xref: /openbmc/linux/drivers/net/ethernet/qlogic/qla3xxx.c (revision f606b9ac4abbe56816eee1941dccae9b6d3d8952)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * QLogic QLA3xxx NIC HBA Driver
4  * Copyright (c)  2003-2006 QLogic Corporation
5  */
6 
7 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
8 
9 #include <linux/kernel.h>
10 #include <linux/types.h>
11 #include <linux/module.h>
12 #include <linux/list.h>
13 #include <linux/pci.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/dmapool.h>
18 #include <linux/mempool.h>
19 #include <linux/spinlock.h>
20 #include <linux/kthread.h>
21 #include <linux/interrupt.h>
22 #include <linux/errno.h>
23 #include <linux/ioport.h>
24 #include <linux/ip.h>
25 #include <linux/in.h>
26 #include <linux/if_arp.h>
27 #include <linux/if_ether.h>
28 #include <linux/netdevice.h>
29 #include <linux/etherdevice.h>
30 #include <linux/ethtool.h>
31 #include <linux/skbuff.h>
32 #include <linux/rtnetlink.h>
33 #include <linux/if_vlan.h>
34 #include <linux/delay.h>
35 #include <linux/mm.h>
36 #include <linux/prefetch.h>
37 
38 #include "qla3xxx.h"
39 
40 #define DRV_NAME	"qla3xxx"
41 #define DRV_STRING	"QLogic ISP3XXX Network Driver"
42 #define DRV_VERSION	"v2.03.00-k5"
43 
44 static const char ql3xxx_driver_name[] = DRV_NAME;
45 static const char ql3xxx_driver_version[] = DRV_VERSION;
46 
47 #define TIMED_OUT_MSG							\
48 "Timed out waiting for management port to get free before issuing command\n"
49 
50 MODULE_AUTHOR("QLogic Corporation");
51 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
52 MODULE_LICENSE("GPL");
53 MODULE_VERSION(DRV_VERSION);
54 
55 static const u32 default_msg
56     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
57     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
58 
59 static int debug = -1;		/* defaults above */
60 module_param(debug, int, 0);
61 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
62 
63 static int msi;
64 module_param(msi, int, 0);
65 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
66 
67 static const struct pci_device_id ql3xxx_pci_tbl[] = {
68 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
69 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
70 	/* required last entry */
71 	{0,}
72 };
73 
74 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
75 
76 /*
77  *  These are the known PHY's which are used
78  */
79 enum PHY_DEVICE_TYPE {
80    PHY_TYPE_UNKNOWN   = 0,
81    PHY_VITESSE_VSC8211,
82    PHY_AGERE_ET1011C,
83    MAX_PHY_DEV_TYPES
84 };
85 
86 struct PHY_DEVICE_INFO {
87 	const enum PHY_DEVICE_TYPE	phyDevice;
88 	const u32		phyIdOUI;
89 	const u16		phyIdModel;
90 	const char		*name;
91 };
92 
93 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
94 	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
95 	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
96 	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
97 };
98 
99 
100 /*
101  * Caller must take hw_lock.
102  */
103 static int ql_sem_spinlock(struct ql3_adapter *qdev,
104 			    u32 sem_mask, u32 sem_bits)
105 {
106 	struct ql3xxx_port_registers __iomem *port_regs =
107 		qdev->mem_map_registers;
108 	u32 value;
109 	unsigned int seconds = 3;
110 
111 	do {
112 		writel((sem_mask | sem_bits),
113 		       &port_regs->CommonRegs.semaphoreReg);
114 		value = readl(&port_regs->CommonRegs.semaphoreReg);
115 		if ((value & (sem_mask >> 16)) == sem_bits)
116 			return 0;
117 		mdelay(1000);
118 	} while (--seconds);
119 	return -1;
120 }
121 
122 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
123 {
124 	struct ql3xxx_port_registers __iomem *port_regs =
125 		qdev->mem_map_registers;
126 	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
127 	readl(&port_regs->CommonRegs.semaphoreReg);
128 }
129 
130 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
131 {
132 	struct ql3xxx_port_registers __iomem *port_regs =
133 		qdev->mem_map_registers;
134 	u32 value;
135 
136 	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
137 	value = readl(&port_regs->CommonRegs.semaphoreReg);
138 	return ((value & (sem_mask >> 16)) == sem_bits);
139 }
140 
141 /*
142  * Caller holds hw_lock.
143  */
144 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
145 {
146 	int i = 0;
147 
148 	do {
149 		if (ql_sem_lock(qdev,
150 				QL_DRVR_SEM_MASK,
151 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
152 				 * 2) << 1)) {
153 			netdev_printk(KERN_DEBUG, qdev->ndev,
154 				      "driver lock acquired\n");
155 			return 1;
156 		}
157 		mdelay(1000);
158 	} while (++i < 10);
159 
160 	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
161 	return 0;
162 }
163 
164 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
165 {
166 	struct ql3xxx_port_registers __iomem *port_regs =
167 		qdev->mem_map_registers;
168 
169 	writel(((ISP_CONTROL_NP_MASK << 16) | page),
170 			&port_regs->CommonRegs.ispControlStatus);
171 	readl(&port_regs->CommonRegs.ispControlStatus);
172 	qdev->current_page = page;
173 }
174 
175 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
176 {
177 	u32 value;
178 	unsigned long hw_flags;
179 
180 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
181 	value = readl(reg);
182 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
183 
184 	return value;
185 }
186 
187 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
188 {
189 	return readl(reg);
190 }
191 
192 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
193 {
194 	u32 value;
195 	unsigned long hw_flags;
196 
197 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
198 
199 	if (qdev->current_page != 0)
200 		ql_set_register_page(qdev, 0);
201 	value = readl(reg);
202 
203 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
204 	return value;
205 }
206 
207 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
208 {
209 	if (qdev->current_page != 0)
210 		ql_set_register_page(qdev, 0);
211 	return readl(reg);
212 }
213 
214 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
215 				u32 __iomem *reg, u32 value)
216 {
217 	unsigned long hw_flags;
218 
219 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
220 	writel(value, reg);
221 	readl(reg);
222 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
223 }
224 
225 static void ql_write_common_reg(struct ql3_adapter *qdev,
226 				u32 __iomem *reg, u32 value)
227 {
228 	writel(value, reg);
229 	readl(reg);
230 }
231 
232 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
233 				u32 __iomem *reg, u32 value)
234 {
235 	writel(value, reg);
236 	readl(reg);
237 	udelay(1);
238 }
239 
240 static void ql_write_page0_reg(struct ql3_adapter *qdev,
241 			       u32 __iomem *reg, u32 value)
242 {
243 	if (qdev->current_page != 0)
244 		ql_set_register_page(qdev, 0);
245 	writel(value, reg);
246 	readl(reg);
247 }
248 
249 /*
250  * Caller holds hw_lock. Only called during init.
251  */
252 static void ql_write_page1_reg(struct ql3_adapter *qdev,
253 			       u32 __iomem *reg, u32 value)
254 {
255 	if (qdev->current_page != 1)
256 		ql_set_register_page(qdev, 1);
257 	writel(value, reg);
258 	readl(reg);
259 }
260 
261 /*
262  * Caller holds hw_lock. Only called during init.
263  */
264 static void ql_write_page2_reg(struct ql3_adapter *qdev,
265 			       u32 __iomem *reg, u32 value)
266 {
267 	if (qdev->current_page != 2)
268 		ql_set_register_page(qdev, 2);
269 	writel(value, reg);
270 	readl(reg);
271 }
272 
273 static void ql_disable_interrupts(struct ql3_adapter *qdev)
274 {
275 	struct ql3xxx_port_registers __iomem *port_regs =
276 		qdev->mem_map_registers;
277 
278 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
279 			    (ISP_IMR_ENABLE_INT << 16));
280 
281 }
282 
283 static void ql_enable_interrupts(struct ql3_adapter *qdev)
284 {
285 	struct ql3xxx_port_registers __iomem *port_regs =
286 		qdev->mem_map_registers;
287 
288 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
289 			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
290 
291 }
292 
293 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
294 					    struct ql_rcv_buf_cb *lrg_buf_cb)
295 {
296 	dma_addr_t map;
297 	int err;
298 	lrg_buf_cb->next = NULL;
299 
300 	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
301 		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
302 	} else {
303 		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
304 		qdev->lrg_buf_free_tail = lrg_buf_cb;
305 	}
306 
307 	if (!lrg_buf_cb->skb) {
308 		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
309 						   qdev->lrg_buffer_len);
310 		if (unlikely(!lrg_buf_cb->skb)) {
311 			qdev->lrg_buf_skb_check++;
312 		} else {
313 			/*
314 			 * We save some space to copy the ethhdr from first
315 			 * buffer
316 			 */
317 			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
318 			map = dma_map_single(&qdev->pdev->dev,
319 					     lrg_buf_cb->skb->data,
320 					     qdev->lrg_buffer_len - QL_HEADER_SPACE,
321 					     DMA_FROM_DEVICE);
322 			err = dma_mapping_error(&qdev->pdev->dev, map);
323 			if (err) {
324 				netdev_err(qdev->ndev,
325 					   "PCI mapping failed with error: %d\n",
326 					   err);
327 				dev_kfree_skb(lrg_buf_cb->skb);
328 				lrg_buf_cb->skb = NULL;
329 
330 				qdev->lrg_buf_skb_check++;
331 				return;
332 			}
333 
334 			lrg_buf_cb->buf_phy_addr_low =
335 			    cpu_to_le32(LS_64BITS(map));
336 			lrg_buf_cb->buf_phy_addr_high =
337 			    cpu_to_le32(MS_64BITS(map));
338 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
339 			dma_unmap_len_set(lrg_buf_cb, maplen,
340 					  qdev->lrg_buffer_len -
341 					  QL_HEADER_SPACE);
342 		}
343 	}
344 
345 	qdev->lrg_buf_free_count++;
346 }
347 
348 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
349 							   *qdev)
350 {
351 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
352 
353 	if (lrg_buf_cb != NULL) {
354 		qdev->lrg_buf_free_head = lrg_buf_cb->next;
355 		if (qdev->lrg_buf_free_head == NULL)
356 			qdev->lrg_buf_free_tail = NULL;
357 		qdev->lrg_buf_free_count--;
358 	}
359 
360 	return lrg_buf_cb;
361 }
362 
363 static u32 addrBits = EEPROM_NO_ADDR_BITS;
364 static u32 dataBits = EEPROM_NO_DATA_BITS;
365 
366 static void fm93c56a_deselect(struct ql3_adapter *qdev);
367 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
368 			    unsigned short *value);
369 
370 /*
371  * Caller holds hw_lock.
372  */
373 static void fm93c56a_select(struct ql3_adapter *qdev)
374 {
375 	struct ql3xxx_port_registers __iomem *port_regs =
376 			qdev->mem_map_registers;
377 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
378 
379 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
380 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
381 }
382 
383 /*
384  * Caller holds hw_lock.
385  */
386 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
387 {
388 	int i;
389 	u32 mask;
390 	u32 dataBit;
391 	u32 previousBit;
392 	struct ql3xxx_port_registers __iomem *port_regs =
393 			qdev->mem_map_registers;
394 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
395 
396 	/* Clock in a zero, then do the start bit */
397 	ql_write_nvram_reg(qdev, spir,
398 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
399 			    AUBURN_EEPROM_DO_1));
400 	ql_write_nvram_reg(qdev, spir,
401 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
402 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
403 	ql_write_nvram_reg(qdev, spir,
404 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
405 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
406 
407 	mask = 1 << (FM93C56A_CMD_BITS - 1);
408 	/* Force the previous data bit to be different */
409 	previousBit = 0xffff;
410 	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
411 		dataBit = (cmd & mask)
412 			? AUBURN_EEPROM_DO_1
413 			: AUBURN_EEPROM_DO_0;
414 		if (previousBit != dataBit) {
415 			/* If the bit changed, change the DO state to match */
416 			ql_write_nvram_reg(qdev, spir,
417 					   (ISP_NVRAM_MASK |
418 					    qdev->eeprom_cmd_data | dataBit));
419 			previousBit = dataBit;
420 		}
421 		ql_write_nvram_reg(qdev, spir,
422 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
423 				    dataBit | AUBURN_EEPROM_CLK_RISE));
424 		ql_write_nvram_reg(qdev, spir,
425 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
426 				    dataBit | AUBURN_EEPROM_CLK_FALL));
427 		cmd = cmd << 1;
428 	}
429 
430 	mask = 1 << (addrBits - 1);
431 	/* Force the previous data bit to be different */
432 	previousBit = 0xffff;
433 	for (i = 0; i < addrBits; i++) {
434 		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
435 			: AUBURN_EEPROM_DO_0;
436 		if (previousBit != dataBit) {
437 			/*
438 			 * If the bit changed, then change the DO state to
439 			 * match
440 			 */
441 			ql_write_nvram_reg(qdev, spir,
442 					   (ISP_NVRAM_MASK |
443 					    qdev->eeprom_cmd_data | dataBit));
444 			previousBit = dataBit;
445 		}
446 		ql_write_nvram_reg(qdev, spir,
447 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
448 				    dataBit | AUBURN_EEPROM_CLK_RISE));
449 		ql_write_nvram_reg(qdev, spir,
450 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
451 				    dataBit | AUBURN_EEPROM_CLK_FALL));
452 		eepromAddr = eepromAddr << 1;
453 	}
454 }
455 
456 /*
457  * Caller holds hw_lock.
458  */
459 static void fm93c56a_deselect(struct ql3_adapter *qdev)
460 {
461 	struct ql3xxx_port_registers __iomem *port_regs =
462 			qdev->mem_map_registers;
463 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
464 
465 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
466 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
467 }
468 
469 /*
470  * Caller holds hw_lock.
471  */
472 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
473 {
474 	int i;
475 	u32 data = 0;
476 	u32 dataBit;
477 	struct ql3xxx_port_registers __iomem *port_regs =
478 			qdev->mem_map_registers;
479 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
480 
481 	/* Read the data bits */
482 	/* The first bit is a dummy.  Clock right over it. */
483 	for (i = 0; i < dataBits; i++) {
484 		ql_write_nvram_reg(qdev, spir,
485 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
486 				   AUBURN_EEPROM_CLK_RISE);
487 		ql_write_nvram_reg(qdev, spir,
488 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
489 				   AUBURN_EEPROM_CLK_FALL);
490 		dataBit = (ql_read_common_reg(qdev, spir) &
491 			   AUBURN_EEPROM_DI_1) ? 1 : 0;
492 		data = (data << 1) | dataBit;
493 	}
494 	*value = (u16)data;
495 }
496 
497 /*
498  * Caller holds hw_lock.
