_priv_data *priv)
322 {
323 	int i, j;
324 	unsigned int txsize = priv->dma_tx_size;
325 	unsigned int rxsize = priv->dma_rx_size;
326 
327 	/* Clear the Rx/Tx descriptors */
328 	for (j = 0; j < SXGBE_RX_QUEUES; j++) {
329 		for (i = 0; i < rxsize; i++)
330 			priv->hw->desc->init_rx_desc(&priv->rxq[j]->dma_rx[i],
331 						     priv->use_riwt, priv->mode,
332 						     (i == rxsize - 1));
333 	}
334 
335 	for (j = 0; j < SXGBE_TX_QUEUES; j++) {
336 		for (i = 0; i < txsize; i++)
337 			priv->hw->desc->init_tx_desc(&priv->txq[j]->dma_tx[i]);
338 	}
339 }
340 
341 static int sxgbe_init_rx_buffers(struct net_device *dev,
342 				 struct sxgbe_rx_norm_desc *p, int i,
343 				 unsigned int dma_buf_sz,
344 				 struct sxgbe_rx_queue *rx_ring)
345 {
346 	struct sxgbe_priv_data *priv = netdev_priv(dev);
347 	struct sk_buff *skb;
348 
349 	skb = __netdev_alloc_skb_ip_align(dev, dma_buf_sz, GFP_KERNEL);
350 	if (!skb)
351 		return -ENOMEM;
352 
353 	rx_ring->rx_skbuff[i] = skb;
354 	rx_ring->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
355 						   dma_buf_sz, DMA_FROM_DEVICE);
356 
357 	if (dma_mapping_error(priv->device, rx_ring->rx_skbuff_dma[i])) {
358 		netdev_err(dev, "%s: DMA mapping error\n", __func__);
359 		dev_kfree_skb_any(skb);
360 		return -EINVAL;
361 	}
362 
363 	p->rdes23.rx_rd_des23.buf2_addr = rx_ring->rx_skbuff_dma[i];
364 
365 	return 0;
366 }
367 
368 /**
369  * sxgbe_free_rx_buffers - free what sxgbe_init_rx_buffers() allocated
370  * @dev: net device structure
371  * @rx_ring: ring to be freed
372  * @rx_rsize: ring size
373  * Description:  this function initializes the DMA RX descriptor
374  */
375 static void sxgbe_free_rx_buffers(struct net_device *dev,
376 				  struct sxgbe_rx_norm_desc *p, int i,
377 				  unsigned int dma_buf_sz,
378 				  struct sxgbe_rx_queue *rx_ring)
379 {
380 	struct sxgbe_priv_data *priv = netdev_priv(dev);
381 
382 	kfree_skb(rx_ring->rx_skbuff[i]);
383 	dma_unmap_single(priv->device, rx_ring->rx_skbuff_dma[i],
384 			 dma_buf_sz, DMA_FROM_DEVICE);
385 }
386 
387 /**
388  * init_tx_ring - init the TX descriptor ring
389  * @dev: net device structure
390  * @tx_ring: ring to be intialised
391  * @tx_rsize: ring size
392  * Description:  this function initializes the DMA TX descriptor
393  */
394 static int init_tx_ring(struct device *dev, u8 queue_no,
395 			struct sxgbe_tx_queue *tx_ring,	int tx_rsize)
396 {
397 	/* TX ring is not allcoated */
398 	if (!tx_ring) {
399 		dev_err(dev, "No memory for TX queue of SXGBE\n");
400 		return -ENOMEM;
401 	}
402 
403 	/* allocate memory for TX descriptors */
404 	tx_ring->dma_tx = dma_zalloc_coherent(dev,
405 					      tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
406 					      &tx_ring->dma_tx_phy, GFP_KERNEL);
407 	if (!tx_ring->dma_tx)
408 		return -ENOMEM;
409 
410 	/* allocate memory for TX skbuff array */
411 	tx_ring->tx_skbuff_dma = devm_kcalloc(dev, tx_rsize,
412 					      sizeof(dma_addr_t), GFP_KERNEL);
413 	if (!tx_ring->tx_skbuff_dma)
414 		goto dmamem_err;
415 
416 	tx_ring->tx_skbuff = devm_kcalloc(dev, tx_rsize,
417 					  sizeof(struct sk_buff *), GFP_KERNEL);
418 
419 	if (!tx_ring->tx_skbuff)
420 		goto dmamem_err;
421 
422 	/* assign queue number */
423 	tx_ring->queue_no = queue_no;
424 
425 	/* initialise counters */
426 	tx_ring->dirty_tx = 0;
427 	tx_ring->cur_tx = 0;
428 
429 	/* initialise TX queue lock */
430 	spin_lock_init(&tx_ring->tx_lock);
431 
432 	return 0;
433 
434 dmamem_err:
435 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
436 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
437 	return -ENOMEM;
438 }
439 
440 /**
441  * free_rx_ring - free the RX descriptor ring
442  * @dev: net device structure
443  * @rx_ring: ring to be intialised
444  * @rx_rsize: ring size
445  * Description:  this function initializes the DMA RX descriptor
446  */
447 static void free_rx_ring(struct device *dev, struct sxgbe_rx_queue *rx_ring,
448 			 int rx_rsize)
449 {
450 	dma_free_coherent(dev, rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
451 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
452 	kfree(rx_ring->rx_skbuff_dma);
453 	kfree(rx_ring->rx_skbuff);
454 }
455 
456 /**
457  * init_rx_ring - init the RX descriptor ring
458  * @dev: net device structure
459  * @rx_ring: ring to be intialised
460  * @rx_rsize: ring size
461  * Description:  this function initializes the DMA RX descriptor
462  */
463 static int init_rx_ring(struct net_device *dev, u8 queue_no,
464 			struct sxgbe_rx_queue *rx_ring,	int rx_rsize)
465 {
466 	struct sxgbe_priv_data *priv = netdev_priv(dev);
467 	int desc_index;
468 	unsigned int bfsize = 0;
469 	unsigned int ret = 0;
470 
471 	/* Set the max buffer size according to the MTU. */
472 	bfsize = ALIGN(dev->mtu + ETH_HLEN + ETH_FCS_LEN + NET_IP_ALIGN, 8);
473 
474 	netif_dbg(priv, probe, dev, "%s: bfsize %d\n", __func__, bfsize);
475 
476 	/* RX ring is not allcoated */
477 	if (rx_ring == NULL) {
478 		netdev_err(dev, "No memory for RX queue\n");
479 		return -ENOMEM;
480 	}
481 
482 	/* assign queue number */
483 	rx_ring->queue_no = queue_no;
484 
485 	/* allocate memory for RX descriptors */
486 	rx_ring->dma_rx = dma_zalloc_coherent(priv->device,
487 					      rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
488 					      &rx_ring->dma_rx_phy, GFP_KERNEL);
489 
490 	if (rx_ring->dma_rx == NULL)
491 		return -ENOMEM;
492 
493 	/* allocate memory for RX skbuff array */
494 	rx_ring->rx_skbuff_dma = kmalloc_array(rx_rsize,
495 					       sizeof(dma_addr_t), GFP_KERNEL);
496 	if (!rx_ring->rx_skbuff_dma) {
497 		ret = -ENOMEM;
498 		goto err_free_dma_rx;
499 	}
500 
501 	rx_ring->rx_skbuff = kmalloc_array(rx_rsize,
502 					   sizeof(struct sk_buff *), GFP_KERNEL);
503 	if (!rx_ring->rx_skbuff) {
504 		ret = -ENOMEM;
505 		goto err_free_skbuff_dma;
506 	}
507 
508 	/* initialise the buffers */
509 	for (desc_index = 0; desc_index < rx_rsize; desc_index++) {
510 		struct sxgbe_rx_norm_desc *p;
511 		p = rx_ring->dma_rx + desc_index;
512 		ret = sxgbe_init_rx_buffers(dev, p, desc_index,
513 					    bfsize, rx_ring);
514 		if (ret)
515 			goto err_free_rx_buffers;
516 	}
517 
518 	/* initialise counters */
519 	rx_ring->cur_rx = 0;
520 	rx_ring->dirty_rx = (unsigned int)(desc_index - rx_rsize);
521 	priv->dma_buf_sz = bfsize;
522 
523 	return 0;
524 
525 err_free_rx_buffers:
526 	while (--desc_index >= 0) {
527 		struct sxgbe_rx_norm_desc *p;
528 
529 		p = rx_ring->dma_rx + desc_index;
530 		sxgbe_free_rx_buffers(dev, p, desc_index, bfsize, rx_ring);
531 	}
532 	kfree(rx_ring->rx_skbuff);
533 err_free_skbuff_dma:
534 	kfree(rx_ring->rx_skbuff_dma);
535 err_free_dma_rx:
536 	dma_free_coherent(priv->device,
537 			  rx_rsize * sizeof(struct sxgbe_rx_norm_desc),
538 			  rx_ring->dma_rx, rx_ring->dma_rx_phy);
539 
540 	return ret;
541 }
542 /**
543  * free_tx_ring - free the TX descriptor ring
544  * @dev: net device structure
545  * @tx_ring: ring to be intialised
546  * @tx_rsize: ring size
547  * Description:  this function initializes the DMA TX descriptor
548  */
549 static void free_tx_ring(struct device *dev, struct sxgbe_tx_queue *tx_ring,
550 			 int tx_rsize)
551 {
552 	dma_free_coherent(dev, tx_rsize * sizeof(struct sxgbe_tx_norm_desc),
553 			  tx_ring->dma_tx, tx_ring->dma_tx_phy);
554 }
555 
556 /**
557  * init_dma_desc_rings - init the RX/TX descriptor rings
558  * @dev: net device structure
559  * Description:  this function initializes the DMA RX/TX descriptors
560  * and allocates the socket buffers. It suppors the chained and ring
561  * modes.
