xref: /openbmc/linux/drivers/net/ethernet/qlogic/qed/qed_dev.c (revision 81464192839de0b5bc84c5739381101e04d94f62)
1 /* QLogic qed NIC Driver
2  * Copyright (c) 2015-2017  QLogic Corporation
3  *
4  * This software is available to you under a choice of one of two
5  * licenses.  You may choose to be licensed under the terms of the GNU
6  * General Public License (GPL) Version 2, available from the file
7  * COPYING in the main directory of this source tree, or the
8  * OpenIB.org BSD license below:
9  *
10  *     Redistribution and use in source and binary forms, with or
11  *     without modification, are permitted provided that the following
12  *     conditions are met:
13  *
14  *      - Redistributions of source code must retain the above
15  *        copyright notice, this list of conditions and the following
16  *        disclaimer.
17  *
18  *      - Redistributions in binary form must reproduce the above
19  *        copyright notice, this list of conditions and the following
20  *        disclaimer in the documentation and /or other materials
21  *        provided with the distribution.
22  *
23  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30  * SOFTWARE.
31  */
32 
33 #include <linux/types.h>
34 #include <asm/byteorder.h>
35 #include <linux/io.h>
36 #include <linux/delay.h>
37 #include <linux/dma-mapping.h>
38 #include <linux/errno.h>
39 #include <linux/kernel.h>
40 #include <linux/mutex.h>
41 #include <linux/pci.h>
42 #include <linux/slab.h>
43 #include <linux/string.h>
44 #include <linux/vmalloc.h>
45 #include <linux/etherdevice.h>
46 #include <linux/qed/qed_chain.h>
47 #include <linux/qed/qed_if.h>
48 #include "qed.h"
49 #include "qed_cxt.h"
50 #include "qed_dcbx.h"
51 #include "qed_dev_api.h"
52 #include "qed_fcoe.h"
53 #include "qed_hsi.h"
54 #include "qed_hw.h"
55 #include "qed_init_ops.h"
56 #include "qed_int.h"
57 #include "qed_iscsi.h"
58 #include "qed_ll2.h"
59 #include "qed_mcp.h"
60 #include "qed_ooo.h"
61 #include "qed_reg_addr.h"
62 #include "qed_sp.h"
63 #include "qed_sriov.h"
64 #include "qed_vf.h"
65 #include "qed_rdma.h"
66 
67 static DEFINE_SPINLOCK(qm_lock);
68 
69 /******************** Doorbell Recovery *******************/
70 /* The doorbell recovery mechanism consists of a list of entries which represent
71  * doorbelling entities (l2 queues, roce sq/rq/cqs, the slowpath spq, etc). Each
72  * entity needs to register with the mechanism and provide the parameters
73  * describing it's doorbell, including a location where last used doorbell data
74  * can be found. The doorbell execute function will traverse the list and
75  * doorbell all of the registered entries.
76  */
77 struct qed_db_recovery_entry {
78 	struct list_head list_entry;
79 	void __iomem *db_addr;
80 	void *db_data;
81 	enum qed_db_rec_width db_width;
82 	enum qed_db_rec_space db_space;
83 	u8 hwfn_idx;
84 };
85 
86 /* Display a single doorbell recovery entry */
87 static void qed_db_recovery_dp_entry(struct qed_hwfn *p_hwfn,
88 				     struct qed_db_recovery_entry *db_entry,
89 				     char *action)
90 {
91 	DP_VERBOSE(p_hwfn,
92 		   QED_MSG_SPQ,
93 		   "(%s: db_entry %p, addr %p, data %p, width %s, %s space, hwfn %d)\n",
94 		   action,
95 		   db_entry,
96 		   db_entry->db_addr,
97 		   db_entry->db_data,
98 		   db_entry->db_width == DB_REC_WIDTH_32B ? "32b" : "64b",
99 		   db_entry->db_space == DB_REC_USER ? "user" : "kernel",
100 		   db_entry->hwfn_idx);
101 }
102 
103 /* Doorbell address sanity (address within doorbell bar range) */
104 static bool qed_db_rec_sanity(struct qed_dev *cdev,
105 			      void __iomem *db_addr,
106 			      enum qed_db_rec_width db_width,
107 			      void *db_data)
108 {
109 	u32 width = (db_width == DB_REC_WIDTH_32B) ? 32 : 64;
110 
111 	/* Make sure doorbell address is within the doorbell bar */
112 	if (db_addr < cdev->doorbells ||
113 	    (u8 __iomem *)db_addr + width >
114 	    (u8 __iomem *)cdev->doorbells + cdev->db_size) {
115 		WARN(true,
116 		     "Illegal doorbell address: %p. Legal range for doorbell addresses is [%p..%p]\n",
117 		     db_addr,
118 		     cdev->doorbells,
119 		     (u8 __iomem *)cdev->doorbells + cdev->db_size);
120 		return false;
121 	}
122 
123 	/* ake sure doorbell data pointer is not null */
124 	if (!db_data) {
125 		WARN(true, "Illegal doorbell data pointer: %p", db_data);
126 		return false;
127 	}
128 
129 	return true;
130 }
131 
132 /* Find hwfn according to the doorbell address */
133 static struct qed_hwfn *qed_db_rec_find_hwfn(struct qed_dev *cdev,
134 					     void __iomem *db_addr)
135 {
136 	struct qed_hwfn *p_hwfn;
137 
138 	/* In CMT doorbell bar is split down the middle between engine 0 and enigne 1 */
139 	if (cdev->num_hwfns > 1)
140 		p_hwfn = db_addr < cdev->hwfns[1].doorbells ?
141 		    &cdev->hwfns[0] : &cdev->hwfns[1];
142 	else
143 		p_hwfn = QED_LEADING_HWFN(cdev);
144 
145 	return p_hwfn;
146 }
147 
148 /* Add a new entry to the doorbell recovery mechanism */
149 int qed_db_recovery_add(struct qed_dev *cdev,
150 			void __iomem *db_addr,
151 			void *db_data,
152 			enum qed_db_rec_width db_width,
153 			enum qed_db_rec_space db_space)
154 {
155 	struct qed_db_recovery_entry *db_entry;
156 	struct qed_hwfn *p_hwfn;
157 
158 	/* Shortcircuit VFs, for now */
159 	if (IS_VF(cdev)) {
160 		DP_VERBOSE(cdev,
161 			   QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
162 		return 0;
163 	}
164 
165 	/* Sanitize doorbell address */
166 	if (!qed_db_rec_sanity(cdev, db_addr, db_width, db_data))
167 		return -EINVAL;
168 
169 	/* Obtain hwfn from doorbell address */
170 	p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
171 
172 	/* Create entry */
173 	db_entry = kzalloc(sizeof(*db_entry), GFP_KERNEL);
174 	if (!db_entry) {
175 		DP_NOTICE(cdev, "Failed to allocate a db recovery entry\n");
176 		return -ENOMEM;
177 	}
178 
179 	/* Populate entry */
180 	db_entry->db_addr = db_addr;
181 	db_entry->db_data = db_data;
182 	db_entry->db_width = db_width;
183 	db_entry->db_space = db_space;
184 	db_entry->hwfn_idx = p_hwfn->my_id;
185 
186 	/* Display */
187 	qed_db_recovery_dp_entry(p_hwfn, db_entry, "Adding");
188 
189 	/* Protect the list */
190 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
191 	list_add_tail(&db_entry->list_entry, &p_hwfn->db_recovery_info.list);
192 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
193 
194 	return 0;
195 }
196 
197 /* Remove an entry from the doorbell recovery mechanism */
198 int qed_db_recovery_del(struct qed_dev *cdev,
199 			void __iomem *db_addr, void *db_data)
200 {