499  */
500 static void eeprom_readword(struct ql3_adapter *qdev,
501 			    u32 eepromAddr, unsigned short *value)
502 {
503 	fm93c56a_select(qdev);
504 	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
505 	fm93c56a_datain(qdev, value);
506 	fm93c56a_deselect(qdev);
507 }
508 
509 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
510 {
511 	__le16 buf[ETH_ALEN / 2];
512 
513 	buf[0] = cpu_to_le16(addr[0]);
514 	buf[1] = cpu_to_le16(addr[1]);
515 	buf[2] = cpu_to_le16(addr[2]);
516 	eth_hw_addr_set(ndev, (u8 *)buf);
517 }
518 
519 static int ql_get_nvram_params(struct ql3_adapter *qdev)
520 {
521 	u16 *pEEPROMData;
522 	u16 checksum = 0;
523 	u32 index;
524 	unsigned long hw_flags;
525 
526 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
527 
528 	pEEPROMData = (u16 *)&qdev->nvram_data;
529 	qdev->eeprom_cmd_data = 0;
530 	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
531 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
532 			 2) << 10)) {
533 		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
534 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
535 		return -1;
536 	}
537 
538 	for (index = 0; index < EEPROM_SIZE; index++) {
539 		eeprom_readword(qdev, index, pEEPROMData);
540 		checksum += *pEEPROMData;
541 		pEEPROMData++;
542 	}
543 	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
544 
545 	if (checksum != 0) {
546 		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
547 			   checksum);
548 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
549 		return -1;
550 	}
551 
552 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
553 	return checksum;
554 }
555 
556 static const u32 PHYAddr[2] = {
557 	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
558 };
559 
560 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
561 {
562 	struct ql3xxx_port_registers __iomem *port_regs =
563 			qdev->mem_map_registers;
564 	u32 temp;
565 	int count = 1000;
566 
567 	while (count) {
568 		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
569 		if (!(temp & MAC_MII_STATUS_BSY))
570 			return 0;
571 		udelay(10);
572 		count--;
573 	}
574 	return -1;
575 }
576 
577 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
578 {
579 	struct ql3xxx_port_registers __iomem *port_regs =
580 			qdev->mem_map_registers;
581 	u32 scanControl;
582 
583 	if (qdev->numPorts > 1) {
584 		/* Auto scan will cycle through multiple ports */
585 		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
586 	} else {
587 		scanControl = MAC_MII_CONTROL_SC;
588 	}
589 
590 	/*
591 	 * Scan register 1 of PHY/PETBI,
592 	 * Set up to scan both devices
593 	 * The autoscan starts from the first register, completes
594 	 * the last one before rolling over to the first
595 	 */
596 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
597 			   PHYAddr[0] | MII_SCAN_REGISTER);
598 
599 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
600 			   (scanControl) |
601 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
602 }
603 
604 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
605 {
606 	u8 ret;
607 	struct ql3xxx_port_registers __iomem *port_regs =
608 					qdev->mem_map_registers;
609 
610 	/* See if scan mode is enabled before we turn it off */
611 	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
612 	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
613 		/* Scan is enabled */
614 		ret = 1;
615 	} else {
616 		/* Scan is disabled */
617 		ret = 0;
618 	}
619 
620 	/*
621 	 * When disabling scan mode you must first change the MII register
622 	 * address
623 	 */
624 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
625 			   PHYAddr[0] | MII_SCAN_REGISTER);
626 
627 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
628 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
629 			     MAC_MII_CONTROL_RC) << 16));
630 
631 	return ret;
632 }
633 
634 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
635 			       u16 regAddr, u16 value, u32 phyAddr)
636 {
637 	struct ql3xxx_port_registers __iomem *port_regs =
638 			qdev->mem_map_registers;
639 	u8 scanWasEnabled;
640 
641 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
642 
643 	if (ql_wait_for_mii_ready(qdev)) {
644 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
645 		return -1;
646 	}
647 
648 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
649 			   phyAddr | regAddr);
650 
651 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
652 
653 	/* Wait for write to complete 9/10/04 SJP */
654 	if (ql_wait_for_mii_ready(qdev)) {
655 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
656 		return -1;
657 	}
658 
659 	if (scanWasEnabled)
660 		ql_mii_enable_scan_mode(qdev);
661 
662 	return 0;
663 }
664 
665 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
666 			      u16 *value, u32 phyAddr)
667 {
668 	struct ql3xxx_port_registers __iomem *port_regs =
669 			qdev->mem_map_registers;
670 	u8 scanWasEnabled;
671 	u32 temp;
672 
673 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
674 
675 	if (ql_wait_for_mii_ready(qdev)) {
676 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
677 		return -1;
678 	}
679 
680 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
681 			   phyAddr | regAddr);
682 
683 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
684 			   (MAC_MII_CONTROL_RC << 16));
685 
686 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
687 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
688 
689 	/* Wait for the read to complete */
690 	if (ql_wait_for_mii_ready(qdev)) {
691 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
692 		return -1;
693 	}
694 
695 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
696 	*value = (u16) temp;
697 
698 	if (scanWasEnabled)
699 		ql_mii_enable_scan_mode(qdev);
700 
701 	return 0;
702 }
703 
704 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
705 {
706 	struct ql3xxx_port_registers __iomem *port_regs =
707 			qdev->mem_map_registers;
708 
709 	ql_mii_disable_scan_mode(qdev);
710 
711 	if (ql_wait_for_mii_ready(qdev)) {
712 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
713 		return -1;
714 	}
715 
716 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
717 			   qdev->PHYAddr | regAddr);
718 
719 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
720 
721 	/* Wait for write to complete. */
722 	if (ql_wait_for_mii_ready(qdev)) {
723 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
724 		return -1;
725 	}
726 
727 	ql_mii_enable_scan_mode(qdev);
728 
729 	return 0;
730 }
731 
732 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
733 {
734 	u32 temp;
735 	struct ql3xxx_port_registers __iomem *port_regs =
736 			qdev->mem_map_registers;
737 
738 	ql_mii_disable_scan_mode(qdev);
739 
740 	if (ql_wait_for_mii_ready(qdev)) {
741 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
742 		return -1;
743 	}
744 
745 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
746 			   qdev->PHYAddr | regAddr);
747 
748 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
749 			   (MAC_MII_CONTROL_RC << 16));
750 
751 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
752 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
753 
754 	/* Wait for the read to complete */
755 	if (ql_wait_for_mii_ready(qdev)) {
756 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
757 		return -1;
758 	}
759 
760 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
761 	*value = (u16) temp;
762 
763 	ql_mii_enable_scan_mode(qdev);
764 
765 	return 0;
766 }
767 
768 static void ql_petbi_reset(struct ql3_adapter *qdev)
769 {
770 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
771 }
772 
773 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
774 {
775 	u16 reg;
776 
777 	/* Enable Auto-negotiation sense */
778 	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
779 	reg |= PETBI_TBI_AUTO_SENSE;
780 	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
781 
782 	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
783 			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
784 
785 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
786 			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
787 			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
788 
789 }
790 
791 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
792 {
793 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
794 			    PHYAddr[qdev->mac_index]);
795 }
796 
797 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
798 {
799 	u16 reg;
800 
801 	/* Enable Auto-negotiation sense */
802 	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
803 			   PHYAddr[qdev->mac_index]);
804 	reg |= PETBI_TBI_AUTO_SENSE;
805 	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
806 			    PHYAddr[qdev->mac_index]);
807 
808 	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
809 			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
810 			    PHYAddr[qdev->mac_index]);
811 
812 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
813 			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
814 			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
815 			    PHYAddr[qdev->mac_index]);
816 }
817 
818 static void ql_petbi_init(struct ql3_adapter *qdev)
819 {
820 	ql_petbi_reset(qdev);
821 	ql_petbi_start_neg(qdev);
822 }
823 
824 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
825 {
826 	ql_petbi_reset_ex(qdev);
827 	ql_petbi_start_neg_ex(qdev);
828 }
829 
830 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
831 {
832 	u16 reg;
833 
834 	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
835 		return 0;
836 
837 	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
838 }
839 
840 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
841 {
842 	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
843 	/* power down device bit 11 = 1 */
844 	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
845 	/* enable diagnostic mode bit 2 = 1 */
846 	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
847 	/* 1000MB amplitude adjust (see Agere errata) */
848 	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
849 	/* 1000MB amplitude adjust (see Agere errata) */
850 	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
851 	/* 100MB amplitude adjust (see Agere errata) */
852 	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
853 	/* 100MB amplitude adjust (see Agere errata) */
854 	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
855 	/* 10MB amplitude adjust (see Agere errata) */
856 	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
857 	/* 10MB amplitude adjust (see Agere errata) */
858 	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
859 	/* point to hidden reg 0x2806 */
860 	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
861 	/* Write new PHYAD w/bit 5 set */
862 	ql_mii_write_reg_ex(qdev, 0x11,
863 			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
864 	/*
865 	 * Disable diagnostic mode bit 2 = 0
866 	 * Power up device bit 11 = 0
867 	 * Link up (on) and activity (blink)
868 	 */
869 	ql_mii_write_reg(qdev, 0x12, 0x840a);
870 	ql_mii_write_reg(qdev, 0x00, 0x1140);
871 	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
872 }
873 
874 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
875 				       u16 phyIdReg0, u16 phyIdReg1)
876 {
877 	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
878 	u32   oui;
879 	u16   model;
880 	int i;
881 
882 	if (phyIdReg0 == 0xffff)
883 		return result;
884 
885 	if (phyIdReg1 == 0xffff)
886 		return result;
887 
888 	/* oui is split between two registers */
889 	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
890 
891 	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
892 
893 	/* Scan table for this PHY */
894 	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
895 		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
896 		    (model == PHY_DEVICES[i].phyIdModel)) {
897 			netdev_info(qdev->ndev, "Phy: %s\n",
898 				    PHY_DEVICES[i].name);
899 			result = PHY_DEVICES[i].phyDevice;
900 			break;
901 		}
902 	}
903 
904 	return result;
905 }
906 
907 static int ql_phy_get_speed(struct ql3_adapter *qdev)
908 {
909 	u16 reg;
910 
911 	switch (qdev->phyType) {
912 	case PHY_AGERE_ET1011C: {
913 		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
914 			return 0;
915 
916 		reg = (reg >> 8) & 3;
917 		break;
918 	}
919 	default:
920 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
921 			return 0;
922 
923 		reg = (((reg & 0x18) >> 3) & 3);
924 	}
925 
926 	switch (reg) {
927 	case 2:
928 		return SPEED_1000;
929 	case 1:
930 		return SPEED_100;
931 	case 0:
932 		return SPEED_10;
933 	default:
934 		return -1;
935 	}
936 }
937 
938 static int ql_is_full_dup(struct ql3_adapter *qdev)
939 {
940 	u16 reg;
941 
942 	switch (qdev->phyType) {
943 	case PHY_AGERE_ET1011C: {
944 		if (ql_mii_read_reg(qdev, 0x1A, &reg))
945 			return 0;
946 
947 		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
948 	}
949 	case PHY_VITESSE_VSC8211:
950 	default: {
951 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
952 			return 0;
953 		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
954 	}
955 	}
956 }
957 
958 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
959 {
960 	u16 reg;
961 
962 	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
963 		return 0;
964 
965 	return (reg & PHY_NEG_PAUSE) != 0;
966 }
967 
968 static int PHY_Setup(struct ql3_adapter *qdev)
969 {
970 	u16   reg1;
971 	u16   reg2;
972 	bool  agereAddrChangeNeeded = false;
973 	u32 miiAddr = 0;
974 	int err;
975 
976 	/*  Determine the PHY we are using by reading the ID's */
977 	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
978 	if (err != 0) {
979 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
980 		return err;
981 	}
982 
983 	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
984 	if (err != 0) {
985 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
986 		return err;
987 	}
988 
989 	/*  Check if we have a Agere PHY */
990 	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
991 
992 		/* Determine which MII address we should be using
993 		   determined by the index of the card */
994 		if (qdev->mac_index == 0)
995 			miiAddr = MII_AGERE_ADDR_1;
996 		else
997 			miiAddr = MII_AGERE_ADDR_2;
998 
999 		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1000 		if (err != 0) {
1001 			netdev_err(qdev->ndev,
1002 				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1003 			return err;
1004 		}
1005 
1006 		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1007 		if (err != 0) {
1008 			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1009 			return err;
1010 		}
1011 
1012 		/*  We need to remember to initialize the Agere PHY */
1013 		agereAddrChangeNeeded = true;
1014 	}
1015 
1016 	/*  Determine the particular PHY we have on board to apply
1017 	    PHY specific initializations */
1018 	qdev->phyType = getPhyType(qdev, reg1, reg2);
1019 
1020 	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1021 		/* need this here so address gets changed */
1022 		phyAgereSpecificInit(qdev, miiAddr);
1023 	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1024 		netdev_err(qdev->ndev, "PHY is unknown\n");
1025 		return -EIO;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Caller holds hw_lock.
1033  */
1034 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1035 {
1036 	struct ql3xxx_port_registers __iomem *port_regs =
1037 			qdev->mem_map_registers;
1038 	u32 value;
1039 
1040 	if (enable)
1041 		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1042 	else
1043 		value = (MAC_CONFIG_REG_PE << 16);
1044 
1045 	if (qdev->mac_index)
1046 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1047 	else
1048 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1049 }
1050 
1051 /*
1052  * Caller holds hw_lock.
1053  */
1054 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1055 {
1056 	struct ql3xxx_port_registers __iomem *port_regs =
1057 			qdev->mem_map_registers;
1058 	u32 value;
1059 
1060 	if (enable)
1061 		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1062 	else
1063 		value = (MAC_CONFIG_REG_SR << 16);
1064 
1065 	if (qdev->mac_index)
1066 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1067 	else
1068 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1069 }
1070 
1071 /*
1072  * Caller holds hw_lock.
1073  */
1074 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1075 {
1076 	struct ql3xxx_port_registers __iomem *port_regs =
1077 			qdev->mem_map_registers;
1078 	u32 value;
1079 
1080 	if (enable)
1081 		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1082 	else
1083 		value = (MAC_CONFIG_REG_GM << 16);
1084 
1085 	if (qdev->mac_index)
1086 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1087 	else
1088 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1089 }
1090 
1091 /*
1092  * Caller holds hw_lock.
1093  */
1094 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1095 {
1096 	struct ql3xxx_port_registers __iomem *port_regs =
1097 			qdev->mem_map_registers;
1098 	u32 value;
1099 
1100 	if (enable)
1101 		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1102 	else
1103 		value = (MAC_CONFIG_REG_FD << 16);
1104 
1105 	if (qdev->mac_index)
1106 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1107 	else
1108 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1109 }
1110 
1111 /*
1112  * Caller holds hw_lock.
1113  */
1114 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1115 {
1116 	struct ql3xxx_port_registers __iomem *port_regs =
1117 			qdev->mem_map_registers;
1118 	u32 value;
1119 
1120 	if (enable)
1121 		value =
1122 		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1123 		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1124 	else
1125 		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1126 
1127 	if (qdev->mac_index)
1128 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1129 	else
1130 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1131 }
1132 
1133 /*
1134  * Caller holds hw_lock.
1135  */
1136 static int ql_is_fiber(struct ql3_adapter *qdev)
1137 {
1138 	struct ql3xxx_port_registers __iomem *port_regs =
1139 			qdev->mem_map_registers;
1140 	u32 bitToCheck = 0;
1141 	u32 temp;
1142 
1143 	switch (qdev->mac_index) {
1144 	case 0:
1145 		bitToCheck = PORT_STATUS_SM0;
1146 		break;
1147 	case 1:
1148 		bitToCheck = PORT_STATUS_SM1;
1149 		break;
1150 	}
1151 
1152 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1153 	return (temp & bitToCheck) != 0;
1154 }
1155 
1156 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1157 {
1158 	u16 reg;
1159 	ql_mii_read_reg(qdev, 0x00, &reg);
1160 	return (reg & 0x1000) != 0;
1161 }
1162 
1163 /*
1164  * Caller holds hw_lock.