562  */
563 static int init_dma_desc_rings(struct net_device *netd)
564 {
565 	int queue_num, ret;
566 	struct sxgbe_priv_data *priv = netdev_priv(netd);
567 	int tx_rsize = priv->dma_tx_size;
568 	int rx_rsize = priv->dma_rx_size;
569 
570 	/* Allocate memory for queue structures and TX descs */
571 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
572 		ret = init_tx_ring(priv->device, queue_num,
573 				   priv->txq[queue_num], tx_rsize);
574 		if (ret) {
575 			dev_err(&netd->dev, "TX DMA ring allocation failed!\n");
576 			goto txalloc_err;
577 		}
578 
579 		/* save private pointer in each ring this
580 		 * pointer is needed during cleaing TX queue
581 		 */
582 		priv->txq[queue_num]->priv_ptr = priv;
583 	}
584 
585 	/* Allocate memory for queue structures and RX descs */
586 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
587 		ret = init_rx_ring(netd, queue_num,
588 				   priv->rxq[queue_num], rx_rsize);
589 		if (ret) {
590 			netdev_err(netd, "RX DMA ring allocation failed!!\n");
591 			goto rxalloc_err;
592 		}
593 
594 		/* save private pointer in each ring this
595 		 * pointer is needed during cleaing TX queue
596 		 */
597 		priv->rxq[queue_num]->priv_ptr = priv;
598 	}
599 
600 	sxgbe_clear_descriptors(priv);
601 
602 	return 0;
603 
604 txalloc_err:
605 	while (queue_num--)
606 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
607 	return ret;
608 
609 rxalloc_err:
610 	while (queue_num--)
611 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
612 	return ret;
613 }
614 
615 static void tx_free_ring_skbufs(struct sxgbe_tx_queue *txqueue)
616 {
617 	int dma_desc;
618 	struct sxgbe_priv_data *priv = txqueue->priv_ptr;
619 	int tx_rsize = priv->dma_tx_size;
620 
621 	for (dma_desc = 0; dma_desc < tx_rsize; dma_desc++) {
622 		struct sxgbe_tx_norm_desc *tdesc = txqueue->dma_tx + dma_desc;
623 
624 		if (txqueue->tx_skbuff_dma[dma_desc])
625 			dma_unmap_single(priv->device,
626 					 txqueue->tx_skbuff_dma[dma_desc],
627 					 priv->hw->desc->get_tx_len(tdesc),
628 					 DMA_TO_DEVICE);
629 
630 		dev_kfree_skb_any(txqueue->tx_skbuff[dma_desc]);
631 		txqueue->tx_skbuff[dma_desc] = NULL;
632 		txqueue->tx_skbuff_dma[dma_desc] = 0;
633 	}
634 }
635 
636 
637 static void dma_free_tx_skbufs(struct sxgbe_priv_data *priv)
638 {
639 	int queue_num;
640 
641 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
642 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
643 		tx_free_ring_skbufs(tqueue);
644 	}
645 }
646 
647 static void free_dma_desc_resources(struct sxgbe_priv_data *priv)
648 {
649 	int queue_num;
650 	int tx_rsize = priv->dma_tx_size;
651 	int rx_rsize = priv->dma_rx_size;
652 
653 	/* Release the DMA TX buffers */
654 	dma_free_tx_skbufs(priv);
655 
656 	/* Release the TX ring memory also */
657 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
658 		free_tx_ring(priv->device, priv->txq[queue_num], tx_rsize);
659 	}
660 
661 	/* Release the RX ring memory also */
662 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
663 		free_rx_ring(priv->device, priv->rxq[queue_num], rx_rsize);
664 	}
665 }
666 
667 static int txring_mem_alloc(struct sxgbe_priv_data *priv)
668 {
669 	int queue_num;
670 
671 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
672 		priv->txq[queue_num] = devm_kmalloc(priv->device,
673 						    sizeof(struct sxgbe_tx_queue), GFP_KERNEL);
674 		if (!priv->txq[queue_num])
675 			return -ENOMEM;
676 	}
677 
678 	return 0;
679 }
680 
681 static int rxring_mem_alloc(struct sxgbe_priv_data *priv)
682 {
683 	int queue_num;
684 
685 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
686 		priv->rxq[queue_num] = devm_kmalloc(priv->device,
687 						    sizeof(struct sxgbe_rx_queue), GFP_KERNEL);
688 		if (!priv->rxq[queue_num])
689 			return -ENOMEM;
690 	}
691 
692 	return 0;
693 }
694 
695 /**
696  *  sxgbe_mtl_operation_mode - HW MTL operation mode
697  *  @priv: driver private structure
698  *  Description: it sets the MTL operation mode: tx/rx MTL thresholds
699  *  or Store-And-Forward capability.
700  */
701 static void sxgbe_mtl_operation_mode(struct sxgbe_priv_data *priv)
702 {
703 	int queue_num;
704 
705 	/* TX/RX threshold control */
706 	if (likely(priv->plat->force_sf_dma_mode)) {
707 		/* set TC mode for TX QUEUES */
708 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
709 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
710 						       SXGBE_MTL_SFMODE);
711 		priv->tx_tc = SXGBE_MTL_SFMODE;
712 
713 		/* set TC mode for RX QUEUES */
714 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
715 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
716 						       SXGBE_MTL_SFMODE);
717 		priv->rx_tc = SXGBE_MTL_SFMODE;
718 	} else if (unlikely(priv->plat->force_thresh_dma_mode)) {
719 		/* set TC mode for TX QUEUES */
720 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.tx_mtl_queues, queue_num)
721 			priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr, queue_num,
722 						       priv->tx_tc);
723 		/* set TC mode for RX QUEUES */
724 		SXGBE_FOR_EACH_QUEUE(priv->hw_cap.rx_mtl_queues, queue_num)
725 			priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr, queue_num,
726 						       priv->rx_tc);
727 	} else {
728 		pr_err("ERROR: %s: Invalid TX threshold mode\n", __func__);
729 	}
730 }
731 
732 /**
733  * sxgbe_tx_queue_clean:
734  * @priv: driver private structure
735  * Description: it reclaims resources after transmission completes.
736  */
737 static void sxgbe_tx_queue_clean(struct sxgbe_tx_queue *tqueue)
738 {
739 	struct sxgbe_priv_data *priv = tqueue->priv_ptr;
740 	unsigned int tx_rsize = priv->dma_tx_size;
741 	struct netdev_queue *dev_txq;
742 	u8 queue_no = tqueue->queue_no;
743 
744 	dev_txq = netdev_get_tx_queue(priv->dev, queue_no);
745 
746 	spin_lock(&tqueue->tx_lock);
747 
748 	priv->xstats.tx_clean++;
749 	while (tqueue->dirty_tx != tqueue->cur_tx) {
750 		unsigned int entry = tqueue->dirty_tx % tx_rsize;
751 		struct sk_buff *skb = tqueue->tx_skbuff[entry];
752 		struct sxgbe_tx_norm_desc *p;
753 
754 		p = tqueue->dma_tx + entry;
755 
756 		/* Check if the descriptor is owned by the DMA. */
757 		if (priv->hw->desc->get_tx_owner(p))
758 			break;
759 
760 		if (netif_msg_tx_done(priv))
761 			pr_debug("%s: curr %d, dirty %d\n",
762 				 __func__, tqueue->cur_tx, tqueue->dirty_tx);
763 
764 		if (likely(tqueue->tx_skbuff_dma[entry])) {
765 			dma_unmap_single(priv->device,
766 					 tqueue->tx_skbuff_dma[entry],
767 					 priv->hw->desc->get_tx_len(p),
768 					 DMA_TO_DEVICE);
769 			tqueue->tx_skbuff_dma[entry] = 0;
770 		}
771 
772 		if (likely(skb)) {
773 			dev_kfree_skb(skb);
774 			tqueue->tx_skbuff[entry] = NULL;
775 		}
776 
777 		priv->hw->desc->release_tx_desc(p);
778 
779 		tqueue->dirty_tx++;
780 	}
781 
782 	/* wake up queue */
783 	if (unlikely(netif_tx_queue_stopped(dev_txq) &&
784 		     sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv))) {
785 		netif_tx_lock(priv->dev);
786 		if (netif_tx_queue_stopped(dev_txq) &&
787 		    sxgbe_tx_avail(tqueue, tx_rsize) > SXGBE_TX_THRESH(priv)) {
788 			if (netif_msg_tx_done(priv))
789 				pr_debug("%s: restart transmit\n", __func__);
790 			netif_tx_wake_queue(dev_txq);
791 		}
792 		netif_tx_unlock(priv->dev);
793 	}
794 
795 	spin_unlock(&tqueue->tx_lock);
796 }
797 
798 /**
799  * sxgbe_tx_clean:
800  * @priv: driver private structure
801  * Description: it reclaims resources after transmission completes.
802  */
803 static void sxgbe_tx_all_clean(struct sxgbe_priv_data * const priv)
804 {
805 	u8 queue_num;
806 
807 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
808 		struct sxgbe_tx_queue *tqueue = priv->txq[queue_num];
809 
810 		sxgbe_tx_queue_clean(tqueue);
811 	}
812 
813 	if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
814 		sxgbe_enable_eee_mode(priv);
815 		mod_timer(&priv->eee_ctrl_timer, SXGBE_LPI_TIMER(eee_timer));
816 	}
817 }
818 
819 /**
820  * sxgbe_restart_tx_queue: irq tx error mng function
821  * @priv: driver private structure
822  * Description: it cleans the descriptors and restarts the transmission
823  * in case of errors.
824  */
825 static void sxgbe_restart_tx_queue(struct sxgbe_priv_data *priv, int queue_num)
826 {
827 	struct sxgbe_tx_queue *tx_ring = priv->txq[queue_num];
828 	struct netdev_queue *dev_txq = netdev_get_tx_queue(priv->dev,
829 							   queue_num);
830 
831 	/* stop the queue */
832 	netif_tx_stop_queue(dev_txq);
833 
834 	/* stop the tx dma */
835 	priv->hw->dma->stop_tx_queue(priv->ioaddr, queue_num);
836 
837 	/* free the skbuffs of the ring */
838 	tx_free_ring_skbufs(tx_ring);
839 
840 	/* initialise counters */
841 	tx_ring->cur_tx = 0;
842 	tx_ring->dirty_tx = 0;
843 
844 	/* start the tx dma */
845 	priv->hw->dma->start_tx_queue(priv->ioaddr, queue_num);
846 
847 	priv->dev->stats.tx_errors++;
848 
849 	/* wakeup the queue */
850 	netif_tx_wake_queue(dev_txq);
851 }
852 
853 /**
854  * sxgbe_reset_all_tx_queues: irq tx error mng function
855  * @priv: driver private structure
856  * Description: it cleans all the descriptors and
857  * restarts the transmission on all queues in case of errors.
858  */
859 static void sxgbe_reset_all_tx_queues(struct sxgbe_priv_data *priv)
860 {
861 	int queue_num;
862 
863 	/* On TX timeout of net device, resetting of all queues
864 	 * may not be proper way, revisit this later if needed
865 	 */
866 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
867 		sxgbe_restart_tx_queue(priv, queue_num);
868 }
869 
870 /**
871  * sxgbe_get_hw_features: get XMAC capabilities from the HW cap. register.