201 	struct qed_db_recovery_entry *db_entry = NULL;
202 	struct qed_hwfn *p_hwfn;
203 	int rc = -EINVAL;
204 
205 	/* Shortcircuit VFs, for now */
206 	if (IS_VF(cdev)) {
207 		DP_VERBOSE(cdev,
208 			   QED_MSG_IOV, "db recovery - skipping VF doorbell\n");
209 		return 0;
210 	}
211 
212 	/* Obtain hwfn from doorbell address */
213 	p_hwfn = qed_db_rec_find_hwfn(cdev, db_addr);
214 
215 	/* Protect the list */
216 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
217 	list_for_each_entry(db_entry,
218 			    &p_hwfn->db_recovery_info.list, list_entry) {
219 		/* search according to db_data addr since db_addr is not unique (roce) */
220 		if (db_entry->db_data == db_data) {
221 			qed_db_recovery_dp_entry(p_hwfn, db_entry, "Deleting");
222 			list_del(&db_entry->list_entry);
223 			rc = 0;
224 			break;
225 		}
226 	}
227 
228 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
229 
230 	if (rc == -EINVAL)
231 
232 		DP_NOTICE(p_hwfn,
233 			  "Failed to find element in list. Key (db_data addr) was %p. db_addr was %p\n",
234 			  db_data, db_addr);
235 	else
236 		kfree(db_entry);
237 
238 	return rc;
239 }
240 
241 /* Initialize the doorbell recovery mechanism */
242 static int qed_db_recovery_setup(struct qed_hwfn *p_hwfn)
243 {
244 	DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Setting up db recovery\n");
245 
246 	/* Make sure db_size was set in cdev */
247 	if (!p_hwfn->cdev->db_size) {
248 		DP_ERR(p_hwfn->cdev, "db_size not set\n");
249 		return -EINVAL;
250 	}
251 
252 	INIT_LIST_HEAD(&p_hwfn->db_recovery_info.list);
253 	spin_lock_init(&p_hwfn->db_recovery_info.lock);
254 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
255 
256 	return 0;
257 }
258 
259 /* Destroy the doorbell recovery mechanism */
260 static void qed_db_recovery_teardown(struct qed_hwfn *p_hwfn)
261 {
262 	struct qed_db_recovery_entry *db_entry = NULL;
263 
264 	DP_VERBOSE(p_hwfn, QED_MSG_SPQ, "Tearing down db recovery\n");
265 	if (!list_empty(&p_hwfn->db_recovery_info.list)) {
266 		DP_VERBOSE(p_hwfn,
267 			   QED_MSG_SPQ,
268 			   "Doorbell Recovery teardown found the doorbell recovery list was not empty (Expected in disorderly driver unload (e.g. recovery) otherwise this probably means some flow forgot to db_recovery_del). Prepare to purge doorbell recovery list...\n");
269 		while (!list_empty(&p_hwfn->db_recovery_info.list)) {
270 			db_entry =
271 			    list_first_entry(&p_hwfn->db_recovery_info.list,
272 					     struct qed_db_recovery_entry,
273 					     list_entry);
274 			qed_db_recovery_dp_entry(p_hwfn, db_entry, "Purging");
275 			list_del(&db_entry->list_entry);
276 			kfree(db_entry);
277 		}
278 	}
279 	p_hwfn->db_recovery_info.db_recovery_counter = 0;
280 }
281 
282 /* Print the content of the doorbell recovery mechanism */
283 void qed_db_recovery_dp(struct qed_hwfn *p_hwfn)
284 {
285 	struct qed_db_recovery_entry *db_entry = NULL;
286 
287 	DP_NOTICE(p_hwfn,
288 		  "Displaying doorbell recovery database. Counter was %d\n",
289 		  p_hwfn->db_recovery_info.db_recovery_counter);
290 
291 	/* Protect the list */
292 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
293 	list_for_each_entry(db_entry,
294 			    &p_hwfn->db_recovery_info.list, list_entry) {
295 		qed_db_recovery_dp_entry(p_hwfn, db_entry, "Printing");
296 	}
297 
298 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
299 }
300 
301 /* Ring the doorbell of a single doorbell recovery entry */
302 static void qed_db_recovery_ring(struct qed_hwfn *p_hwfn,
303 				 struct qed_db_recovery_entry *db_entry)
304 {
305 	/* Print according to width */
306 	if (db_entry->db_width == DB_REC_WIDTH_32B) {
307 		DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
308 			   "ringing doorbell address %p data %x\n",
309 			   db_entry->db_addr,
310 			   *(u32 *)db_entry->db_data);
311 	} else {
312 		DP_VERBOSE(p_hwfn, QED_MSG_SPQ,
313 			   "ringing doorbell address %p data %llx\n",
314 			   db_entry->db_addr,
315 			   *(u64 *)(db_entry->db_data));
316 	}
317 
318 	/* Sanity */
319 	if (!qed_db_rec_sanity(p_hwfn->cdev, db_entry->db_addr,
320 			       db_entry->db_width, db_entry->db_data))
321 		return;
322 
323 	/* Flush the write combined buffer. Since there are multiple doorbelling
324 	 * entities using the same address, if we don't flush, a transaction
325 	 * could be lost.
326 	 */
327 	wmb();
328 
329 	/* Ring the doorbell */
330 	if (db_entry->db_width == DB_REC_WIDTH_32B)
331 		DIRECT_REG_WR(db_entry->db_addr,
332 			      *(u32 *)(db_entry->db_data));
333 	else
334 		DIRECT_REG_WR64(db_entry->db_addr,
335 				*(u64 *)(db_entry->db_data));
336 
337 	/* Flush the write combined buffer. Next doorbell may come from a
338 	 * different entity to the same address...
339 	 */
340 	wmb();
341 }
342 
343 /* Traverse the doorbell recovery entry list and ring all the doorbells */
344 void qed_db_recovery_execute(struct qed_hwfn *p_hwfn)
345 {
346 	struct qed_db_recovery_entry *db_entry = NULL;
347 
348 	DP_NOTICE(p_hwfn, "Executing doorbell recovery. Counter was %d\n",
349 		  p_hwfn->db_recovery_info.db_recovery_counter);
350 
351 	/* Track amount of times recovery was executed */
352 	p_hwfn->db_recovery_info.db_recovery_counter++;
353 
354 	/* Protect the list */
355 	spin_lock_bh(&p_hwfn->db_recovery_info.lock);
356 	list_for_each_entry(db_entry,
357 			    &p_hwfn->db_recovery_info.list, list_entry)
358 		qed_db_recovery_ring(p_hwfn, db_entry);
359 	spin_unlock_bh(&p_hwfn->db_recovery_info.lock);
360 }
361 
362 /******************** Doorbell Recovery end ****************/
363 
364 /********************************** NIG LLH ***********************************/
365 
366 enum qed_llh_filter_type {
367 	QED_LLH_FILTER_TYPE_MAC,
368 	QED_LLH_FILTER_TYPE_PROTOCOL,
369 };
370 
371 struct qed_llh_mac_filter {
372 	u8 addr[ETH_ALEN];
373 };
374 
375 struct qed_llh_protocol_filter {
376 	enum qed_llh_prot_filter_type_t type;
377 	u16 source_port_or_eth_type;
378 	u16 dest_port;
379 };
380 
381 union qed_llh_filter {
382 	struct qed_llh_mac_filter mac;
383 	struct qed_llh_protocol_filter protocol;
384 };
385 
386 struct qed_llh_filter_info {
387 	bool b_enabled;
388 	u32 ref_cnt;
389 	enum qed_llh_filter_type type;
390 	union qed_llh_filter filter;
391 };
392 
393 struct qed_llh_info {
394 	/* Number of LLH filters banks */
395 	u8 num_ppfid;
396 
397 #define MAX_NUM_PPFID   8
398 	u8 ppfid_array[MAX_NUM_PPFID];
399 
400 	/* Array of filters arrays:
401 	 * "num_ppfid" elements of filters banks, where each is an array of
402 	 * "NIG_REG_LLH_FUNC_FILTER_EN_SIZE" filters.