1165  */
1166 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1167 {
1168 	struct ql3xxx_port_registers __iomem *port_regs =
1169 			qdev->mem_map_registers;
1170 	u32 bitToCheck = 0;
1171 	u32 temp;
1172 
1173 	switch (qdev->mac_index) {
1174 	case 0:
1175 		bitToCheck = PORT_STATUS_AC0;
1176 		break;
1177 	case 1:
1178 		bitToCheck = PORT_STATUS_AC1;
1179 		break;
1180 	}
1181 
1182 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1183 	if (temp & bitToCheck) {
1184 		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1185 		return 1;
1186 	}
1187 	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1188 	return 0;
1189 }
1190 
1191 /*
1192  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1193  */
1194 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1195 {
1196 	if (ql_is_fiber(qdev))
1197 		return ql_is_petbi_neg_pause(qdev);
1198 	else
1199 		return ql_is_phy_neg_pause(qdev);
1200 }
1201 
1202 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1203 {
1204 	struct ql3xxx_port_registers __iomem *port_regs =
1205 			qdev->mem_map_registers;
1206 	u32 bitToCheck = 0;
1207 	u32 temp;
1208 
1209 	switch (qdev->mac_index) {
1210 	case 0:
1211 		bitToCheck = PORT_STATUS_AE0;
1212 		break;
1213 	case 1:
1214 		bitToCheck = PORT_STATUS_AE1;
1215 		break;
1216 	}
1217 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1218 	return (temp & bitToCheck) != 0;
1219 }
1220 
1221 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1222 {
1223 	if (ql_is_fiber(qdev))
1224 		return SPEED_1000;
1225 	else
1226 		return ql_phy_get_speed(qdev);
1227 }
1228 
1229 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1230 {
1231 	if (ql_is_fiber(qdev))
1232 		return 1;
1233 	else
1234 		return ql_is_full_dup(qdev);
1235 }
1236 
1237 /*
1238  * Caller holds hw_lock.
1239  */
1240 static int ql_link_down_detect(struct ql3_adapter *qdev)
1241 {
1242 	struct ql3xxx_port_registers __iomem *port_regs =
1243 			qdev->mem_map_registers;
1244 	u32 bitToCheck = 0;
1245 	u32 temp;
1246 
1247 	switch (qdev->mac_index) {
1248 	case 0:
1249 		bitToCheck = ISP_CONTROL_LINK_DN_0;
1250 		break;
1251 	case 1:
1252 		bitToCheck = ISP_CONTROL_LINK_DN_1;
1253 		break;
1254 	}
1255 
1256 	temp =
1257 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1258 	return (temp & bitToCheck) != 0;
1259 }
1260 
1261 /*
1262  * Caller holds hw_lock.
1263  */
1264 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1265 {
1266 	struct ql3xxx_port_registers __iomem *port_regs =
1267 			qdev->mem_map_registers;
1268 
1269 	switch (qdev->mac_index) {
1270 	case 0:
1271 		ql_write_common_reg(qdev,
1272 				    &port_regs->CommonRegs.ispControlStatus,
1273 				    (ISP_CONTROL_LINK_DN_0) |
1274 				    (ISP_CONTROL_LINK_DN_0 << 16));
1275 		break;
1276 
1277 	case 1:
1278 		ql_write_common_reg(qdev,
1279 				    &port_regs->CommonRegs.ispControlStatus,
1280 				    (ISP_CONTROL_LINK_DN_1) |
1281 				    (ISP_CONTROL_LINK_DN_1 << 16));
1282 		break;
1283 
1284 	default:
1285 		return 1;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Caller holds hw_lock.
1293  */
1294 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1295 {
1296 	struct ql3xxx_port_registers __iomem *port_regs =
1297 			qdev->mem_map_registers;
1298 	u32 bitToCheck = 0;
1299 	u32 temp;
1300 
1301 	switch (qdev->mac_index) {
1302 	case 0:
1303 		bitToCheck = PORT_STATUS_F1_ENABLED;
1304 		break;
1305 	case 1:
1306 		bitToCheck = PORT_STATUS_F3_ENABLED;
1307 		break;
1308 	default:
1309 		break;
1310 	}
1311 
1312 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1313 	if (temp & bitToCheck) {
1314 		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1315 			     "not link master\n");
1316 		return 0;
1317 	}
1318 
1319 	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1320 	return 1;
1321 }
1322 
1323 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1324 {
1325 	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1326 			    PHYAddr[qdev->mac_index]);
1327 }
1328 
1329 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1330 {
1331 	u16 reg;
1332 	u16 portConfiguration;
1333 
1334 	if (qdev->phyType == PHY_AGERE_ET1011C)
1335 		ql_mii_write_reg(qdev, 0x13, 0x0000);
1336 					/* turn off external loopback */
1337 
1338 	if (qdev->mac_index == 0)
1339 		portConfiguration =
1340 			qdev->nvram_data.macCfg_port0.portConfiguration;
1341 	else
1342 		portConfiguration =
1343 			qdev->nvram_data.macCfg_port1.portConfiguration;
1344 
1345 	/*  Some HBA's in the field are set to 0 and they need to
1346 	    be reinterpreted with a default value */
1347 	if (portConfiguration == 0)
1348 		portConfiguration = PORT_CONFIG_DEFAULT;
1349 
1350 	/* Set the 1000 advertisements */
1351 	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1352 			   PHYAddr[qdev->mac_index]);
1353 	reg &= ~PHY_GIG_ALL_PARAMS;
1354 
1355 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1356 		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1357 			reg |= PHY_GIG_ADV_1000F;
1358 		else
1359 			reg |= PHY_GIG_ADV_1000H;
1360 	}
1361 
1362 	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1363 			    PHYAddr[qdev->mac_index]);
1364 
1365 	/* Set the 10/100 & pause negotiation advertisements */
1366 	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1367 			   PHYAddr[qdev->mac_index]);
1368 	reg &= ~PHY_NEG_ALL_PARAMS;
1369 
1370 	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1371 		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1372 
1373 	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1374 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1375 			reg |= PHY_NEG_ADV_100F;
1376 
1377 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1378 			reg |= PHY_NEG_ADV_10F;
1379 	}
1380 
1381 	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1382 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1383 			reg |= PHY_NEG_ADV_100H;
1384 
1385 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1386 			reg |= PHY_NEG_ADV_10H;
1387 	}
1388 
1389 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1390 		reg |= 1;
1391 
1392 	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1393 			    PHYAddr[qdev->mac_index]);
1394 
1395 	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1396 
1397 	ql_mii_write_reg_ex(qdev, CONTROL_REG,
1398 			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1399 			    PHYAddr[qdev->mac_index]);
1400 }
1401 
1402 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1403 {
1404 	ql_phy_reset_ex(qdev);
1405 	PHY_Setup(qdev);
1406 	ql_phy_start_neg_ex(qdev);
1407 }
1408 
1409 /*
1410  * Caller holds hw_lock.
1411  */
1412 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1413 {
1414 	struct ql3xxx_port_registers __iomem *port_regs =
1415 			qdev->mem_map_registers;
1416 	u32 bitToCheck = 0;
1417 	u32 temp, linkState;
1418 
1419 	switch (qdev->mac_index) {
1420 	case 0:
1421 		bitToCheck = PORT_STATUS_UP0;
1422 		break;
1423 	case 1:
1424 		bitToCheck = PORT_STATUS_UP1;
1425 		break;
1426 	}
1427 
1428 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1429 	if (temp & bitToCheck)
1430 		linkState = LS_UP;
1431 	else
1432 		linkState = LS_DOWN;
1433 
1434 	return linkState;
1435 }
1436 
1437 static int ql_port_start(struct ql3_adapter *qdev)
1438 {
1439 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1440 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1441 			 2) << 7)) {
1442 		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1443 		return -1;
1444 	}
1445 
1446 	if (ql_is_fiber(qdev)) {
1447 		ql_petbi_init(qdev);
1448 	} else {
1449 		/* Copper port */
1450 		ql_phy_init_ex(qdev);
1451 	}
1452 
1453 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1454 	return 0;
1455 }
1456 
1457 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1458 {
1459 
1460 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1461 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1462 			 2) << 7))
1463 		return -1;
1464 
1465 	if (!ql_auto_neg_error(qdev)) {
1466 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1467 			/* configure the MAC */
1468 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1469 				     "Configuring link\n");
1470 			ql_mac_cfg_soft_reset(qdev, 1);
1471 			ql_mac_cfg_gig(qdev,
1472 				       (ql_get_link_speed
1473 					(qdev) ==
1474 					SPEED_1000));
1475 			ql_mac_cfg_full_dup(qdev,
1476 					    ql_is_link_full_dup
1477 					    (qdev));
1478 			ql_mac_cfg_pause(qdev,
1479 					 ql_is_neg_pause
1480 					 (qdev));
1481 			ql_mac_cfg_soft_reset(qdev, 0);
1482 
1483 			/* enable the MAC */
1484 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1485 				     "Enabling mac\n");
1486 			ql_mac_enable(qdev, 1);
1487 		}
1488 
1489 		qdev->port_link_state = LS_UP;
1490 		netif_start_queue(qdev->ndev);
1491 		netif_carrier_on(qdev->ndev);
1492 		netif_info(qdev, link, qdev->ndev,
1493 			   "Link is up at %d Mbps, %s duplex\n",
1494 			   ql_get_link_speed(qdev),
1495 			   ql_is_link_full_dup(qdev) ? "full" : "half");
1496 
1497 	} else {	/* Remote error detected */
1498 
1499 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1500 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1501 				     "Remote error detected. Calling ql_port_start()\n");
1502 			/*
1503 			 * ql_port_start() is shared code and needs
1504 			 * to lock the PHY on it's own.
1505 			 */
1506 			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1507 			if (ql_port_start(qdev))	/* Restart port */
1508 				return -1;
1509 			return 0;
1510 		}
1511 	}
1512 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1513 	return 0;
1514 }
1515 
1516 static void ql_link_state_machine_work(struct work_struct *work)
1517 {
1518 	struct ql3_adapter *qdev =
1519 		container_of(work, struct ql3_adapter, link_state_work.work);
1520 
1521 	u32 curr_link_state;
1522 	unsigned long hw_flags;
1523 
1524 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1525 
1526 	curr_link_state = ql_get_link_state(qdev);
1527 
1528 	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1529 		netif_info(qdev, link, qdev->ndev,
1530 			   "Reset in progress, skip processing link state\n");
1531 
1532 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1533 
1534 		/* Restart timer on 2 second interval. */
1535 		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1536 
1537 		return;
1538 	}
1539 
1540 	switch (qdev->port_link_state) {
1541 	default:
1542 		if (test_bit(QL_LINK_MASTER, &qdev->flags))
1543 			ql_port_start(qdev);
1544 		qdev->port_link_state = LS_DOWN;
1545 		fallthrough;
1546 
1547 	case LS_DOWN:
1548 		if (curr_link_state == LS_UP) {
1549 			netif_info(qdev, link, qdev->ndev, "Link is up\n");
1550 			if (ql_is_auto_neg_complete(qdev))
1551 				ql_finish_auto_neg(qdev);
1552 
1553 			if (qdev->port_link_state == LS_UP)
1554 				ql_link_down_detect_clear(qdev);
1555 
1556 			qdev->port_link_state = LS_UP;
1557 		}
1558 		break;
1559 
1560 	case LS_UP:
1561 		/*
1562 		 * See if the link is currently down or went down and came
1563 		 * back up
1564 		 */
1565 		if (curr_link_state == LS_DOWN) {
1566 			netif_info(qdev, link, qdev->ndev, "Link is down\n");
1567 			qdev->port_link_state = LS_DOWN;
1568 		}
1569 		if (ql_link_down_detect(qdev))
1570 			qdev->port_link_state = LS_DOWN;
1571 		break;
1572 	}
1573 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1574 
1575 	/* Restart timer on 2 second interval. */
1576 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1577 }
1578 
1579 /*
1580  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1581  */
1582 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1583 {
1584 	if (ql_this_adapter_controls_port(qdev))
1585 		set_bit(QL_LINK_MASTER, &qdev->flags);
1586 	else
1587 		clear_bit(QL_LINK_MASTER, &qdev->flags);
1588 }
1589 
1590 /*
1591  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1592  */
1593 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1594 {
1595 	ql_mii_enable_scan_mode(qdev);
1596 
1597 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1598 		if (ql_this_adapter_controls_port(qdev))
1599 			ql_petbi_init_ex(qdev);
1600 	} else {
1601 		if (ql_this_adapter_controls_port(qdev))
1602 			ql_phy_init_ex(qdev);
1603 	}
1604 }
1605 
1606 /*
1607  * MII_Setup needs to be called before taking the PHY out of reset
1608  * so that the management interface clock speed can be set properly.
1609  * It would be better if we had a way to disable MDC until after the
1610  * PHY is out of reset, but we don't have that capability.