872  * @priv: driver private structure
873  * Description:
874  *  new GMAC chip generations have a new register to indicate the
875  *  presence of the optional feature/functions.
876  *  This can be also used to override the value passed through the
877  *  platform and necessary for old MAC10/100 and GMAC chips.
878  */
879 static int sxgbe_get_hw_features(struct sxgbe_priv_data * const priv)
880 {
881 	int rval = 0;
882 	struct sxgbe_hw_features *features = &priv->hw_cap;
883 
884 	/* Read First Capability Register CAP[0] */
885 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 0);
886 	if (rval) {
887 		features->pmt_remote_wake_up =
888 			SXGBE_HW_FEAT_PMT_TEMOTE_WOP(rval);
889 		features->pmt_magic_frame = SXGBE_HW_FEAT_PMT_MAGIC_PKT(rval);
890 		features->atime_stamp = SXGBE_HW_FEAT_IEEE1500_2008(rval);
891 		features->tx_csum_offload =
892 			SXGBE_HW_FEAT_TX_CSUM_OFFLOAD(rval);
893 		features->rx_csum_offload =
894 			SXGBE_HW_FEAT_RX_CSUM_OFFLOAD(rval);
895 		features->multi_macaddr = SXGBE_HW_FEAT_MACADDR_COUNT(rval);
896 		features->tstamp_srcselect = SXGBE_HW_FEAT_TSTMAP_SRC(rval);
897 		features->sa_vlan_insert = SXGBE_HW_FEAT_SRCADDR_VLAN(rval);
898 		features->eee = SXGBE_HW_FEAT_EEE(rval);
899 	}
900 
901 	/* Read First Capability Register CAP[1] */
902 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 1);
903 	if (rval) {
904 		features->rxfifo_size = SXGBE_HW_FEAT_RX_FIFO_SIZE(rval);
905 		features->txfifo_size = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
906 		features->atstmap_hword = SXGBE_HW_FEAT_TX_FIFO_SIZE(rval);
907 		features->dcb_enable = SXGBE_HW_FEAT_DCB(rval);
908 		features->splithead_enable = SXGBE_HW_FEAT_SPLIT_HDR(rval);
909 		features->tcpseg_offload = SXGBE_HW_FEAT_TSO(rval);
910 		features->debug_mem = SXGBE_HW_FEAT_DEBUG_MEM_IFACE(rval);
911 		features->rss_enable = SXGBE_HW_FEAT_RSS(rval);
912 		features->hash_tsize = SXGBE_HW_FEAT_HASH_TABLE_SIZE(rval);
913 		features->l3l4_filer_size = SXGBE_HW_FEAT_L3L4_FILTER_NUM(rval);
914 	}
915 
916 	/* Read First Capability Register CAP[2] */
917 	rval = priv->hw->mac->get_hw_feature(priv->ioaddr, 2);
918 	if (rval) {
919 		features->rx_mtl_queues = SXGBE_HW_FEAT_RX_MTL_QUEUES(rval);
920 		features->tx_mtl_queues = SXGBE_HW_FEAT_TX_MTL_QUEUES(rval);
921 		features->rx_dma_channels = SXGBE_HW_FEAT_RX_DMA_CHANNELS(rval);
922 		features->tx_dma_channels = SXGBE_HW_FEAT_TX_DMA_CHANNELS(rval);
923 		features->pps_output_count = SXGBE_HW_FEAT_PPS_OUTPUTS(rval);
924 		features->aux_input_count = SXGBE_HW_FEAT_AUX_SNAPSHOTS(rval);
925 	}
926 
927 	return rval;
928 }
929 
930 /**
931  * sxgbe_check_ether_addr: check if the MAC addr is valid
932  * @priv: driver private structure
933  * Description:
934  * it is to verify if the MAC address is valid, in case of failures it
935  * generates a random MAC address
936  */
937 static void sxgbe_check_ether_addr(struct sxgbe_priv_data *priv)
938 {
939 	if (!is_valid_ether_addr(priv->dev->dev_addr)) {
940 		priv->hw->mac->get_umac_addr((void __iomem *)
941 					     priv->ioaddr,
942 					     priv->dev->dev_addr, 0);
943 		if (!is_valid_ether_addr(priv->dev->dev_addr))
944 			eth_hw_addr_random(priv->dev);
945 	}
946 	dev_info(priv->device, "device MAC address %pM\n",
947 		 priv->dev->dev_addr);
948 }
949 
950 /**
951  * sxgbe_init_dma_engine: DMA init.
952  * @priv: driver private structure
953  * Description:
954  * It inits the DMA invoking the specific SXGBE callback.
955  * Some DMA parameters can be passed from the platform;
956  * in case of these are not passed a default is kept for the MAC or GMAC.
957  */
958 static int sxgbe_init_dma_engine(struct sxgbe_priv_data *priv)
959 {
960 	int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_map = 0;
961 	int queue_num;
962 
963 	if (priv->plat->dma_cfg) {
964 		pbl = priv->plat->dma_cfg->pbl;
965 		fixed_burst = priv->plat->dma_cfg->fixed_burst;
966 		burst_map = priv->plat->dma_cfg->burst_map;
967 	}
968 
969 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
970 		priv->hw->dma->cha_init(priv->ioaddr, queue_num,
971 					fixed_burst, pbl,
972 					(priv->txq[queue_num])->dma_tx_phy,
973 					(priv->rxq[queue_num])->dma_rx_phy,
974 					priv->dma_tx_size, priv->dma_rx_size);
975 
976 	return priv->hw->dma->init(priv->ioaddr, fixed_burst, burst_map);
977 }
978 
979 /**
980  * sxgbe_init_mtl_engine: MTL init.
981  * @priv: driver private structure
982  * Description:
983  * It inits the MTL invoking the specific SXGBE callback.
984  */
985 static void sxgbe_init_mtl_engine(struct sxgbe_priv_data *priv)
986 {
987 	int queue_num;
988 
989 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
990 		priv->hw->mtl->mtl_set_txfifosize(priv->ioaddr, queue_num,
991 						  priv->hw_cap.tx_mtl_qsize);
992 		priv->hw->mtl->mtl_enable_txqueue(priv->ioaddr, queue_num);
993 	}
994 }
995 
996 /**
997  * sxgbe_disable_mtl_engine: MTL disable.
998  * @priv: driver private structure
999  * Description:
1000  * It disables the MTL queues by invoking the specific SXGBE callback.
1001  */
1002 static void sxgbe_disable_mtl_engine(struct sxgbe_priv_data *priv)
1003 {
1004 	int queue_num;
1005 
1006 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num)
1007 		priv->hw->mtl->mtl_disable_txqueue(priv->ioaddr, queue_num);
1008 }
1009 
1010 
1011 /**
1012  * sxgbe_tx_timer: mitigation sw timer for tx.
1013  * @data: data pointer
1014  * Description:
1015  * This is the timer handler to directly invoke the sxgbe_tx_clean.
1016  */
1017 static void sxgbe_tx_timer(unsigned long data)
1018 {
1019 	struct sxgbe_tx_queue *p = (struct sxgbe_tx_queue *)data;
1020 	sxgbe_tx_queue_clean(p);
1021 }
1022 
1023 /**
1024  * sxgbe_init_tx_coalesce: init tx mitigation options.
1025  * @priv: driver private structure
1026  * Description:
1027  * This inits the transmit coalesce parameters: i.e. timer rate,
1028  * timer handler and default threshold used for enabling the
1029  * interrupt on completion bit.
1030  */
1031 static void sxgbe_tx_init_coalesce(struct sxgbe_priv_data *priv)
1032 {
1033 	u8 queue_num;
1034 
1035 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1036 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1037 		p->tx_coal_frames =  SXGBE_TX_FRAMES;
1038 		p->tx_coal_timer = SXGBE_COAL_TX_TIMER;
1039 		setup_timer(&p->txtimer, sxgbe_tx_timer,
1040 			    (unsigned long)&priv->txq[queue_num]);
1041 		p->txtimer.expires = SXGBE_COAL_TIMER(p->tx_coal_timer);
1042 		add_timer(&p->txtimer);
1043 	}
1044 }
1045 
1046 static void sxgbe_tx_del_timer(struct sxgbe_priv_data *priv)
1047 {
1048 	u8 queue_num;
1049 
1050 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1051 		struct sxgbe_tx_queue *p = priv->txq[queue_num];
1052 		del_timer_sync(&p->txtimer);
1053 	}
1054 }
1055 
1056 /**
1057  *  sxgbe_open - open entry point of the driver
1058  *  @dev : pointer to the device structure.
1059  *  Description:
1060  *  This function is the open entry point of the driver.
1061  *  Return value:
1062  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1063  *  file on failure.