403 	 */
404 	struct qed_llh_filter_info **pp_filters;
405 };
406 
407 static void qed_llh_free(struct qed_dev *cdev)
408 {
409 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
410 	u32 i;
411 
412 	if (p_llh_info) {
413 		if (p_llh_info->pp_filters)
414 			for (i = 0; i < p_llh_info->num_ppfid; i++)
415 				kfree(p_llh_info->pp_filters[i]);
416 
417 		kfree(p_llh_info->pp_filters);
418 	}
419 
420 	kfree(p_llh_info);
421 	cdev->p_llh_info = NULL;
422 }
423 
424 static int qed_llh_alloc(struct qed_dev *cdev)
425 {
426 	struct qed_llh_info *p_llh_info;
427 	u32 size, i;
428 
429 	p_llh_info = kzalloc(sizeof(*p_llh_info), GFP_KERNEL);
430 	if (!p_llh_info)
431 		return -ENOMEM;
432 	cdev->p_llh_info = p_llh_info;
433 
434 	for (i = 0; i < MAX_NUM_PPFID; i++) {
435 		if (!(cdev->ppfid_bitmap & (0x1 << i)))
436 			continue;
437 
438 		p_llh_info->ppfid_array[p_llh_info->num_ppfid] = i;
439 		DP_VERBOSE(cdev, QED_MSG_SP, "ppfid_array[%d] = %hhd\n",
440 			   p_llh_info->num_ppfid, i);
441 		p_llh_info->num_ppfid++;
442 	}
443 
444 	size = p_llh_info->num_ppfid * sizeof(*p_llh_info->pp_filters);
445 	p_llh_info->pp_filters = kzalloc(size, GFP_KERNEL);
446 	if (!p_llh_info->pp_filters)
447 		return -ENOMEM;
448 
449 	size = NIG_REG_LLH_FUNC_FILTER_EN_SIZE *
450 	    sizeof(**p_llh_info->pp_filters);
451 	for (i = 0; i < p_llh_info->num_ppfid; i++) {
452 		p_llh_info->pp_filters[i] = kzalloc(size, GFP_KERNEL);
453 		if (!p_llh_info->pp_filters[i])
454 			return -ENOMEM;
455 	}
456 
457 	return 0;
458 }
459 
460 static int qed_llh_shadow_sanity(struct qed_dev *cdev,
461 				 u8 ppfid, u8 filter_idx, const char *action)
462 {
463 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
464 
465 	if (ppfid >= p_llh_info->num_ppfid) {
466 		DP_NOTICE(cdev,
467 			  "LLH shadow [%s]: using ppfid %d while only %d ppfids are available\n",
468 			  action, ppfid, p_llh_info->num_ppfid);
469 		return -EINVAL;
470 	}
471 
472 	if (filter_idx >= NIG_REG_LLH_FUNC_FILTER_EN_SIZE) {
473 		DP_NOTICE(cdev,
474 			  "LLH shadow [%s]: using filter_idx %d while only %d filters are available\n",
475 			  action, filter_idx, NIG_REG_LLH_FUNC_FILTER_EN_SIZE);
476 		return -EINVAL;
477 	}
478 
479 	return 0;
480 }
481 
482 #define QED_LLH_INVALID_FILTER_IDX      0xff
483 
484 static int
485 qed_llh_shadow_search_filter(struct qed_dev *cdev,
486 			     u8 ppfid,
487 			     union qed_llh_filter *p_filter, u8 *p_filter_idx)
488 {
489 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
490 	struct qed_llh_filter_info *p_filters;
491 	int rc;
492 	u8 i;
493 
494 	rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "search");
495 	if (rc)
496 		return rc;
497 
498 	*p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
499 
500 	p_filters = p_llh_info->pp_filters[ppfid];
501 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
502 		if (!memcmp(p_filter, &p_filters[i].filter,
503 			    sizeof(*p_filter))) {
504 			*p_filter_idx = i;
505 			break;
506 		}
507 	}
508 
509 	return 0;
510 }
511 
512 static int
513 qed_llh_shadow_get_free_idx(struct qed_dev *cdev, u8 ppfid, u8 *p_filter_idx)
514 {
515 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
516 	struct qed_llh_filter_info *p_filters;
517 	int rc;
518 	u8 i;
519 
520 	rc = qed_llh_shadow_sanity(cdev, ppfid, 0, "get_free_idx");
521 	if (rc)
522 		return rc;
523 
524 	*p_filter_idx = QED_LLH_INVALID_FILTER_IDX;
525 
526 	p_filters = p_llh_info->pp_filters[ppfid];
527 	for (i = 0; i < NIG_REG_LLH_FUNC_FILTER_EN_SIZE; i++) {
528 		if (!p_filters[i].b_enabled) {
529 			*p_filter_idx = i;
530 			break;
531 		}
532 	}
533 
534 	return 0;
535 }
536 
537 static int
538 __qed_llh_shadow_add_filter(struct qed_dev *cdev,
539 			    u8 ppfid,
540 			    u8 filter_idx,
541 			    enum qed_llh_filter_type type,
542 			    union qed_llh_filter *p_filter, u32 *p_ref_cnt)
543 {
544 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
545 	struct qed_llh_filter_info *p_filters;
546 	int rc;
547 
548 	rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "add");
549 	if (rc)
550 		return rc;
551 
552 	p_filters = p_llh_info->pp_filters[ppfid];
553 	if (!p_filters[filter_idx].ref_cnt) {
554 		p_filters[filter_idx].b_enabled = true;
555 		p_filters[filter_idx].type = type;
556 		memcpy(&p_filters[filter_idx].filter, p_filter,
557 		       sizeof(p_filters[filter_idx].filter));
558 	}
559 
560 	*p_ref_cnt = ++p_filters[filter_idx].ref_cnt;
561 
562 	return 0;
563 }
564 
565 static int
566 qed_llh_shadow_add_filter(struct qed_dev *cdev,
567 			  u8 ppfid,
568 			  enum qed_llh_filter_type type,
569 			  union qed_llh_filter *p_filter,
570 			  u8 *p_filter_idx, u32 *p_ref_cnt)
571 {
572 	int rc;
573 
574 	/* Check if the same filter already exist */
575 	rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
576 	if (rc)
577 		return rc;
578 
579 	/* Find a new entry in case of a new filter */
580 	if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
581 		rc = qed_llh_shadow_get_free_idx(cdev, ppfid, p_filter_idx);
582 		if (rc)
583 			return rc;
584 	}
585 
586 	/* No free entry was found */
587 	if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
588 		DP_NOTICE(cdev,
589 			  "Failed to find an empty LLH filter to utilize [ppfid %d]\n",
590 			  ppfid);
591 		return -EINVAL;
592 	}
593 
594 	return __qed_llh_shadow_add_filter(cdev, ppfid, *p_filter_idx, type,
595 					   p_filter, p_ref_cnt);
596 }
597 
598 static int
599 __qed_llh_shadow_remove_filter(struct qed_dev *cdev,
600 			       u8 ppfid, u8 filter_idx, u32 *p_ref_cnt)
601 {
602 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
603 	struct qed_llh_filter_info *p_filters;
604 	int rc;
605 
606 	rc = qed_llh_shadow_sanity(cdev, ppfid, filter_idx, "remove");
607 	if (rc)
608 		return rc;
609 
610 	p_filters = p_llh_info->pp_filters[ppfid];
611 	if (!p_filters[filter_idx].ref_cnt) {
612 		DP_NOTICE(cdev,
613 			  "LLH shadow: trying to remove a filter with ref_cnt=0\n");
614 		return -EINVAL;
615 	}
616 
617 	*p_ref_cnt = --p_filters[filter_idx].ref_cnt;
618 	if (!p_filters[filter_idx].ref_cnt)
619 		memset(&p_filters[filter_idx],
620 		       0, sizeof(p_filters[filter_idx]));
621 
622 	return 0;
623 }
624 
625 static int
626 qed_llh_shadow_remove_filter(struct qed_dev *cdev,
627 			     u8 ppfid,
628 			     union qed_llh_filter *p_filter,
629 			     u8 *p_filter_idx, u32 *p_ref_cnt)
630 {
631 	int rc;
632 
633 	rc = qed_llh_shadow_search_filter(cdev, ppfid, p_filter, p_filter_idx);
634 	if (rc)
635 		return rc;
636 
637 	/* No matching filter was found */
638 	if (*p_filter_idx == QED_LLH_INVALID_FILTER_IDX) {
639 		DP_NOTICE(cdev, "Failed to find a filter in the LLH shadow\n");
640 		return -EINVAL;
641 	}
642 
643 	return __qed_llh_shadow_remove_filter(cdev, ppfid, *p_filter_idx,
