xref: /openbmc/linux/drivers/net/ethernet/realtek/8139cp.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
2 /*
3 	Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
4 
5 	Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 	Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 	Copyright 2001 Manfred Spraul				    [natsemi.c]
8 	Copyright 1999-2001 by Donald Becker.			    [natsemi.c]
9        	Written 1997-2001 by Donald Becker.			    [8139too.c]
10 	Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
11 
12 	This software may be used and distributed according to the terms of
13 	the GNU General Public License (GPL), incorporated herein by reference.
14 	Drivers based on or derived from this code fall under the GPL and must
15 	retain the authorship, copyright and license notice.  This file is not
16 	a complete program and may only be used when the entire operating
17 	system is licensed under the GPL.
18 
19 	See the file COPYING in this distribution for more information.
20 
21 	Contributors:
22 
23 		Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 		PCI suspend/resume  - Felipe Damasio <felipewd@terra.com.br>
25 		LinkChg interrupt   - Felipe Damasio <felipewd@terra.com.br>
26 
27 	TODO:
28 	* Test Tx checksumming thoroughly
29 
30 	Low priority TODO:
31 	* Complete reset on PciErr
32 	* Consider Rx interrupt mitigation using TimerIntr
33 	* Investigate using skb->priority with h/w VLAN priority
34 	* Investigate using High Priority Tx Queue with skb->priority
35 	* Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 	* Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 	* Implement Tx software interrupt mitigation via
38 	  Tx descriptor bit
39 	* The real minimum of CP_MIN_MTU is 4 bytes.  However,
40 	  for this to be supported, one must(?) turn on packet padding.
41 	* Support external MII transceivers (patch available)
42 
43 	NOTES:
44 	* TX checksumming is considered experimental.  It is off by
45 	  default, use ethtool to turn it on.
46 
47  */
48 
49 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
50 
51 #define DRV_NAME		"8139cp"
52 #define DRV_VERSION		"1.3"
53 #define DRV_RELDATE		"Mar 22, 2004"
54 
55 
56 #include <linux/module.h>
57 #include <linux/moduleparam.h>
58 #include <linux/kernel.h>
59 #include <linux/compiler.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/init.h>
63 #include <linux/interrupt.h>
64 #include <linux/pci.h>
65 #include <linux/dma-mapping.h>
66 #include <linux/delay.h>
67 #include <linux/ethtool.h>
68 #include <linux/gfp.h>
69 #include <linux/mii.h>
70 #include <linux/if_vlan.h>
71 #include <linux/crc32.h>
72 #include <linux/in.h>
73 #include <linux/ip.h>
74 #include <linux/tcp.h>
75 #include <linux/udp.h>
76 #include <linux/cache.h>
77 #include <asm/io.h>
78 #include <asm/irq.h>
79 #include <asm/uaccess.h>
80 
81 /* These identify the driver base version and may not be removed. */
82 static char version[] =
83 DRV_NAME ": 10/100 PCI Ethernet driver v" DRV_VERSION " (" DRV_RELDATE ")\n";
84 
85 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
86 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
87 MODULE_VERSION(DRV_VERSION);
88 MODULE_LICENSE("GPL");
89 
90 static int debug = -1;
91 module_param(debug, int, 0);
92 MODULE_PARM_DESC (debug, "8139cp: bitmapped message enable number");
93 
94 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
95    The RTL chips use a 64 element hash table based on the Ethernet CRC.  */
96 static int multicast_filter_limit = 32;
97 module_param(multicast_filter_limit, int, 0);
98 MODULE_PARM_DESC (multicast_filter_limit, "8139cp: maximum number of filtered multicast addresses");
99 
100 #define CP_DEF_MSG_ENABLE	(NETIF_MSG_DRV		| \
101 				 NETIF_MSG_PROBE 	| \
102 				 NETIF_MSG_LINK)
103 #define CP_NUM_STATS		14	/* struct cp_dma_stats, plus one */
104 #define CP_STATS_SIZE		64	/* size in bytes of DMA stats block */
105 #define CP_REGS_SIZE		(0xff + 1)
106 #define CP_REGS_VER		1		/* version 1 */
107 #define CP_RX_RING_SIZE		64
108 #define CP_TX_RING_SIZE		64
109 #define CP_RING_BYTES		\
110 		((sizeof(struct cp_desc) * CP_RX_RING_SIZE) +	\
111 		 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) +	\
112 		 CP_STATS_SIZE)
113 #define NEXT_TX(N)		(((N) + 1) & (CP_TX_RING_SIZE - 1))
114 #define NEXT_RX(N)		(((N) + 1) & (CP_RX_RING_SIZE - 1))
115 #define TX_BUFFS_AVAIL(CP)					\
116 	(((CP)->tx_tail <= (CP)->tx_head) ?			\
117 	  (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head :	\
118 	  (CP)->tx_tail - (CP)->tx_head - 1)
119 
120 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer.*/
121 #define CP_INTERNAL_PHY		32
122 
123 /* The following settings are log_2(bytes)-4:  0 == 16 bytes .. 6==1024, 7==end of packet. */
124 #define RX_FIFO_THRESH		5	/* Rx buffer level before first PCI xfer.  */
125 #define RX_DMA_BURST		4	/* Maximum PCI burst, '4' is 256 */
126 #define TX_DMA_BURST		6	/* Maximum PCI burst, '6' is 1024 */
127 #define TX_EARLY_THRESH		256	/* Early Tx threshold, in bytes */
128 
129 /* Time in jiffies before concluding the transmitter is hung. */
130 #define TX_TIMEOUT		(6*HZ)
131 
132 /* hardware minimum and maximum for a single frame's data payload */
133 #define CP_MIN_MTU		60	/* TODO: allow lower, but pad */
134 #define CP_MAX_MTU		4096
135 
136 enum {
137 	/* NIC register offsets */
138 	MAC0		= 0x00,	/* Ethernet hardware address. */
139 	MAR0		= 0x08,	/* Multicast filter. */
140 	StatsAddr	= 0x10,	/* 64-bit start addr of 64-byte DMA stats blk */
141 	TxRingAddr	= 0x20, /* 64-bit start addr of Tx ring */
142 	HiTxRingAddr	= 0x28, /* 64-bit start addr of high priority Tx ring */
143 	Cmd		= 0x37, /* Command register */
144 	IntrMask	= 0x3C, /* Interrupt mask */
145 	IntrStatus	= 0x3E, /* Interrupt status */
146 	TxConfig	= 0x40, /* Tx configuration */
147 	ChipVersion	= 0x43, /* 8-bit chip version, inside TxConfig */
148 	RxConfig	= 0x44, /* Rx configuration */
149 	RxMissed	= 0x4C,	/* 24 bits valid, write clears */
150 	Cfg9346		= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
151 	Config1		= 0x52, /* Config1 */
152 	Config3		= 0x59, /* Config3 */
153 	Config4		= 0x5A, /* Config4 */
154 	MultiIntr	= 0x5C, /* Multiple interrupt select */
155 	BasicModeCtrl	= 0x62,	/* MII BMCR */
156 	BasicModeStatus	= 0x64, /* MII BMSR */
157 	NWayAdvert	= 0x66, /* MII ADVERTISE */
158 	NWayLPAR	= 0x68, /* MII LPA */
159 	NWayExpansion	= 0x6A, /* MII Expansion */
160 	TxDmaOkLowDesc  = 0x82, /* Low 16 bit address of a Tx descriptor. */
161 	Config5		= 0xD8,	/* Config5 */
162 	TxPoll		= 0xD9,	/* Tell chip to check Tx descriptors for work */
163 	RxMaxSize	= 0xDA, /* Max size of an Rx packet (8169 only) */
164 	CpCmd		= 0xE0, /* C+ Command register (C+ mode only) */
165 	IntrMitigate	= 0xE2,	/* rx/tx interrupt mitigation control */
166 	RxRingAddr	= 0xE4, /* 64-bit start addr of Rx ring */
167 	TxThresh	= 0xEC, /* Early Tx threshold */
168 	OldRxBufAddr	= 0x30, /* DMA address of Rx ring buffer (C mode) */
169 	OldTSD0		= 0x10, /* DMA address of first Tx desc (C mode) */
170 
171 	/* Tx and Rx status descriptors */
172 	DescOwn		= (1 << 31), /* Descriptor is owned by NIC */
173 	RingEnd		= (1 << 30), /* End of descriptor ring */
174 	FirstFrag	= (1 << 29), /* First segment of a packet */
175 	LastFrag	= (1 << 28), /* Final segment of a packet */
176 	LargeSend	= (1 << 27), /* TCP Large Send Offload (TSO) */
177 	MSSShift	= 16,	     /* MSS value position */
178 	MSSMask		= 0xfff,     /* MSS value: 11 bits */
179 	TxError		= (1 << 23), /* Tx error summary */
180 	RxError		= (1 << 20), /* Rx error summary */
181 	IPCS		= (1 << 18), /* Calculate IP checksum */
182 	UDPCS		= (1 << 17), /* Calculate UDP/IP checksum */
183 	TCPCS		= (1 << 16), /* Calculate TCP/IP checksum */
184 	TxVlanTag	= (1 << 17), /* Add VLAN tag */
185 	RxVlanTagged	= (1 << 16), /* Rx VLAN tag available */
186 	IPFail		= (1 << 15), /* IP checksum failed */
187 	UDPFail		= (1 << 14), /* UDP/IP checksum failed */
188 	TCPFail		= (1 << 13), /* TCP/IP checksum failed */
189 	NormalTxPoll	= (1 << 6),  /* One or more normal Tx packets to send */
190 	PID1		= (1 << 17), /* 2 protocol id bits:  0==non-IP, */
191 	PID0		= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
192 	RxProtoTCP	= 1,
193 	RxProtoUDP	= 2,
194 	RxProtoIP	= 3,
195 	TxFIFOUnder	= (1 << 25), /* Tx FIFO underrun */
196 	TxOWC		= (1 << 22), /* Tx Out-of-window collision */
197 	TxLinkFail	= (1 << 21), /* Link failed during Tx of packet */
198 	TxMaxCol	= (1 << 20), /* Tx aborted due to excessive collisions */
199 	TxColCntShift	= 16,	     /* Shift, to get 4-bit Tx collision cnt */
200 	TxColCntMask	= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
201 	RxErrFrame	= (1 << 27), /* Rx frame alignment error */
202 	RxMcast		= (1 << 26), /* Rx multicast packet rcv'd */
203 	RxErrCRC	= (1 << 18), /* Rx CRC error */
204 	RxErrRunt	= (1 << 19), /* Rx error, packet < 64 bytes */
205 	RxErrLong	= (1 << 21), /* Rx error, packet > 4096 bytes */
206 	RxErrFIFO	= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
207 
208 	/* StatsAddr register */
209 	DumpStats	= (1 << 3),  /* Begin stats dump */
210 
211 	/* RxConfig register */
212 	RxCfgFIFOShift	= 13,	     /* Shift, to get Rx FIFO thresh value */
213 	RxCfgDMAShift	= 8,	     /* Shift, to get Rx Max DMA value */
214 	AcceptErr	= 0x20,	     /* Accept packets with CRC errors */