1611  */
1612 static int ql_mii_setup(struct ql3_adapter *qdev)
1613 {
1614 	u32 reg;
1615 	struct ql3xxx_port_registers __iomem *port_regs =
1616 			qdev->mem_map_registers;
1617 
1618 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1619 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1620 			 2) << 7))
1621 		return -1;
1622 
1623 	if (qdev->device_id == QL3032_DEVICE_ID)
1624 		ql_write_page0_reg(qdev,
1625 			&port_regs->macMIIMgmtControlReg, 0x0f00000);
1626 
1627 	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
1628 	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1629 
1630 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1631 			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1632 
1633 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1634 	return 0;
1635 }
1636 
1637 #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
1638 				 SUPPORTED_FIBRE |		\
1639 				 SUPPORTED_Autoneg)
1640 #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
1641 				 SUPPORTED_10baseT_Full |	\
1642 				 SUPPORTED_100baseT_Half |	\
1643 				 SUPPORTED_100baseT_Full |	\
1644 				 SUPPORTED_1000baseT_Half |	\
1645 				 SUPPORTED_1000baseT_Full |	\
1646 				 SUPPORTED_Autoneg |		\
1647 				 SUPPORTED_TP)			\
1648 
1649 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1650 {
1651 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1652 		return SUPPORTED_OPTICAL_MODES;
1653 
1654 	return SUPPORTED_TP_MODES;
1655 }
1656 
1657 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1658 {
1659 	int status;
1660 	unsigned long hw_flags;
1661 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1662 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1663 			    (QL_RESOURCE_BITS_BASE_CODE |
1664 			     (qdev->mac_index) * 2) << 7)) {
1665 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1666 		return 0;
1667 	}
1668 	status = ql_is_auto_cfg(qdev);
1669 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1670 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1671 	return status;
1672 }
1673 
1674 static u32 ql_get_speed(struct ql3_adapter *qdev)
1675 {
1676 	u32 status;
1677 	unsigned long hw_flags;
1678 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1679 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1680 			    (QL_RESOURCE_BITS_BASE_CODE |
1681 			     (qdev->mac_index) * 2) << 7)) {
1682 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1683 		return 0;
1684 	}
1685 	status = ql_get_link_speed(qdev);
1686 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1687 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1688 	return status;
1689 }
1690 
1691 static int ql_get_full_dup(struct ql3_adapter *qdev)
1692 {
1693 	int status;
1694 	unsigned long hw_flags;
1695 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1696 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1697 			    (QL_RESOURCE_BITS_BASE_CODE |
1698 			     (qdev->mac_index) * 2) << 7)) {
1699 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1700 		return 0;
1701 	}
1702 	status = ql_is_link_full_dup(qdev);
1703 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1704 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1705 	return status;
1706 }
1707 
1708 static int ql_get_link_ksettings(struct net_device *ndev,
1709 				 struct ethtool_link_ksettings *cmd)
1710 {
1711 	struct ql3_adapter *qdev = netdev_priv(ndev);
1712 	u32 supported, advertising;
1713 
1714 	supported = ql_supported_modes(qdev);
1715 
1716 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1717 		cmd->base.port = PORT_FIBRE;
1718 	} else {
1719 		cmd->base.port = PORT_TP;
1720 		cmd->base.phy_address = qdev->PHYAddr;
1721 	}
1722 	advertising = ql_supported_modes(qdev);
1723 	cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
1724 	cmd->base.speed = ql_get_speed(qdev);
1725 	cmd->base.duplex = ql_get_full_dup(qdev);
1726 
1727 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1728 						supported);
1729 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1730 						advertising);
1731 
1732 	return 0;
1733 }
1734 
1735 static void ql_get_drvinfo(struct net_device *ndev,
1736 			   struct ethtool_drvinfo *drvinfo)
1737 {
1738 	struct ql3_adapter *qdev = netdev_priv(ndev);
1739 	strscpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1740 	strscpy(drvinfo->version, ql3xxx_driver_version,
1741 		sizeof(drvinfo->version));
1742 	strscpy(drvinfo->bus_info, pci_name(qdev->pdev),
1743 		sizeof(drvinfo->bus_info));
1744 }
1745 
1746 static u32 ql_get_msglevel(struct net_device *ndev)
1747 {
1748 	struct ql3_adapter *qdev = netdev_priv(ndev);
1749 	return qdev->msg_enable;
1750 }
1751 
1752 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1753 {
1754 	struct ql3_adapter *qdev = netdev_priv(ndev);
1755 	qdev->msg_enable = value;
1756 }
1757 
1758 static void ql_get_pauseparam(struct net_device *ndev,
1759 			      struct ethtool_pauseparam *pause)
1760 {
1761 	struct ql3_adapter *qdev = netdev_priv(ndev);
1762 	struct ql3xxx_port_registers __iomem *port_regs =
1763 		qdev->mem_map_registers;
1764 
1765 	u32 reg;
1766 	if (qdev->mac_index == 0)
1767 		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1768 	else
1769 		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1770 
1771 	pause->autoneg  = ql_get_auto_cfg_status(qdev);
1772 	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1773 	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1774 }
1775 
1776 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1777 	.get_drvinfo = ql_get_drvinfo,
1778 	.get_link = ethtool_op_get_link,
1779 	.get_msglevel = ql_get_msglevel,
1780 	.set_msglevel = ql_set_msglevel,
1781 	.get_pauseparam = ql_get_pauseparam,
1782 	.get_link_ksettings = ql_get_link_ksettings,
1783 };
1784 
1785 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1786 {
1787 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1788 	dma_addr_t map;
1789 	int err;
1790 
1791 	while (lrg_buf_cb) {
1792 		if (!lrg_buf_cb->skb) {
1793 			lrg_buf_cb->skb =
1794 				netdev_alloc_skb(qdev->ndev,
1795 						 qdev->lrg_buffer_len);
1796 			if (unlikely(!lrg_buf_cb->skb)) {
1797 				netdev_printk(KERN_DEBUG, qdev->ndev,
1798 					      "Failed netdev_alloc_skb()\n");
1799 				break;
1800 			} else {
1801 				/*
1802 				 * We save some space to copy the ethhdr from
1803 				 * first buffer
1804 				 */
1805 				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1806 				map = dma_map_single(&qdev->pdev->dev,
1807 						     lrg_buf_cb->skb->data,
1808 						     qdev->lrg_buffer_len - QL_HEADER_SPACE,
1809 						     DMA_FROM_DEVICE);
1810 
1811 				err = dma_mapping_error(&qdev->pdev->dev, map);
1812 				if (err) {
1813 					netdev_err(qdev->ndev,
1814 						   "PCI mapping failed with error: %d\n",
1815 						   err);
1816 					dev_kfree_skb(lrg_buf_cb->skb);
1817 					lrg_buf_cb->skb = NULL;
1818 					break;
1819 				}
1820 
1821 
1822 				lrg_buf_cb->buf_phy_addr_low =
1823 					cpu_to_le32(LS_64BITS(map));
1824 				lrg_buf_cb->buf_phy_addr_high =
1825 					cpu_to_le32(MS_64BITS(map));
1826 				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1827 				dma_unmap_len_set(lrg_buf_cb, maplen,
1828 						  qdev->lrg_buffer_len -
1829 						  QL_HEADER_SPACE);
1830 				--qdev->lrg_buf_skb_check;
1831 				if (!qdev->lrg_buf_skb_check)
1832 					return 1;
1833 			}
1834 		}
1835 		lrg_buf_cb = lrg_buf_cb->next;
1836 	}
1837 	return 0;
1838 }
1839 
1840 /*
1841  * Caller holds hw_lock.
1842  */
1843 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1844 {
1845 	struct ql3xxx_port_registers __iomem *port_regs =
1846 		qdev->mem_map_registers;
1847 
1848 	if (qdev->small_buf_release_cnt >= 16) {
1849 		while (qdev->small_buf_release_cnt >= 16) {
1850 			qdev->small_buf_q_producer_index++;
1851 
1852 			if (qdev->small_buf_q_producer_index ==
1853 			    NUM_SBUFQ_ENTRIES)
1854 				qdev->small_buf_q_producer_index = 0;
1855 			qdev->small_buf_release_cnt -= 8;
1856 		}
1857 		wmb();
1858 		writel_relaxed(qdev->small_buf_q_producer_index,
1859 			       &port_regs->CommonRegs.rxSmallQProducerIndex);
1860 	}
1861 }
1862 
1863 /*
1864  * Caller holds hw_lock.
1865  */
1866 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1867 {
1868 	struct bufq_addr_element *lrg_buf_q_ele;
1869 	int i;
1870 	struct ql_rcv_buf_cb *lrg_buf_cb;
1871 	struct ql3xxx_port_registers __iomem *port_regs =
1872 		qdev->mem_map_registers;
1873 
1874 	if ((qdev->lrg_buf_free_count >= 8) &&
1875 	    (qdev->lrg_buf_release_cnt >= 16)) {
1876 
1877 		if (qdev->lrg_buf_skb_check)
1878 			if (!ql_populate_free_queue(qdev))
1879 				return;
1880 
1881 		lrg_buf_q_ele = qdev->lrg_buf_next_free;
1882 
1883 		while ((qdev->lrg_buf_release_cnt >= 16) &&
1884 		       (qdev->lrg_buf_free_count >= 8)) {
1885 
1886 			for (i = 0; i < 8; i++) {
1887 				lrg_buf_cb =
1888 				    ql_get_from_lrg_buf_free_list(qdev);
1889 				lrg_buf_q_ele->addr_high =
1890 				    lrg_buf_cb->buf_phy_addr_high;
1891 				lrg_buf_q_ele->addr_low =
1892 				    lrg_buf_cb->buf_phy_addr_low;
1893 				lrg_buf_q_ele++;
1894 
1895 				qdev->lrg_buf_release_cnt--;
1896 			}
1897 
1898 			qdev->lrg_buf_q_producer_index++;
1899 
1900 			if (qdev->lrg_buf_q_producer_index ==
1901 			    qdev->num_lbufq_entries)
1902 				qdev->lrg_buf_q_producer_index = 0;
1903 
1904 			if (qdev->lrg_buf_q_producer_index ==
1905 			    (qdev->num_lbufq_entries - 1)) {
1906 				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1907 			}
1908 		}
1909 		wmb();
1910 		qdev->lrg_buf_next_free = lrg_buf_q_ele;
1911 		writel(qdev->lrg_buf_q_producer_index,
1912 			&port_regs->CommonRegs.rxLargeQProducerIndex);
1913 	}
1914 }
1915 
1916 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1917 				   struct ob_mac_iocb_rsp *mac_rsp)
1918 {
1919 	struct ql_tx_buf_cb *tx_cb;
1920 	int i;
1921 
1922 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1923 		netdev_warn(qdev->ndev,
1924 			    "Frame too short but it was padded and sent\n");
1925 	}
1926 
1927 	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1928 
1929 	/*  Check the transmit response flags for any errors */
1930 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1931 		netdev_err(qdev->ndev,
1932 			   "Frame too short to be legal, frame not sent\n");
1933 
1934 		qdev->ndev->stats.tx_errors++;
1935 		goto frame_not_sent;
1936 	}
1937 
1938 	if (tx_cb->seg_count == 0) {
1939 		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1940 			   mac_rsp->transaction_id);
1941 
1942 		qdev->ndev->stats.tx_errors++;
1943 		goto invalid_seg_count;
1944 	}
1945 
1946 	dma_unmap_single(&qdev->pdev->dev,
1947 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1948 			 dma_unmap_len(&tx_cb->map[0], maplen), DMA_TO_DEVICE);
1949 	tx_cb->seg_count--;
1950 	if (tx_cb->seg_count) {
1951 		for (i = 1; i < tx_cb->seg_count; i++) {
1952 			dma_unmap_page(&qdev->pdev->dev,
1953 				       dma_unmap_addr(&tx_cb->map[i], mapaddr),
1954 				       dma_unmap_len(&tx_cb->map[i], maplen),
1955 				       DMA_TO_DEVICE);
1956 		}
1957 	}
1958 	qdev->ndev->stats.tx_packets++;
1959 	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1960 
1961 frame_not_sent:
1962 	dev_kfree_skb_irq(tx_cb->skb);
1963 	tx_cb->skb = NULL;
1964 
1965 invalid_seg_count:
1966 	atomic_inc(&qdev->tx_count);
1967 }
1968 
1969 static void ql_get_sbuf(struct ql3_adapter *qdev)
1970 {
1971 	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1972 		qdev->small_buf_index = 0;
1973 	qdev->small_buf_release_cnt++;
1974 }
1975 
1976 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1977 {
1978 	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1979 	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1980 	qdev->lrg_buf_release_cnt++;
1981 	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1982 		qdev->lrg_buf_index = 0;
1983 	return lrg_buf_cb;
1984 }
1985 
1986 /*
1987  * The difference between 3022 and 3032 for inbound completions:
1988  * 3022 uses two buffers per completion.  The first buffer contains
1989  * (some) header info, the second the remainder of the headers plus
1990  * the data.  For this chip we reserve some space at the top of the
1991  * receive buffer so that the header info in buffer one can be
1992  * prepended to the buffer two.  Buffer two is the sent up while
1993  * buffer one is returned to the hardware to be reused.
1994  * 3032 receives all of it's data and headers in one buffer for a
1995  * simpler process.  3032 also supports checksum verification as
1996  * can be seen in ql_process_macip_rx_intr().
1997  */
1998 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
1999 				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2000 {
2001 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2002 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2003 	struct sk_buff *skb;
2004 	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2005 
2006 	/*
2007 	 * Get the inbound address list (small buffer).
2008 	 */
2009 	ql_get_sbuf(qdev);
2010 
2011 	if (qdev->device_id == QL3022_DEVICE_ID)
2012 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2013 
2014 	/* start of second buffer */
2015 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2016 	skb = lrg_buf_cb2->skb;
2017 
2018 	qdev->ndev->stats.rx_packets++;
2019 	qdev->ndev->stats.rx_bytes += length;
2020 
2021 	skb_put(skb, length);
2022 	dma_unmap_single(&qdev->pdev->dev,
2023 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2024 			 dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
2025 	prefetch(skb->data);
2026 	skb_checksum_none_assert(skb);
2027 	skb->protocol = eth_type_trans(skb, qdev->ndev);
2028 
2029 	napi_gro_receive(&qdev->napi, skb);
2030 	lrg_buf_cb2->skb = NULL;
2031 
2032 	if (qdev->device_id == QL3022_DEVICE_ID)
2033 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2034 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2035 }
2036 
2037 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2038 				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2039 {
2040 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2041 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2042 	struct sk_buff *skb1 = NULL, *skb2;
2043 	struct net_device *ndev = qdev->ndev;
2044 	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2045 	u16 size = 0;
2046 
2047 	/*
2048 	 * Get the inbound address list (small buffer).
2049 	 */
2050 
2051 	ql_get_sbuf(qdev);
2052 
2053 	if (qdev->device_id == QL3022_DEVICE_ID) {
2054 		/* start of first buffer on 3022 */
2055 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2056 		skb1 = lrg_buf_cb1->skb;
2057 		size = ETH_HLEN;
2058 		if (*((u16 *) skb1->data) != 0xFFFF)
2059 			size += VLAN_ETH_HLEN - ETH_HLEN;
2060 	}
2061 
2062 	/* start of second buffer */
2063 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2064 	skb2 = lrg_buf_cb2->skb;
2065 
2066 	skb_put(skb2, length);	/* Just the second buffer length here. */
2067 	dma_unmap_single(&qdev->pdev->dev,
2068 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2069 			 dma_unmap_len(lrg_buf_cb2, maplen), DMA_FROM_DEVICE);
2070 	prefetch(skb2->data);
2071 
2072 	skb_checksum_none_assert(skb2);
2073 	if (qdev->device_id == QL3022_DEVICE_ID) {
2074 		/*
2075 		 * Copy the ethhdr from first buffer to second. This
2076 		 * is necessary for 3022 IP completions.
2077 		 */
2078 		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2079 						 skb_push(skb2, size), size);
2080 	} else {
2081 		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2082 		if (checksum &
2083 			(IB_IP_IOCB_RSP_3032_ICE |
2084 			 IB_IP_IOCB_RSP_3032_CE)) {
2085 			netdev_err(ndev,
2086 				   "%s: Bad checksum for this %s packet, checksum = %x\n",
2087 				   __func__,
2088 				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2089 				    "TCP" : "UDP"), checksum);
2090 		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2091 				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
2092 				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2093 			skb2->ip_summed = CHECKSUM_UNNECESSARY;
2094 		}
2095 	}
2096 	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2097 
2098 	napi_gro_receive(&qdev->napi, skb2);
2099 	ndev->stats.rx_packets++;
2100 	ndev->stats.rx_bytes += length;
2101 	lrg_buf_cb2->skb = NULL;
2102 
2103 	if (qdev->device_id == QL3022_DEVICE_ID)
2104 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2105 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2106 }
2107 
2108 static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
2109 {
2110 	struct net_rsp_iocb *net_rsp;
2111 	struct net_device *ndev = qdev->ndev;
2112 	int work_done = 0;
2113 
2114 	/* While there are entries in the completion queue. */
2115 	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2116 		qdev->rsp_consumer_index) && (work_done < budget)) {
2117 
2118 		net_rsp = qdev->rsp_current;
2119 		rmb();
2120 		/*
2121 		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2122 		 * if the inbound completion is for a VLAN.