644 					      p_ref_cnt);
645 }
646 
647 static int qed_llh_abs_ppfid(struct qed_dev *cdev, u8 ppfid, u8 *p_abs_ppfid)
648 {
649 	struct qed_llh_info *p_llh_info = cdev->p_llh_info;
650 
651 	if (ppfid >= p_llh_info->num_ppfid) {
652 		DP_NOTICE(cdev,
653 			  "ppfid %d is not valid, available indices are 0..%hhd\n",
654 			  ppfid, p_llh_info->num_ppfid - 1);
655 		*p_abs_ppfid = 0;
656 		return -EINVAL;
657 	}
658 
659 	*p_abs_ppfid = p_llh_info->ppfid_array[ppfid];
660 
661 	return 0;
662 }
663 
664 static int
665 qed_llh_set_engine_affin(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
666 {
667 	struct qed_dev *cdev = p_hwfn->cdev;
668 	enum qed_eng eng;
669 	u8 ppfid;
670 	int rc;
671 
672 	rc = qed_mcp_get_engine_config(p_hwfn, p_ptt);
673 	if (rc != 0 && rc != -EOPNOTSUPP) {
674 		DP_NOTICE(p_hwfn,
675 			  "Failed to get the engine affinity configuration\n");
676 		return rc;
677 	}
678 
679 	/* RoCE PF is bound to a single engine */
680 	if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
681 		eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
682 		rc = qed_llh_set_roce_affinity(cdev, eng);
683 		if (rc) {
684 			DP_NOTICE(cdev,
685 				  "Failed to set the RoCE engine affinity\n");
686 			return rc;
687 		}
688 
689 		DP_VERBOSE(cdev,
690 			   QED_MSG_SP,
691 			   "LLH: Set the engine affinity of RoCE packets as %d\n",
692 			   eng);
693 	}
694 
695 	/* Storage PF is bound to a single engine while L2 PF uses both */
696 	if (QED_IS_FCOE_PERSONALITY(p_hwfn) || QED_IS_ISCSI_PERSONALITY(p_hwfn))
697 		eng = cdev->fir_affin ? QED_ENG1 : QED_ENG0;
698 	else			/* L2_PERSONALITY */
699 		eng = QED_BOTH_ENG;
700 
701 	for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
702 		rc = qed_llh_set_ppfid_affinity(cdev, ppfid, eng);
703 		if (rc) {
704 			DP_NOTICE(cdev,
705 				  "Failed to set the engine affinity of ppfid %d\n",
706 				  ppfid);
707 			return rc;
708 		}
709 	}
710 
711 	DP_VERBOSE(cdev, QED_MSG_SP,
712 		   "LLH: Set the engine affinity of non-RoCE packets as %d\n",
713 		   eng);
714 
715 	return 0;
716 }
717 
718 static int qed_llh_hw_init_pf(struct qed_hwfn *p_hwfn,
719 			      struct qed_ptt *p_ptt)
720 {
721 	struct qed_dev *cdev = p_hwfn->cdev;
722 	u8 ppfid, abs_ppfid;
723 	int rc;
724 
725 	for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
726 		u32 addr;
727 
728 		rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
729 		if (rc)
730 			return rc;
731 
732 		addr = NIG_REG_LLH_PPFID2PFID_TBL_0 + abs_ppfid * 0x4;
733 		qed_wr(p_hwfn, p_ptt, addr, p_hwfn->rel_pf_id);
734 	}
735 
736 	if (test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
737 	    !QED_IS_FCOE_PERSONALITY(p_hwfn)) {
738 		rc = qed_llh_add_mac_filter(cdev, 0,
739 					    p_hwfn->hw_info.hw_mac_addr);
740 		if (rc)
741 			DP_NOTICE(cdev,
742 				  "Failed to add an LLH filter with the primary MAC\n");
743 	}
744 
745 	if (QED_IS_CMT(cdev)) {
746 		rc = qed_llh_set_engine_affin(p_hwfn, p_ptt);
747 		if (rc)
748 			return rc;
749 	}
750 
751 	return 0;
752 }
753 
754 u8 qed_llh_get_num_ppfid(struct qed_dev *cdev)
755 {
756 	return cdev->p_llh_info->num_ppfid;
757 }
758 
759 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_MASK             0x3
760 #define NIG_REG_PPF_TO_ENGINE_SEL_ROCE_SHIFT            0
761 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_MASK         0x3
762 #define NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE_SHIFT        2
763 
764 int qed_llh_set_ppfid_affinity(struct qed_dev *cdev, u8 ppfid, enum qed_eng eng)
765 {
766 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
767 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
768 	u32 addr, val, eng_sel;
769 	u8 abs_ppfid;
770 	int rc = 0;
771 
772 	if (!p_ptt)
773 		return -EAGAIN;
774 
775 	if (!QED_IS_CMT(cdev))
776 		goto out;
777 
778 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
779 	if (rc)
780 		goto out;
781 
782 	switch (eng) {
783 	case QED_ENG0:
784 		eng_sel = 0;
785 		break;
786 	case QED_ENG1:
787 		eng_sel = 1;
788 		break;
789 	case QED_BOTH_ENG:
790 		eng_sel = 2;
791 		break;
792 	default:
793 		DP_NOTICE(cdev, "Invalid affinity value for ppfid [%d]\n", eng);
794 		rc = -EINVAL;
795 		goto out;
796 	}
797 
798 	addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
799 	val = qed_rd(p_hwfn, p_ptt, addr);
800 	SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_NON_ROCE, eng_sel);
801 	qed_wr(p_hwfn, p_ptt, addr, val);
802 
803 	/* The iWARP affinity is set as the affinity of ppfid 0 */
804 	if (!ppfid && QED_IS_IWARP_PERSONALITY(p_hwfn))
805 		cdev->iwarp_affin = (eng == QED_ENG1) ? 1 : 0;
806 out:
807 	qed_ptt_release(p_hwfn, p_ptt);
808 
809 	return rc;
810 }
811 
812 int qed_llh_set_roce_affinity(struct qed_dev *cdev, enum qed_eng eng)
813 {
814 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
815 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
816 	u32 addr, val, eng_sel;
817 	u8 ppfid, abs_ppfid;
818 	int rc = 0;
819 
820 	if (!p_ptt)
821 		return -EAGAIN;
822 
823 	if (!QED_IS_CMT(cdev))
824 		goto out;
825 
826 	switch (eng) {
827 	case QED_ENG0:
828 		eng_sel = 0;
829 		break;
830 	case QED_ENG1:
831 		eng_sel = 1;
832 		break;
833 	case QED_BOTH_ENG:
834 		eng_sel = 2;
835 		qed_wr(p_hwfn, p_ptt, NIG_REG_LLH_ENG_CLS_ROCE_QP_SEL,
836 		       0xf);  /* QP bit 15 */
837 		break;
838 	default:
839 		DP_NOTICE(cdev, "Invalid affinity value for RoCE [%d]\n", eng);
840 		rc = -EINVAL;
841 		goto out;
842 	}
843 
844 	for (ppfid = 0; ppfid < cdev->p_llh_info->num_ppfid; ppfid++) {
845 		rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
846 		if (rc)
847 			goto out;
848 
849 		addr = NIG_REG_PPF_TO_ENGINE_SEL + abs_ppfid * 0x4;
850 		val = qed_rd(p_hwfn, p_ptt, addr);
851 		SET_FIELD(val, NIG_REG_PPF_TO_ENGINE_SEL_ROCE, eng_sel);
852 		qed_wr(p_hwfn, p_ptt, addr, val);
853 	}
854 out:
855 	qed_ptt_release(p_hwfn, p_ptt);
856 
857 	return rc;
858 }
859 
860 struct qed_llh_filter_details {
861 	u64 value;
862 	u32 mode;
863 	u32 protocol_type;
864 	u32 hdr_sel;
865 	u32 enable;
866 };
867 
868 static int
869 qed_llh_access_filter(struct qed_hwfn *p_hwfn,
870 		      struct qed_ptt *p_ptt,
871 		      u8 abs_ppfid,
872 		      u8 filter_idx,
873 		      struct qed_llh_filter_details *p_details)
874 {
875 	struct qed_dmae_params params = {0};
876 	u32 addr;
877 	u8 pfid;
878 	int rc;
879 
880 	/* The NIG/LLH registers that are accessed in this function have only 16
881 	 * rows which are exposed to a PF. I.e. only the 16 filters of its
882 	 * default ppfid. Accessing filters of other ppfids requires pretending
883 	 * to another PFs.
884 	 * The calculation of PPFID->PFID in AH is based on the relative index
885 	 * of a PF on its port.
886 	 * For BB the pfid is actually the abs_ppfid.