215 	AcceptRunt	= 0x10,	     /* Accept runt (<64 bytes) packets */
216 	AcceptBroadcast	= 0x08,	     /* Accept broadcast packets */
217 	AcceptMulticast	= 0x04,	     /* Accept multicast packets */
218 	AcceptMyPhys	= 0x02,	     /* Accept pkts with our MAC as dest */
219 	AcceptAllPhys	= 0x01,	     /* Accept all pkts w/ physical dest */
220 
221 	/* IntrMask / IntrStatus registers */
222 	PciErr		= (1 << 15), /* System error on the PCI bus */
223 	TimerIntr	= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
224 	LenChg		= (1 << 13), /* Cable length change */
225 	SWInt		= (1 << 8),  /* Software-requested interrupt */
226 	TxEmpty		= (1 << 7),  /* No Tx descriptors available */
227 	RxFIFOOvr	= (1 << 6),  /* Rx FIFO Overflow */
228 	LinkChg		= (1 << 5),  /* Packet underrun, or link change */
229 	RxEmpty		= (1 << 4),  /* No Rx descriptors available */
230 	TxErr		= (1 << 3),  /* Tx error */
231 	TxOK		= (1 << 2),  /* Tx packet sent */
232 	RxErr		= (1 << 1),  /* Rx error */
233 	RxOK		= (1 << 0),  /* Rx packet received */
234 	IntrResvd	= (1 << 10), /* reserved, according to RealTek engineers,
235 					but hardware likes to raise it */
236 
237 	IntrAll		= PciErr | TimerIntr | LenChg | SWInt | TxEmpty |
238 			  RxFIFOOvr | LinkChg | RxEmpty | TxErr | TxOK |
239 			  RxErr | RxOK | IntrResvd,
240 
241 	/* C mode command register */
242 	CmdReset	= (1 << 4),  /* Enable to reset; self-clearing */
243 	RxOn		= (1 << 3),  /* Rx mode enable */
244 	TxOn		= (1 << 2),  /* Tx mode enable */
245 
246 	/* C+ mode command register */
247 	RxVlanOn	= (1 << 6),  /* Rx VLAN de-tagging enable */
248 	RxChkSum	= (1 << 5),  /* Rx checksum offload enable */
249 	PCIDAC		= (1 << 4),  /* PCI Dual Address Cycle (64-bit PCI) */
250 	PCIMulRW	= (1 << 3),  /* Enable PCI read/write multiple */
251 	CpRxOn		= (1 << 1),  /* Rx mode enable */
252 	CpTxOn		= (1 << 0),  /* Tx mode enable */
253 
254 	/* Cfg9436 EEPROM control register */
255 	Cfg9346_Lock	= 0x00,	     /* Lock ConfigX/MII register access */
256 	Cfg9346_Unlock	= 0xC0,	     /* Unlock ConfigX/MII register access */
257 
258 	/* TxConfig register */
259 	IFG		= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
260 	TxDMAShift	= 8,	     /* DMA burst value (0-7) is shift this many bits */
261 
262 	/* Early Tx Threshold register */
263 	TxThreshMask	= 0x3f,	     /* Mask bits 5-0 */
264 	TxThreshMax	= 2048,	     /* Max early Tx threshold */
265 
266 	/* Config1 register */
267 	DriverLoaded	= (1 << 5),  /* Software marker, driver is loaded */
268 	LWACT           = (1 << 4),  /* LWAKE active mode */
269 	PMEnable	= (1 << 0),  /* Enable various PM features of chip */
270 
271 	/* Config3 register */
272 	PARMEnable	= (1 << 6),  /* Enable auto-loading of PHY parms */
273 	MagicPacket     = (1 << 5),  /* Wake up when receives a Magic Packet */
274 	LinkUp          = (1 << 4),  /* Wake up when the cable connection is re-established */
275 
276 	/* Config4 register */
277 	LWPTN           = (1 << 1),  /* LWAKE Pattern */
278 	LWPME           = (1 << 4),  /* LANWAKE vs PMEB */
279 
280 	/* Config5 register */
281 	BWF             = (1 << 6),  /* Accept Broadcast wakeup frame */
282 	MWF             = (1 << 5),  /* Accept Multicast wakeup frame */
283 	UWF             = (1 << 4),  /* Accept Unicast wakeup frame */
284 	LANWake         = (1 << 1),  /* Enable LANWake signal */
285 	PMEStatus	= (1 << 0),  /* PME status can be reset by PCI RST# */
286 
287 	cp_norx_intr_mask = PciErr | LinkChg | TxOK | TxErr | TxEmpty,
288 	cp_rx_intr_mask = RxOK | RxErr | RxEmpty | RxFIFOOvr,
289 	cp_intr_mask = cp_rx_intr_mask | cp_norx_intr_mask,
290 };
291 
292 static const unsigned int cp_rx_config =
293 	  (RX_FIFO_THRESH << RxCfgFIFOShift) |
294 	  (RX_DMA_BURST << RxCfgDMAShift);
295 
296 struct cp_desc {
297 	__le32		opts1;
298 	__le32		opts2;
299 	__le64		addr;
300 };
301 
302 struct cp_dma_stats {
303 	__le64			tx_ok;
304 	__le64			rx_ok;
305 	__le64			tx_err;
306 	__le32			rx_err;
307 	__le16			rx_fifo;
308 	__le16			frame_align;
309 	__le32			tx_ok_1col;
310 	__le32			tx_ok_mcol;
311 	__le64			rx_ok_phys;
312 	__le64			rx_ok_bcast;
313 	__le32			rx_ok_mcast;
314 	__le16			tx_abort;
315 	__le16			tx_underrun;
316 } __packed;
317 
318 struct cp_extra_stats {
319 	unsigned long		rx_frags;
320 };
321 
322 struct cp_private {
323 	void			__iomem *regs;
324 	struct net_device	*dev;
325 	spinlock_t		lock;
326 	u32			msg_enable;
327 
328 	struct napi_struct	napi;
329 
330 	struct pci_dev		*pdev;
331 	u32			rx_config;
332 	u16			cpcmd;
333 
334 	struct cp_extra_stats	cp_stats;
335 
336 	unsigned		rx_head		____cacheline_aligned;
337 	unsigned		rx_tail;
338 	struct cp_desc		*rx_ring;
339 	struct sk_buff		*rx_skb[CP_RX_RING_SIZE];
340 
341 	unsigned		tx_head		____cacheline_aligned;
342 	unsigned		tx_tail;
343 	struct cp_desc		*tx_ring;
344 	struct sk_buff		*tx_skb[CP_TX_RING_SIZE];
345 	u32			tx_opts[CP_TX_RING_SIZE];
346 
347 	unsigned		rx_buf_sz;
348 	unsigned		wol_enabled : 1; /* Is Wake-on-LAN enabled? */
349 
350 	dma_addr_t		ring_dma;
351 
352 	struct mii_if_info	mii_if;
353 };
354 
355 #define cpr8(reg)	readb(cp->regs + (reg))
356 #define cpr16(reg)	readw(cp->regs + (reg))
357 #define cpr32(reg)	readl(cp->regs + (reg))
358 #define cpw8(reg,val)	writeb((val), cp->regs + (reg))
359 #define cpw16(reg,val)	writew((val), cp->regs + (reg))
360 #define cpw32(reg,val)	writel((val), cp->regs + (reg))
361 #define cpw8_f(reg,val) do {			\
362 	writeb((val), cp->regs + (reg));	\
363 	readb(cp->regs + (reg));		\
364 	} while (0)
365 #define cpw16_f(reg,val) do {			\
366 	writew((val), cp->regs + (reg));	\
367 	readw(cp->regs + (reg));		\
368 	} while (0)
369 #define cpw32_f(reg,val) do {			\
370 	writel((val), cp->regs + (reg));	\
371 	readl(cp->regs + (reg));		\
372 	} while (0)
373 
374 
375 static void __cp_set_rx_mode (struct net_device *dev);
376 static void cp_tx (struct cp_private *cp);
377 static void cp_clean_rings (struct cp_private *cp);
378 #ifdef CONFIG_NET_POLL_CONTROLLER
379 static void cp_poll_controller(struct net_device *dev);
380 #endif
381 static int cp_get_eeprom_len(struct net_device *dev);
382 static int cp_get_eeprom(struct net_device *dev,
383 			 struct ethtool_eeprom *eeprom, u8 *data);
384 static int cp_set_eeprom(struct net_device *dev,
385 			 struct ethtool_eeprom *eeprom, u8 *data);
386 
387 static struct {
388 	const char str[ETH_GSTRING_LEN];
389 } ethtool_stats_keys[] = {
390 	{ "tx_ok" },
391 	{ "rx_ok" },
392 	{ "tx_err" },
393 	{ "rx_err" },
394 	{ "rx_fifo" },
395 	{ "frame_align" },
396 	{ "tx_ok_1col" },
397 	{ "tx_ok_mcol" },
398 	{ "rx_ok_phys" },
399 	{ "rx_ok_bcast" },
400 	{ "rx_ok_mcast" },
401 	{ "tx_abort" },
402 	{ "tx_underrun" },
403 	{ "rx_frags" },
404 };
405 
406 
407 static inline void cp_set_rxbufsize (struct cp_private *cp)
408 {
409 	unsigned int mtu = cp->dev->mtu;
410 
411 	if (mtu > ETH_DATA_LEN)
412 		/* MTU + ethernet header + FCS + optional VLAN tag */
413 		cp->rx_buf_sz = mtu + ETH_HLEN + 8;
414 	else
415 		cp->rx_buf_sz = PKT_BUF_SZ;
416 }
417 
418 static inline void cp_rx_skb (struct cp_private *cp, struct sk_buff *skb,
419 			      struct cp_desc *desc)
420 {
421 	u32 opts2 = le32_to_cpu(desc->opts2);
422 
423 	skb->protocol = eth_type_trans (skb, cp->dev);
424 
425 	cp->dev->stats.rx_packets++;
426 	cp->dev->stats.rx_bytes += skb->len;
427 
428 	if (opts2 & RxVlanTagged)
429 		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), swab16(opts2 & 0xffff));
430 
431 	napi_gro_receive(&cp->napi, skb);
432 }
433 
434 static void cp_rx_err_acct (struct cp_private *cp, unsigned rx_tail,
435 			    u32 status, u32 len)
436 {
437 	netif_dbg(cp, rx_err, cp->dev, "rx err, slot %d status 0x%x len %d\n",
438 		  rx_tail, status, len);
439 	cp->dev->stats.rx_errors++;
440 	if (status & RxErrFrame)
441 		cp->dev->stats.rx_frame_errors++;
442 	if (status & RxErrCRC)
443 		cp->dev->stats.rx_crc_errors++;
444 	if ((status & RxErrRunt) || (status & RxErrLong))
445 		cp->dev->stats.rx_length_errors++;
446 	if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag))
447 		cp->dev->stats.rx_length_errors++;
448 	if (status & RxErrFIFO)
449 		cp->dev->stats.rx_fifo_errors++;
450 }
451 
452 static inline unsigned int cp_rx_csum_ok (u32 status)
453 {
454 	unsigned int protocol = (status >> 16) & 0x3;
455 
456 	if (((protocol == RxProtoTCP) && !(status & TCPFail)) ||
457 	    ((protocol == RxProtoUDP) && !(status & UDPFail)))
458 		return 1;
459 	else
460 		return 0;
461 }
462 
463 static int cp_rx_poll(struct napi_struct *napi, int budget)
464 {
465 	struct cp_private *cp = container_of(napi, struct cp_private, napi);
466 	struct net_device *dev = cp->dev;
467 	unsigned int rx_tail = cp->rx_tail;
468 	int rx;
469 
470 rx_status_loop:
471 	rx = 0;
472 	cpw16(IntrStatus, cp_rx_intr_mask);
473 
474 	while (rx < budget) {
475 		u32 status, len;
476 		dma_addr_t mapping, new_mapping;
477 		struct sk_buff *skb, *new_skb;
478 		struct cp_desc *desc;
479 		const unsigned buflen = cp->rx_buf_sz;
480 
481 		skb = cp->rx_skb[rx_tail];
482 		BUG_ON(!skb);
483 
484 		desc = &cp->rx_ring[rx_tail];
485 		status = le32_to_cpu(desc->opts1);
486 		if (status & DescOwn)
487 			break;
488 
489 		len = (status & 0x1fff) - 4;
490 		mapping = le64_to_cpu(desc->addr);
491 
492 		if ((status & (FirstFrag | LastFrag)) != (FirstFrag | LastFrag)) {
493 			/* we don't support incoming fragmented frames.