2123 		 */
2124 		if (qdev->device_id == QL3032_DEVICE_ID)
2125 			net_rsp->opcode &= 0x7f;
2126 		switch (net_rsp->opcode) {
2127 
2128 		case OPCODE_OB_MAC_IOCB_FN0:
2129 		case OPCODE_OB_MAC_IOCB_FN2:
2130 			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2131 					       net_rsp);
2132 			break;
2133 
2134 		case OPCODE_IB_MAC_IOCB:
2135 		case OPCODE_IB_3032_MAC_IOCB:
2136 			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2137 					       net_rsp);
2138 			work_done++;
2139 			break;
2140 
2141 		case OPCODE_IB_IP_IOCB:
2142 		case OPCODE_IB_3032_IP_IOCB:
2143 			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2144 						 net_rsp);
2145 			work_done++;
2146 			break;
2147 		default: {
2148 			u32 *tmp = (u32 *)net_rsp;
2149 			netdev_err(ndev,
2150 				   "Hit default case, not handled!\n"
2151 				   "	dropping the packet, opcode = %x\n"
2152 				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2153 				   net_rsp->opcode,
2154 				   (unsigned long int)tmp[0],
2155 				   (unsigned long int)tmp[1],
2156 				   (unsigned long int)tmp[2],
2157 				   (unsigned long int)tmp[3]);
2158 		}
2159 		}
2160 
2161 		qdev->rsp_consumer_index++;
2162 
2163 		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2164 			qdev->rsp_consumer_index = 0;
2165 			qdev->rsp_current = qdev->rsp_q_virt_addr;
2166 		} else {
2167 			qdev->rsp_current++;
2168 		}
2169 
2170 	}
2171 
2172 	return work_done;
2173 }
2174 
2175 static int ql_poll(struct napi_struct *napi, int budget)
2176 {
2177 	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2178 	struct ql3xxx_port_registers __iomem *port_regs =
2179 		qdev->mem_map_registers;
2180 	int work_done;
2181 
2182 	work_done = ql_tx_rx_clean(qdev, budget);
2183 
2184 	if (work_done < budget && napi_complete_done(napi, work_done)) {
2185 		unsigned long flags;
2186 
2187 		spin_lock_irqsave(&qdev->hw_lock, flags);
2188 		ql_update_small_bufq_prod_index(qdev);
2189 		ql_update_lrg_bufq_prod_index(qdev);
2190 		writel(qdev->rsp_consumer_index,
2191 			    &port_regs->CommonRegs.rspQConsumerIndex);
2192 		spin_unlock_irqrestore(&qdev->hw_lock, flags);
2193 
2194 		ql_enable_interrupts(qdev);
2195 	}
2196 	return work_done;
2197 }
2198 
2199 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2200 {
2201 
2202 	struct net_device *ndev = dev_id;
2203 	struct ql3_adapter *qdev = netdev_priv(ndev);
2204 	struct ql3xxx_port_registers __iomem *port_regs =
2205 		qdev->mem_map_registers;
2206 	u32 value;
2207 	int handled = 1;
2208 	u32 var;
2209 
2210 	value = ql_read_common_reg_l(qdev,
2211 				     &port_regs->CommonRegs.ispControlStatus);
2212 
2213 	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2214 		spin_lock(&qdev->adapter_lock);
2215 		netif_stop_queue(qdev->ndev);
2216 		netif_carrier_off(qdev->ndev);
2217 		ql_disable_interrupts(qdev);
2218 		qdev->port_link_state = LS_DOWN;
2219 		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2220 
2221 		if (value & ISP_CONTROL_FE) {
2222 			/*
2223 			 * Chip Fatal Error.
2224 			 */
2225 			var =
2226 			    ql_read_page0_reg_l(qdev,
2227 					      &port_regs->PortFatalErrStatus);
2228 			netdev_warn(ndev,
2229 				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2230 				    var);
2231 			set_bit(QL_RESET_START, &qdev->flags) ;
2232 		} else {
2233 			/*
2234 			 * Soft Reset Requested.
2235 			 */
2236 			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2237 			netdev_err(ndev,
2238 				   "Another function issued a reset to the chip. ISR value = %x\n",
2239 				   value);
2240 		}
2241 		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2242 		spin_unlock(&qdev->adapter_lock);
2243 	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2244 		ql_disable_interrupts(qdev);
2245 		if (likely(napi_schedule_prep(&qdev->napi)))
2246 			__napi_schedule(&qdev->napi);
2247 	} else
2248 		return IRQ_NONE;
2249 
2250 	return IRQ_RETVAL(handled);
2251 }
2252 
2253 /*
2254  * Get the total number of segments needed for the given number of fragments.
2255  * This is necessary because outbound address lists (OAL) will be used when
2256  * more than two frags are given.  Each address list has 5 addr/len pairs.
2257  * The 5th pair in each OAL is used to  point to the next OAL if more frags
2258  * are coming.  That is why the frags:segment count ratio is not linear.
2259  */
2260 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2261 {
2262 	if (qdev->device_id == QL3022_DEVICE_ID)
2263 		return 1;
2264 
2265 	if (frags <= 2)
2266 		return frags + 1;
2267 	else if (frags <= 6)
2268 		return frags + 2;
2269 	else if (frags <= 10)
2270 		return frags + 3;
2271 	else if (frags <= 14)
2272 		return frags + 4;
2273 	else if (frags <= 18)
2274 		return frags + 5;
2275 	return -1;
2276 }
2277 
2278 static void ql_hw_csum_setup(const struct sk_buff *skb,
2279 			     struct ob_mac_iocb_req *mac_iocb_ptr)
2280 {
2281 	const struct iphdr *ip = ip_hdr(skb);
2282 
2283 	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2284 	mac_iocb_ptr->ip_hdr_len = ip->ihl;
2285 
2286 	if (ip->protocol == IPPROTO_TCP) {
2287 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2288 			OB_3032MAC_IOCB_REQ_IC;
2289 	} else {
2290 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2291 			OB_3032MAC_IOCB_REQ_IC;
2292 	}
2293 
2294 }
2295 
2296 /*
2297  * Map the buffers for this transmit.
2298  * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2299  */
2300 static int ql_send_map(struct ql3_adapter *qdev,
2301 				struct ob_mac_iocb_req *mac_iocb_ptr,
2302 				struct ql_tx_buf_cb *tx_cb,
2303 				struct sk_buff *skb)
2304 {
2305 	struct oal *oal;
2306 	struct oal_entry *oal_entry;
2307 	int len = skb_headlen(skb);
2308 	dma_addr_t map;
2309 	int err;
2310 	int completed_segs, i;
2311 	int seg_cnt, seg = 0;
2312 	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2313 
2314 	seg_cnt = tx_cb->seg_count;
2315 	/*
2316 	 * Map the skb buffer first.
2317 	 */
2318 	map = dma_map_single(&qdev->pdev->dev, skb->data, len, DMA_TO_DEVICE);
2319 
2320 	err = dma_mapping_error(&qdev->pdev->dev, map);
2321 	if (err) {
2322 		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2323 			   err);
2324 
2325 		return NETDEV_TX_BUSY;
2326 	}
2327 
2328 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2329 	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2330 	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2331 	oal_entry->len = cpu_to_le32(len);
2332 	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2333 	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2334 	seg++;
2335 
2336 	if (seg_cnt == 1) {
2337 		/* Terminate the last segment. */
2338 		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2339 		return NETDEV_TX_OK;
2340 	}
2341 	oal = tx_cb->oal;
2342 	for (completed_segs = 0;
2343 	     completed_segs < frag_cnt;
2344 	     completed_segs++, seg++) {
2345 		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2346 		oal_entry++;
2347 		/*
2348 		 * Check for continuation requirements.
2349 		 * It's strange but necessary.
2350 		 * Continuation entry points to outbound address list.
2351 		 */
2352 		if ((seg == 2 && seg_cnt > 3) ||
2353 		    (seg == 7 && seg_cnt > 8) ||
2354 		    (seg == 12 && seg_cnt > 13) ||
2355 		    (seg == 17 && seg_cnt > 18)) {
2356 			map = dma_map_single(&qdev->pdev->dev, oal,
2357 					     sizeof(struct oal),
2358 					     DMA_TO_DEVICE);
2359 
2360 			err = dma_mapping_error(&qdev->pdev->dev, map);
2361 			if (err) {
2362 				netdev_err(qdev->ndev,
2363 					   "PCI mapping outbound address list with error: %d\n",
2364 					   err);
2365 				goto map_error;
2366 			}
2367 
2368 			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2369 			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2370 			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2371 						     OAL_CONT_ENTRY);
2372 			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2373 			dma_unmap_len_set(&tx_cb->map[seg], maplen,
2374 					  sizeof(struct oal));
2375 			oal_entry = (struct oal_entry *)oal;
2376 			oal++;
2377 			seg++;
2378 		}
2379 
2380 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2381 				       DMA_TO_DEVICE);
2382 
2383 		err = dma_mapping_error(&qdev->pdev->dev, map);
2384 		if (err) {
2385 			netdev_err(qdev->ndev,
2386 				   "PCI mapping frags failed with error: %d\n",
2387 				   err);
2388 			goto map_error;
2389 		}
2390 
2391 		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2392 		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2393 		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2394 		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2395 		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2396 		}
2397 	/* Terminate the last segment. */
2398 	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2399 	return NETDEV_TX_OK;
2400 
2401 map_error:
2402 	/* A PCI mapping failed and now we will need to back out
2403 	 * We need to traverse through the oal's and associated pages which
2404 	 * have been mapped and now we must unmap them to clean up properly
2405 	 */
2406 
2407 	seg = 1;
2408 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2409 	oal = tx_cb->oal;
2410 	for (i = 0; i < completed_segs; i++, seg++) {
2411 		oal_entry++;
2412 
2413 		/*
2414 		 * Check for continuation requirements.
2415 		 * It's strange but necessary.
2416 		 */
2417 
2418 		if ((seg == 2 && seg_cnt > 3) ||
2419 		    (seg == 7 && seg_cnt > 8) ||
2420 		    (seg == 12 && seg_cnt > 13) ||
2421 		    (seg == 17 && seg_cnt > 18)) {
2422 			dma_unmap_single(&qdev->pdev->dev,
2423 					 dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2424 					 dma_unmap_len(&tx_cb->map[seg], maplen),
2425 					 DMA_TO_DEVICE);
2426 			oal++;
2427 			seg++;
2428 		}
2429 
2430 		dma_unmap_page(&qdev->pdev->dev,
2431 			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2432 			       dma_unmap_len(&tx_cb->map[seg], maplen),
2433 			       DMA_TO_DEVICE);
2434 	}
2435 
2436 	dma_unmap_single(&qdev->pdev->dev,
2437 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2438 			 dma_unmap_addr(&tx_cb->map[0], maplen),
2439 			 DMA_TO_DEVICE);
2440 
2441 	return NETDEV_TX_BUSY;
2442 
2443 }
2444 
2445 /*
2446  * The difference between 3022 and 3032 sends:
2447  * 3022 only supports a simple single segment transmission.
2448  * 3032 supports checksumming and scatter/gather lists (fragments).
2449  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2450  * in the IOCB plus a chain of outbound address lists (OAL) that
2451  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2452  * will be used to point to an OAL when more ALP entries are required.
2453  * The IOCB is always the top of the chain followed by one or more
2454  * OALs (when necessary).
2455  */
2456 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2457 			       struct net_device *ndev)
2458 {
2459 	struct ql3_adapter *qdev = netdev_priv(ndev);
2460 	struct ql3xxx_port_registers __iomem *port_regs =
2461 			qdev->mem_map_registers;
2462 	struct ql_tx_buf_cb *tx_cb;
2463 	u32 tot_len = skb->len;
2464 	struct ob_mac_iocb_req *mac_iocb_ptr;
2465 
2466 	if (unlikely(atomic_read(&qdev->tx_count) < 2))
2467 		return NETDEV_TX_BUSY;
2468 
2469 	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2470 	tx_cb->seg_count = ql_get_seg_count(qdev,
2471 					     skb_shinfo(skb)->nr_frags);
2472 	if (tx_cb->seg_count == -1) {
2473 		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2474 		dev_kfree_skb_any(skb);
2475 		return NETDEV_TX_OK;
2476 	}
2477 
2478 	mac_iocb_ptr = tx_cb->queue_entry;
2479 	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2480 	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2481 	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2482 	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2483 	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2484 	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2485 	tx_cb->skb = skb;
2486 	if (qdev->device_id == QL3032_DEVICE_ID &&
2487 	    skb->ip_summed == CHECKSUM_PARTIAL)
2488 		ql_hw_csum_setup(skb, mac_iocb_ptr);
2489 
2490 	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2491 		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2492 		return NETDEV_TX_BUSY;
2493 	}
2494 
2495 	wmb();
2496 	qdev->req_producer_index++;
2497 	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2498 		qdev->req_producer_index = 0;
2499 	wmb();
2500 	ql_write_common_reg_l(qdev,
2501 			    &port_regs->CommonRegs.reqQProducerIndex,
2502 			    qdev->req_producer_index);
2503 
2504 	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2505 		     "tx queued, slot %d, len %d\n",
2506 		     qdev->req_producer_index, skb->len);
2507 
2508 	atomic_dec(&qdev->tx_count);
2509 	return NETDEV_TX_OK;
2510 }
2511 
2512 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2513 {
2514 	qdev->req_q_size =
2515 	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2516 
2517 	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2518 
2519 	/* The barrier is required to ensure request and response queue
2520 	 * addr writes to the registers.