887 	 */
888 	if (QED_IS_BB(p_hwfn->cdev))
889 		pfid = abs_ppfid;
890 	else
891 		pfid = abs_ppfid * p_hwfn->cdev->num_ports_in_engine +
892 		    MFW_PORT(p_hwfn);
893 
894 	/* Filter enable - should be done first when removing a filter */
895 	if (!p_details->enable) {
896 		qed_fid_pretend(p_hwfn, p_ptt,
897 				pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
898 
899 		addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
900 		qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
901 
902 		qed_fid_pretend(p_hwfn, p_ptt,
903 				p_hwfn->rel_pf_id <<
904 				PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
905 	}
906 
907 	/* Filter value */
908 	addr = NIG_REG_LLH_FUNC_FILTER_VALUE + 2 * filter_idx * 0x4;
909 
910 	SET_FIELD(params.flags, QED_DMAE_PARAMS_DST_PF_VALID, 0x1);
911 	params.dst_pfid = pfid;
912 	rc = qed_dmae_host2grc(p_hwfn,
913 			       p_ptt,
914 			       (u64)(uintptr_t)&p_details->value,
915 			       addr, 2 /* size_in_dwords */,
916 			       &params);
917 	if (rc)
918 		return rc;
919 
920 	qed_fid_pretend(p_hwfn, p_ptt,
921 			pfid << PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
922 
923 	/* Filter mode */
924 	addr = NIG_REG_LLH_FUNC_FILTER_MODE + filter_idx * 0x4;
925 	qed_wr(p_hwfn, p_ptt, addr, p_details->mode);
926 
927 	/* Filter protocol type */
928 	addr = NIG_REG_LLH_FUNC_FILTER_PROTOCOL_TYPE + filter_idx * 0x4;
929 	qed_wr(p_hwfn, p_ptt, addr, p_details->protocol_type);
930 
931 	/* Filter header select */
932 	addr = NIG_REG_LLH_FUNC_FILTER_HDR_SEL + filter_idx * 0x4;
933 	qed_wr(p_hwfn, p_ptt, addr, p_details->hdr_sel);
934 
935 	/* Filter enable - should be done last when adding a filter */
936 	if (p_details->enable) {
937 		addr = NIG_REG_LLH_FUNC_FILTER_EN + filter_idx * 0x4;
938 		qed_wr(p_hwfn, p_ptt, addr, p_details->enable);
939 	}
940 
941 	qed_fid_pretend(p_hwfn, p_ptt,
942 			p_hwfn->rel_pf_id <<
943 			PXP_PRETEND_CONCRETE_FID_PFID_SHIFT);
944 
945 	return 0;
946 }
947 
948 static int
949 qed_llh_add_filter(struct qed_hwfn *p_hwfn,
950 		   struct qed_ptt *p_ptt,
951 		   u8 abs_ppfid,
952 		   u8 filter_idx, u8 filter_prot_type, u32 high, u32 low)
953 {
954 	struct qed_llh_filter_details filter_details;
955 
956 	filter_details.enable = 1;
957 	filter_details.value = ((u64)high << 32) | low;
958 	filter_details.hdr_sel = 0;
959 	filter_details.protocol_type = filter_prot_type;
960 	/* Mode: 0: MAC-address classification 1: protocol classification */
961 	filter_details.mode = filter_prot_type ? 1 : 0;
962 
963 	return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
964 				     &filter_details);
965 }
966 
967 static int
968 qed_llh_remove_filter(struct qed_hwfn *p_hwfn,
969 		      struct qed_ptt *p_ptt, u8 abs_ppfid, u8 filter_idx)
970 {
971 	struct qed_llh_filter_details filter_details = {0};
972 
973 	return qed_llh_access_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
974 				     &filter_details);
975 }
976 
977 int qed_llh_add_mac_filter(struct qed_dev *cdev,
978 			   u8 ppfid, u8 mac_addr[ETH_ALEN])
979 {
980 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
981 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
982 	union qed_llh_filter filter = {};
983 	u8 filter_idx, abs_ppfid = 0;
984 	u32 high, low, ref_cnt;
985 	int rc = 0;
986 
987 	if (!p_ptt)
988 		return -EAGAIN;
989 
990 	if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
991 		goto out;
992 
993 	memcpy(filter.mac.addr, mac_addr, ETH_ALEN);
994 	rc = qed_llh_shadow_add_filter(cdev, ppfid,
995 				       QED_LLH_FILTER_TYPE_MAC,
996 				       &filter, &filter_idx, &ref_cnt);
997 	if (rc)
998 		goto err;
999 
1000 	/* Configure the LLH only in case of a new the filter */
1001 	if (ref_cnt == 1) {
1002 		rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1003 		if (rc)
1004 			goto err;
1005 
1006 		high = mac_addr[1] | (mac_addr[0] << 8);
1007 		low = mac_addr[5] | (mac_addr[4] << 8) | (mac_addr[3] << 16) |
1008 		      (mac_addr[2] << 24);
1009 		rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid, filter_idx,
1010 					0, high, low);
1011 		if (rc)
1012 			goto err;
1013 	}
1014 
1015 	DP_VERBOSE(cdev,
1016 		   QED_MSG_SP,
1017 		   "LLH: Added MAC filter [%pM] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1018 		   mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
1019 
1020 	goto out;
1021 
1022 err:	DP_NOTICE(cdev,
1023 		  "LLH: Failed to add MAC filter [%pM] to ppfid %hhd\n",
1024 		  mac_addr, ppfid);
1025 out:
1026 	qed_ptt_release(p_hwfn, p_ptt);
1027 
1028 	return rc;
1029 }
1030 
1031 static int
1032 qed_llh_protocol_filter_stringify(struct qed_dev *cdev,
1033 				  enum qed_llh_prot_filter_type_t type,
1034 				  u16 source_port_or_eth_type,
1035 				  u16 dest_port, u8 *str, size_t str_len)
1036 {
1037 	switch (type) {
1038 	case QED_LLH_FILTER_ETHERTYPE:
1039 		snprintf(str, str_len, "Ethertype 0x%04x",
1040 			 source_port_or_eth_type);
1041 		break;
1042 	case QED_LLH_FILTER_TCP_SRC_PORT:
1043 		snprintf(str, str_len, "TCP src port 0x%04x",
1044 			 source_port_or_eth_type);
1045 		break;
1046 	case QED_LLH_FILTER_UDP_SRC_PORT:
1047 		snprintf(str, str_len, "UDP src port 0x%04x",
1048 			 source_port_or_eth_type);
1049 		break;
1050 	case QED_LLH_FILTER_TCP_DEST_PORT:
1051 		snprintf(str, str_len, "TCP dst port 0x%04x", dest_port);
1052 		break;
1053 	case QED_LLH_FILTER_UDP_DEST_PORT:
1054 		snprintf(str, str_len, "UDP dst port 0x%04x", dest_port);
1055 		break;
1056 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1057 		snprintf(str, str_len, "TCP src/dst ports 0x%04x/0x%04x",
1058 			 source_port_or_eth_type, dest_port);
1059 		break;
1060 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1061 		snprintf(str, str_len, "UDP src/dst ports 0x%04x/0x%04x",
1062 			 source_port_or_eth_type, dest_port);
1063 		break;
1064 	default:
1065 		DP_NOTICE(cdev,
1066 			  "Non valid LLH protocol filter type %d\n", type);
1067 		return -EINVAL;
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 static int
1074 qed_llh_protocol_filter_to_hilo(struct qed_dev *cdev,
1075 				enum qed_llh_prot_filter_type_t type,
1076 				u16 source_port_or_eth_type,
1077 				u16 dest_port, u32 *p_high, u32 *p_low)
1078 {
1079 	*p_high = 0;
1080 	*p_low = 0;
1081 
1082 	switch (type) {
1083 	case QED_LLH_FILTER_ETHERTYPE:
1084 		*p_high = source_port_or_eth_type;
1085 		break;
1086 	case QED_LLH_FILTER_TCP_SRC_PORT:
1087 	case QED_LLH_FILTER_UDP_SRC_PORT:
1088 		*p_low = source_port_or_eth_type << 16;
1089 		break;
1090 	case QED_LLH_FILTER_TCP_DEST_PORT:
1091 	case QED_LLH_FILTER_UDP_DEST_PORT:
1092 		*p_low = dest_port;
1093 		break;
1094 	case QED_LLH_FILTER_TCP_SRC_AND_DEST_PORT:
1095 	case QED_LLH_FILTER_UDP_SRC_AND_DEST_PORT:
1096 		*p_low = (source_port_or_eth_type << 16) | dest_port;
1097 		break;
1098 	default:
1099 		DP_NOTICE(cdev,
1100 			  "Non valid LLH protocol filter type %d\n", type);
1101 		return -EINVAL;
1102 	}
1103 
1104 	return 0;
1105 }
1106 
1107 int
1108 qed_llh_add_protocol_filter(struct qed_dev *cdev,
1109 			    u8 ppfid,
1110 			    enum qed_llh_prot_filter_type_t type,
1111 			    u16 source_port_or_eth_type, u16 dest_port)
1112 {
1113 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1114 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1115 	u8 filter_idx, abs_ppfid, str[32], type_bitmap;