494 			 * instead, we attempt to ensure that the
495 			 * pre-allocated RX skbs are properly sized such
496 			 * that RX fragments are never encountered
497 			 */
498 			cp_rx_err_acct(cp, rx_tail, status, len);
499 			dev->stats.rx_dropped++;
500 			cp->cp_stats.rx_frags++;
501 			goto rx_next;
502 		}
503 
504 		if (status & (RxError | RxErrFIFO)) {
505 			cp_rx_err_acct(cp, rx_tail, status, len);
506 			goto rx_next;
507 		}
508 
509 		netif_dbg(cp, rx_status, dev, "rx slot %d status 0x%x len %d\n",
510 			  rx_tail, status, len);
511 
512 		new_skb = napi_alloc_skb(napi, buflen);
513 		if (!new_skb) {
514 			dev->stats.rx_dropped++;
515 			goto rx_next;
516 		}
517 
518 		new_mapping = dma_map_single(&cp->pdev->dev, new_skb->data, buflen,
519 					 PCI_DMA_FROMDEVICE);
520 		if (dma_mapping_error(&cp->pdev->dev, new_mapping)) {
521 			dev->stats.rx_dropped++;
522 			kfree_skb(new_skb);
523 			goto rx_next;
524 		}
525 
526 		dma_unmap_single(&cp->pdev->dev, mapping,
527 				 buflen, PCI_DMA_FROMDEVICE);
528 
529 		/* Handle checksum offloading for incoming packets. */
530 		if (cp_rx_csum_ok(status))
531 			skb->ip_summed = CHECKSUM_UNNECESSARY;
532 		else
533 			skb_checksum_none_assert(skb);
534 
535 		skb_put(skb, len);
536 
537 		cp->rx_skb[rx_tail] = new_skb;
538 
539 		cp_rx_skb(cp, skb, desc);
540 		rx++;
541 		mapping = new_mapping;
542 
543 rx_next:
544 		cp->rx_ring[rx_tail].opts2 = 0;
545 		cp->rx_ring[rx_tail].addr = cpu_to_le64(mapping);
546 		if (rx_tail == (CP_RX_RING_SIZE - 1))
547 			desc->opts1 = cpu_to_le32(DescOwn | RingEnd |
548 						  cp->rx_buf_sz);
549 		else
550 			desc->opts1 = cpu_to_le32(DescOwn | cp->rx_buf_sz);
551 		rx_tail = NEXT_RX(rx_tail);
552 	}
553 
554 	cp->rx_tail = rx_tail;
555 
556 	/* if we did not reach work limit, then we're done with
557 	 * this round of polling
558 	 */
559 	if (rx < budget) {
560 		unsigned long flags;
561 
562 		if (cpr16(IntrStatus) & cp_rx_intr_mask)
563 			goto rx_status_loop;
564 
565 		napi_gro_flush(napi, false);
566 		spin_lock_irqsave(&cp->lock, flags);
567 		__napi_complete(napi);
568 		cpw16_f(IntrMask, cp_intr_mask);
569 		spin_unlock_irqrestore(&cp->lock, flags);
570 	}
571 
572 	return rx;
573 }
574 
575 static irqreturn_t cp_interrupt (int irq, void *dev_instance)
576 {
577 	struct net_device *dev = dev_instance;
578 	struct cp_private *cp;
579 	int handled = 0;
580 	u16 status;
581 
582 	if (unlikely(dev == NULL))
583 		return IRQ_NONE;
584 	cp = netdev_priv(dev);
585 
586 	spin_lock(&cp->lock);
587 
588 	status = cpr16(IntrStatus);
589 	if (!status || (status == 0xFFFF))
590 		goto out_unlock;
591 
592 	handled = 1;
593 
594 	netif_dbg(cp, intr, dev, "intr, status %04x cmd %02x cpcmd %04x\n",
595 		  status, cpr8(Cmd), cpr16(CpCmd));
596 
597 	cpw16(IntrStatus, status & ~cp_rx_intr_mask);
598 
599 	/* close possible race's with dev_close */
600 	if (unlikely(!netif_running(dev))) {
601 		cpw16(IntrMask, 0);
602 		goto out_unlock;
603 	}
604 
605 	if (status & (RxOK | RxErr | RxEmpty | RxFIFOOvr))
606 		if (napi_schedule_prep(&cp->napi)) {
607 			cpw16_f(IntrMask, cp_norx_intr_mask);
608 			__napi_schedule(&cp->napi);
609 		}
610 
611 	if (status & (TxOK | TxErr | TxEmpty | SWInt))
612 		cp_tx(cp);
613 	if (status & LinkChg)
614 		mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
615 
616 
617 	if (status & PciErr) {
618 		u16 pci_status;
619 
620 		pci_read_config_word(cp->pdev, PCI_STATUS, &pci_status);
621 		pci_write_config_word(cp->pdev, PCI_STATUS, pci_status);
622 		netdev_err(dev, "PCI bus error, status=%04x, PCI status=%04x\n",
623 			   status, pci_status);
624 
625 		/* TODO: reset hardware */
626 	}
627 
628 out_unlock:
629 	spin_unlock(&cp->lock);
630 
631 	return IRQ_RETVAL(handled);
632 }
633 
634 #ifdef CONFIG_NET_POLL_CONTROLLER
635 /*
636  * Polling receive - used by netconsole and other diagnostic tools
637  * to allow network i/o with interrupts disabled.
638  */
639 static void cp_poll_controller(struct net_device *dev)
640 {
641 	struct cp_private *cp = netdev_priv(dev);
642 	const int irq = cp->pdev->irq;
643 
644 	disable_irq(irq);
645 	cp_interrupt(irq, dev);
646 	enable_irq(irq);
647 }
648 #endif
649 
650 static void cp_tx (struct cp_private *cp)
651 {
652 	unsigned tx_head = cp->tx_head;
653 	unsigned tx_tail = cp->tx_tail;
654 	unsigned bytes_compl = 0, pkts_compl = 0;
655 
656 	while (tx_tail != tx_head) {
657 		struct cp_desc *txd = cp->tx_ring + tx_tail;
658 		struct sk_buff *skb;
659 		u32 status;
660 
661 		rmb();
662 		status = le32_to_cpu(txd->opts1);
663 		if (status & DescOwn)
664 			break;
665 
666 		skb = cp->tx_skb[tx_tail];
667 		BUG_ON(!skb);
668 
669 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
670 				 cp->tx_opts[tx_tail] & 0xffff,
671 				 PCI_DMA_TODEVICE);
672 
673 		if (status & LastFrag) {
674 			if (status & (TxError | TxFIFOUnder)) {
675 				netif_dbg(cp, tx_err, cp->dev,
676 					  "tx err, status 0x%x\n", status);
677 				cp->dev->stats.tx_errors++;
678 				if (status & TxOWC)
679 					cp->dev->stats.tx_window_errors++;
680 				if (status & TxMaxCol)
681 					cp->dev->stats.tx_aborted_errors++;
682 				if (status & TxLinkFail)
683 					cp->dev->stats.tx_carrier_errors++;
684 				if (status & TxFIFOUnder)
685 					cp->dev->stats.tx_fifo_errors++;
686 			} else {
687 				cp->dev->stats.collisions +=
688 					((status >> TxColCntShift) & TxColCntMask);
689 				cp->dev->stats.tx_packets++;
690 				cp->dev->stats.tx_bytes += skb->len;
691 				netif_dbg(cp, tx_done, cp->dev,
692 					  "tx done, slot %d\n", tx_tail);
693 			}
694 			bytes_compl += skb->len;
695 			pkts_compl++;
696 			dev_kfree_skb_irq(skb);
697 		}
698 
699 		cp->tx_skb[tx_tail] = NULL;
700 
701 		tx_tail = NEXT_TX(tx_tail);
702 	}
703 
704 	cp->tx_tail = tx_tail;
705 
706 	netdev_completed_queue(cp->dev, pkts_compl, bytes_compl);
707 	if (TX_BUFFS_AVAIL(cp) > (MAX_SKB_FRAGS + 1))
708 		netif_wake_queue(cp->dev);
709 }
710 
711 static inline u32 cp_tx_vlan_tag(struct sk_buff *skb)
712 {
713 	return skb_vlan_tag_present(skb) ?