2521 	 */
2522 	wmb();
2523 
2524 	qdev->req_q_virt_addr =
2525 	    dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
2526 			       &qdev->req_q_phy_addr, GFP_KERNEL);
2527 
2528 	if ((qdev->req_q_virt_addr == NULL) ||
2529 	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2530 		netdev_err(qdev->ndev, "reqQ failed\n");
2531 		return -ENOMEM;
2532 	}
2533 
2534 	qdev->rsp_q_virt_addr =
2535 	    dma_alloc_coherent(&qdev->pdev->dev, (size_t)qdev->rsp_q_size,
2536 			       &qdev->rsp_q_phy_addr, GFP_KERNEL);
2537 
2538 	if ((qdev->rsp_q_virt_addr == NULL) ||
2539 	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2540 		netdev_err(qdev->ndev, "rspQ allocation failed\n");
2541 		dma_free_coherent(&qdev->pdev->dev, (size_t)qdev->req_q_size,
2542 				  qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2543 		return -ENOMEM;
2544 	}
2545 
2546 	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2547 
2548 	return 0;
2549 }
2550 
2551 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2552 {
2553 	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2554 		netdev_info(qdev->ndev, "Already done\n");
2555 		return;
2556 	}
2557 
2558 	dma_free_coherent(&qdev->pdev->dev, qdev->req_q_size,
2559 			  qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2560 
2561 	qdev->req_q_virt_addr = NULL;
2562 
2563 	dma_free_coherent(&qdev->pdev->dev, qdev->rsp_q_size,
2564 			  qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2565 
2566 	qdev->rsp_q_virt_addr = NULL;
2567 
2568 	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2569 }
2570 
2571 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2572 {
2573 	/* Create Large Buffer Queue */
2574 	qdev->lrg_buf_q_size =
2575 		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2576 	if (qdev->lrg_buf_q_size < PAGE_SIZE)
2577 		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2578 	else
2579 		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2580 
2581 	qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2582 				      sizeof(struct ql_rcv_buf_cb),
2583 				      GFP_KERNEL);
2584 	if (qdev->lrg_buf == NULL)
2585 		return -ENOMEM;
2586 
2587 	qdev->lrg_buf_q_alloc_virt_addr =
2588 		dma_alloc_coherent(&qdev->pdev->dev,
2589 				   qdev->lrg_buf_q_alloc_size,
2590 				   &qdev->lrg_buf_q_alloc_phy_addr, GFP_KERNEL);
2591 
2592 	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2593 		netdev_err(qdev->ndev, "lBufQ failed\n");
2594 		kfree(qdev->lrg_buf);
2595 		return -ENOMEM;
2596 	}
2597 	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2598 	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2599 
2600 	/* Create Small Buffer Queue */
2601 	qdev->small_buf_q_size =
2602 		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2603 	if (qdev->small_buf_q_size < PAGE_SIZE)
2604 		qdev->small_buf_q_alloc_size = PAGE_SIZE;
2605 	else
2606 		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2607 
2608 	qdev->small_buf_q_alloc_virt_addr =
2609 		dma_alloc_coherent(&qdev->pdev->dev,
2610 				   qdev->small_buf_q_alloc_size,
2611 				   &qdev->small_buf_q_alloc_phy_addr, GFP_KERNEL);
2612 
2613 	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2614 		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2615 		dma_free_coherent(&qdev->pdev->dev,
2616 				  qdev->lrg_buf_q_alloc_size,
2617 				  qdev->lrg_buf_q_alloc_virt_addr,
2618 				  qdev->lrg_buf_q_alloc_phy_addr);
2619 		kfree(qdev->lrg_buf);
2620 		return -ENOMEM;
2621 	}
2622 
2623 	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2624 	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2625 	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2626 	return 0;
2627 }
2628 
2629 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2630 {
2631 	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2632 		netdev_info(qdev->ndev, "Already done\n");
2633 		return;
2634 	}
2635 	kfree(qdev->lrg_buf);
2636 	dma_free_coherent(&qdev->pdev->dev, qdev->lrg_buf_q_alloc_size,
2637 			  qdev->lrg_buf_q_alloc_virt_addr,
2638 			  qdev->lrg_buf_q_alloc_phy_addr);
2639 
2640 	qdev->lrg_buf_q_virt_addr = NULL;
2641 
2642 	dma_free_coherent(&qdev->pdev->dev, qdev->small_buf_q_alloc_size,
2643 			  qdev->small_buf_q_alloc_virt_addr,
2644 			  qdev->small_buf_q_alloc_phy_addr);
2645 
2646 	qdev->small_buf_q_virt_addr = NULL;
2647 
2648 	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2649 }
2650 
2651 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2652 {
2653 	int i;
2654 	struct bufq_addr_element *small_buf_q_entry;
2655 
2656 	/* Currently we allocate on one of memory and use it for smallbuffers */
2657 	qdev->small_buf_total_size =
2658 		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2659 		 QL_SMALL_BUFFER_SIZE);
2660 
2661 	qdev->small_buf_virt_addr =
2662 		dma_alloc_coherent(&qdev->pdev->dev,
2663 				   qdev->small_buf_total_size,
2664 				   &qdev->small_buf_phy_addr, GFP_KERNEL);
2665 
2666 	if (qdev->small_buf_virt_addr == NULL) {
2667 		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2668 		return -ENOMEM;
2669 	}
2670 
2671 	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2672 	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2673 
2674 	small_buf_q_entry = qdev->small_buf_q_virt_addr;
2675 
2676 	/* Initialize the small buffer queue. */
2677 	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2678 		small_buf_q_entry->addr_high =
2679 		    cpu_to_le32(qdev->small_buf_phy_addr_high);
2680 		small_buf_q_entry->addr_low =
2681 		    cpu_to_le32(qdev->small_buf_phy_addr_low +
2682 				(i * QL_SMALL_BUFFER_SIZE));
2683 		small_buf_q_entry++;
2684 	}
2685 	qdev->small_buf_index = 0;
2686 	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2687 	return 0;
2688 }
2689 
2690 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2691 {
2692 	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2693 		netdev_info(qdev->ndev, "Already done\n");
2694 		return;
2695 	}
2696 	if (qdev->small_buf_virt_addr != NULL) {
2697 		dma_free_coherent(&qdev->pdev->dev,
2698 				  qdev->small_buf_total_size,
2699 				  qdev->small_buf_virt_addr,
2700 				  qdev->small_buf_phy_addr);
2701 
2702 		qdev->small_buf_virt_addr = NULL;
2703 	}
2704 }
2705 
2706 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2707 {
2708 	int i = 0;
2709 	struct ql_rcv_buf_cb *lrg_buf_cb;
2710 
2711 	for (i = 0; i < qdev->num_large_buffers; i++) {
2712 		lrg_buf_cb = &qdev->lrg_buf[i];
2713 		if (lrg_buf_cb->skb) {
2714 			dev_kfree_skb(lrg_buf_cb->skb);
2715 			dma_unmap_single(&qdev->pdev->dev,
2716 					 dma_unmap_addr(lrg_buf_cb, mapaddr),
2717 					 dma_unmap_len(lrg_buf_cb, maplen),
2718 					 DMA_FROM_DEVICE);
2719 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2720 		} else {
2721 			break;
2722 		}
2723 	}
2724 }
2725 
2726 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2727 {
2728 	int i;
2729 	struct ql_rcv_buf_cb *lrg_buf_cb;
2730 	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2731 
2732 	for (i = 0; i < qdev->num_large_buffers; i++) {
2733 		lrg_buf_cb = &qdev->lrg_buf[i];
2734 		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2735 		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2736 		buf_addr_ele++;
2737 	}
2738 	qdev->lrg_buf_index = 0;
2739 	qdev->lrg_buf_skb_check = 0;
2740 }
2741 
2742 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2743 {
2744 	int i;
2745 	struct ql_rcv_buf_cb *lrg_buf_cb;
2746 	struct sk_buff *skb;
2747 	dma_addr_t map;
2748 	int err;
2749 
2750 	for (i = 0; i < qdev->num_large_buffers; i++) {
2751 		lrg_buf_cb = &qdev->lrg_buf[i];
2752 		memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2753 
2754 		skb = netdev_alloc_skb(qdev->ndev,
2755 				       qdev->lrg_buffer_len);
2756 		if (unlikely(!skb)) {
2757 			/* Better luck next round */
2758 			netdev_err(qdev->ndev,
2759 				   "large buff alloc failed for %d bytes at index %d\n",
2760 				   qdev->lrg_buffer_len * 2, i);
2761 			ql_free_large_buffers(qdev);
2762 			return -ENOMEM;
2763 		} else {
2764 			lrg_buf_cb->index = i;
2765 			/*
2766 			 * We save some space to copy the ethhdr from first
2767 			 * buffer
2768 			 */
2769 			skb_reserve(skb, QL_HEADER_SPACE);
2770 			map = dma_map_single(&qdev->pdev->dev, skb->data,
2771 					     qdev->lrg_buffer_len - QL_HEADER_SPACE,
2772 					     DMA_FROM_DEVICE);
2773 
2774 			err = dma_mapping_error(&qdev->pdev->dev, map);
2775 			if (err) {
2776 				netdev_err(qdev->ndev,
2777 					   "PCI mapping failed with error: %d\n",
2778 					   err);
2779 				dev_kfree_skb_irq(skb);
2780 				ql_free_large_buffers(qdev);
2781 				return -ENOMEM;
2782 			}
2783 
2784 			lrg_buf_cb->skb = skb;
2785 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2786 			dma_unmap_len_set(lrg_buf_cb, maplen,
2787 					  qdev->lrg_buffer_len -
2788 					  QL_HEADER_SPACE);
2789 			lrg_buf_cb->buf_phy_addr_low =
2790 			    cpu_to_le32(LS_64BITS(map));
2791 			lrg_buf_cb->buf_phy_addr_high =
2792 			    cpu_to_le32(MS_64BITS(map));
2793 		}
2794 	}
2795 	return 0;
2796 }
2797 
2798 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2799 {
2800 	struct ql_tx_buf_cb *tx_cb;
2801 	int i;
2802 
2803 	tx_cb = &qdev->tx_buf[0];
2804 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2805 		kfree(tx_cb->oal);
2806 		tx_cb->oal = NULL;
2807 		tx_cb++;
2808 	}
2809 }
2810 
2811 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2812 {
2813 	struct ql_tx_buf_cb *tx_cb;
2814 	int i;
2815 	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2816 
2817 	/* Create free list of transmit buffers */
2818 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2819 
2820 		tx_cb = &qdev->tx_buf[i];
2821 		tx_cb->skb = NULL;
2822 		tx_cb->queue_entry = req_q_curr;
2823 		req_q_curr++;
2824 		tx_cb->oal = kmalloc(512, GFP_KERNEL);
2825 		if (tx_cb->oal == NULL)
2826 			return -ENOMEM;
2827 	}
2828 	return 0;
2829 }
2830 
2831 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2832 {
2833 	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2834 		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2835 		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2836 	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2837 		/*
2838 		 * Bigger buffers, so less of them.
2839 		 */
2840 		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2841 		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2842 	} else {
2843 		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
2844 			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2845 		return -ENOMEM;
2846 	}
2847 	qdev->num_large_buffers =
2848 		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2849 	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2850 	qdev->max_frame_size =
2851 		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2852 
2853 	/*
2854 	 * First allocate a page of shared memory and use it for shadow
2855 	 * locations of Network Request Queue Consumer Address Register and
2856 	 * Network Completion Queue Producer Index Register
2857 	 */
2858 	qdev->shadow_reg_virt_addr =
2859 		dma_alloc_coherent(&qdev->pdev->dev, PAGE_SIZE,
2860 				   &qdev->shadow_reg_phy_addr, GFP_KERNEL);
2861 
2862 	if (qdev->shadow_reg_virt_addr != NULL) {
2863 		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2864 		qdev->req_consumer_index_phy_addr_high =
2865 			MS_64BITS(qdev->shadow_reg_phy_addr);
2866 		qdev->req_consumer_index_phy_addr_low =
2867 			LS_64BITS(qdev->shadow_reg_phy_addr);
2868 
2869 		qdev->prsp_producer_index =
2870 			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2871 		qdev->rsp_producer_index_phy_addr_high =
2872 			qdev->req_consumer_index_phy_addr_high;
2873 		qdev->rsp_producer_index_phy_addr_low =
2874 			qdev->req_consumer_index_phy_addr_low + 8;
2875 	} else {
2876 		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2877 		return -ENOMEM;
2878 	}
2879 
2880 	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2881 		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2882 		goto err_req_rsp;
2883 	}
2884 
2885 	if (ql_alloc_buffer_queues(qdev) != 0) {
2886 		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2887 		goto err_buffer_queues;
2888 	}
2889 
2890 	if (ql_alloc_small_buffers(qdev) != 0) {
2891 		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2892 		goto err_small_buffers;
2893 	}
2894 
2895 	if (ql_alloc_large_buffers(qdev) != 0) {
2896 		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2897 		goto err_small_buffers;
2898 	}
2899 
2900 	/* Initialize the large buffer queue. */
2901 	ql_init_large_buffers(qdev);
2902 	if (ql_create_send_free_list(qdev))
2903 		goto err_free_list;
2904 
2905 	qdev->rsp_current = qdev->rsp_q_virt_addr;
2906 
2907 	return 0;
2908 err_free_list:
2909 	ql_free_send_free_list(qdev);
2910 err_small_buffers:
2911 	ql_free_buffer_queues(qdev);
2912 err_buffer_queues:
2913 	ql_free_net_req_rsp_queues(qdev);
2914 err_req_rsp:
2915 	dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
2916 			  qdev->shadow_reg_virt_addr,
2917 			  qdev->shadow_reg_phy_addr);
2918 
2919 	return -ENOMEM;
2920 }
2921 
2922 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2923 {
2924 	ql_free_send_free_list(qdev);
2925 	ql_free_large_buffers(qdev);
2926 	ql_free_small_buffers(qdev);
2927 	ql_free_buffer_queues(qdev);
2928 	ql_free_net_req_rsp_queues(qdev);
2929 	if (qdev->shadow_reg_virt_addr != NULL) {
2930 		dma_free_coherent(&qdev->pdev->dev, PAGE_SIZE,
2931 				  qdev->shadow_reg_virt_addr,
2932 				  qdev->shadow_reg_phy_addr);
2933 		qdev->shadow_reg_virt_addr = NULL;
2934 	}
2935 }
2936 
2937 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2938 {
2939 	struct ql3xxx_local_ram_registers __iomem *local_ram =
2940 	    (void __iomem *)qdev->mem_map_registers;
2941 
2942 	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2943 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2944 			 2) << 4))
2945 		return -1;
2946 
2947 	ql_write_page2_reg(qdev,
2948 			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2949 
2950 	ql_write_page2_reg(qdev,
2951 			   &local_ram->maxBufletCount,
2952 			   qdev->nvram_data.bufletCount);
2953 
2954 	ql_write_page2_reg(qdev,
2955 			   &local_ram->freeBufletThresholdLow,
2956 			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2957 			   (qdev->nvram_data.tcpWindowThreshold0));
2958 
2959 	ql_write_page2_reg(qdev,
2960 			   &local_ram->freeBufletThresholdHigh,
2961 			   qdev->nvram_data.tcpWindowThreshold50);
2962 
2963 	ql_write_page2_reg(qdev,
2964 			   &local_ram->ipHashTableBase,
2965 			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
2966 			   qdev->nvram_data.ipHashTableBaseLo);
2967 	ql_write_page2_reg(qdev,
2968 			   &local_ram->ipHashTableCount,
2969 			   qdev->nvram_data.ipHashTableSize);
2970 	ql_write_page2_reg(qdev,
2971 			   &local_ram->tcpHashTableBase,
2972 			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2973 			   qdev->nvram_data.tcpHashTableBaseLo);
2974 	ql_write_page2_reg(qdev,
2975 			   &local_ram->tcpHashTableCount,
2976 			   qdev->nvram_data.tcpHashTableSize);
2977 	ql_write_page2_reg(qdev,
2978 			   &local_ram->ncbBase,
2979 			   (qdev->nvram_data.ncbTableBaseHi << 16) |
2980 			   qdev->nvram_data.ncbTableBaseLo);
2981 	ql_write_page2_reg(qdev,
2982 			   &local_ram->maxNcbCount,
2983 			   qdev->nvram_data.ncbTableSize);
2984 	ql_write_page2_reg(qdev,
2985 			   &local_ram->drbBase,
2986 			   (qdev->nvram_data.drbTableBaseHi << 16) |
2987 			   qdev->nvram_data.drbTableBaseLo);
2988 	ql_write_page2_reg(qdev,
2989 			   &local_ram->maxDrbCount,
2990 			   qdev->nvram_data.drbTableSize);
2991 	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
2992 	return 0;
2993 }
2994 
2995 static int ql_adapter_initialize(struct ql3_adapter *qdev)
2996 {
2997 	u32 value;
2998 	struct ql3xxx_port_registers __iomem *port_regs =
2999 		qdev->mem_map_registers;
3000 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3001 	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3002 		(void __iomem *)port_regs;
3003 	u32 delay = 10;
3004 	int status = 0;
3005 
3006 	if (ql_mii_setup(qdev))
3007 		return -1;
3008 
3009 	/* Bring out PHY out of reset */
3010 	ql_write_common_reg(qdev, spir,
3011 			    (ISP_SERIAL_PORT_IF_WE |
3012 			     (ISP_SERIAL_PORT_IF_WE << 16)));
3013 	/* Give the PHY time to come out of reset. */
3014 	mdelay(100);
3015 	qdev->port_link_state = LS_DOWN;
3016 	netif_carrier_off(qdev->ndev);
3017 
3018 	/* V2 chip fix for ARS-39168. */
3019 	ql_write_common_reg(qdev, spir,
3020 			    (ISP_SERIAL_PORT_IF_SDE |
3021 			     (ISP_SERIAL_PORT_IF_SDE << 16)));
3022 
3023 	/* Request Queue Registers */
3024 	*((u32 *)(qdev->preq_consumer_index)) = 0;
3025 	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3026 	qdev->req_producer_index = 0;
3027 
3028 	ql_write_page1_reg(qdev,
3029 			   &hmem_regs->reqConsumerIndexAddrHigh,
3030 			   qdev->req_consumer_index_phy_addr_high);
3031 	ql_write_page1_reg(qdev,
3032 			   &hmem_regs->reqConsumerIndexAddrLow,
3033 			   qdev->req_consumer_index_phy_addr_low);
3034 
3035 	ql_write_page1_reg(qdev,
3036 			   &hmem_regs->reqBaseAddrHigh,
3037 			   MS_64BITS(qdev->req_q_phy_addr));
3038 	ql_write_page1_reg(qdev,
3039 			   &hmem_regs->reqBaseAddrLow,
3040 			   LS_64BITS(qdev->req_q_phy_addr));
3041 	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3042 
3043 	/* Response Queue Registers */
3044 	*((__le16 *) (qdev->prsp_producer_index)) = 0;
3045 	qdev->rsp_consumer_index = 0;
3046 	qdev->rsp_current = qdev->rsp_q_virt_addr;
3047 
3048 	ql_write_page1_reg(qdev,
3049 			   &hmem_regs->rspProducerIndexAddrHigh,
3050 			   qdev->rsp_producer_index_phy_addr_high);
3051 
3052 	ql_write_page1_reg(qdev,
3053 			   &hmem_regs->rspProducerIndexAddrLow,
3054 			   qdev->rsp_producer_index_phy_addr_low);
3055 
3056 	ql_write_page1_reg(qdev,
3057 			   &hmem_regs->rspBaseAddrHigh,
3058 			   MS_64BITS(qdev->rsp_q_phy_addr));
3059 
3060 	ql_write_page1_reg(qdev,
3061 			   &hmem_regs->rspBaseAddrLow,
3062 			   LS_64BITS(qdev->rsp_q_phy_addr));
3063 
3064 	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3065 
3066 	/* Large Buffer Queue */
3067 	ql_write_page1_reg(qdev,
3068 			   &hmem_regs->rxLargeQBaseAddrHigh,
3069 			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
3070 
3071 	ql_write_page1_reg(qdev,
3072 			   &hmem_regs->rxLargeQBaseAddrLow,
3073 			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
3074 
3075 	ql_write_page1_reg(qdev,
3076 			   &hmem_regs->rxLargeQLength,
3077 			   qdev->num_lbufq_entries);
3078 
3079 	ql_write_page1_reg(qdev,
3080 			   &hmem_regs->rxLargeBufferLength,
3081 			   qdev->lrg_buffer_len);
3082 
3083 	/* Small Buffer Queue */
3084 	ql_write_page1_reg(qdev,
3085 			   &hmem_regs->rxSmallQBaseAddrHigh,
3086 			   MS_64BITS(qdev->small_buf_q_phy_addr));
3087 
3088 	ql_write_page1_reg(qdev,
3089 			   &hmem_regs->rxSmallQBaseAddrLow,
3090 			   LS_64BITS(qdev->small_buf_q_phy_addr));
3091 
3092 	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3093 	ql_write_page1_reg(qdev,
3094 			   &hmem_regs->rxSmallBufferLength,
3095 			   QL_SMALL_BUFFER_SIZE);
3096 
3097 	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3098 	qdev->small_buf_release_cnt = 8;
3099 	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3100 	qdev->lrg_buf_release_cnt = 8;
3101 	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3102 	qdev->small_buf_index = 0;
3103 	qdev->lrg_buf_index = 0;
3104 	qdev->lrg_buf_free_count = 0;
3105 	qdev->lrg_buf_free_head = NULL;
3106 	qdev->lrg_buf_free_tail = NULL;
3107 
3108 	ql_write_common_reg(qdev,
3109 			    &port_regs->CommonRegs.