1064  */
1065 static int sxgbe_open(struct net_device *dev)
1066 {
1067 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1068 	int ret, queue_num;
1069 
1070 	clk_prepare_enable(priv->sxgbe_clk);
1071 
1072 	sxgbe_check_ether_addr(priv);
1073 
1074 	/* Init the phy */
1075 	ret = sxgbe_init_phy(dev);
1076 	if (ret) {
1077 		netdev_err(dev, "%s: Cannot attach to PHY (error: %d)\n",
1078 			   __func__, ret);
1079 		goto phy_error;
1080 	}
1081 
1082 	/* Create and initialize the TX/RX descriptors chains. */
1083 	priv->dma_tx_size = SXGBE_ALIGN(DMA_TX_SIZE);
1084 	priv->dma_rx_size = SXGBE_ALIGN(DMA_RX_SIZE);
1085 	priv->dma_buf_sz = SXGBE_ALIGN(DMA_BUFFER_SIZE);
1086 	priv->tx_tc = TC_DEFAULT;
1087 	priv->rx_tc = TC_DEFAULT;
1088 	init_dma_desc_rings(dev);
1089 
1090 	/* DMA initialization and SW reset */
1091 	ret = sxgbe_init_dma_engine(priv);
1092 	if (ret < 0) {
1093 		netdev_err(dev, "%s: DMA initialization failed\n", __func__);
1094 		goto init_error;
1095 	}
1096 
1097 	/*  MTL initialization */
1098 	sxgbe_init_mtl_engine(priv);
1099 
1100 	/* Copy the MAC addr into the HW  */
1101 	priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1102 
1103 	/* Initialize the MAC Core */
1104 	priv->hw->mac->core_init(priv->ioaddr);
1105 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1106 		priv->hw->mac->enable_rxqueue(priv->ioaddr, queue_num);
1107 	}
1108 
1109 	/* Request the IRQ lines */
1110 	ret = devm_request_irq(priv->device, priv->irq, sxgbe_common_interrupt,
1111 			       IRQF_SHARED, dev->name, dev);
1112 	if (unlikely(ret < 0)) {
1113 		netdev_err(dev, "%s: ERROR: allocating the IRQ %d (error: %d)\n",
1114 			   __func__, priv->irq, ret);
1115 		goto init_error;
1116 	}
1117 
1118 	/* If the LPI irq is different from the mac irq
1119 	 * register a dedicated handler
1120 	 */
1121 	if (priv->lpi_irq != dev->irq) {
1122 		ret = devm_request_irq(priv->device, priv->lpi_irq,
1123 				       sxgbe_common_interrupt,
1124 				       IRQF_SHARED, dev->name, dev);
1125 		if (unlikely(ret < 0)) {
1126 			netdev_err(dev, "%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1127 				   __func__, priv->lpi_irq, ret);
1128 			goto init_error;
1129 		}
1130 	}
1131 
1132 	/* Request TX DMA irq lines */
1133 	SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
1134 		ret = devm_request_irq(priv->device,
1135 				       (priv->txq[queue_num])->irq_no,
1136 				       sxgbe_tx_interrupt, 0,
1137 				       dev->name, priv->txq[queue_num]);
1138 		if (unlikely(ret < 0)) {
1139 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1140 				   __func__, priv->irq, ret);
1141 			goto init_error;
1142 		}
1143 	}
1144 
1145 	/* Request RX DMA irq lines */
1146 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
1147 		ret = devm_request_irq(priv->device,
1148 				       (priv->rxq[queue_num])->irq_no,
1149 				       sxgbe_rx_interrupt, 0,
1150 				       dev->name, priv->rxq[queue_num]);
1151 		if (unlikely(ret < 0)) {
1152 			netdev_err(dev, "%s: ERROR: allocating TX IRQ %d (error: %d)\n",
1153 				   __func__, priv->irq, ret);
1154 			goto init_error;
1155 		}
1156 	}
1157 
1158 	/* Enable the MAC Rx/Tx */
1159 	priv->hw->mac->enable_tx(priv->ioaddr, true);
1160 	priv->hw->mac->enable_rx(priv->ioaddr, true);
1161 
1162 	/* Set the HW DMA mode and the COE */
1163 	sxgbe_mtl_operation_mode(priv);
1164 
1165 	/* Extra statistics */
1166 	memset(&priv->xstats, 0, sizeof(struct sxgbe_extra_stats));
1167 
1168 	priv->xstats.tx_threshold = priv->tx_tc;
1169 	priv->xstats.rx_threshold = priv->rx_tc;
1170 
1171 	/* Start the ball rolling... */
1172 	netdev_dbg(dev, "DMA RX/TX processes started...\n");
1173 	priv->hw->dma->start_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1174 	priv->hw->dma->start_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1175 
1176 	if (priv->phydev)
1177 		phy_start(priv->phydev);
1178 
1179 	/* initialise TX coalesce parameters */
1180 	sxgbe_tx_init_coalesce(priv);
1181 
1182 	if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1183 		priv->rx_riwt = SXGBE_MAX_DMA_RIWT;
1184 		priv->hw->dma->rx_watchdog(priv->ioaddr, SXGBE_MAX_DMA_RIWT);
1185 	}
1186 
1187 	priv->tx_lpi_timer = SXGBE_DEFAULT_LPI_TIMER;
1188 	priv->eee_enabled = sxgbe_eee_init(priv);
1189 
1190 	napi_enable(&priv->napi);
1191 	netif_start_queue(dev);
1192 
1193 	return 0;
1194 
1195 init_error:
1196 	free_dma_desc_resources(priv);
1197 	if (priv->phydev)
1198 		phy_disconnect(priv->phydev);
1199 phy_error:
1200 	clk_disable_unprepare(priv->sxgbe_clk);
1201 
1202 	return ret;
1203 }
1204 
1205 /**
1206  *  sxgbe_release - close entry point of the driver
1207  *  @dev : device pointer.
1208  *  Description:
1209  *  This is the stop entry point of the driver.
1210  */
1211 static int sxgbe_release(struct net_device *dev)
1212 {
1213 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1214 
1215 	if (priv->eee_enabled)
1216 		del_timer_sync(&priv->eee_ctrl_timer);
1217 
1218 	/* Stop and disconnect the PHY */
1219 	if (priv->phydev) {
1220 		phy_stop(priv->phydev);
1221 		phy_disconnect(priv->phydev);
1222 		priv->phydev = NULL;
1223 	}
1224 
1225 	netif_tx_stop_all_queues(dev);
1226 
1227 	napi_disable(&priv->napi);
1228 
1229 	/* delete TX timers */
1230 	sxgbe_tx_del_timer(priv);
1231 
1232 	/* Stop TX/RX DMA and clear the descriptors */
1233 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
1234 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
1235 
1236 	/* disable MTL queue */
1237 	sxgbe_disable_mtl_engine(priv);
1238 
1239 	/* Release and free the Rx/Tx resources */
1240 	free_dma_desc_resources(priv);
1241 
1242 	/* Disable the MAC Rx/Tx */
1243 	priv->hw->mac->enable_tx(priv->ioaddr, false);
1244 	priv->hw->mac->enable_rx(priv->ioaddr, false);
1245 
1246 	clk_disable_unprepare(priv->sxgbe_clk);
1247 
1248 	return 0;
1249 }
1250 /* Prepare first Tx descriptor for doing TSO operation */
1251 static void sxgbe_tso_prepare(struct sxgbe_priv_data *priv,
1252 			      struct sxgbe_tx_norm_desc *first_desc,
1253 			      struct sk_buff *skb)
1254 {
1255 	unsigned int total_hdr_len, tcp_hdr_len;
1256 
1257 	/* Write first Tx descriptor with appropriate value */
1258 	tcp_hdr_len = tcp_hdrlen(skb);
1259 	total_hdr_len = skb_transport_offset(skb) + tcp_hdr_len;
1260 
1261 	first_desc->tdes01 = dma_map_single(priv->device, skb->data,
1262 					    total_hdr_len, DMA_TO_DEVICE);
1263 	if (dma_mapping_error(priv->device, first_desc->tdes01))
1264 		pr_err("%s: TX dma mapping failed!!\n", __func__);
1265 
1266 	first_desc->tdes23.tx_rd_des23.first_desc = 1;
1267 	priv->hw->desc->tx_desc_enable_tse(first_desc, 1, total_hdr_len,
1268 					   tcp_hdr_len,
1269 					   skb->len - total_hdr_len);
1270 }
1271 
1272 /**
1273  *  sxgbe_xmit: Tx entry point of the driver
1274  *  @skb : the socket buffer
1275  *  @dev : device pointer
1276  *  Description : this is the tx entry point of the driver.
1277  *  It programs the chain or the ring and supports oversized frames
1278  *  and SG feature.
1279  */
1280 static netdev_tx_t sxgbe_xmit(struct sk_buff *skb, struct net_device *dev)
1281 {
1282 	unsigned int entry, frag_num;
1283 	int cksum_flag = 0;
1284 	struct netdev_queue *dev_txq;
1285 	unsigned txq_index = skb_get_queue_mapping(skb);
1286 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1287 	unsigned int tx_rsize = priv->dma_tx_size;
1288 	struct sxgbe_tx_queue *tqueue = priv->txq[txq_index];
1289 	struct sxgbe_tx_norm_desc *tx_desc, *first_desc;
1290 	struct sxgbe_tx_ctxt_desc *ctxt_desc = NULL;
1291 	int nr_frags = skb_shinfo(skb)->nr_frags;
1292 	int no_pagedlen = skb_headlen(skb);
1293 	int is_jumbo = 0;
1294 	u16 cur_mss = skb_shinfo(skb)->gso_size;
1295 	u32 ctxt_desc_req = 0;
1296 
1297 	/* get the TX queue handle */
1298 	dev_txq = netdev_get_tx_queue(dev, txq_index);
1299 
1300 	if (unlikely(skb_is_gso(skb) && tqueue->prev_mss != cur_mss))
1301 		ctxt_desc_req = 1;
1302 
1303 	if (unlikely(skb_vlan_tag_present(skb) ||
1304 		     ((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1305 		      tqueue->hwts_tx_en)))
1306 		ctxt_desc_req = 1;
1307 
1308 	/* get the spinlock */
1309 	spin_lock(&tqueue->tx_lock);
1310 
1311 	if (priv->tx_path_in_lpi_mode)
1312 		sxgbe_disable_eee_mode(priv);
1313 
1314 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) < nr_frags + 1)) {
1315 		if (!netif_tx_queue_stopped(dev_txq)) {
1316 			netif_tx_stop_queue(dev_txq);
1317 			netdev_err(dev, "%s: Tx Ring is full when %d queue is awake\n",
1318 				   __func__, txq_index);
1319 		}
1320 		/* release the spin lock in case of BUSY */
1321 		spin_unlock(&tqueue->tx_lock);
1322 		return NETDEV_TX_BUSY;
1323 	}
1324 
1325 	entry = tqueue->cur_tx % tx_rsize;
1326 	tx_desc = tqueue->dma_tx + entry;
1327 
1328 	first_desc = tx_desc;