1116 	union qed_llh_filter filter = {};
1117 	u32 high, low, ref_cnt;
1118 	int rc = 0;
1119 
1120 	if (!p_ptt)
1121 		return -EAGAIN;
1122 
1123 	if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
1124 		goto out;
1125 
1126 	rc = qed_llh_protocol_filter_stringify(cdev, type,
1127 					       source_port_or_eth_type,
1128 					       dest_port, str, sizeof(str));
1129 	if (rc)
1130 		goto err;
1131 
1132 	filter.protocol.type = type;
1133 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1134 	filter.protocol.dest_port = dest_port;
1135 	rc = qed_llh_shadow_add_filter(cdev,
1136 				       ppfid,
1137 				       QED_LLH_FILTER_TYPE_PROTOCOL,
1138 				       &filter, &filter_idx, &ref_cnt);
1139 	if (rc)
1140 		goto err;
1141 
1142 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1143 	if (rc)
1144 		goto err;
1145 
1146 	/* Configure the LLH only in case of a new the filter */
1147 	if (ref_cnt == 1) {
1148 		rc = qed_llh_protocol_filter_to_hilo(cdev, type,
1149 						     source_port_or_eth_type,
1150 						     dest_port, &high, &low);
1151 		if (rc)
1152 			goto err;
1153 
1154 		type_bitmap = 0x1 << type;
1155 		rc = qed_llh_add_filter(p_hwfn, p_ptt, abs_ppfid,
1156 					filter_idx, type_bitmap, high, low);
1157 		if (rc)
1158 			goto err;
1159 	}
1160 
1161 	DP_VERBOSE(cdev,
1162 		   QED_MSG_SP,
1163 		   "LLH: Added protocol filter [%s] to ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1164 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1165 
1166 	goto out;
1167 
1168 err:	DP_NOTICE(p_hwfn,
1169 		  "LLH: Failed to add protocol filter [%s] to ppfid %hhd\n",
1170 		  str, ppfid);
1171 out:
1172 	qed_ptt_release(p_hwfn, p_ptt);
1173 
1174 	return rc;
1175 }
1176 
1177 void qed_llh_remove_mac_filter(struct qed_dev *cdev,
1178 			       u8 ppfid, u8 mac_addr[ETH_ALEN])
1179 {
1180 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1181 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1182 	union qed_llh_filter filter = {};
1183 	u8 filter_idx, abs_ppfid;
1184 	int rc = 0;
1185 	u32 ref_cnt;
1186 
1187 	if (!p_ptt)
1188 		return;
1189 
1190 	if (!test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits))
1191 		goto out;
1192 
1193 	ether_addr_copy(filter.mac.addr, mac_addr);
1194 	rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
1195 					  &ref_cnt);
1196 	if (rc)
1197 		goto err;
1198 
1199 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1200 	if (rc)
1201 		goto err;
1202 
1203 	/* Remove from the LLH in case the filter is not in use */
1204 	if (!ref_cnt) {
1205 		rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1206 					   filter_idx);
1207 		if (rc)
1208 			goto err;
1209 	}
1210 
1211 	DP_VERBOSE(cdev,
1212 		   QED_MSG_SP,
1213 		   "LLH: Removed MAC filter [%pM] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1214 		   mac_addr, ppfid, abs_ppfid, filter_idx, ref_cnt);
1215 
1216 	goto out;
1217 
1218 err:	DP_NOTICE(cdev,
1219 		  "LLH: Failed to remove MAC filter [%pM] from ppfid %hhd\n",
1220 		  mac_addr, ppfid);
1221 out:
1222 	qed_ptt_release(p_hwfn, p_ptt);
1223 }
1224 
1225 void qed_llh_remove_protocol_filter(struct qed_dev *cdev,
1226 				    u8 ppfid,
1227 				    enum qed_llh_prot_filter_type_t type,
1228 				    u16 source_port_or_eth_type, u16 dest_port)
1229 {
1230 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
1231 	struct qed_ptt *p_ptt = qed_ptt_acquire(p_hwfn);
1232 	u8 filter_idx, abs_ppfid, str[32];
1233 	union qed_llh_filter filter = {};
1234 	int rc = 0;
1235 	u32 ref_cnt;
1236 
1237 	if (!p_ptt)
1238 		return;
1239 
1240 	if (!test_bit(QED_MF_LLH_PROTO_CLSS, &cdev->mf_bits))
1241 		goto out;
1242 
1243 	rc = qed_llh_protocol_filter_stringify(cdev, type,
1244 					       source_port_or_eth_type,
1245 					       dest_port, str, sizeof(str));
1246 	if (rc)
1247 		goto err;
1248 
1249 	filter.protocol.type = type;
1250 	filter.protocol.source_port_or_eth_type = source_port_or_eth_type;
1251 	filter.protocol.dest_port = dest_port;
1252 	rc = qed_llh_shadow_remove_filter(cdev, ppfid, &filter, &filter_idx,
1253 					  &ref_cnt);
1254 	if (rc)
1255 		goto err;
1256 
1257 	rc = qed_llh_abs_ppfid(cdev, ppfid, &abs_ppfid);
1258 	if (rc)
1259 		goto err;
1260 
1261 	/* Remove from the LLH in case the filter is not in use */
1262 	if (!ref_cnt) {
1263 		rc = qed_llh_remove_filter(p_hwfn, p_ptt, abs_ppfid,
1264 					   filter_idx);
1265 		if (rc)
1266 			goto err;
1267 	}
1268 
1269 	DP_VERBOSE(cdev,
1270 		   QED_MSG_SP,
1271 		   "LLH: Removed protocol filter [%s] from ppfid %hhd [abs %hhd] at idx %hhd [ref_cnt %d]\n",
1272 		   str, ppfid, abs_ppfid, filter_idx, ref_cnt);
1273 
1274 	goto out;
1275 
1276 err:	DP_NOTICE(cdev,
1277 		  "LLH: Failed to remove protocol filter [%s] from ppfid %hhd\n",
1278 		  str, ppfid);
1279 out:
1280 	qed_ptt_release(p_hwfn, p_ptt);
1281 }
1282 
1283 /******************************* NIG LLH - End ********************************/
1284 
1285 #define QED_MIN_DPIS            (4)
1286 #define QED_MIN_PWM_REGION      (QED_WID_SIZE * QED_MIN_DPIS)
1287 
1288 static u32 qed_hw_bar_size(struct qed_hwfn *p_hwfn,
1289 			   struct qed_ptt *p_ptt, enum BAR_ID bar_id)
1290 {
1291 	u32 bar_reg = (bar_id == BAR_ID_0 ?
1292 		       PGLUE_B_REG_PF_BAR0_SIZE : PGLUE_B_REG_PF_BAR1_SIZE);
1293 	u32 val;
1294 
1295 	if (IS_VF(p_hwfn->cdev))
1296 		return qed_vf_hw_bar_size(p_hwfn, bar_id);
1297 
1298 	val = qed_rd(p_hwfn, p_ptt, bar_reg);
1299 	if (val)
1300 		return 1 << (val + 15);
1301 
1302 	/* Old MFW initialized above registered only conditionally */
1303 	if (p_hwfn->cdev->num_hwfns > 1) {
1304 		DP_INFO(p_hwfn,
1305 			"BAR size not configured. Assuming BAR size of 256kB for GRC and 512kB for DB\n");
1306 			return BAR_ID_0 ? 256 * 1024 : 512 * 1024;
1307 	} else {
1308 		DP_INFO(p_hwfn,
1309 			"BAR size not configured. Assuming BAR size of 512kB for GRC and 512kB for DB\n");
1310 			return 512 * 1024;
1311 	}
1312 }
1313 
1314 void qed_init_dp(struct qed_dev *cdev, u32 dp_module, u8 dp_level)
1315 {
1316 	u32 i;
1317 
1318 	cdev->dp_level = dp_level;
1319 	cdev->dp_module = dp_module;
1320 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1321 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1322 
1323 		p_hwfn->dp_level = dp_level;
1324 		p_hwfn->dp_module = dp_module;
1325 	}
1326 }
1327 
1328 void qed_init_struct(struct qed_dev *cdev)
1329 {
1330 	u8 i;
1331 
1332 	for (i = 0; i < MAX_HWFNS_PER_DEVICE; i++) {
1333 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
1334 
1335 		p_hwfn->cdev = cdev;
1336 		p_hwfn->my_id = i;
1337 		p_hwfn->b_active = false;
1338 
1339 		mutex_init(&p_hwfn->dmae_info.mutex);
1340 	}
1341 
1342 	/* hwfn 0 is always active */
1343 	cdev->hwfns[0].b_active = true;
1344 
1345 	/* set the default cache alignment to 128 */
1346 	cdev->cache_shift = 7;
1347 }
1348 
1349 static void qed_qm_info_free(struct qed_hwfn *p_hwfn)
1350 {
1351 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1352 
1353 	kfree(qm_info->qm_pq_params);
1354 	qm_info->qm_pq_params = NULL;
1355 	kfree(qm_info->qm_vport_params);
1356 	qm_info->qm_vport_params = NULL;
1357 	kfree(qm_info->qm_port_params);
1358 	qm_info->qm_port_params = NULL;
1359 	kfree(qm_info->wfq_data);
1360 	qm_info->wfq_data = NULL;
1361 }
1362 