714 		TxVlanTag | swab16(skb_vlan_tag_get(skb)) : 0x00;
715 }
716 
717 static void unwind_tx_frag_mapping(struct cp_private *cp, struct sk_buff *skb,
718 				   int first, int entry_last)
719 {
720 	int frag, index;
721 	struct cp_desc *txd;
722 	skb_frag_t *this_frag;
723 	for (frag = 0; frag+first < entry_last; frag++) {
724 		index = first+frag;
725 		cp->tx_skb[index] = NULL;
726 		txd = &cp->tx_ring[index];
727 		this_frag = &skb_shinfo(skb)->frags[frag];
728 		dma_unmap_single(&cp->pdev->dev, le64_to_cpu(txd->addr),
729 				 skb_frag_size(this_frag), PCI_DMA_TODEVICE);
730 	}
731 }
732 
733 static netdev_tx_t cp_start_xmit (struct sk_buff *skb,
734 					struct net_device *dev)
735 {
736 	struct cp_private *cp = netdev_priv(dev);
737 	unsigned entry;
738 	u32 eor, opts1;
739 	unsigned long intr_flags;
740 	__le32 opts2;
741 	int mss = 0;
742 
743 	spin_lock_irqsave(&cp->lock, intr_flags);
744 
745 	/* This is a hard error, log it. */
746 	if (TX_BUFFS_AVAIL(cp) <= (skb_shinfo(skb)->nr_frags + 1)) {
747 		netif_stop_queue(dev);
748 		spin_unlock_irqrestore(&cp->lock, intr_flags);
749 		netdev_err(dev, "BUG! Tx Ring full when queue awake!\n");
750 		return NETDEV_TX_BUSY;
751 	}
752 
753 	entry = cp->tx_head;
754 	eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
755 	mss = skb_shinfo(skb)->gso_size;
756 
757 	opts2 = cpu_to_le32(cp_tx_vlan_tag(skb));
758 	opts1 = DescOwn;
759 	if (mss)
760 		opts1 |= LargeSend | ((mss & MSSMask) << MSSShift);
761 	else if (skb->ip_summed == CHECKSUM_PARTIAL) {
762 		const struct iphdr *ip = ip_hdr(skb);
763 		if (ip->protocol == IPPROTO_TCP)
764 			opts1 |= IPCS | TCPCS;
765 		else if (ip->protocol == IPPROTO_UDP)
766 			opts1 |= IPCS | UDPCS;
767 		else {
768 			WARN_ONCE(1,
769 				  "Net bug: asked to checksum invalid Legacy IP packet\n");
770 			goto out_dma_error;
771 		}
772 	}
773 
774 	if (skb_shinfo(skb)->nr_frags == 0) {
775 		struct cp_desc *txd = &cp->tx_ring[entry];
776 		u32 len;
777 		dma_addr_t mapping;
778 
779 		len = skb->len;
780 		mapping = dma_map_single(&cp->pdev->dev, skb->data, len, PCI_DMA_TODEVICE);
781 		if (dma_mapping_error(&cp->pdev->dev, mapping))
782 			goto out_dma_error;
783 
784 		txd->opts2 = opts2;
785 		txd->addr = cpu_to_le64(mapping);
786 		wmb();
787 
788 		opts1 |= eor | len | FirstFrag | LastFrag;
789 
790 		txd->opts1 = cpu_to_le32(opts1);
791 		wmb();
792 
793 		cp->tx_skb[entry] = skb;
794 		cp->tx_opts[entry] = opts1;
795 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slot %d, skblen %d\n",
796 			  entry, skb->len);
797 	} else {
798 		struct cp_desc *txd;
799 		u32 first_len, first_eor, ctrl;
800 		dma_addr_t first_mapping;
801 		int frag, first_entry = entry;
802 
803 		/* We must give this initial chunk to the device last.
804 		 * Otherwise we could race with the device.
805 		 */
806 		first_eor = eor;
807 		first_len = skb_headlen(skb);
808 		first_mapping = dma_map_single(&cp->pdev->dev, skb->data,
809 					       first_len, PCI_DMA_TODEVICE);
810 		if (dma_mapping_error(&cp->pdev->dev, first_mapping))
811 			goto out_dma_error;
812 
813 		cp->tx_skb[entry] = skb;
814 
815 		for (frag = 0; frag < skb_shinfo(skb)->nr_frags; frag++) {
816 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[frag];
817 			u32 len;
818 			dma_addr_t mapping;
819 
820 			entry = NEXT_TX(entry);
821 
822 			len = skb_frag_size(this_frag);
823 			mapping = dma_map_single(&cp->pdev->dev,
824 						 skb_frag_address(this_frag),
825 						 len, PCI_DMA_TODEVICE);
826 			if (dma_mapping_error(&cp->pdev->dev, mapping)) {
827 				unwind_tx_frag_mapping(cp, skb, first_entry, entry);
828 				goto out_dma_error;
829 			}
830 
831 			eor = (entry == (CP_TX_RING_SIZE - 1)) ? RingEnd : 0;
832 
833 			ctrl = opts1 | eor | len;
834 
835 			if (frag == skb_shinfo(skb)->nr_frags - 1)
836 				ctrl |= LastFrag;
837 
838 			txd = &cp->tx_ring[entry];
839 			txd->opts2 = opts2;
840 			txd->addr = cpu_to_le64(mapping);
841 			wmb();
842 
843 			txd->opts1 = cpu_to_le32(ctrl);
844 			wmb();
845 
846 			cp->tx_opts[entry] = ctrl;
847 			cp->tx_skb[entry] = skb;
848 		}
849 
850 		txd = &cp->tx_ring[first_entry];
851 		txd->opts2 = opts2;
852 		txd->addr = cpu_to_le64(first_mapping);
853 		wmb();
854 
855 		ctrl = opts1 | first_eor | first_len | FirstFrag;
856 		txd->opts1 = cpu_to_le32(ctrl);
857 		wmb();
858 
859 		cp->tx_opts[first_entry] = ctrl;
860 		netif_dbg(cp, tx_queued, cp->dev, "tx queued, slots %d-%d, skblen %d\n",
861 			  first_entry, entry, skb->len);
862 	}
863 	cp->tx_head = NEXT_TX(entry);
864 
865 	netdev_sent_queue(dev, skb->len);
866 	if (TX_BUFFS_AVAIL(cp) <= (MAX_SKB_FRAGS + 1))
867 		netif_stop_queue(dev);
868 
869 out_unlock:
870 	spin_unlock_irqrestore(&cp->lock, intr_flags);
871 
872 	cpw8(TxPoll, NormalTxPoll);
873 
874 	return NETDEV_TX_OK;
875 out_dma_error:
876 	dev_kfree_skb_any(skb);
877 	cp->dev->stats.tx_dropped++;
878 	goto out_unlock;
879 }
880 
881 /* Set or clear the multicast filter for this adaptor.
882    This routine is not state sensitive and need not be SMP locked. */
883 
884 static void __cp_set_rx_mode (struct net_device *dev)
885 {
886 	struct cp_private *cp = netdev_priv(dev);
887 	u32 mc_filter[2];	/* Multicast hash filter */
888 	int rx_mode;
889 
890 	/* Note: do not reorder, GCC is clever about common statements. */
891 	if (dev->flags & IFF_PROMISC) {
892 		/* Unconditionally log net taps. */
893 		rx_mode =
894 		    AcceptBroadcast | AcceptMulticast | AcceptMyPhys |
895 		    AcceptAllPhys;
896 		mc_filter[1] = mc_filter[0] = 0xffffffff;
897 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
898 		   (dev->flags & IFF_ALLMULTI)) {
899 		/* Too many to filter perfectly -- accept all multicasts. */
900 		rx_mode = AcceptBroadcast | AcceptMulticast | AcceptMyPhys;
901 		mc_filter[1] = mc_filter[0] = 0xffffffff;
902 	} else {
903 		struct netdev_hw_addr *ha;
904 		rx_mode = AcceptBroadcast | AcceptMyPhys;
905 		mc_filter[1] = mc_filter[0] = 0;
906 		netdev_for_each_mc_addr(ha, dev) {
907 			int bit_nr = ether_crc(ETH_ALEN, ha->addr) >> 26;
908 
909 			mc_filter[bit_nr >> 5] |= 1 << (bit_nr & 31);
910 			rx_mode |= AcceptMulticast;
911 		}
912 	}
913 
914 	/* We can safely update without stopping the chip. */
915 	cp->rx_config = cp_rx_config | rx_mode;
916 	cpw32_f(RxConfig, cp->rx_config);
917 
918 	cpw32_f (MAR0 + 0, mc_filter[0]);
919 	cpw32_f (MAR0 + 4, mc_filter[1]);
920 }
921 
922 static void cp_set_rx_mode (struct net_device *dev)
923 {
924 	unsigned long flags;
925 	struct cp_private *cp = netdev_priv(dev);
926 
927 	spin_lock_irqsave (&cp->lock, flags);
928 	__cp_set_rx_mode(dev);
929 	spin_unlock_irqrestore (&cp->lock, flags);
930 }
931 
932 static void __cp_get_stats(struct cp_private *cp)
933 {
934 	/* only lower 24 bits valid; write any value to clear */
935 	cp->dev->stats.rx_missed_errors += (cpr32 (RxMissed) & 0xffffff);
936 	cpw32 (RxMissed, 0);
937 }
938 
939 static struct net_device_stats *cp_get_stats(struct net_device *dev)
940 {
941 	struct cp_private *cp = netdev_priv(dev);
942 	unsigned long flags;
943 
944 	/* The chip only need report frame silently dropped. */
945 	spin_lock_irqsave(&cp->lock, flags);
946  	if (netif_running(dev) && netif_device_present(dev))
947  		__cp_get_stats(cp);
948 	spin_unlock_irqrestore(&cp->lock, flags);
949 
950 	return &dev->stats;
951 }
952 
953 static void cp_stop_hw (struct cp_private *cp)
954 {
955 	cpw16(IntrStatus, ~(cpr16(IntrStatus)));
956 	cpw16_f(IntrMask, 0);
957 	cpw8(Cmd, 0);
958 	cpw16_f(CpCmd, 0);
959 	cpw16_f(IntrStatus, ~(cpr16(IntrStatus)));
960 
961 	cp->rx_tail = 0;
962 	cp->tx_head = cp->tx_tail = 0;
963 
964 	netdev_reset_queue(cp->dev);
965 }
966 
967 static void cp_reset_hw (struct cp_private *cp)
968 {
969 	unsigned work = 1000;
970 
971 	cpw8(Cmd, CmdReset);
972 
973 	while (work--) {
974 		if (!(cpr8(Cmd) & CmdReset))
975 			return;
976 
977 		schedule_timeout_uninterruptible(10);
978 	}
979 
980 	netdev_err(cp->dev, "hardware reset timeout\n");
981 }
982 
983 static inline void cp_start_hw (struct cp_private *cp)
984 {
985 	dma_addr_t ring_dma;
986 
987 	cpw16(CpCmd, cp->cpcmd);
988 
989 	/*
990 	 * These (at least TxRingAddr) need to be configured after the
991 	 * corresponding bits in CpCmd are enabled. Datasheet v1.6 §6.33
992 	 * (C+ Command Register) recommends that these and more be configured
993 	 * *after* the [RT]xEnable bits in CpCmd are set. And on some hardware
994 	 * it's been observed that the TxRingAddr is actually reset to garbage
995 	 * when C+ mode Tx is enabled in CpCmd.
996 	 */
997 	cpw32_f(HiTxRingAddr, 0);
998 	cpw32_f(HiTxRingAddr + 4, 0);
999 
1000 	ring_dma = cp->ring_dma;
1001 	cpw32_f(RxRingAddr, ring_dma & 0xffffffff);
1002 	cpw32_f(RxRingAddr + 4, (ring_dma >> 16) >> 16);
1003 
1004 	ring_dma += sizeof(struct cp_desc) * CP_RX_RING_SIZE;
1005 	cpw32_f(TxRingAddr, ring_dma & 0xffffffff);
1006 	cpw32_f(TxRingAddr + 4, (ring_dma >> 16) >> 16);
1007 
1008 	/*
1009 	 * Strictly speaking, the datasheet says this should be enabled
1010 	 * *before* setting the descriptor addresses. But what, then, would
1011 	 * prevent it from doing DMA to random unconfigured addresses?