3110 			    rxSmallQProducerIndex,
3111 			    qdev->small_buf_q_producer_index);
3112 	ql_write_common_reg(qdev,
3113 			    &port_regs->CommonRegs.
3114 			    rxLargeQProducerIndex,
3115 			    qdev->lrg_buf_q_producer_index);
3116 
3117 	/*
3118 	 * Find out if the chip has already been initialized.  If it has, then
3119 	 * we skip some of the initialization.
3120 	 */
3121 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3122 	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3123 	if ((value & PORT_STATUS_IC) == 0) {
3124 
3125 		/* Chip has not been configured yet, so let it rip. */
3126 		if (ql_init_misc_registers(qdev)) {
3127 			status = -1;
3128 			goto out;
3129 		}
3130 
3131 		value = qdev->nvram_data.tcpMaxWindowSize;
3132 		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3133 
3134 		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3135 
3136 		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3137 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3138 				 * 2) << 13)) {
3139 			status = -1;
3140 			goto out;
3141 		}
3142 		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3143 		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3144 				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3145 				     16) | (INTERNAL_CHIP_SD |
3146 					    INTERNAL_CHIP_WE)));
3147 		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3148 	}
3149 
3150 	if (qdev->mac_index)
3151 		ql_write_page0_reg(qdev,
3152 				   &port_regs->mac1MaxFrameLengthReg,
3153 				   qdev->max_frame_size);
3154 	else
3155 		ql_write_page0_reg(qdev,
3156 					   &port_regs->mac0MaxFrameLengthReg,
3157 					   qdev->max_frame_size);
3158 
3159 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3160 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3161 			 2) << 7)) {
3162 		status = -1;
3163 		goto out;
3164 	}
3165 
3166 	PHY_Setup(qdev);
3167 	ql_init_scan_mode(qdev);
3168 	ql_get_phy_owner(qdev);
3169 
3170 	/* Load the MAC Configuration */
3171 
3172 	/* Program lower 32 bits of the MAC address */
3173 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3174 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3175 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3176 			   ((qdev->ndev->dev_addr[2] << 24)
3177 			    | (qdev->ndev->dev_addr[3] << 16)
3178 			    | (qdev->ndev->dev_addr[4] << 8)
3179 			    | qdev->ndev->dev_addr[5]));
3180 
3181 	/* Program top 16 bits of the MAC address */
3182 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3183 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3184 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3185 			   ((qdev->ndev->dev_addr[0] << 8)
3186 			    | qdev->ndev->dev_addr[1]));
3187 
3188 	/* Enable Primary MAC */
3189 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3190 			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3191 			    MAC_ADDR_INDIRECT_PTR_REG_PE));
3192 
3193 	/* Clear Primary and Secondary IP addresses */
3194 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3195 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3196 			    (qdev->mac_index << 2)));
3197 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3198 
3199 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3200 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3201 			    ((qdev->mac_index << 2) + 1)));
3202 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3203 
3204 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3205 
3206 	/* Indicate Configuration Complete */
3207 	ql_write_page0_reg(qdev,
3208 			   &port_regs->portControl,
3209 			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3210 
3211 	do {
3212 		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3213 		if (value & PORT_STATUS_IC)
3214 			break;
3215 		spin_unlock_irq(&qdev->hw_lock);
3216 		msleep(500);
3217 		spin_lock_irq(&qdev->hw_lock);
3218 	} while (--delay);
3219 
3220 	if (delay == 0) {
3221 		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3222 		status = -1;
3223 		goto out;
3224 	}
3225 
3226 	/* Enable Ethernet Function */
3227 	if (qdev->device_id == QL3032_DEVICE_ID) {
3228 		value =
3229 		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3230 		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3231 			QL3032_PORT_CONTROL_ET);
3232 		ql_write_page0_reg(qdev, &port_regs->functionControl,
3233 				   ((value << 16) | value));
3234 	} else {
3235 		value =
3236 		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3237 		     PORT_CONTROL_HH);
3238 		ql_write_page0_reg(qdev, &port_regs->portControl,
3239 				   ((value << 16) | value));
3240 	}
3241 
3242 
3243 out:
3244 	return status;
3245 }
3246 
3247 /*
3248  * Caller holds hw_lock.
3249  */
3250 static int ql_adapter_reset(struct ql3_adapter *qdev)
3251 {
3252 	struct ql3xxx_port_registers __iomem *port_regs =
3253 		qdev->mem_map_registers;
3254 	int status = 0;
3255 	u16 value;
3256 	int max_wait_time;
3257 
3258 	set_bit(QL_RESET_ACTIVE, &qdev->flags);
3259 	clear_bit(QL_RESET_DONE, &qdev->flags);
3260 
3261 	/*
3262 	 * Issue soft reset to chip.
3263 	 */
3264 	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3265 	ql_write_common_reg(qdev,
3266 			    &port_regs->CommonRegs.ispControlStatus,
3267 			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3268 
3269 	/* Wait 3 seconds for reset to complete. */
3270 	netdev_printk(KERN_DEBUG, qdev->ndev,
3271 		      "Wait 10 milliseconds for reset to complete\n");
3272 
3273 	/* Wait until the firmware tells us the Soft Reset is done */
3274 	max_wait_time = 5;
3275 	do {
3276 		value =
3277 		    ql_read_common_reg(qdev,
3278 				       &port_regs->CommonRegs.ispControlStatus);
3279 		if ((value & ISP_CONTROL_SR) == 0)
3280 			break;
3281 
3282 		mdelay(1000);
3283 	} while ((--max_wait_time));
3284 
3285 	/*
3286 	 * Also, make sure that the Network Reset Interrupt bit has been
3287 	 * cleared after the soft reset has taken place.
3288 	 */
3289 	value =
3290 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3291 	if (value & ISP_CONTROL_RI) {
3292 		netdev_printk(KERN_DEBUG, qdev->ndev,
3293 			      "clearing RI after reset\n");
3294 		ql_write_common_reg(qdev,
3295 				    &port_regs->CommonRegs.
3296 				    ispControlStatus,
3297 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3298 	}
3299 
3300 	if (max_wait_time == 0) {
3301 		/* Issue Force Soft Reset */
3302 		ql_write_common_reg(qdev,
3303 				    &port_regs->CommonRegs.
3304 				    ispControlStatus,
3305 				    ((ISP_CONTROL_FSR << 16) |
3306 				     ISP_CONTROL_FSR));
3307 		/*
3308 		 * Wait until the firmware tells us the Force Soft Reset is
3309 		 * done
3310 		 */
3311 		max_wait_time = 5;
3312 		do {
3313 			value = ql_read_common_reg(qdev,
3314 						   &port_regs->CommonRegs.
3315 						   ispControlStatus);
3316 			if ((value & ISP_CONTROL_FSR) == 0)
3317 				break;
3318 			mdelay(1000);
3319 		} while ((--max_wait_time));
3320 	}
3321 	if (max_wait_time == 0)
3322 		status = 1;
3323 
3324 	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3325 	set_bit(QL_RESET_DONE, &qdev->flags);
3326 	return status;
3327 }
3328 
3329 static void ql_set_mac_info(struct ql3_adapter *qdev)
3330 {
3331 	struct ql3xxx_port_registers __iomem *port_regs =
3332 		qdev->mem_map_registers;
3333 	u32 value, port_status;
3334 	u8 func_number;
3335 
3336 	/* Get the function number */
3337 	value =
3338 	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3339 	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3340 	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3341 	switch (value & ISP_CONTROL_FN_MASK) {
3342 	case ISP_CONTROL_FN0_NET:
3343 		qdev->mac_index = 0;
3344 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3345 		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3346 		qdev->PHYAddr = PORT0_PHY_ADDRESS;
3347 		if (port_status & PORT_STATUS_SM0)
3348 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3349 		else
3350 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3351 		break;
3352 
3353 	case ISP_CONTROL_FN1_NET:
3354 		qdev->mac_index = 1;
3355 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3356 		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3357 		qdev->PHYAddr = PORT1_PHY_ADDRESS;
3358 		if (port_status & PORT_STATUS_SM1)
3359 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3360 		else
3361 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3362 		break;
3363 
3364 	case ISP_CONTROL_FN0_SCSI:
3365 	case ISP_CONTROL_FN1_SCSI:
3366 	default:
3367 		netdev_printk(KERN_DEBUG, qdev->ndev,
3368 			      "Invalid function number, ispControlStatus = 0x%x\n",
3369 			      value);
3370 		break;
3371 	}
3372 	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3373 }
3374 
3375 static void ql_display_dev_info(struct net_device *ndev)
3376 {
3377 	struct ql3_adapter *qdev = netdev_priv(ndev);
3378 	struct pci_dev *pdev = qdev->pdev;
3379 
3380 	netdev_info(ndev,
3381 		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3382 		    DRV_NAME, qdev->index, qdev->chip_rev_id,
3383 		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3384 		    qdev->pci_slot);
3385 	netdev_info(ndev, "%s Interface\n",
3386 		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3387 
3388 	/*
3389 	 * Print PCI bus width/type.