1363 static void qed_dbg_user_data_free(struct qed_hwfn *p_hwfn)
1364 {
1365 	kfree(p_hwfn->dbg_user_info);
1366 	p_hwfn->dbg_user_info = NULL;
1367 }
1368 
1369 void qed_resc_free(struct qed_dev *cdev)
1370 {
1371 	struct qed_rdma_info *rdma_info;
1372 	struct qed_hwfn *p_hwfn;
1373 	int i;
1374 
1375 	if (IS_VF(cdev)) {
1376 		for_each_hwfn(cdev, i)
1377 			qed_l2_free(&cdev->hwfns[i]);
1378 		return;
1379 	}
1380 
1381 	kfree(cdev->fw_data);
1382 	cdev->fw_data = NULL;
1383 
1384 	kfree(cdev->reset_stats);
1385 	cdev->reset_stats = NULL;
1386 
1387 	qed_llh_free(cdev);
1388 
1389 	for_each_hwfn(cdev, i) {
1390 		p_hwfn = cdev->hwfns + i;
1391 		rdma_info = p_hwfn->p_rdma_info;
1392 
1393 		qed_cxt_mngr_free(p_hwfn);
1394 		qed_qm_info_free(p_hwfn);
1395 		qed_spq_free(p_hwfn);
1396 		qed_eq_free(p_hwfn);
1397 		qed_consq_free(p_hwfn);
1398 		qed_int_free(p_hwfn);
1399 #ifdef CONFIG_QED_LL2
1400 		qed_ll2_free(p_hwfn);
1401 #endif
1402 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
1403 			qed_fcoe_free(p_hwfn);
1404 
1405 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
1406 			qed_iscsi_free(p_hwfn);
1407 			qed_ooo_free(p_hwfn);
1408 		}
1409 
1410 		if (QED_IS_RDMA_PERSONALITY(p_hwfn) && rdma_info) {
1411 			qed_spq_unregister_async_cb(p_hwfn, rdma_info->proto);
1412 			qed_rdma_info_free(p_hwfn);
1413 		}
1414 
1415 		qed_iov_free(p_hwfn);
1416 		qed_l2_free(p_hwfn);
1417 		qed_dmae_info_free(p_hwfn);
1418 		qed_dcbx_info_free(p_hwfn);
1419 		qed_dbg_user_data_free(p_hwfn);
1420 		qed_fw_overlay_mem_free(p_hwfn, p_hwfn->fw_overlay_mem);
1421 
1422 		/* Destroy doorbell recovery mechanism */
1423 		qed_db_recovery_teardown(p_hwfn);
1424 	}
1425 }
1426 
1427 /******************** QM initialization *******************/
1428 #define ACTIVE_TCS_BMAP 0x9f
1429 #define ACTIVE_TCS_BMAP_4PORT_K2 0xf
1430 
1431 /* determines the physical queue flags for a given PF. */
1432 static u32 qed_get_pq_flags(struct qed_hwfn *p_hwfn)
1433 {
1434 	u32 flags;
1435 
1436 	/* common flags */
1437 	flags = PQ_FLAGS_LB;
1438 
1439 	/* feature flags */
1440 	if (IS_QED_SRIOV(p_hwfn->cdev))
1441 		flags |= PQ_FLAGS_VFS;
1442 
1443 	/* protocol flags */
1444 	switch (p_hwfn->hw_info.personality) {
1445 	case QED_PCI_ETH:
1446 		flags |= PQ_FLAGS_MCOS;
1447 		break;
1448 	case QED_PCI_FCOE:
1449 		flags |= PQ_FLAGS_OFLD;
1450 		break;
1451 	case QED_PCI_ISCSI:
1452 		flags |= PQ_FLAGS_ACK | PQ_FLAGS_OOO | PQ_FLAGS_OFLD;
1453 		break;
1454 	case QED_PCI_ETH_ROCE:
1455 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_OFLD | PQ_FLAGS_LLT;
1456 		if (IS_QED_MULTI_TC_ROCE(p_hwfn))
1457 			flags |= PQ_FLAGS_MTC;
1458 		break;
1459 	case QED_PCI_ETH_IWARP:
1460 		flags |= PQ_FLAGS_MCOS | PQ_FLAGS_ACK | PQ_FLAGS_OOO |
1461 		    PQ_FLAGS_OFLD;
1462 		break;
1463 	default:
1464 		DP_ERR(p_hwfn,
1465 		       "unknown personality %d\n", p_hwfn->hw_info.personality);
1466 		return 0;
1467 	}
1468 
1469 	return flags;
1470 }
1471 
1472 /* Getters for resource amounts necessary for qm initialization */
1473 static u8 qed_init_qm_get_num_tcs(struct qed_hwfn *p_hwfn)
1474 {
1475 	return p_hwfn->hw_info.num_hw_tc;
1476 }
1477 
1478 static u16 qed_init_qm_get_num_vfs(struct qed_hwfn *p_hwfn)
1479 {
1480 	return IS_QED_SRIOV(p_hwfn->cdev) ?
1481 	       p_hwfn->cdev->p_iov_info->total_vfs : 0;
1482 }
1483 
1484 static u8 qed_init_qm_get_num_mtc_tcs(struct qed_hwfn *p_hwfn)
1485 {
1486 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
1487 
1488 	if (!(PQ_FLAGS_MTC & pq_flags))
1489 		return 1;
1490 
1491 	return qed_init_qm_get_num_tcs(p_hwfn);
1492 }
1493 
1494 #define NUM_DEFAULT_RLS 1
1495 
1496 static u16 qed_init_qm_get_num_pf_rls(struct qed_hwfn *p_hwfn)
1497 {
1498 	u16 num_pf_rls, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
1499 
1500 	/* num RLs can't exceed resource amount of rls or vports */
1501 	num_pf_rls = (u16) min_t(u32, RESC_NUM(p_hwfn, QED_RL),
1502 				 RESC_NUM(p_hwfn, QED_VPORT));
1503 
1504 	/* Make sure after we reserve there's something left */
1505 	if (num_pf_rls < num_vfs + NUM_DEFAULT_RLS)
1506 		return 0;
1507 
1508 	/* subtract rls necessary for VFs and one default one for the PF */
1509 	num_pf_rls -= num_vfs + NUM_DEFAULT_RLS;
1510 
1511 	return num_pf_rls;
1512 }
1513 
1514 static u16 qed_init_qm_get_num_vports(struct qed_hwfn *p_hwfn)
1515 {
1516 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
1517 
1518 	/* all pqs share the same vport, except for vfs and pf_rl pqs */
1519 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1520 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
1521 	       (!!(PQ_FLAGS_VFS & pq_flags)) *
1522 	       qed_init_qm_get_num_vfs(p_hwfn) + 1;
1523 }
1524 
1525 /* calc amount of PQs according to the requested flags */
1526 static u16 qed_init_qm_get_num_pqs(struct qed_hwfn *p_hwfn)
1527 {
1528 	u32 pq_flags = qed_get_pq_flags(p_hwfn);
1529 
1530 	return (!!(PQ_FLAGS_RLS & pq_flags)) *
1531 	       qed_init_qm_get_num_pf_rls(p_hwfn) +
1532 	       (!!(PQ_FLAGS_MCOS & pq_flags)) *
1533 	       qed_init_qm_get_num_tcs(p_hwfn) +
1534 	       (!!(PQ_FLAGS_LB & pq_flags)) + (!!(PQ_FLAGS_OOO & pq_flags)) +
1535 	       (!!(PQ_FLAGS_ACK & pq_flags)) +
1536 	       (!!(PQ_FLAGS_OFLD & pq_flags)) *
1537 	       qed_init_qm_get_num_mtc_tcs(p_hwfn) +
1538 	       (!!(PQ_FLAGS_LLT & pq_flags)) *
1539 	       qed_init_qm_get_num_mtc_tcs(p_hwfn) +
1540 	       (!!(PQ_FLAGS_VFS & pq_flags)) * qed_init_qm_get_num_vfs(p_hwfn);
1541 }
1542 
1543 /* initialize the top level QM params */
1544 static void qed_init_qm_params(struct qed_hwfn *p_hwfn)
1545 {
1546 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1547 	bool four_port;
1548 
1549 	/* pq and vport bases for this PF */
1550 	qm_info->start_pq = (u16) RESC_START(p_hwfn, QED_PQ);
1551 	qm_info->start_vport = (u8) RESC_START(p_hwfn, QED_VPORT);
1552 
1553 	/* rate limiting and weighted fair queueing are always enabled */
1554 	qm_info->vport_rl_en = true;
1555 	qm_info->vport_wfq_en = true;
1556 
1557 	/* TC config is different for AH 4 port */
1558 	four_port = p_hwfn->cdev->num_ports_in_engine == MAX_NUM_PORTS_K2;
1559 
1560 	/* in AH 4 port we have fewer TCs per port */
1561 	qm_info->max_phys_tcs_per_port = four_port ? NUM_PHYS_TCS_4PORT_K2 :
1562 						     NUM_OF_PHYS_TCS;
1563 
1564 	/* unless MFW indicated otherwise, ooo_tc == 3 for
1565 	 * AH 4-port and 4 otherwise.
1566 	 */
1567 	if (!qm_info->ooo_tc)
1568 		qm_info->ooo_tc = four_port ? DCBX_TCP_OOO_K2_4PORT_TC :
1569 					      DCBX_TCP_OOO_TC;
1570 }
1571 
1572 /* initialize qm vport params */
1573 static void qed_init_qm_vport_params(struct qed_hwfn *p_hwfn)
1574 {
1575 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1576 	u8 i;
1577 
1578 	/* all vports participate in weighted fair queueing */
1579 	for (i = 0; i < qed_init_qm_get_num_vports(p_hwfn); i++)
1580 		qm_info->qm_vport_params[i].wfq = 1;
1581 }
1582 
1583 /* initialize qm port params */
1584 static void qed_init_qm_port_params(struct qed_hwfn *p_hwfn)
1585 {
1586 	/* Initialize qm port parameters */
1587 	u8 i, active_phys_tcs, num_ports = p_hwfn->cdev->num_ports_in_engine;
1588 	struct qed_dev *cdev = p_hwfn->cdev;
1589 
1590 	/* indicate how ooo and high pri traffic is dealt with */
1591 	active_phys_tcs = num_ports == MAX_NUM_PORTS_K2 ?