1012 	 * This variant appears to work fine.
1013 	 */
1014 	cpw8(Cmd, RxOn | TxOn);
1015 
1016 	netdev_reset_queue(cp->dev);
1017 }
1018 
1019 static void cp_enable_irq(struct cp_private *cp)
1020 {
1021 	cpw16_f(IntrMask, cp_intr_mask);
1022 }
1023 
1024 static void cp_init_hw (struct cp_private *cp)
1025 {
1026 	struct net_device *dev = cp->dev;
1027 
1028 	cp_reset_hw(cp);
1029 
1030 	cpw8_f (Cfg9346, Cfg9346_Unlock);
1031 
1032 	/* Restore our idea of the MAC address. */
1033 	cpw32_f (MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1034 	cpw32_f (MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1035 
1036 	cp_start_hw(cp);
1037 	cpw8(TxThresh, 0x06); /* XXX convert magic num to a constant */
1038 
1039 	__cp_set_rx_mode(dev);
1040 	cpw32_f (TxConfig, IFG | (TX_DMA_BURST << TxDMAShift));
1041 
1042 	cpw8(Config1, cpr8(Config1) | DriverLoaded | PMEnable);
1043 	/* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1044 	cpw8(Config3, PARMEnable);
1045 	cp->wol_enabled = 0;
1046 
1047 	cpw8(Config5, cpr8(Config5) & PMEStatus);
1048 
1049 	cpw16(MultiIntr, 0);
1050 
1051 	cpw8_f(Cfg9346, Cfg9346_Lock);
1052 }
1053 
1054 static int cp_refill_rx(struct cp_private *cp)
1055 {
1056 	struct net_device *dev = cp->dev;
1057 	unsigned i;
1058 
1059 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1060 		struct sk_buff *skb;
1061 		dma_addr_t mapping;
1062 
1063 		skb = netdev_alloc_skb_ip_align(dev, cp->rx_buf_sz);
1064 		if (!skb)
1065 			goto err_out;
1066 
1067 		mapping = dma_map_single(&cp->pdev->dev, skb->data,
1068 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1069 		if (dma_mapping_error(&cp->pdev->dev, mapping)) {
1070 			kfree_skb(skb);
1071 			goto err_out;
1072 		}
1073 		cp->rx_skb[i] = skb;
1074 
1075 		cp->rx_ring[i].opts2 = 0;
1076 		cp->rx_ring[i].addr = cpu_to_le64(mapping);
1077 		if (i == (CP_RX_RING_SIZE - 1))
1078 			cp->rx_ring[i].opts1 =
1079 				cpu_to_le32(DescOwn | RingEnd | cp->rx_buf_sz);
1080 		else
1081 			cp->rx_ring[i].opts1 =
1082 				cpu_to_le32(DescOwn | cp->rx_buf_sz);
1083 	}
1084 
1085 	return 0;
1086 
1087 err_out:
1088 	cp_clean_rings(cp);
1089 	return -ENOMEM;
1090 }
1091 
1092 static void cp_init_rings_index (struct cp_private *cp)
1093 {
1094 	cp->rx_tail = 0;
1095 	cp->tx_head = cp->tx_tail = 0;
1096 }
1097 
1098 static int cp_init_rings (struct cp_private *cp)
1099 {
1100 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1101 	cp->tx_ring[CP_TX_RING_SIZE - 1].opts1 = cpu_to_le32(RingEnd);
1102 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1103 
1104 	cp_init_rings_index(cp);
1105 
1106 	return cp_refill_rx (cp);
1107 }
1108 
1109 static int cp_alloc_rings (struct cp_private *cp)
1110 {
1111 	struct device *d = &cp->pdev->dev;
1112 	void *mem;
1113 	int rc;
1114 
1115 	mem = dma_alloc_coherent(d, CP_RING_BYTES, &cp->ring_dma, GFP_KERNEL);
1116 	if (!mem)
1117 		return -ENOMEM;
1118 
1119 	cp->rx_ring = mem;
1120 	cp->tx_ring = &cp->rx_ring[CP_RX_RING_SIZE];
1121 
1122 	rc = cp_init_rings(cp);
1123 	if (rc < 0)
1124 		dma_free_coherent(d, CP_RING_BYTES, cp->rx_ring, cp->ring_dma);
1125 
1126 	return rc;
1127 }
1128 
1129 static void cp_clean_rings (struct cp_private *cp)
1130 {
1131 	struct cp_desc *desc;
1132 	unsigned i;
1133 
1134 	for (i = 0; i < CP_RX_RING_SIZE; i++) {
1135 		if (cp->rx_skb[i]) {
1136 			desc = cp->rx_ring + i;
1137 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1138 					 cp->rx_buf_sz, PCI_DMA_FROMDEVICE);
1139 			dev_kfree_skb_any(cp->rx_skb[i]);
1140 		}
1141 	}
1142 
1143 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1144 		if (cp->tx_skb[i]) {
1145 			struct sk_buff *skb = cp->tx_skb[i];
1146 
1147 			desc = cp->tx_ring + i;
1148 			dma_unmap_single(&cp->pdev->dev,le64_to_cpu(desc->addr),
1149 					 le32_to_cpu(desc->opts1) & 0xffff,
1150 					 PCI_DMA_TODEVICE);
1151 			if (le32_to_cpu(desc->opts1) & LastFrag)
1152 				dev_kfree_skb_any(skb);
1153 			cp->dev->stats.tx_dropped++;
1154 		}
1155 	}
1156 	netdev_reset_queue(cp->dev);
1157 
1158 	memset(cp->rx_ring, 0, sizeof(struct cp_desc) * CP_RX_RING_SIZE);
1159 	memset(cp->tx_ring, 0, sizeof(struct cp_desc) * CP_TX_RING_SIZE);
1160 	memset(cp->tx_opts, 0, sizeof(cp->tx_opts));
1161 
1162 	memset(cp->rx_skb, 0, sizeof(struct sk_buff *) * CP_RX_RING_SIZE);
1163 	memset(cp->tx_skb, 0, sizeof(struct sk_buff *) * CP_TX_RING_SIZE);
1164 }
1165 
1166 static void cp_free_rings (struct cp_private *cp)
1167 {
1168 	cp_clean_rings(cp);
1169 	dma_free_coherent(&cp->pdev->dev, CP_RING_BYTES, cp->rx_ring,
1170 			  cp->ring_dma);
1171 	cp->rx_ring = NULL;
1172 	cp->tx_ring = NULL;
1173 }
1174 
1175 static int cp_open (struct net_device *dev)
1176 {
1177 	struct cp_private *cp = netdev_priv(dev);
1178 	const int irq = cp->pdev->irq;
1179 	int rc;
1180 
1181 	netif_dbg(cp, ifup, dev, "enabling interface\n");
1182 
1183 	rc = cp_alloc_rings(cp);
1184 	if (rc)
1185 		return rc;
1186 
1187 	napi_enable(&cp->napi);
1188 
1189 	cp_init_hw(cp);
1190 
1191 	rc = request_irq(irq, cp_interrupt, IRQF_SHARED, dev->name, dev);
1192 	if (rc)
1193 		goto err_out_hw;
1194 
1195 	cp_enable_irq(cp);
1196 
1197 	netif_carrier_off(dev);
1198 	mii_check_media(&cp->mii_if, netif_msg_link(cp), true);
1199 	netif_start_queue(dev);
1200 
1201 	return 0;
1202 
1203 err_out_hw:
1204 	napi_disable(&cp->napi);
1205 	cp_stop_hw(cp);
1206 	cp_free_rings(cp);
1207 	return rc;
1208 }
1209 
1210 static int cp_close (struct net_device *dev)
1211 {
1212 	struct cp_private *cp = netdev_priv(dev);
1213 	unsigned long flags;
1214 
1215 	napi_disable(&cp->napi);
1216 
1217 	netif_dbg(cp, ifdown, dev, "disabling interface\n");
1218 
1219 	spin_lock_irqsave(&cp->lock, flags);
1220 
1221 	netif_stop_queue(dev);
1222 	netif_carrier_off(dev);
1223 
1224 	cp_stop_hw(cp);
1225 
1226 	spin_unlock_irqrestore(&cp->lock, flags);
1227 
1228 	free_irq(cp->pdev->irq, dev);
1229 
1230 	cp_free_rings(cp);
1231 	return 0;
1232 }
1233 
1234 static void cp_tx_timeout(struct net_device *dev)
1235 {
1236 	struct cp_private *cp = netdev_priv(dev);
1237 	unsigned long flags;
1238 	int rc, i;
1239 
1240 	netdev_warn(dev, "Transmit timeout, status %2x %4x %4x %4x\n",
1241 		    cpr8(Cmd), cpr16(CpCmd),
1242 		    cpr16(IntrStatus), cpr16(IntrMask));
1243 
1244 	spin_lock_irqsave(&cp->lock, flags);
1245 
1246 	netif_dbg(cp, tx_err, cp->dev, "TX ring head %d tail %d desc %x\n",
1247 		  cp->tx_head, cp->tx_tail, cpr16(TxDmaOkLowDesc));
1248 	for (i = 0; i < CP_TX_RING_SIZE; i++) {
1249 		netif_dbg(cp, tx_err, cp->dev,
1250 			  "TX slot %d @%p: %08x (%08x) %08x %llx %p\n",
1251 			  i, &cp->tx_ring[i], le32_to_cpu(cp->tx_ring[i].opts1),
1252 			  cp->tx_opts[i], le32_to_cpu(cp->tx_ring[i].opts2),
1253 			  le64_to_cpu(cp->tx_ring[i].addr),
1254 			  cp->tx_skb[i]);
1255 	}
1256 
1257 	cp_stop_hw(cp);
1258 	cp_clean_rings(cp);
1259 	rc = cp_init_rings(cp);
1260 	cp_start_hw(cp);
1261 	__cp_set_rx_mode(dev);
1262 	cpw16_f(IntrMask, cp_norx_intr_mask);
1263 
1264 	netif_wake_queue(dev);
1265 	napi_schedule_irqoff(&cp->napi);
1266 
1267 	spin_unlock_irqrestore(&cp->lock, flags);
1268 }
1269 
1270 static int cp_change_mtu(struct net_device *dev, int new_mtu)
1271 {
1272 	struct cp_private *cp = netdev_priv(dev);
1273 
1274 	/* check for invalid MTU, according to hardware limits */
1275 	if (new_mtu < CP_MIN_MTU || new_mtu > CP_MAX_MTU)
1276 		return -EINVAL;
1277 
1278 	/* if network interface not up, no need for complexity */
1279 	if (!netif_running(dev)) {
1280 		dev->mtu = new_mtu;
1281 		cp_set_rxbufsize(cp);	/* set new rx buf size */
1282 		return 0;
1283 	}
1284 
1285 	/* network IS up, close it, reset MTU, and come up again. */
1286 	cp_close(dev);
1287 	dev->mtu = new_mtu;
1288 	cp_set_rxbufsize(cp);
1289 	return cp_open(dev);
1290 }
1291 
1292 static const char mii_2_8139_map[8] = {
1293 	BasicModeCtrl,
1294 	BasicModeStatus,
1295 	0,
1296 	0,
1297 	NWayAdvert,
1298 	NWayLPAR,
1299 	NWayExpansion,
1300 	0
1301 };
1302 
1303 static int mdio_read(struct net_device *dev, int phy_id, int location)
1304 {
1305 	struct cp_private *cp = netdev_priv(dev);
1306 
1307 	return location < 8 && mii_2_8139_map[location] ?