3390 	 */
3391 	netdev_info(ndev, "Bus interface is %s %s\n",
3392 		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3393 		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
3394 
3395 	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
3396 		    qdev->mem_map_registers);
3397 	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3398 
3399 	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3400 }
3401 
3402 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3403 {
3404 	struct net_device *ndev = qdev->ndev;
3405 	int retval = 0;
3406 
3407 	netif_stop_queue(ndev);
3408 	netif_carrier_off(ndev);
3409 
3410 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3411 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3412 
3413 	ql_disable_interrupts(qdev);
3414 
3415 	free_irq(qdev->pdev->irq, ndev);
3416 
3417 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3418 		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3419 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3420 		pci_disable_msi(qdev->pdev);
3421 	}
3422 
3423 	del_timer_sync(&qdev->adapter_timer);
3424 
3425 	napi_disable(&qdev->napi);
3426 
3427 	if (do_reset) {
3428 		int soft_reset;
3429 		unsigned long hw_flags;
3430 
3431 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3432 		if (ql_wait_for_drvr_lock(qdev)) {
3433 			soft_reset = ql_adapter_reset(qdev);
3434 			if (soft_reset) {
3435 				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3436 					   qdev->index);
3437 			}
3438 			netdev_err(ndev,
3439 				   "Releasing driver lock via chip reset\n");
3440 		} else {
3441 			netdev_err(ndev,
3442 				   "Could not acquire driver lock to do reset!\n");
3443 			retval = -1;
3444 		}
3445 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3446 	}
3447 	ql_free_mem_resources(qdev);
3448 	return retval;
3449 }
3450 
3451 static int ql_adapter_up(struct ql3_adapter *qdev)
3452 {
3453 	struct net_device *ndev = qdev->ndev;
3454 	int err;
3455 	unsigned long irq_flags = IRQF_SHARED;
3456 	unsigned long hw_flags;
3457 
3458 	if (ql_alloc_mem_resources(qdev)) {
3459 		netdev_err(ndev, "Unable to  allocate buffers\n");
3460 		return -ENOMEM;
3461 	}
3462 
3463 	if (qdev->msi) {
3464 		if (pci_enable_msi(qdev->pdev)) {
3465 			netdev_err(ndev,
3466 				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
3467 			qdev->msi = 0;
3468 		} else {
3469 			netdev_info(ndev, "MSI Enabled...\n");
3470 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3471 			irq_flags &= ~IRQF_SHARED;
3472 		}
3473 	}
3474 
3475 	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3476 			  irq_flags, ndev->name, ndev);
3477 	if (err) {
3478 		netdev_err(ndev,
3479 			   "Failed to reserve interrupt %d - already in use\n",
3480 			   qdev->pdev->irq);
3481 		goto err_irq;
3482 	}
3483 
3484 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3485 
3486 	if (!ql_wait_for_drvr_lock(qdev)) {
3487 		netdev_err(ndev, "Could not acquire driver lock\n");
3488 		err = -ENODEV;
3489 		goto err_lock;
3490 	}
3491 
3492 	err = ql_adapter_initialize(qdev);
3493 	if (err) {
3494 		netdev_err(ndev, "Unable to initialize adapter\n");
3495 		goto err_init;
3496 	}
3497 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3498 
3499 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3500 
3501 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3502 
3503 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3504 
3505 	napi_enable(&qdev->napi);
3506 	ql_enable_interrupts(qdev);
3507 	return 0;
3508 
3509 err_init:
3510 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3511 err_lock:
3512 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3513 	free_irq(qdev->pdev->irq, ndev);
3514 err_irq:
3515 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3516 		netdev_info(ndev, "calling pci_disable_msi()\n");
3517 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3518 		pci_disable_msi(qdev->pdev);
3519 	}
3520 	return err;
3521 }
3522 
3523 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3524 {
3525 	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3526 		netdev_err(qdev->ndev,
3527 			   "Driver up/down cycle failed, closing device\n");
3528 		rtnl_lock();
3529 		dev_close(qdev->ndev);
3530 		rtnl_unlock();
3531 		return -1;
3532 	}
3533 	return 0;
3534 }
3535 
3536 static int ql3xxx_close(struct net_device *ndev)
3537 {
3538 	struct ql3_adapter *qdev = netdev_priv(ndev);
3539 
3540 	/*
3541 	 * Wait for device to recover from a reset.
3542 	 * (Rarely happens, but possible.)
3543 	 */
3544 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3545 		msleep(50);
3546 
3547 	ql_adapter_down(qdev, QL_DO_RESET);
3548 	return 0;
3549 }
3550 
3551 static int ql3xxx_open(struct net_device *ndev)
3552 {
3553 	struct ql3_adapter *qdev = netdev_priv(ndev);
3554 	return ql_adapter_up(qdev);
3555 }
3556 
3557 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3558 {
3559 	struct ql3_adapter *qdev = netdev_priv(ndev);
3560 	struct ql3xxx_port_registers __iomem *port_regs =
3561 			qdev->mem_map_registers;
3562 	struct sockaddr *addr = p;
3563 	unsigned long hw_flags;
3564 
3565 	if (netif_running(ndev))
3566 		return -EBUSY;
3567 
3568 	if (!is_valid_ether_addr(addr->sa_data))
3569 		return -EADDRNOTAVAIL;
3570 
3571 	eth_hw_addr_set(ndev, addr->sa_data);
3572 
3573 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3574 	/* Program lower 32 bits of the MAC address */
3575 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3576 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3577 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3578 			   ((ndev->dev_addr[2] << 24) | (ndev->
3579 							 dev_addr[3] << 16) |
3580 			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3581 
3582 	/* Program top 16 bits of the MAC address */
3583 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3584 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3585 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3586 			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3587 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3588 
3589 	return 0;
3590 }
3591 
3592 static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
3593 {
3594 	struct ql3_adapter *qdev = netdev_priv(ndev);
3595 
3596 	netdev_err(ndev, "Resetting...\n");
3597 	/*
3598 	 * Stop the queues, we've got a problem.
3599 	 */
3600 	netif_stop_queue(ndev);
3601 
3602 	/*
3603 	 * Wake up the worker to process this event.
3604 	 */
3605 	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3606 }
3607 
3608 static void ql_reset_work(struct work_struct *work)
3609 {
3610 	struct ql3_adapter *qdev =
3611 		container_of(work, struct ql3_adapter, reset_work.work);
3612 	struct net_device *ndev = qdev->ndev;
3613 	u32 value;
3614 	struct ql_tx_buf_cb *tx_cb;
3615 	int max_wait_time, i;
3616 	struct ql3xxx_port_registers __iomem *port_regs =
3617 		qdev->mem_map_registers;
3618 	unsigned long hw_flags;
3619 
3620 	if (test_bit(QL_RESET_PER_SCSI, &qdev->flags) ||
3621 	    test_bit(QL_RESET_START, &qdev->flags)) {
3622 		clear_bit(QL_LINK_MASTER, &qdev->flags);
3623 
3624 		/*
3625 		 * Loop through the active list and return the skb.
3626 		 */
3627 		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3628 			int j;
3629 			tx_cb = &qdev->tx_buf[i];
3630 			if (tx_cb->skb) {
3631 				netdev_printk(KERN_DEBUG, ndev,
3632 					      "Freeing lost SKB\n");
3633 				dma_unmap_single(&qdev->pdev->dev,
3634 						 dma_unmap_addr(&tx_cb->map[0], mapaddr),
3635 						 dma_unmap_len(&tx_cb->map[0], maplen),
3636 						 DMA_TO_DEVICE);
3637 				for (j = 1; j < tx_cb->seg_count; j++) {
3638 					dma_unmap_page(&qdev->pdev->dev,
3639 						       dma_unmap_addr(&tx_cb->map[j], mapaddr),
3640 						       dma_unmap_len(&tx_cb->map[j], maplen),
3641 						       DMA_TO_DEVICE);
3642 				}
3643 				dev_kfree_skb(tx_cb->skb);
3644 				tx_cb->skb = NULL;
3645 			}
3646 		}
3647 
3648 		netdev_err(ndev, "Clearing NRI after reset\n");
3649 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3650 		ql_write_common_reg(qdev,
3651 				    &port_regs->CommonRegs.
3652 				    ispControlStatus,
3653 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3654 		/*
3655 		 * Wait the for Soft Reset to Complete.
3656 		 */
3657 		max_wait_time = 10;
3658 		do {
3659 			value = ql_read_common_reg(qdev,
3660 						   &port_regs->CommonRegs.
3661 
3662 						   ispControlStatus);
3663 			if ((value & ISP_CONTROL_SR) == 0) {
3664 				netdev_printk(KERN_DEBUG, ndev,
3665 					      "reset completed\n");
3666 				break;
3667 			}
3668 
3669 			if (value & ISP_CONTROL_RI) {
3670 				netdev_printk(KERN_DEBUG, ndev,
3671 					      "clearing NRI after reset\n");
3672 				ql_write_common_reg(qdev,
3673 						    &port_regs->
3674 						    CommonRegs.
3675 						    ispControlStatus,
3676 						    ((ISP_CONTROL_RI <<
3677 						      16) | ISP_CONTROL_RI));
3678 			}
3679 
3680 			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3681 			ssleep(1);
3682 			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3683 		} while (--max_wait_time);
3684 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3685 
3686 		if (value & ISP_CONTROL_SR) {
3687 
3688 			/*
3689 			 * Set the reset flags and clear the board again.
3690 			 * Nothing else to do...
3691 			 */
3692 			netdev_err(ndev,
3693 				   "Timed out waiting for reset to complete\n");
3694 			netdev_err(ndev, "Do a reset\n");
3695 			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3696 			clear_bit(QL_RESET_START, &qdev->flags);
3697 			ql_cycle_adapter(qdev, QL_DO_RESET);
3698 			return;
3699 		}
3700 
3701 		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3702 		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3703 		clear_bit(QL_RESET_START, &qdev->flags);
3704 		ql_cycle_adapter(qdev, QL_NO_RESET);
3705 	}
3706 }
3707 
3708 static void ql_tx_timeout_work(struct work_struct *work)
3709 {
3710 	struct ql3_adapter *qdev =
3711 		container_of(work, struct ql3_adapter, tx_timeout_work.work);
3712 
3713 	ql_cycle_adapter(qdev, QL_DO_RESET);
3714 }
3715 
3716 static void ql_get_board_info(struct ql3_adapter *qdev)
3717 {
3718 	struct ql3xxx_port_registers __iomem *port_regs =
3719 		qdev->mem_map_registers;
3720 	u32 value;
3721 
3722 	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3723 
3724 	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3725 	if (value & PORT_STATUS_64)
3726 		qdev->pci_width = 64;
3727 	else
3728 		qdev->pci_width = 32;
3729 	if (value & PORT_STATUS_X)
3730 		qdev->pci_x = 1;
3731 	else
3732 		qdev->pci_x = 0;
3733 	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3734 }
3735 
3736 static void ql3xxx_timer(struct timer_list *t)
3737 {
3738 	struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
3739 	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3740 }
3741 
3742 static const struct net_device_ops ql3xxx_netdev_ops = {
3743 	.ndo_open		= ql3xxx_open,
3744 	.ndo_start_xmit		= ql3xxx_send,
3745 	.ndo_stop		= ql3xxx_close,
3746 	.ndo_validate_addr	= eth_validate_addr,
3747 	.ndo_set_mac_address	= ql3xxx_set_mac_address,
3748 	.ndo_tx_timeout		= ql3xxx_tx_timeout,
3749 };
3750 
3751 static int ql3xxx_probe(struct pci_dev *pdev,
3752 			const struct pci_device_id *pci_entry)
3753 {
3754 	struct net_device *ndev = NULL;
3755 	struct ql3_adapter *qdev = NULL;
3756 	static int cards_found;
3757 	int err;
3758 
3759 	err = pci_enable_device(pdev);
3760 	if (err) {
3761 		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3762 		goto err_out;
3763 	}
3764 
3765 	err = pci_request_regions(pdev, DRV_NAME);
3766 	if (err) {
3767 		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3768 		goto err_out_disable_pdev;
3769 	}
3770 
3771 	pci_set_master(pdev);
3772 
3773 	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
3774 	if (err) {
3775 		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3776 		goto err_out_free_regions;
3777 	}
3778 
3779 	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3780 	if (!ndev) {
3781 		err = -ENOMEM;
3782 		goto err_out_free_regions;
3783 	}
3784 
3785 	SET_NETDEV_DEV(ndev, &pdev->dev);
3786 
3787 	pci_set_drvdata(pdev, ndev);
3788 
3789 	qdev = netdev_priv(ndev);
3790 	qdev->index = cards_found;
3791 	qdev->ndev = ndev;
3792 	qdev->pdev = pdev;
3793 	qdev->device_id = pci_entry->device;
3794 	qdev->port_link_state = LS_DOWN;
3795 	if (msi)
3796 		qdev->msi = 1;
3797 
3798 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3799 
3800 	ndev->features |= NETIF_F_HIGHDMA;
3801 	if (qdev->device_id == QL3032_DEVICE_ID)
3802 		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3803 
3804 	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3805 	if (!qdev->mem_map_registers) {
3806 		pr_err("%s: cannot map device registers\n", pci_name(pdev));
3807 		err = -EIO;
3808 		goto err_out_free_ndev;
3809 	}
3810 
3811 	spin_lock_init(&qdev->adapter_lock);
3812 	spin_lock_init(&qdev->hw_lock);
3813 
3814 	/* Set driver entry points */
3815 	ndev->netdev_ops = &ql3xxx_netdev_ops;
3816 	ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3817 	ndev->watchdog_timeo = 5 * HZ;
3818 
3819 	netif_napi_add(ndev, &qdev->napi, ql_poll);
3820 
3821 	ndev->irq = pdev->irq;
3822 
3823 	/* make sure the EEPROM is good */
3824 	if (ql_get_nvram_params(qdev)) {
3825 		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3826 			 __func__, qdev->index);
3827 		err = -EIO;
3828 		goto err_out_iounmap;
3829 	}
3830 
3831 	ql_set_mac_info(qdev);
3832 
3833 	/* Validate and set parameters */
3834 	if (qdev->mac_index) {
3835 		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3836 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3837 	} else {
3838 		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3839 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3840 	}
3841 
3842 	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3843 
3844 	/* Record PCI bus information. */
3845 	ql_get_board_info(qdev);
3846 
3847 	/*
3848 	 * Set the Maximum Memory Read Byte Count value. We do this to handle
3849 	 * jumbo frames.
3850 	 */
3851 	if (qdev->pci_x)
3852 		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3853 
3854 	err = register_netdev(ndev);
3855 	if (err) {
3856 		pr_err("%s: cannot register net device\n", pci_name(pdev));
3857 		goto err_out_iounmap;
3858 	}
3859 
3860 	/* we're going to reset, so assume we have no link for now */
3861 
3862 	netif_carrier_off(ndev);
3863 	netif_stop_queue(ndev);
3864 
3865 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3866 	if (!qdev->workqueue) {
3867 		unregister_netdev(ndev);
3868 		err = -ENOMEM;
3869 		goto err_out_iounmap;
3870 	}
3871 
3872 	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3873 	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3874 	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3875 
3876 	timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
3877 	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
3878 
3879 	if (!cards_found) {
3880 		pr_alert("%s\n", DRV_STRING);
3881 		pr_alert("Driver name: %s, Version: %s\n",
3882 			 DRV_NAME, DRV_VERSION);
3883 	}
3884 	ql_display_dev_info(ndev);
3885 
3886 	cards_found++;
3887 	return 0;
3888 
3889 err_out_iounmap:
3890 	iounmap(qdev->mem_map_registers);
3891 err_out_free_ndev:
3892 	free_netdev(ndev);
3893 err_out_free_regions:
3894 	pci_release_regions(pdev);
3895 err_out_disable_pdev:
3896 	pci_disable_device(pdev);
3897 err_out:
3898 	return err;
3899 }
3900 
3901 static void ql3xxx_remove(struct pci_dev *pdev)
3902 {
3903 	struct net_device *ndev = pci_get_drvdata(pdev);
3904 	struct ql3_adapter *qdev = netdev_priv(ndev);
3905 
3906 	unregister_netdev(ndev);
3907 
3908 	ql_disable_interrupts(qdev);
3909 
3910 	if (qdev->workqueue) {
3911 		cancel_delayed_work(&qdev->reset_work);
3912 		cancel_delayed_work(&qdev->tx_timeout_work);
3913 		destroy_workqueue(qdev->workqueue);
3914 		qdev->workqueue = NULL;
3915 	}
3916 
3917 	iounmap(qdev->mem_map_registers);
3918 	pci_release_regions(pdev);
3919 	free_netdev(ndev);
3920 }
3921 
3922 static struct pci_driver ql3xxx_driver = {
3923 
3924 	.name = DRV_NAME,
3925 	.id_table = ql3xxx_pci_tbl,
3926 	.probe = ql3xxx_probe,
3927 	.remove = ql3xxx_remove,
3928 };
3929 
3930 module_pci_driver(ql3xxx_driver);
3931