1329 	if (ctxt_desc_req)
1330 		ctxt_desc = (struct sxgbe_tx_ctxt_desc *)first_desc;
1331 
1332 	/* save the skb address */
1333 	tqueue->tx_skbuff[entry] = skb;
1334 
1335 	if (!is_jumbo) {
1336 		if (likely(skb_is_gso(skb))) {
1337 			/* TSO support */
1338 			if (unlikely(tqueue->prev_mss != cur_mss)) {
1339 				priv->hw->desc->tx_ctxt_desc_set_mss(
1340 						ctxt_desc, cur_mss);
1341 				priv->hw->desc->tx_ctxt_desc_set_tcmssv(
1342 						ctxt_desc);
1343 				priv->hw->desc->tx_ctxt_desc_reset_ostc(
1344 						ctxt_desc);
1345 				priv->hw->desc->tx_ctxt_desc_set_ctxt(
1346 						ctxt_desc);
1347 				priv->hw->desc->tx_ctxt_desc_set_owner(
1348 						ctxt_desc);
1349 
1350 				entry = (++tqueue->cur_tx) % tx_rsize;
1351 				first_desc = tqueue->dma_tx + entry;
1352 
1353 				tqueue->prev_mss = cur_mss;
1354 			}
1355 			sxgbe_tso_prepare(priv, first_desc, skb);
1356 		} else {
1357 			tx_desc->tdes01 = dma_map_single(priv->device,
1358 							 skb->data, no_pagedlen, DMA_TO_DEVICE);
1359 			if (dma_mapping_error(priv->device, tx_desc->tdes01))
1360 				netdev_err(dev, "%s: TX dma mapping failed!!\n",
1361 					   __func__);
1362 
1363 			priv->hw->desc->prepare_tx_desc(tx_desc, 1, no_pagedlen,
1364 							no_pagedlen, cksum_flag);
1365 		}
1366 	}
1367 
1368 	for (frag_num = 0; frag_num < nr_frags; frag_num++) {
1369 		const skb_frag_t *frag = &skb_shinfo(skb)->frags[frag_num];
1370 		int len = skb_frag_size(frag);
1371 
1372 		entry = (++tqueue->cur_tx) % tx_rsize;
1373 		tx_desc = tqueue->dma_tx + entry;
1374 		tx_desc->tdes01 = skb_frag_dma_map(priv->device, frag, 0, len,
1375 						   DMA_TO_DEVICE);
1376 
1377 		tqueue->tx_skbuff_dma[entry] = tx_desc->tdes01;
1378 		tqueue->tx_skbuff[entry] = NULL;
1379 
1380 		/* prepare the descriptor */
1381 		priv->hw->desc->prepare_tx_desc(tx_desc, 0, len,
1382 						len, cksum_flag);
1383 		/* memory barrier to flush descriptor */
1384 		wmb();
1385 
1386 		/* set the owner */
1387 		priv->hw->desc->set_tx_owner(tx_desc);
1388 	}
1389 
1390 	/* close the descriptors */
1391 	priv->hw->desc->close_tx_desc(tx_desc);
1392 
1393 	/* memory barrier to flush descriptor */
1394 	wmb();
1395 
1396 	tqueue->tx_count_frames += nr_frags + 1;
1397 	if (tqueue->tx_count_frames > tqueue->tx_coal_frames) {
1398 		priv->hw->desc->clear_tx_ic(tx_desc);
1399 		priv->xstats.tx_reset_ic_bit++;
1400 		mod_timer(&tqueue->txtimer,
1401 			  SXGBE_COAL_TIMER(tqueue->tx_coal_timer));
1402 	} else {
1403 		tqueue->tx_count_frames = 0;
1404 	}
1405 
1406 	/* set owner for first desc */
1407 	priv->hw->desc->set_tx_owner(first_desc);
1408 
1409 	/* memory barrier to flush descriptor */
1410 	wmb();
1411 
1412 	tqueue->cur_tx++;
1413 
1414 	/* display current ring */
1415 	netif_dbg(priv, pktdata, dev, "%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d\n",
1416 		  __func__, tqueue->cur_tx % tx_rsize,
1417 		  tqueue->dirty_tx % tx_rsize, entry,
1418 		  first_desc, nr_frags);
1419 
1420 	if (unlikely(sxgbe_tx_avail(tqueue, tx_rsize) <= (MAX_SKB_FRAGS + 1))) {
1421 		netif_dbg(priv, hw, dev, "%s: stop transmitted packets\n",
1422 			  __func__);
1423 		netif_tx_stop_queue(dev_txq);
1424 	}
1425 
1426 	dev->stats.tx_bytes += skb->len;
1427 
1428 	if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1429 		     tqueue->hwts_tx_en)) {
1430 		/* declare that device is doing timestamping */
1431 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1432 		priv->hw->desc->tx_enable_tstamp(first_desc);
1433 	}
1434 
1435 	if (!tqueue->hwts_tx_en)
1436 		skb_tx_timestamp(skb);
1437 
1438 	priv->hw->dma->enable_dma_transmission(priv->ioaddr, txq_index);
1439 
1440 	spin_unlock(&tqueue->tx_lock);
1441 
1442 	return NETDEV_TX_OK;
1443 }
1444 
1445 /**
1446  * sxgbe_rx_refill: refill used skb preallocated buffers
1447  * @priv: driver private structure
1448  * Description : this is to reallocate the skb for the reception process
1449  * that is based on zero-copy.
1450  */
1451 static void sxgbe_rx_refill(struct sxgbe_priv_data *priv)
1452 {
1453 	unsigned int rxsize = priv->dma_rx_size;
1454 	int bfsize = priv->dma_buf_sz;
1455 	u8 qnum = priv->cur_rx_qnum;
1456 
1457 	for (; priv->rxq[qnum]->cur_rx - priv->rxq[qnum]->dirty_rx > 0;
1458 	     priv->rxq[qnum]->dirty_rx++) {
1459 		unsigned int entry = priv->rxq[qnum]->dirty_rx % rxsize;
1460 		struct sxgbe_rx_norm_desc *p;
1461 
1462 		p = priv->rxq[qnum]->dma_rx + entry;
1463 
1464 		if (likely(priv->rxq[qnum]->rx_skbuff[entry] == NULL)) {
1465 			struct sk_buff *skb;
1466 
1467 			skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1468 
1469 			if (unlikely(skb == NULL))
1470 				break;
1471 
1472 			priv->rxq[qnum]->rx_skbuff[entry] = skb;
1473 			priv->rxq[qnum]->rx_skbuff_dma[entry] =
1474 				dma_map_single(priv->device, skb->data, bfsize,
1475 					       DMA_FROM_DEVICE);
1476 
1477 			p->rdes23.rx_rd_des23.buf2_addr =
1478 				priv->rxq[qnum]->rx_skbuff_dma[entry];
1479 		}
1480 
1481 		/* Added memory barrier for RX descriptor modification */
1482 		wmb();
1483 		priv->hw->desc->set_rx_owner(p);
1484 		priv->hw->desc->set_rx_int_on_com(p);
1485 		/* Added memory barrier for RX descriptor modification */
1486 		wmb();
1487 	}
1488 }
1489 
1490 /**
1491  * sxgbe_rx: receive the frames from the remote host
1492  * @priv: driver private structure
1493  * @limit: napi bugget.
1494  * Description :  this the function called by the napi poll method.
1495  * It gets all the frames inside the ring.
1496  */
1497 static int sxgbe_rx(struct sxgbe_priv_data *priv, int limit)
1498 {
1499 	u8 qnum = priv->cur_rx_qnum;
1500 	unsigned int rxsize = priv->dma_rx_size;
1501 	unsigned int entry = priv->rxq[qnum]->cur_rx;
1502 	unsigned int next_entry = 0;
1503 	unsigned int count = 0;
1504 	int checksum;
1505 	int status;
1506 
1507 	while (count < limit) {
1508 		struct sxgbe_rx_norm_desc *p;
1509 		struct sk_buff *skb;
1510 		int frame_len;
1511 
1512 		p = priv->rxq[qnum]->dma_rx + entry;
1513 
1514 		if (priv->hw->desc->get_rx_owner(p))
1515 			break;
1516 
1517 		count++;
1518 
1519 		next_entry = (++priv->rxq[qnum]->cur_rx) % rxsize;
1520 		prefetch(priv->rxq[qnum]->dma_rx + next_entry);
1521 
1522 		/* Read the status of the incoming frame and also get checksum
1523 		 * value based on whether it is enabled in SXGBE hardware or
1524 		 * not.
1525 		 */
1526 		status = priv->hw->desc->rx_wbstatus(p, &priv->xstats,
1527 						     &checksum);
1528 		if (unlikely(status < 0)) {
1529 			entry = next_entry;
1530 			continue;
1531 		}
1532 		if (unlikely(!priv->rxcsum_insertion))
1533 			checksum = CHECKSUM_NONE;
1534 
1535 		skb = priv->rxq[qnum]->rx_skbuff[entry];
1536 
1537 		if (unlikely(!skb))
1538 			netdev_err(priv->dev, "rx descriptor is not consistent\n");
1539 
1540 		prefetch(skb->data - NET_IP_ALIGN);
1541 		priv->rxq[qnum]->rx_skbuff[entry] = NULL;
1542 
1543 		frame_len = priv->hw->desc->get_rx_frame_len(p);
1544 
1545 		skb_put(skb, frame_len);
1546 
1547 		skb->ip_summed = checksum;
1548 		if (checksum == CHECKSUM_NONE)
1549 			netif_receive_skb(skb);
1550 		else
1551 			napi_gro_receive(&priv->napi, skb);
1552 
1553 		entry = next_entry;
1554 	}
1555 
1556 	sxgbe_rx_refill(priv);
1557 
1558 	return count;
1559 }
1560 
1561 /**
1562  *  sxgbe_poll - sxgbe poll method (NAPI)
1563  *  @napi : pointer to the napi structure.
1564  *  @budget : maximum number of packets that the current CPU can receive from
1565  *	      all interfaces.
1566  *  Description :
1567  *  To look at the incoming frames and clear the tx resources.
1568  */
1569 static int sxgbe_poll(struct napi_struct *napi, int budget)
1570 {
1571 	struct sxgbe_priv_data *priv = container_of(napi,
1572 						    struct sxgbe_priv_data, napi);
1573 	int work_done = 0;
1574 	u8 qnum = priv->cur_rx_qnum;
1575 
1576 	priv->xstats.napi_poll++;
1577 	/* first, clean the tx queues */
1578 	sxgbe_tx_all_clean(priv);
1579 
1580 	work_done = sxgbe_rx(priv, budget);
1581 	if (work_done < budget) {
1582 		napi_complete(napi);
1583 		priv->hw->dma->enable_dma_irq(priv->ioaddr, qnum);
1584 	}
1585 
1586 	return work_done;
1587 }
1588 
1589 /**
1590  *  sxgbe_tx_timeout
1591  *  @dev : Pointer to net device structure
1592  *  Description: this function is called when a packet transmission fails to
1593  *   complete within a reasonable time. The driver will mark the error in the
1594  *   netdev structure and arrange for the device to be reset to a sane state
1595  *   in order to transmit a new packet.
1596  */
1597 static void sxgbe_tx_timeout(struct net_device *dev)
1598 {
1599 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1600 
1601 	sxgbe_reset_all_tx_queues(priv);
1602 }
1603 
1604 /**
1605  *  sxgbe_common_interrupt - main ISR
1606  *  @irq: interrupt number.
1607  *  @dev_id: to pass the net device pointer.