1308 	       readw(cp->regs + mii_2_8139_map[location]) : 0;
1309 }
1310 
1311 
1312 static void mdio_write(struct net_device *dev, int phy_id, int location,
1313 		       int value)
1314 {
1315 	struct cp_private *cp = netdev_priv(dev);
1316 
1317 	if (location == 0) {
1318 		cpw8(Cfg9346, Cfg9346_Unlock);
1319 		cpw16(BasicModeCtrl, value);
1320 		cpw8(Cfg9346, Cfg9346_Lock);
1321 	} else if (location < 8 && mii_2_8139_map[location])
1322 		cpw16(mii_2_8139_map[location], value);
1323 }
1324 
1325 /* Set the ethtool Wake-on-LAN settings */
1326 static int netdev_set_wol (struct cp_private *cp,
1327 			   const struct ethtool_wolinfo *wol)
1328 {
1329 	u8 options;
1330 
1331 	options = cpr8 (Config3) & ~(LinkUp | MagicPacket);
1332 	/* If WOL is being disabled, no need for complexity */
1333 	if (wol->wolopts) {
1334 		if (wol->wolopts & WAKE_PHY)	options |= LinkUp;
1335 		if (wol->wolopts & WAKE_MAGIC)	options |= MagicPacket;
1336 	}
1337 
1338 	cpw8 (Cfg9346, Cfg9346_Unlock);
1339 	cpw8 (Config3, options);
1340 	cpw8 (Cfg9346, Cfg9346_Lock);
1341 
1342 	options = 0; /* Paranoia setting */
1343 	options = cpr8 (Config5) & ~(UWF | MWF | BWF);
1344 	/* If WOL is being disabled, no need for complexity */
1345 	if (wol->wolopts) {
1346 		if (wol->wolopts & WAKE_UCAST)  options |= UWF;
1347 		if (wol->wolopts & WAKE_BCAST)	options |= BWF;
1348 		if (wol->wolopts & WAKE_MCAST)	options |= MWF;
1349 	}
1350 
1351 	cpw8 (Config5, options);
1352 
1353 	cp->wol_enabled = (wol->wolopts) ? 1 : 0;
1354 
1355 	return 0;
1356 }
1357 
1358 /* Get the ethtool Wake-on-LAN settings */
1359 static void netdev_get_wol (struct cp_private *cp,
1360 	             struct ethtool_wolinfo *wol)
1361 {
1362 	u8 options;
1363 
1364 	wol->wolopts   = 0; /* Start from scratch */
1365 	wol->supported = WAKE_PHY   | WAKE_BCAST | WAKE_MAGIC |
1366 		         WAKE_MCAST | WAKE_UCAST;
1367 	/* We don't need to go on if WOL is disabled */
1368 	if (!cp->wol_enabled) return;
1369 
1370 	options        = cpr8 (Config3);
1371 	if (options & LinkUp)        wol->wolopts |= WAKE_PHY;
1372 	if (options & MagicPacket)   wol->wolopts |= WAKE_MAGIC;
1373 
1374 	options        = 0; /* Paranoia setting */
1375 	options        = cpr8 (Config5);
1376 	if (options & UWF)           wol->wolopts |= WAKE_UCAST;
1377 	if (options & BWF)           wol->wolopts |= WAKE_BCAST;
1378 	if (options & MWF)           wol->wolopts |= WAKE_MCAST;
1379 }
1380 
1381 static void cp_get_drvinfo (struct net_device *dev, struct ethtool_drvinfo *info)
1382 {
1383 	struct cp_private *cp = netdev_priv(dev);
1384 
1385 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1386 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1387 	strlcpy(info->bus_info, pci_name(cp->pdev), sizeof(info->bus_info));
1388 }
1389 
1390 static void cp_get_ringparam(struct net_device *dev,
1391 				struct ethtool_ringparam *ring)
1392 {
1393 	ring->rx_max_pending = CP_RX_RING_SIZE;
1394 	ring->tx_max_pending = CP_TX_RING_SIZE;
1395 	ring->rx_pending = CP_RX_RING_SIZE;
1396 	ring->tx_pending = CP_TX_RING_SIZE;
1397 }
1398 
1399 static int cp_get_regs_len(struct net_device *dev)
1400 {
1401 	return CP_REGS_SIZE;
1402 }
1403 
1404 static int cp_get_sset_count (struct net_device *dev, int sset)
1405 {
1406 	switch (sset) {
1407 	case ETH_SS_STATS:
1408 		return CP_NUM_STATS;
1409 	default:
1410 		return -EOPNOTSUPP;
1411 	}
1412 }
1413 
1414 static int cp_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1415 {
1416 	struct cp_private *cp = netdev_priv(dev);
1417 	int rc;
1418 	unsigned long flags;
1419 
1420 	spin_lock_irqsave(&cp->lock, flags);
1421 	rc = mii_ethtool_gset(&cp->mii_if, cmd);
1422 	spin_unlock_irqrestore(&cp->lock, flags);
1423 
1424 	return rc;
1425 }
1426 
1427 static int cp_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1428 {
1429 	struct cp_private *cp = netdev_priv(dev);
1430 	int rc;
1431 	unsigned long flags;
1432 
1433 	spin_lock_irqsave(&cp->lock, flags);
1434 	rc = mii_ethtool_sset(&cp->mii_if, cmd);
1435 	spin_unlock_irqrestore(&cp->lock, flags);
1436 
1437 	return rc;
1438 }
1439 
1440 static int cp_nway_reset(struct net_device *dev)
1441 {
1442 	struct cp_private *cp = netdev_priv(dev);
1443 	return mii_nway_restart(&cp->mii_if);
1444 }
1445 
1446 static u32 cp_get_msglevel(struct net_device *dev)
1447 {
1448 	struct cp_private *cp = netdev_priv(dev);
1449 	return cp->msg_enable;
1450 }
1451 
1452 static void cp_set_msglevel(struct net_device *dev, u32 value)
1453 {
1454 	struct cp_private *cp = netdev_priv(dev);
1455 	cp->msg_enable = value;
1456 }
1457 
1458 static int cp_set_features(struct net_device *dev, netdev_features_t features)
1459 {
1460 	struct cp_private *cp = netdev_priv(dev);
1461 	unsigned long flags;
1462 
1463 	if (!((dev->features ^ features) & NETIF_F_RXCSUM))
1464 		return 0;
1465 
1466 	spin_lock_irqsave(&cp->lock, flags);
1467 
1468 	if (features & NETIF_F_RXCSUM)
1469 		cp->cpcmd |= RxChkSum;
1470 	else
1471 		cp->cpcmd &= ~RxChkSum;
1472 
1473 	if (features & NETIF_F_HW_VLAN_CTAG_RX)
1474 		cp->cpcmd |= RxVlanOn;
1475 	else
1476 		cp->cpcmd &= ~RxVlanOn;
1477 
1478 	cpw16_f(CpCmd, cp->cpcmd);
1479 	spin_unlock_irqrestore(&cp->lock, flags);
1480 
1481 	return 0;
1482 }
1483 
1484 static void cp_get_regs(struct net_device *dev, struct ethtool_regs *regs,
1485 		        void *p)
1486 {
1487 	struct cp_private *cp = netdev_priv(dev);
1488 	unsigned long flags;
1489 
1490 	if (regs->len < CP_REGS_SIZE)
1491 		return /* -EINVAL */;
1492 
1493 	regs->version = CP_REGS_VER;
1494 
1495 	spin_lock_irqsave(&cp->lock, flags);
1496 	memcpy_fromio(p, cp->regs, CP_REGS_SIZE);
1497 	spin_unlock_irqrestore(&cp->lock, flags);
1498 }
1499 
1500 static void cp_get_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1501 {
1502 	struct cp_private *cp = netdev_priv(dev);
1503 	unsigned long flags;
1504 
1505 	spin_lock_irqsave (&cp->lock, flags);
1506 	netdev_get_wol (cp, wol);
1507 	spin_unlock_irqrestore (&cp->lock, flags);
1508 }
1509 
1510 static int cp_set_wol (struct net_device *dev, struct ethtool_wolinfo *wol)
1511 {
1512 	struct cp_private *cp = netdev_priv(dev);
1513 	unsigned long flags;
1514 	int rc;
1515 
1516 	spin_lock_irqsave (&cp->lock, flags);
1517 	rc = netdev_set_wol (cp, wol);
1518 	spin_unlock_irqrestore (&cp->lock, flags);
1519 
1520 	return rc;
1521 }
1522 
1523 static void cp_get_strings (struct net_device *dev, u32 stringset, u8 *buf)
1524 {
1525 	switch (stringset) {
1526 	case ETH_SS_STATS:
1527 		memcpy(buf, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
1528 		break;
1529 	default:
1530 		BUG();
1531 		break;
1532 	}
1533 }
1534 
1535 static void cp_get_ethtool_stats (struct net_device *dev,
1536 				  struct ethtool_stats *estats, u64 *tmp_stats)
1537 {
1538 	struct cp_private *cp = netdev_priv(dev);
1539 	struct cp_dma_stats *nic_stats;
1540 	dma_addr_t dma;
1541 	int i;
1542 
1543 	nic_stats = dma_alloc_coherent(&cp->pdev->dev, sizeof(*nic_stats),
1544 				       &dma, GFP_KERNEL);
1545 	if (!nic_stats)
1546 		return;
1547 
1548 	/* begin NIC statistics dump */
1549 	cpw32(StatsAddr + 4, (u64)dma >> 32);
1550 	cpw32(StatsAddr, ((u64)dma & DMA_BIT_MASK(32)) | DumpStats);
1551 	cpr32(StatsAddr);
1552 
1553 	for (i = 0; i < 1000; i++) {
1554 		if ((cpr32(StatsAddr) & DumpStats) == 0)
1555 			break;
1556 		udelay(10);
1557 	}
1558 	cpw32(StatsAddr, 0);
1559 	cpw32(StatsAddr + 4, 0);
1560 	cpr32(StatsAddr);
1561 
1562 	i = 0;
1563 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_ok);
1564 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok);
1565 	tmp_stats[i++] = le64_to_cpu(nic_stats->tx_err);
1566 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_err);
1567 	tmp_stats[i++] = le16_to_cpu(nic_stats->rx_fifo);
1568 	tmp_stats[i++] = le16_to_cpu(nic_stats->frame_align);
1569 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_1col);
1570 	tmp_stats[i++] = le32_to_cpu(nic_stats->tx_ok_mcol);
1571 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_phys);
1572 	tmp_stats[i++] = le64_to_cpu(nic_stats->rx_ok_bcast);