1608  *  Description: this is the main driver interrupt service routine.
1609  *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
1610  *  interrupts.
1611  */
1612 static irqreturn_t sxgbe_common_interrupt(int irq, void *dev_id)
1613 {
1614 	struct net_device *netdev = (struct net_device *)dev_id;
1615 	struct sxgbe_priv_data *priv = netdev_priv(netdev);
1616 	int status;
1617 
1618 	status = priv->hw->mac->host_irq_status(priv->ioaddr, &priv->xstats);
1619 	/* For LPI we need to save the tx status */
1620 	if (status & TX_ENTRY_LPI_MODE) {
1621 		priv->xstats.tx_lpi_entry_n++;
1622 		priv->tx_path_in_lpi_mode = true;
1623 	}
1624 	if (status & TX_EXIT_LPI_MODE) {
1625 		priv->xstats.tx_lpi_exit_n++;
1626 		priv->tx_path_in_lpi_mode = false;
1627 	}
1628 	if (status & RX_ENTRY_LPI_MODE)
1629 		priv->xstats.rx_lpi_entry_n++;
1630 	if (status & RX_EXIT_LPI_MODE)
1631 		priv->xstats.rx_lpi_exit_n++;
1632 
1633 	return IRQ_HANDLED;
1634 }
1635 
1636 /**
1637  *  sxgbe_tx_interrupt - TX DMA ISR
1638  *  @irq: interrupt number.
1639  *  @dev_id: to pass the net device pointer.
1640  *  Description: this is the tx dma interrupt service routine.
1641  */
1642 static irqreturn_t sxgbe_tx_interrupt(int irq, void *dev_id)
1643 {
1644 	int status;
1645 	struct sxgbe_tx_queue *txq = (struct sxgbe_tx_queue *)dev_id;
1646 	struct sxgbe_priv_data *priv = txq->priv_ptr;
1647 
1648 	/* get the channel status */
1649 	status = priv->hw->dma->tx_dma_int_status(priv->ioaddr, txq->queue_no,
1650 						  &priv->xstats);
1651 	/* check for normal path */
1652 	if (likely((status & handle_tx)))
1653 		napi_schedule(&priv->napi);
1654 
1655 	/* check for unrecoverable error */
1656 	if (unlikely((status & tx_hard_error)))
1657 		sxgbe_restart_tx_queue(priv, txq->queue_no);
1658 
1659 	/* check for TC configuration change */
1660 	if (unlikely((status & tx_bump_tc) &&
1661 		     (priv->tx_tc != SXGBE_MTL_SFMODE) &&
1662 		     (priv->tx_tc < 512))) {
1663 		/* step of TX TC is 32 till 128, otherwise 64 */
1664 		priv->tx_tc += (priv->tx_tc < 128) ? 32 : 64;
1665 		priv->hw->mtl->set_tx_mtl_mode(priv->ioaddr,
1666 					       txq->queue_no, priv->tx_tc);
1667 		priv->xstats.tx_threshold = priv->tx_tc;
1668 	}
1669 
1670 	return IRQ_HANDLED;
1671 }
1672 
1673 /**
1674  *  sxgbe_rx_interrupt - RX DMA ISR
1675  *  @irq: interrupt number.
1676  *  @dev_id: to pass the net device pointer.
1677  *  Description: this is the rx dma interrupt service routine.
1678  */
1679 static irqreturn_t sxgbe_rx_interrupt(int irq, void *dev_id)
1680 {
1681 	int status;
1682 	struct sxgbe_rx_queue *rxq = (struct sxgbe_rx_queue *)dev_id;
1683 	struct sxgbe_priv_data *priv = rxq->priv_ptr;
1684 
1685 	/* get the channel status */
1686 	status = priv->hw->dma->rx_dma_int_status(priv->ioaddr, rxq->queue_no,
1687 						  &priv->xstats);
1688 
1689 	if (likely((status & handle_rx) && (napi_schedule_prep(&priv->napi)))) {
1690 		priv->hw->dma->disable_dma_irq(priv->ioaddr, rxq->queue_no);
1691 		__napi_schedule(&priv->napi);
1692 	}
1693 
1694 	/* check for TC configuration change */
1695 	if (unlikely((status & rx_bump_tc) &&
1696 		     (priv->rx_tc != SXGBE_MTL_SFMODE) &&
1697 		     (priv->rx_tc < 128))) {
1698 		/* step of TC is 32 */
1699 		priv->rx_tc += 32;
1700 		priv->hw->mtl->set_rx_mtl_mode(priv->ioaddr,
1701 					       rxq->queue_no, priv->rx_tc);
1702 		priv->xstats.rx_threshold = priv->rx_tc;
1703 	}
1704 
1705 	return IRQ_HANDLED;
1706 }
1707 
1708 static inline u64 sxgbe_get_stat64(void __iomem *ioaddr, int reg_lo, int reg_hi)
1709 {
1710 	u64 val = readl(ioaddr + reg_lo);
1711 
1712 	val |= ((u64)readl(ioaddr + reg_hi)) << 32;
1713 
1714 	return val;
1715 }
1716 
1717 
1718 /*  sxgbe_get_stats64 - entry point to see statistical information of device
1719  *  @dev : device pointer.
1720  *  @stats : pointer to hold all the statistical information of device.
1721  *  Description:
1722  *  This function is a driver entry point whenever ifconfig command gets
1723  *  executed to see device statistics. Statistics are number of
1724  *  bytes sent or received, errors occurred etc.
1725  *  Return value:
1726  *  This function returns various statistical information of device.
1727  */
1728 static struct rtnl_link_stats64 *sxgbe_get_stats64(struct net_device *dev,
1729 						   struct rtnl_link_stats64 *stats)
1730 {
1731 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1732 	void __iomem *ioaddr = priv->ioaddr;
1733 	u64 count;
1734 
1735 	spin_lock(&priv->stats_lock);
1736 	/* Freeze the counter registers before reading value otherwise it may
1737 	 * get updated by hardware while we are reading them
1738 	 */
1739 	writel(SXGBE_MMC_CTRL_CNT_FRZ, ioaddr + SXGBE_MMC_CTL_REG);
1740 
1741 	stats->rx_bytes = sxgbe_get_stat64(ioaddr,
1742 					   SXGBE_MMC_RXOCTETLO_GCNT_REG,
1743 					   SXGBE_MMC_RXOCTETHI_GCNT_REG);
1744 
1745 	stats->rx_packets = sxgbe_get_stat64(ioaddr,
1746 					     SXGBE_MMC_RXFRAMELO_GBCNT_REG,
1747 					     SXGBE_MMC_RXFRAMEHI_GBCNT_REG);
1748 
1749 	stats->multicast = sxgbe_get_stat64(ioaddr,
1750 					    SXGBE_MMC_RXMULTILO_GCNT_REG,
1751 					    SXGBE_MMC_RXMULTIHI_GCNT_REG);
1752 
1753 	stats->rx_crc_errors = sxgbe_get_stat64(ioaddr,
1754 						SXGBE_MMC_RXCRCERRLO_REG,
1755 						SXGBE_MMC_RXCRCERRHI_REG);
1756 
1757 	stats->rx_length_errors = sxgbe_get_stat64(ioaddr,
1758 						  SXGBE_MMC_RXLENERRLO_REG,
1759 						  SXGBE_MMC_RXLENERRHI_REG);
1760 
1761 	stats->rx_missed_errors = sxgbe_get_stat64(ioaddr,
1762 						   SXGBE_MMC_RXFIFOOVERFLOWLO_GBCNT_REG,
1763 						   SXGBE_MMC_RXFIFOOVERFLOWHI_GBCNT_REG);
1764 
1765 	stats->tx_bytes = sxgbe_get_stat64(ioaddr,
1766 					   SXGBE_MMC_TXOCTETLO_GCNT_REG,
1767 					   SXGBE_MMC_TXOCTETHI_GCNT_REG);
1768 
1769 	count = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GBCNT_REG,
1770 				 SXGBE_MMC_TXFRAMEHI_GBCNT_REG);
1771 
1772 	stats->tx_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXFRAMELO_GCNT_REG,
1773 					    SXGBE_MMC_TXFRAMEHI_GCNT_REG);
1774 	stats->tx_errors = count - stats->tx_errors;
1775 	stats->tx_packets = count;
1776 	stats->tx_fifo_errors = sxgbe_get_stat64(ioaddr, SXGBE_MMC_TXUFLWLO_GBCNT_REG,
1777 						 SXGBE_MMC_TXUFLWHI_GBCNT_REG);
1778 	writel(0, ioaddr + SXGBE_MMC_CTL_REG);
1779 	spin_unlock(&priv->stats_lock);
1780 
1781 	return stats;
1782 }
1783 
1784 /*  sxgbe_set_features - entry point to set offload features of the device.
1785  *  @dev : device pointer.
1786  *  @features : features which are required to be set.
1787  *  Description:
1788  *  This function is a driver entry point and called by Linux kernel whenever
1789  *  any device features are set or reset by user.
1790  *  Return value:
1791  *  This function returns 0 after setting or resetting device features.
1792  */
1793 static int sxgbe_set_features(struct net_device *dev,
1794 			      netdev_features_t features)
1795 {
1796 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1797 	netdev_features_t changed = dev->features ^ features;
1798 
1799 	if (changed & NETIF_F_RXCSUM) {
1800 		if (features & NETIF_F_RXCSUM) {
1801 			priv->hw->mac->enable_rx_csum(priv->ioaddr);
1802 			priv->rxcsum_insertion = true;
1803 		} else {
1804 			priv->hw->mac->disable_rx_csum(priv->ioaddr);
1805 			priv->rxcsum_insertion = false;
1806 		}
1807 	}
1808 
1809 	return 0;
1810 }
1811 
1812 /*  sxgbe_change_mtu - entry point to change MTU size for the device.
1813  *  @dev : device pointer.
1814  *  @new_mtu : the new MTU size for the device.
1815  *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
1816  *  to drive packet transmission. Ethernet has an MTU of 1500 octets
1817  *  (ETH_DATA_LEN). This value can be changed with ifconfig.
1818  *  Return value:
1819  *  0 on success and an appropriate (-)ve integer as defined in errno.h
1820  *  file on failure.
1821  */
1822 static int sxgbe_change_mtu(struct net_device *dev, int new_mtu)
1823 {
1824 	/* RFC 791, page 25, "Every internet module must be able to forward
1825 	 * a datagram of 68 octets without further fragmentation."