1573 	tmp_stats[i++] = le32_to_cpu(nic_stats->rx_ok_mcast);
1574 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_abort);
1575 	tmp_stats[i++] = le16_to_cpu(nic_stats->tx_underrun);
1576 	tmp_stats[i++] = cp->cp_stats.rx_frags;
1577 	BUG_ON(i != CP_NUM_STATS);
1578 
1579 	dma_free_coherent(&cp->pdev->dev, sizeof(*nic_stats), nic_stats, dma);
1580 }
1581 
1582 static const struct ethtool_ops cp_ethtool_ops = {
1583 	.get_drvinfo		= cp_get_drvinfo,
1584 	.get_regs_len		= cp_get_regs_len,
1585 	.get_sset_count		= cp_get_sset_count,
1586 	.get_settings		= cp_get_settings,
1587 	.set_settings		= cp_set_settings,
1588 	.nway_reset		= cp_nway_reset,
1589 	.get_link		= ethtool_op_get_link,
1590 	.get_msglevel		= cp_get_msglevel,
1591 	.set_msglevel		= cp_set_msglevel,
1592 	.get_regs		= cp_get_regs,
1593 	.get_wol		= cp_get_wol,
1594 	.set_wol		= cp_set_wol,
1595 	.get_strings		= cp_get_strings,
1596 	.get_ethtool_stats	= cp_get_ethtool_stats,
1597 	.get_eeprom_len		= cp_get_eeprom_len,
1598 	.get_eeprom		= cp_get_eeprom,
1599 	.set_eeprom		= cp_set_eeprom,
1600 	.get_ringparam		= cp_get_ringparam,
1601 };
1602 
1603 static int cp_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
1604 {
1605 	struct cp_private *cp = netdev_priv(dev);
1606 	int rc;
1607 	unsigned long flags;
1608 
1609 	if (!netif_running(dev))
1610 		return -EINVAL;
1611 
1612 	spin_lock_irqsave(&cp->lock, flags);
1613 	rc = generic_mii_ioctl(&cp->mii_if, if_mii(rq), cmd, NULL);
1614 	spin_unlock_irqrestore(&cp->lock, flags);
1615 	return rc;
1616 }
1617 
1618 static int cp_set_mac_address(struct net_device *dev, void *p)
1619 {
1620 	struct cp_private *cp = netdev_priv(dev);
1621 	struct sockaddr *addr = p;
1622 
1623 	if (!is_valid_ether_addr(addr->sa_data))
1624 		return -EADDRNOTAVAIL;
1625 
1626 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
1627 
1628 	spin_lock_irq(&cp->lock);
1629 
1630 	cpw8_f(Cfg9346, Cfg9346_Unlock);
1631 	cpw32_f(MAC0 + 0, le32_to_cpu (*(__le32 *) (dev->dev_addr + 0)));
1632 	cpw32_f(MAC0 + 4, le32_to_cpu (*(__le32 *) (dev->dev_addr + 4)));
1633 	cpw8_f(Cfg9346, Cfg9346_Lock);
1634 
1635 	spin_unlock_irq(&cp->lock);
1636 
1637 	return 0;
1638 }
1639 
1640 /* Serial EEPROM section. */
1641 
1642 /*  EEPROM_Ctrl bits. */
1643 #define EE_SHIFT_CLK	0x04	/* EEPROM shift clock. */
1644 #define EE_CS			0x08	/* EEPROM chip select. */
1645 #define EE_DATA_WRITE	0x02	/* EEPROM chip data in. */
1646 #define EE_WRITE_0		0x00
1647 #define EE_WRITE_1		0x02
1648 #define EE_DATA_READ	0x01	/* EEPROM chip data out. */
1649 #define EE_ENB			(0x80 | EE_CS)
1650 
1651 /* Delay between EEPROM clock transitions.
1652    No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1653  */
1654 
1655 #define eeprom_delay()	readb(ee_addr)
1656 
1657 /* The EEPROM commands include the alway-set leading bit. */
1658 #define EE_EXTEND_CMD	(4)
1659 #define EE_WRITE_CMD	(5)
1660 #define EE_READ_CMD		(6)
1661 #define EE_ERASE_CMD	(7)
1662 
1663 #define EE_EWDS_ADDR	(0)
1664 #define EE_WRAL_ADDR	(1)
1665 #define EE_ERAL_ADDR	(2)
1666 #define EE_EWEN_ADDR	(3)
1667 
1668 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1669 
1670 static void eeprom_cmd_start(void __iomem *ee_addr)
1671 {
1672 	writeb (EE_ENB & ~EE_CS, ee_addr);
1673 	writeb (EE_ENB, ee_addr);
1674 	eeprom_delay ();
1675 }
1676 
1677 static void eeprom_cmd(void __iomem *ee_addr, int cmd, int cmd_len)
1678 {
1679 	int i;
1680 
1681 	/* Shift the command bits out. */
1682 	for (i = cmd_len - 1; i >= 0; i--) {
1683 		int dataval = (cmd & (1 << i)) ? EE_DATA_WRITE : 0;
1684 		writeb (EE_ENB | dataval, ee_addr);
1685 		eeprom_delay ();
1686 		writeb (EE_ENB | dataval | EE_SHIFT_CLK, ee_addr);
1687 		eeprom_delay ();
1688 	}
1689 	writeb (EE_ENB, ee_addr);
1690 	eeprom_delay ();
1691 }
1692 
1693 static void eeprom_cmd_end(void __iomem *ee_addr)
1694 {
1695 	writeb(0, ee_addr);
1696 	eeprom_delay ();
1697 }
1698 
1699 static void eeprom_extend_cmd(void __iomem *ee_addr, int extend_cmd,
1700 			      int addr_len)
1701 {
1702 	int cmd = (EE_EXTEND_CMD << addr_len) | (extend_cmd << (addr_len - 2));
1703 
1704 	eeprom_cmd_start(ee_addr);
1705 	eeprom_cmd(ee_addr, cmd, 3 + addr_len);
1706 	eeprom_cmd_end(ee_addr);
1707 }
1708 
1709 static u16 read_eeprom (void __iomem *ioaddr, int location, int addr_len)
1710 {
1711 	int i;
1712 	u16 retval = 0;
1713 	void __iomem *ee_addr = ioaddr + Cfg9346;
1714 	int read_cmd = location | (EE_READ_CMD << addr_len);
1715 
1716 	eeprom_cmd_start(ee_addr);
1717 	eeprom_cmd(ee_addr, read_cmd, 3 + addr_len);
1718 
1719 	for (i = 16; i > 0; i--) {
1720 		writeb (EE_ENB | EE_SHIFT_CLK, ee_addr);
1721 		eeprom_delay ();
1722 		retval =
1723 		    (retval << 1) | ((readb (ee_addr) & EE_DATA_READ) ? 1 :
1724 				     0);
1725 		writeb (EE_ENB, ee_addr);
1726 		eeprom_delay ();
1727 	}
1728 
1729 	eeprom_cmd_end(ee_addr);
1730 
1731 	return retval;
1732 }
1733 
1734 static void write_eeprom(void __iomem *ioaddr, int location, u16 val,
1735 			 int addr_len)
1736 {
1737 	int i;
1738 	void __iomem *ee_addr = ioaddr + Cfg9346;
1739 	int write_cmd = location | (EE_WRITE_CMD << addr_len);
1740 
1741 	eeprom_extend_cmd(ee_addr, EE_EWEN_ADDR, addr_len);
1742 
1743 	eeprom_cmd_start(ee_addr);
1744 	eeprom_cmd(ee_addr, write_cmd, 3 + addr_len);
1745 	eeprom_cmd(ee_addr, val, 16);
1746 	eeprom_cmd_end(ee_addr);
1747 
1748 	eeprom_cmd_start(ee_addr);
1749 	for (i = 0; i < 20000; i++)
1750 		if (readb(ee_addr) & EE_DATA_READ)
1751 			break;
1752 	eeprom_cmd_end(ee_addr);
1753 
1754 	eeprom_extend_cmd(ee_addr, EE_EWDS_ADDR, addr_len);
1755 }
1756 
1757 static int cp_get_eeprom_len(struct net_device *dev)
1758 {
1759 	struct cp_private *cp = netdev_priv(dev);
1760 	int size;
1761 
1762 	spin_lock_irq(&cp->lock);
1763 	size = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 256 : 128;
1764 	spin_unlock_irq(&cp->lock);
1765 
1766 	return size;
1767 }
1768 
1769 static int cp_get_eeprom(struct net_device *dev,
1770 			 struct ethtool_eeprom *eeprom, u8 *data)
1771 {
1772 	struct cp_private *cp = netdev_priv(dev);
1773 	unsigned int addr_len;
1774 	u16 val;
1775 	u32 offset = eeprom->offset >> 1;
1776 	u32 len = eeprom->len;
1777 	u32 i = 0;
1778 
1779 	eeprom->magic = CP_EEPROM_MAGIC;
1780 
1781 	spin_lock_irq(&cp->lock);
1782 
1783 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1784 
1785 	if (eeprom->offset & 1) {
1786 		val = read_eeprom(cp->regs, offset, addr_len);
1787 		data[i++] = (u8)(val >> 8);
1788 		offset++;
1789 	}
1790 
1791 	while (i < len - 1) {
1792 		val = read_eeprom(cp->regs, offset, addr_len);
1793 		data[i++] = (u8)val;
1794 		data[i++] = (u8)(val >> 8);
1795 		offset++;
1796 	}
1797 
1798 	if (i < len) {
1799 		val = read_eeprom(cp->regs, offset, addr_len);
1800 		data[i] = (u8)val;
1801 	}
1802 
1803 	spin_unlock_irq(&cp->lock);
1804 	return 0;
1805 }
1806 
1807 static int cp_set_eeprom(struct net_device *dev,
1808 			 struct ethtool_eeprom *eeprom, u8 *data)
1809 {
1810 	struct cp_private *cp = netdev_priv(dev);
1811 	unsigned int addr_len;
1812 	u16 val;
1813 	u32 offset = eeprom->offset >> 1;
1814 	u32 len = eeprom->len;
1815 	u32 i = 0;
1816 
1817 	if (eeprom->magic != CP_EEPROM_MAGIC)
1818 		return -EINVAL;
1819 
1820 	spin_lock_irq(&cp->lock);
1821 
1822 	addr_len = read_eeprom(cp->regs, 0, 8) == 0x8129 ? 8 : 6;
1823 
1824 	if (eeprom->offset & 1) {
1825 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff;
1826 		val |= (u16)data[i++] << 8;
1827 		write_eeprom(cp->regs, offset, val, addr_len);
1828 		offset++;
1829 	}
1830 
1831 	while (i < len - 1) {
1832 		val = (u16)data[i++];
1833 		val |= (u16)data[i++] << 8;
1834 		write_eeprom(cp->regs, offset, val, addr_len);
1835 		offset++;
1836 	}
1837 
1838 	if (i < len) {
1839 		val = read_eeprom(cp->regs, offset, addr_len) & 0xff00;
1840 		val |= (u16)data[i];
1841 		write_eeprom(cp->regs, offset, val, addr_len);
1842 	}
1843 
1844 	spin_unlock_irq(&cp->lock);
1845 	return 0;
1846 }
1847 
1848 /* Put the board into D3cold state and wait for WakeUp signal */
1849 static void cp_set_d3_state (struct cp_private *cp)
1850 {
1851 	pci_enable_wake(cp->pdev, PCI_D0, 1); /* Enable PME# generation */
1852 	pci_set_power_state (cp->pdev, PCI_D3hot);
1853 }
1854 
1855 static const struct net_device_ops cp_netdev_ops = {
1856 	.ndo_open		= cp_open,
1857 	.ndo_stop		= cp_close,
1858 	.ndo_validate_addr	= eth_validate_addr,
1859 	.ndo_set_mac_address 	= cp_set_mac_address,
1860 	.ndo_set_rx_mode	= cp_set_rx_mode,
1861 	.ndo_get_stats		= cp_get_stats,
1862 	.ndo_do_ioctl		= cp_ioctl,
1863 	.ndo_start_xmit		= cp_start_xmit,
1864 	.ndo_tx_timeout		= cp_tx_timeout,
1865 	.ndo_set_features	= cp_set_features,
1866 	.ndo_change_mtu		= cp_change_mtu,
1867 
1868 #ifdef CONFIG_NET_POLL_CONTROLLER
1869 	.ndo_poll_controller	= cp_poll_controller,
1870 #endif
1871 };
1872 
1873 static int cp_init_one (struct pci_dev *pdev, const struct pci_device_id *ent)
1874 {
1875 	struct net_device *dev;
1876 	struct cp_private *cp;
1877 	int rc;
1878 	void __iomem *regs;
1879 	resource_size_t pciaddr;
1880 	unsigned int addr_len, i, pci_using_dac;
1881 
1882 	pr_info_once("%s", version);
1883 
1884 	if (pdev->vendor == PCI_VENDOR_ID_REALTEK &&
1885 	    pdev->device == PCI_DEVICE_ID_REALTEK_8139 && pdev->revision < 0x20) {
1886 		dev_info(&pdev->dev,
1887 			 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1888 			 pdev->vendor, pdev->device, pdev->revision);
1889 		return -ENODEV;
1890 	}
1891 
1892 	dev = alloc_etherdev(sizeof(struct cp_private));
1893 	if (!dev)
1894 		return -ENOMEM;
1895 	SET_NETDEV_DEV(dev, &pdev->dev);
1896 
1897 	cp = netdev_priv(dev);
1898 	cp->pdev = pdev;
1899 	cp->dev = dev;
1900 	cp->msg_enable = (debug < 0 ? CP_DEF_MSG_ENABLE : debug);
1901 	spin_lock_init (&cp->lock);
1902 	cp->mii_if.dev = dev;
1903 	cp->mii_if.mdio_read = mdio_read;
1904 	cp->mii_if.mdio_write = mdio_write;
1905 	cp->mii_if.phy_id = CP_INTERNAL_PHY;
1906 	cp->mii_if.phy_id_mask = 0x1f;
1907 	cp->mii_if.reg_num_mask = 0x1f;
1908 	cp_set_rxbufsize(cp);
1909 
1910 	rc = pci_enable_device(pdev);
1911 	if (rc)
1912 		goto err_out_free;
1913 
1914 	rc = pci_set_mwi(pdev);
1915 	if (rc)
1916 		goto err_out_disable;
1917 
1918 	rc = pci_request_regions(pdev, DRV_NAME);
1919 	if (rc)
1920 		goto err_out_mwi;
1921 
1922 	pciaddr = pci_resource_start(pdev, 1);
1923 	if (!pciaddr) {
1924 		rc = -EIO;
1925 		dev_err(&pdev->dev, "no MMIO resource\n");
1926 		goto err_out_res;
1927 	}
1928 	if (pci_resource_len(pdev, 1) < CP_REGS_SIZE) {
1929 		rc = -EIO;
1930 		dev_err(&pdev->dev, "MMIO resource (%llx) too small\n",
1931 		       (unsigned long long)pci_resource_len(pdev, 1));
1932 		goto err_out_res;
1933 	}
1934 
1935 	/* Configure DMA attributes. */
1936 	if ((sizeof(dma_addr_t) > 4) &&
1937 	    !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1938 	    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1939 		pci_using_dac = 1;
1940 	} else {
1941 		pci_using_dac = 0;
1942 
1943 		rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1944 		if (rc) {
1945 			dev_err(&pdev->dev,
1946 				"No usable DMA configuration, aborting\n");
1947 			goto err_out_res;
1948 		}
1949 		rc = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
1950 		if (rc) {
1951 			dev_err(&pdev->dev,
1952 				"No usable consistent DMA configuration, aborting\n");
1953 			goto err_out_res;
1954 		}
1955 	}
1956 
1957 	cp->cpcmd = (pci_using_dac ? PCIDAC : 0) |
1958 		    PCIMulRW | RxChkSum | CpRxOn | CpTxOn;
1959 
1960 	dev->features |= NETIF_F_RXCSUM;
1961 	dev->hw_features |= NETIF_F_RXCSUM;
1962 
1963 	regs = ioremap(pciaddr, CP_REGS_SIZE);
1964 	if (!regs) {
1965 		rc = -EIO;
1966 		dev_err(&pdev->dev, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1967 			(unsigned long long)pci_resource_len(pdev, 1),
1968 		       (unsigned long long)pciaddr);
1969 		goto err_out_res;
1970 	}
1971 	cp->regs = regs;
1972 
1973 	cp_stop_hw(cp);
1974 
1975 	/* read MAC address from EEPROM */
1976 	addr_len = read_eeprom (regs, 0, 8) == 0x8129 ? 8 : 6;
1977 	for (i = 0; i < 3; i++)
1978 		((__le16 *) (dev->dev_addr))[i] =
1979 		    cpu_to_le16(read_eeprom (regs, i + 7, addr_len));
1980 
1981 	dev->netdev_ops = &cp_netdev_ops;
1982 	netif_napi_add(dev, &cp->napi, cp_rx_poll, 16);
1983 	dev->ethtool_ops = &cp_ethtool_ops;
1984 	dev->watchdog_timeo = TX_TIMEOUT;
1985 
1986 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1987 
1988 	if (pci_using_dac)
1989 		dev->features |= NETIF_F_HIGHDMA;
1990 
1991 	/* disabled by default until verified */
1992 	dev->hw_features |= NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1993 		NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
1994 	dev->vlan_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO |
1995 		NETIF_F_HIGHDMA;
1996 
1997 	rc = register_netdev(dev);
1998 	if (rc)
1999 		goto err_out_iomap;
2000 
2001 	netdev_info(dev, "RTL-8139C+ at 0x%p, %pM, IRQ %d\n",
2002 		    regs, dev->dev_addr, pdev->irq);
2003 
2004 	pci_set_drvdata(pdev, dev);
2005 
2006 	/* enable busmastering and memory-write-invalidate */
2007 	pci_set_master(pdev);
2008 
2009 	if (cp->wol_enabled)
2010 		cp_set_d3_state (cp);
2011 
2012 	return 0;
2013 
2014 err_out_iomap:
2015 	iounmap(regs);
2016 err_out_res:
2017 	pci_release_regions(pdev);
2018 err_out_mwi:
2019 	pci_clear_mwi(pdev);
2020 err_out_disable:
2021 	pci_disable_device(pdev);
2022 err_out_free:
2023 	free_netdev(dev);
2024 	return rc;
2025 }
2026 
2027 static void cp_remove_one (struct pci_dev *pdev)
2028 {
2029 	struct net_device *dev = pci_get_drvdata(pdev);
2030 	struct cp_private *cp = netdev_priv(dev);
2031 
2032 	unregister_netdev(dev);
2033 	iounmap(cp->regs);
2034 	if (cp->wol_enabled)
2035 		pci_set_power_state (pdev, PCI_D0);
2036 	pci_release_regions(pdev);
2037 	pci_clear_mwi(pdev);
2038 	pci_disable_device(pdev);
2039 	free_netdev(dev);
2040 }
2041 
2042 #ifdef CONFIG_PM
2043 static int cp_suspend (struct pci_dev *pdev, pm_message_t state)
2044 {
2045 	struct net_device *dev = pci_get_drvdata(pdev);
2046 	struct cp_private *cp = netdev_priv(dev);
2047 	unsigned long flags;
2048 
2049 	if (!netif_running(dev))
2050 		return 0;
2051 
2052 	netif_device_detach (dev);
2053 	netif_stop_queue (dev);
2054 
2055 	spin_lock_irqsave (&cp->lock, flags);
2056 
2057 	/* Disable Rx and Tx */
2058 	cpw16 (IntrMask, 0);
2059 	cpw8  (Cmd, cpr8 (Cmd) & (~RxOn | ~TxOn));
2060 
2061 	spin_unlock_irqrestore (&cp->lock, flags);
2062 
2063 	pci_save_state(pdev);
2064 	pci_enable_wake(pdev, pci_choose_state(pdev, state), cp->wol_enabled);
2065 	pci_set_power_state(pdev, pci_choose_state(pdev, state));
2066 
2067 	return 0;
2068 }
2069 
2070 static int cp_resume (struct pci_dev *pdev)
2071 {
2072 	struct net_device *dev = pci_get_drvdata (pdev);
2073 	struct cp_private *cp = netdev_priv(dev);
2074 	unsigned long flags;
2075 
2076 	if (!netif_running(dev))
2077 		return 0;
2078 
2079 	netif_device_attach (dev);
2080 
2081 	pci_set_power_state(pdev, PCI_D0);
2082 	pci_restore_state(pdev);
2083 	pci_enable_wake(pdev, PCI_D0, 0);
2084 
2085 	/* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2086 	cp_init_rings_index (cp);
2087 	cp_init_hw (cp);
2088 	cp_enable_irq(cp);
2089 	netif_start_queue (dev);
2090 
2091 	spin_lock_irqsave (&cp->lock, flags);
2092 
2093 	mii_check_media(&cp->mii_if, netif_msg_link(cp), false);
2094 
2095 	spin_unlock_irqrestore (&cp->lock, flags);
2096 
2097 	return 0;
2098 }
2099 #endif /* CONFIG_PM */
2100 
2101 static const struct pci_device_id cp_pci_tbl[] = {
2102         { PCI_DEVICE(PCI_VENDOR_ID_REALTEK,     PCI_DEVICE_ID_REALTEK_8139), },
2103         { PCI_DEVICE(PCI_VENDOR_ID_TTTECH,      PCI_DEVICE_ID_TTTECH_MC322), },
2104         { },
2105 };
2106 MODULE_DEVICE_TABLE(pci, cp_pci_tbl);
2107 
2108 static struct pci_driver cp_driver = {
2109 	.name         = DRV_NAME,
2110 	.id_table     = cp_pci_tbl,
2111 	.probe        =	cp_init_one,
2112 	.remove       = cp_remove_one,
2113 #ifdef CONFIG_PM
2114 	.resume       = cp_resume,
2115 	.suspend      = cp_suspend,
2116 #endif
2117 };
2118 
2119 module_pci_driver(cp_driver);
2120