1826 	 */
1827 	if (new_mtu < MIN_MTU || (new_mtu > MAX_MTU)) {
1828 		netdev_err(dev, "invalid MTU, MTU should be in between %d and %d\n",
1829 			   MIN_MTU, MAX_MTU);
1830 		return -EINVAL;
1831 	}
1832 
1833 	/* Return if the buffer sizes will not change */
1834 	if (dev->mtu == new_mtu)
1835 		return 0;
1836 
1837 	dev->mtu = new_mtu;
1838 
1839 	if (!netif_running(dev))
1840 		return 0;
1841 
1842 	/* Recevice ring buffer size is needed to be set based on MTU. If MTU is
1843 	 * changed then reinitilisation of the receive ring buffers need to be
1844 	 * done. Hence bring interface down and bring interface back up
1845 	 */
1846 	sxgbe_release(dev);
1847 	return sxgbe_open(dev);
1848 }
1849 
1850 static void sxgbe_set_umac_addr(void __iomem *ioaddr, unsigned char *addr,
1851 				unsigned int reg_n)
1852 {
1853 	unsigned long data;
1854 
1855 	data = (addr[5] << 8) | addr[4];
1856 	/* For MAC Addr registers se have to set the Address Enable (AE)
1857 	 * bit that has no effect on the High Reg 0 where the bit 31 (MO)
1858 	 * is RO.
1859 	 */
1860 	writel(data | SXGBE_HI_REG_AE, ioaddr + SXGBE_ADDR_HIGH(reg_n));
1861 	data = (addr[3] << 24) | (addr[2] << 16) | (addr[1] << 8) | addr[0];
1862 	writel(data, ioaddr + SXGBE_ADDR_LOW(reg_n));
1863 }
1864 
1865 /**
1866  * sxgbe_set_rx_mode - entry point for setting different receive mode of
1867  * a device. unicast, multicast addressing
1868  * @dev : pointer to the device structure
1869  * Description:
1870  * This function is a driver entry point which gets called by the kernel
1871  * whenever different receive mode like unicast, multicast and promiscuous
1872  * must be enabled/disabled.
1873  * Return value:
1874  * void.
1875  */
1876 static void sxgbe_set_rx_mode(struct net_device *dev)
1877 {
1878 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1879 	void __iomem *ioaddr = (void __iomem *)priv->ioaddr;
1880 	unsigned int value = 0;
1881 	u32 mc_filter[2];
1882 	struct netdev_hw_addr *ha;
1883 	int reg = 1;
1884 
1885 	netdev_dbg(dev, "%s: # mcasts %d, # unicast %d\n",
1886 		   __func__, netdev_mc_count(dev), netdev_uc_count(dev));
1887 
1888 	if (dev->flags & IFF_PROMISC) {
1889 		value = SXGBE_FRAME_FILTER_PR;
1890 
1891 	} else if ((netdev_mc_count(dev) > SXGBE_HASH_TABLE_SIZE) ||
1892 		   (dev->flags & IFF_ALLMULTI)) {
1893 		value = SXGBE_FRAME_FILTER_PM;	/* pass all multi */
1894 		writel(0xffffffff, ioaddr + SXGBE_HASH_HIGH);
1895 		writel(0xffffffff, ioaddr + SXGBE_HASH_LOW);
1896 
1897 	} else if (!netdev_mc_empty(dev)) {
1898 		/* Hash filter for multicast */
1899 		value = SXGBE_FRAME_FILTER_HMC;
1900 
1901 		memset(mc_filter, 0, sizeof(mc_filter));
1902 		netdev_for_each_mc_addr(ha, dev) {
1903 			/* The upper 6 bits of the calculated CRC are used to
1904 			 * index the contens of the hash table
1905 			 */
1906 			int bit_nr = bitrev32(~crc32_le(~0, ha->addr, 6)) >> 26;
1907 
1908 			/* The most significant bit determines the register to
1909 			 * use (H/L) while the other 5 bits determine the bit
1910 			 * within the register.
1911 			 */
1912 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
1913 		}
1914 		writel(mc_filter[0], ioaddr + SXGBE_HASH_LOW);
1915 		writel(mc_filter[1], ioaddr + SXGBE_HASH_HIGH);
1916 	}
1917 
1918 	/* Handle multiple unicast addresses (perfect filtering) */
1919 	if (netdev_uc_count(dev) > SXGBE_MAX_PERFECT_ADDRESSES)
1920 		/* Switch to promiscuous mode if more than 16 addrs
1921 		 * are required
1922 		 */
1923 		value |= SXGBE_FRAME_FILTER_PR;
1924 	else {
1925 		netdev_for_each_uc_addr(ha, dev) {
1926 			sxgbe_set_umac_addr(ioaddr, ha->addr, reg);
1927 			reg++;
1928 		}
1929 	}
1930 #ifdef FRAME_FILTER_DEBUG
1931 	/* Enable Receive all mode (to debug filtering_fail errors) */
1932 	value |= SXGBE_FRAME_FILTER_RA;
1933 #endif
1934 	writel(value, ioaddr + SXGBE_FRAME_FILTER);
1935 
1936 	netdev_dbg(dev, "Filter: 0x%08x\n\tHash: HI 0x%08x, LO 0x%08x\n",
1937 		   readl(ioaddr + SXGBE_FRAME_FILTER),
1938 		   readl(ioaddr + SXGBE_HASH_HIGH),
1939 		   readl(ioaddr + SXGBE_HASH_LOW));
1940 }
1941 
1942 #ifdef CONFIG_NET_POLL_CONTROLLER
1943 /**
1944  * sxgbe_poll_controller - entry point for polling receive by device
1945  * @dev : pointer to the device structure
1946  * Description:
1947  * This function is used by NETCONSOLE and other diagnostic tools
1948  * to allow network I/O with interrupts disabled.
1949  * Return value:
1950  * Void.
1951  */
1952 static void sxgbe_poll_controller(struct net_device *dev)
1953 {
1954 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1955 
1956 	disable_irq(priv->irq);
1957 	sxgbe_rx_interrupt(priv->irq, dev);
1958 	enable_irq(priv->irq);
1959 }
1960 #endif
1961 
1962 /*  sxgbe_ioctl - Entry point for the Ioctl
1963  *  @dev: Device pointer.
1964  *  @rq: An IOCTL specefic structure, that can contain a pointer to
1965  *  a proprietary structure used to pass information to the driver.
1966  *  @cmd: IOCTL command
1967  *  Description:
1968  *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
1969  */
1970 static int sxgbe_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1971 {
1972 	struct sxgbe_priv_data *priv = netdev_priv(dev);
1973 	int ret = -EOPNOTSUPP;
1974 
1975 	if (!netif_running(dev))
1976 		return -EINVAL;
1977 
1978 	switch (cmd) {
1979 	case SIOCGMIIPHY:
1980 	case SIOCGMIIREG:
1981 	case SIOCSMIIREG:
1982 		if (!priv->phydev)
1983 			return -EINVAL;
1984 		ret = phy_mii_ioctl(priv->phydev, rq, cmd);
1985 		break;
1986 	default:
1987 		break;
1988 	}
1989 
1990 	return ret;
1991 }
1992 
1993 static const struct net_device_ops sxgbe_netdev_ops = {
1994 	.ndo_open		= sxgbe_open,
1995 	.ndo_start_xmit		= sxgbe_xmit,
1996 	.ndo_stop		= sxgbe_release,
1997 	.ndo_get_stats64	= sxgbe_get_stats64,
1998 	.ndo_change_mtu		= sxgbe_change_mtu,
1999 	.ndo_set_features	= sxgbe_set_features,
2000 	.ndo_set_rx_mode	= sxgbe_set_rx_mode,
2001 	.ndo_tx_timeout		= sxgbe_tx_timeout,
2002 	.ndo_do_ioctl		= sxgbe_ioctl,
2003 #ifdef CONFIG_NET_POLL_CONTROLLER
2004 	.ndo_poll_controller	= sxgbe_poll_controller,
2005 #endif
2006 	.ndo_set_mac_address	= eth_mac_addr,
2007 };
2008 
2009 /* Get the hardware ops */
2010 static void sxgbe_get_ops(struct sxgbe_ops * const ops_ptr)
2011 {
2012 	ops_ptr->mac		= sxgbe_get_core_ops();
2013 	ops_ptr->desc		= sxgbe_get_desc_ops();
2014 	ops_ptr->dma		= sxgbe_get_dma_ops();
2015 	ops_ptr->mtl		= sxgbe_get_mtl_ops();
2016 
2017 	/* set the MDIO communication Address/Data regisers */
2018 	ops_ptr->mii.addr	= SXGBE_MDIO_SCMD_ADD_REG;
2019 	ops_ptr->mii.data	= SXGBE_MDIO_SCMD_DATA_REG;
2020 
2021 	/* Assigning the default link settings
2022 	 * no SXGBE defined default values to be set in registers,
2023 	 * so assigning as 0 for port and duplex
2024 	 */
2025 	ops_ptr->link.port	= 0;
2026 	ops_ptr->link.duplex	= 0;
2027 	ops_ptr->link.speed	= SXGBE_SPEED_10G;
2028 }
2029 
2030 /**
2031  *  sxgbe_hw_init - Init the GMAC device
2032  *  @priv: driver private structure
2033  *  Description: this function checks the HW capability
2034  *  (if supported) and sets the driver's features.
2035  */
2036 static int sxgbe_hw_init(struct sxgbe_priv_data * const priv)
2037 {
2038 	u32 ctrl_ids;
2039 
2040 	priv->hw = kmalloc(sizeof(*priv->hw), GFP_KERNEL);
2041 	if(!priv->hw)
2042 		return -ENOMEM;
2043 
2044 	/* get the hardware ops */
2045 	sxgbe_get_ops(priv->hw);
2046 
2047 	/* get the controller id */
2048 	ctrl_ids = priv->hw->mac->get_controller_version(priv->ioaddr);
2049 	priv->hw->ctrl_uid = (ctrl_ids & 0x00ff0000) >> 16;
2050 	priv->hw->ctrl_id = (ctrl_ids & 0x000000ff);
2051 	pr_info("user ID: 0x%x, Controller ID: 0x%x\n",
2052 		priv->hw->ctrl_uid, priv->hw->ctrl_id);
2053 
2054 	/* get the H/W features */
2055 	if (!sxgbe_get_hw_features(priv))
2056 		pr_info("Hardware features not found\n");
2057 
2058 	if (priv->hw_cap.tx_csum_offload)
2059 		pr_info("TX Checksum offload supported\n");
2060 
2061 	if (priv->hw_cap.rx_csum_offload)
2062 		pr_info("RX Checksum offload supported\n");
2063 
2064 	return 0;
2065 }
2066 
2067 static int sxgbe_sw_reset(void __iomem *addr)
2068 {
2069 	int retry_count = 10;
2070 
2071 	writel(SXGBE_DMA_SOFT_RESET, addr + SXGBE_DMA_MODE_REG);
2072 	while (retry_count--) {
2073 		if (!(readl(addr + SXGBE_DMA_MODE_REG) &
2074 		      SXGBE_DMA_SOFT_RESET))
2075 			break;
2076 		mdelay(10);
2077 	}
2078 
2079 	if (retry_count < 0)
2080 		return -EBUSY;
2081 
2082 	return 0;
2083 }
2084 
2085 /**
2086  * sxgbe_drv_probe
2087  * @device: device pointer
2088  * @plat_dat: platform data pointer
2089  * @addr: iobase memory address
2090  * Description: this is the main probe function used to
2091  * call the alloc_etherdev, allocate the priv structure.
2092  */
2093 struct sxgbe_priv_data *sxgbe_drv_probe(struct device *device,
2094 					struct sxgbe_plat_data *plat_dat,
2095 					void __iomem *addr)
2096 {
2097 	struct sxgbe_priv_data *priv;
2098 	struct net_device *ndev;
2099 	int ret;
2100 	u8 queue_num;
2101 
2102 	ndev = alloc_etherdev_mqs(sizeof(struct sxgbe_priv_data),
2103 				  SXGBE_TX_QUEUES, SXGBE_RX_QUEUES);
2104 	if (!ndev)
2105 		return NULL;
2106 
2107 	SET_NETDEV_DEV(ndev, device);
2108 
2109 	priv = netdev_priv(ndev);
2110 	priv->device = device;
2111 	priv->dev = ndev;
2112 
2113 	sxgbe_set_ethtool_ops(ndev);
2114 	priv->plat = plat_dat;
2115 	priv->ioaddr = addr;
2116 
2117 	ret = sxgbe_sw_reset(priv->ioaddr);
2118 	if (ret)
2119 		goto error_free_netdev;
2120 
2121 	/* Verify driver arguments */
2122 	sxgbe_verify_args();
2123 
2124 	/* Init MAC and get the capabilities */
2125 	ret = sxgbe_hw_init(priv);
2126 	if (ret)
2127 		goto error_free_netdev;
2128 
2129 	/* allocate memory resources for Descriptor rings */
2130 	ret = txring_mem_alloc(priv);
2131 	if (ret)
2132 		goto error_free_hw;
2133 
2134 	ret = rxring_mem_alloc(priv);
2135 	if (ret)
2136 		goto error_free_hw;
2137 
2138 	ndev->netdev_ops = &sxgbe_netdev_ops;
2139 
2140 	ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2141 		NETIF_F_RXCSUM | NETIF_F_TSO | NETIF_F_TSO6 |
2142 		NETIF_F_GRO;
2143 	ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2144 	ndev->watchdog_timeo = msecs_to_jiffies(TX_TIMEO);
2145 
2146 	/* assign filtering support */
2147 	ndev->priv_flags |= IFF_UNICAST_FLT;
2148 
2149 	priv->msg_enable = netif_msg_init(debug, default_msg_level);
2150 
2151 	/* Enable TCP segmentation offload for all DMA channels */
2152 	if (priv->hw_cap.tcpseg_offload) {
2153 		SXGBE_FOR_EACH_QUEUE(SXGBE_TX_QUEUES, queue_num) {
2154 			priv->hw->dma->enable_tso(priv->ioaddr, queue_num);
2155 		}
2156 	}
2157 
2158 	/* Enable Rx checksum offload */
2159 	if (priv->hw_cap.rx_csum_offload) {
2160 		priv->hw->mac->enable_rx_csum(priv->ioaddr);
2161 		priv->rxcsum_insertion = true;
2162 	}
2163 
2164 	/* Initialise pause frame settings */
2165 	priv->rx_pause = 1;
2166 	priv->tx_pause = 1;
2167 
2168 	/* Rx Watchdog is available, enable depend on platform data */
2169 	if (!priv->plat->riwt_off) {
2170 		priv->use_riwt = 1;
2171 		pr_info("Enable RX Mitigation via HW Watchdog Timer\n");
2172 	}
2173 
2174 	netif_napi_add(ndev, &priv->napi, sxgbe_poll, 64);
2175 
2176 	spin_lock_init(&priv->stats_lock);
2177 
2178 	priv->sxgbe_clk = clk_get(priv->device, SXGBE_RESOURCE_NAME);
2179 	if (IS_ERR(priv->sxgbe_clk)) {
2180 		netdev_warn(ndev, "%s: warning: cannot get CSR clock\n",
2181 			    __func__);
2182 		goto error_napi_del;
2183 	}
2184 
2185 	/* If a specific clk_csr value is passed from the platform
2186 	 * this means that the CSR Clock Range selection cannot be
2187 	 * changed at run-time and it is fixed. Viceversa the driver'll try to
2188 	 * set the MDC clock dynamically according to the csr actual
2189 	 * clock input.
2190 	 */
2191 	if (!priv->plat->clk_csr)
2192 		sxgbe_clk_csr_set(priv);
2193 	else
2194 		priv->clk_csr = priv->plat->clk_csr;
2195 
2196 	/* MDIO bus Registration */
2197 	ret = sxgbe_mdio_register(ndev);
2198 	if (ret < 0) {
2199 		netdev_dbg(ndev, "%s: MDIO bus (id: %d) registration failed\n",
2200 			   __func__, priv->plat->bus_id);
2201 		goto error_clk_put;
2202 	}
2203 
2204 	ret = register_netdev(ndev);
2205 	if (ret) {
2206 		pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2207 		goto error_mdio_unregister;
2208 	}
2209 
2210 	sxgbe_check_ether_addr(priv);
2211 
2212 	return priv;
2213 
2214 error_mdio_unregister:
2215 	sxgbe_mdio_unregister(ndev);
2216 error_clk_put:
2217 	clk_put(priv->sxgbe_clk);
2218 error_napi_del:
2219 	netif_napi_del(&priv->napi);
2220 error_free_hw:
2221 	kfree(priv->hw);
2222 error_free_netdev:
2223 	free_netdev(ndev);
2224 
2225 	return NULL;
2226 }
2227 
2228 /**
2229  * sxgbe_drv_remove
2230  * @ndev: net device pointer
2231  * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2232  * changes the link status, releases the DMA descriptor rings.
2233  */
2234 int sxgbe_drv_remove(struct net_device *ndev)
2235 {
2236 	struct sxgbe_priv_data *priv = netdev_priv(ndev);
2237 	u8 queue_num;
2238 
2239 	netdev_info(ndev, "%s: removing driver\n", __func__);
2240 
2241 	SXGBE_FOR_EACH_QUEUE(SXGBE_RX_QUEUES, queue_num) {
2242 		priv->hw->mac->disable_rxqueue(priv->ioaddr, queue_num);
2243 	}
2244 
2245 	priv->hw->dma->stop_rx(priv->ioaddr, SXGBE_RX_QUEUES);
2246 	priv->hw->dma->stop_tx(priv->ioaddr, SXGBE_TX_QUEUES);
2247 
2248 	priv->hw->mac->enable_tx(priv->ioaddr, false);
2249 	priv->hw->mac->enable_rx(priv->ioaddr, false);
2250 
2251 	unregister_netdev(ndev);
2252 
2253 	sxgbe_mdio_unregister(ndev);
2254 
2255 	clk_put(priv->sxgbe_clk);
2256 
2257 	netif_napi_del(&priv->napi);
2258 
2259 	kfree(priv->hw);
2260 
2261 	free_netdev(ndev);
2262 
2263 	return 0;
2264 }
2265 
2266 #ifdef CONFIG_PM
2267 int sxgbe_suspend(struct net_device *ndev)
2268 {
2269 	return 0;
2270 }
2271 
2272 int sxgbe_resume(struct net_device *ndev)
2273 {
2274 	return 0;
2275 }
2276 
2277 int sxgbe_freeze(struct net_device *ndev)
2278 {
2279 	return -ENOSYS;
2280 }
2281 
2282 int sxgbe_restore(struct net_device *ndev)
2283 {
2284 	return -ENOSYS;
2285 }
2286 #endif /* CONFIG_PM */
2287 
2288 /* Driver is configured as Platform driver */
2289 static int __init sxgbe_init(void)
2290 {
2291 	int ret;
2292 
2293 	ret = sxgbe_register_platform();
2294 	if (ret)
2295 		goto err;
2296 	return 0;
2297 err:
2298 	pr_err("driver registration failed\n");
2299 	return ret;
2300 }
2301 
2302 static void __exit sxgbe_exit(void)
2303 {
2304 	sxgbe_unregister_platform();
2305 }
2306 
2307 module_init(sxgbe_init);
2308 module_exit(sxgbe_exit);
2309 
2310 #ifndef MODULE
2311 static int __init sxgbe_cmdline_opt(char *str)
2312 {
2313 	char *opt;
2314 
2315 	if (!str || !*str)
2316 		return -EINVAL;
2317 	while ((opt = strsep(&str, ",")) != NULL) {
2318 		if (!strncmp(opt, "eee_timer:", 6)) {
2319 			if (kstrtoint(opt + 10, 0, &eee_timer))
2320 				goto err;
2321 		}
2322 	}
2323 	return 0;
2324 
2325 err:
2326 	pr_err("%s: ERROR broken module parameter conversion\n", __func__);
2327 	return -EINVAL;
2328 }
2329 
2330 __setup("sxgbeeth=", sxgbe_cmdline_opt);
2331 #endif /* MODULE */
2332 
2333 
2334 
2335 MODULE_DESCRIPTION("SAMSUNG 10G/2.5G/1G Ethernet PLATFORM driver");
2336 
2337 MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
2338 MODULE_PARM_DESC(eee_timer, "EEE-LPI Default LS timer value");
2339 
2340 MODULE_AUTHOR("Siva Reddy Kallam <siva.kallam@samsung.com>");
2341 MODULE_AUTHOR("ByungHo An <bh74.an@samsung.com>");
2342 MODULE_AUTHOR("Girish K S <ks.giri@samsung.com>");
2343 MODULE_AUTHOR("Vipul Pandya <vipul.pandya@samsung.com>");
2344 
2345 MODULE_LICENSE("GPL");
2346