1592 			  ACTIVE_TCS_BMAP_4PORT_K2 :
1593 			  ACTIVE_TCS_BMAP;
1594 
1595 	for (i = 0; i < num_ports; i++) {
1596 		struct init_qm_port_params *p_qm_port =
1597 		    &p_hwfn->qm_info.qm_port_params[i];
1598 		u16 pbf_max_cmd_lines;
1599 
1600 		p_qm_port->active = 1;
1601 		p_qm_port->active_phys_tcs = active_phys_tcs;
1602 		pbf_max_cmd_lines = (u16)NUM_OF_PBF_CMD_LINES(cdev);
1603 		p_qm_port->num_pbf_cmd_lines = pbf_max_cmd_lines / num_ports;
1604 		p_qm_port->num_btb_blocks = NUM_OF_BTB_BLOCKS(cdev) / num_ports;
1605 	}
1606 }
1607 
1608 /* Reset the params which must be reset for qm init. QM init may be called as
1609  * a result of flows other than driver load (e.g. dcbx renegotiation). Other
1610  * params may be affected by the init but would simply recalculate to the same
1611  * values. The allocations made for QM init, ports, vports, pqs and vfqs are not
1612  * affected as these amounts stay the same.
1613  */
1614 static void qed_init_qm_reset_params(struct qed_hwfn *p_hwfn)
1615 {
1616 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1617 
1618 	qm_info->num_pqs = 0;
1619 	qm_info->num_vports = 0;
1620 	qm_info->num_pf_rls = 0;
1621 	qm_info->num_vf_pqs = 0;
1622 	qm_info->first_vf_pq = 0;
1623 	qm_info->first_mcos_pq = 0;
1624 	qm_info->first_rl_pq = 0;
1625 }
1626 
1627 static void qed_init_qm_advance_vport(struct qed_hwfn *p_hwfn)
1628 {
1629 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1630 
1631 	qm_info->num_vports++;
1632 
1633 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
1634 		DP_ERR(p_hwfn,
1635 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
1636 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
1637 }
1638 
1639 /* initialize a single pq and manage qm_info resources accounting.
1640  * The pq_init_flags param determines whether the PQ is rate limited
1641  * (for VF or PF) and whether a new vport is allocated to the pq or not
1642  * (i.e. vport will be shared).
1643  */
1644 
1645 /* flags for pq init */
1646 #define PQ_INIT_SHARE_VPORT     (1 << 0)
1647 #define PQ_INIT_PF_RL           (1 << 1)
1648 #define PQ_INIT_VF_RL           (1 << 2)
1649 
1650 /* defines for pq init */
1651 #define PQ_INIT_DEFAULT_WRR_GROUP       1
1652 #define PQ_INIT_DEFAULT_TC              0
1653 
1654 void qed_hw_info_set_offload_tc(struct qed_hw_info *p_info, u8 tc)
1655 {
1656 	p_info->offload_tc = tc;
1657 	p_info->offload_tc_set = true;
1658 }
1659 
1660 static bool qed_is_offload_tc_set(struct qed_hwfn *p_hwfn)
1661 {
1662 	return p_hwfn->hw_info.offload_tc_set;
1663 }
1664 
1665 static u32 qed_get_offload_tc(struct qed_hwfn *p_hwfn)
1666 {
1667 	if (qed_is_offload_tc_set(p_hwfn))
1668 		return p_hwfn->hw_info.offload_tc;
1669 
1670 	return PQ_INIT_DEFAULT_TC;
1671 }
1672 
1673 static void qed_init_qm_pq(struct qed_hwfn *p_hwfn,
1674 			   struct qed_qm_info *qm_info,
1675 			   u8 tc, u32 pq_init_flags)
1676 {
1677 	u16 pq_idx = qm_info->num_pqs, max_pq = qed_init_qm_get_num_pqs(p_hwfn);
1678 
1679 	if (pq_idx > max_pq)
1680 		DP_ERR(p_hwfn,
1681 		       "pq overflow! pq %d, max pq %d\n", pq_idx, max_pq);
1682 
1683 	/* init pq params */
1684 	qm_info->qm_pq_params[pq_idx].port_id = p_hwfn->port_id;
1685 	qm_info->qm_pq_params[pq_idx].vport_id = qm_info->start_vport +
1686 	    qm_info->num_vports;
1687 	qm_info->qm_pq_params[pq_idx].tc_id = tc;
1688 	qm_info->qm_pq_params[pq_idx].wrr_group = PQ_INIT_DEFAULT_WRR_GROUP;
1689 	qm_info->qm_pq_params[pq_idx].rl_valid =
1690 	    (pq_init_flags & PQ_INIT_PF_RL || pq_init_flags & PQ_INIT_VF_RL);
1691 
1692 	/* qm params accounting */
1693 	qm_info->num_pqs++;
1694 	if (!(pq_init_flags & PQ_INIT_SHARE_VPORT))
1695 		qm_info->num_vports++;
1696 
1697 	if (pq_init_flags & PQ_INIT_PF_RL)
1698 		qm_info->num_pf_rls++;
1699 
1700 	if (qm_info->num_vports > qed_init_qm_get_num_vports(p_hwfn))
1701 		DP_ERR(p_hwfn,
1702 		       "vport overflow! qm_info->num_vports %d, qm_init_get_num_vports() %d\n",
1703 		       qm_info->num_vports, qed_init_qm_get_num_vports(p_hwfn));
1704 
1705 	if (qm_info->num_pf_rls > qed_init_qm_get_num_pf_rls(p_hwfn))
1706 		DP_ERR(p_hwfn,
1707 		       "rl overflow! qm_info->num_pf_rls %d, qm_init_get_num_pf_rls() %d\n",
1708 		       qm_info->num_pf_rls, qed_init_qm_get_num_pf_rls(p_hwfn));
1709 }
1710 
1711 /* get pq index according to PQ_FLAGS */
1712 static u16 *qed_init_qm_get_idx_from_flags(struct qed_hwfn *p_hwfn,
1713 					   unsigned long pq_flags)
1714 {
1715 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1716 
1717 	/* Can't have multiple flags set here */
1718 	if (bitmap_weight(&pq_flags,
1719 			  sizeof(pq_flags) * BITS_PER_BYTE) > 1) {
1720 		DP_ERR(p_hwfn, "requested multiple pq flags 0x%lx\n", pq_flags);
1721 		goto err;
1722 	}
1723 
1724 	if (!(qed_get_pq_flags(p_hwfn) & pq_flags)) {
1725 		DP_ERR(p_hwfn, "pq flag 0x%lx is not set\n", pq_flags);
1726 		goto err;
1727 	}
1728 
1729 	switch (pq_flags) {
1730 	case PQ_FLAGS_RLS:
1731 		return &qm_info->first_rl_pq;
1732 	case PQ_FLAGS_MCOS:
1733 		return &qm_info->first_mcos_pq;
1734 	case PQ_FLAGS_LB:
1735 		return &qm_info->pure_lb_pq;
1736 	case PQ_FLAGS_OOO:
1737 		return &qm_info->ooo_pq;
1738 	case PQ_FLAGS_ACK:
1739 		return &qm_info->pure_ack_pq;
1740 	case PQ_FLAGS_OFLD:
1741 		return &qm_info->first_ofld_pq;
1742 	case PQ_FLAGS_LLT:
1743 		return &qm_info->first_llt_pq;
1744 	case PQ_FLAGS_VFS:
1745 		return &qm_info->first_vf_pq;
1746 	default:
1747 		goto err;
1748 	}
1749 
1750 err:
1751 	return &qm_info->start_pq;
1752 }
1753 
1754 /* save pq index in qm info */
1755 static void qed_init_qm_set_idx(struct qed_hwfn *p_hwfn,
1756 				u32 pq_flags, u16 pq_val)
1757 {
1758 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1759 
1760 	*base_pq_idx = p_hwfn->qm_info.start_pq + pq_val;
1761 }
1762 
1763 /* get tx pq index, with the PQ TX base already set (ready for context init) */
1764 u16 qed_get_cm_pq_idx(struct qed_hwfn *p_hwfn, u32 pq_flags)
1765 {
1766 	u16 *base_pq_idx = qed_init_qm_get_idx_from_flags(p_hwfn, pq_flags);
1767 
1768 	return *base_pq_idx + CM_TX_PQ_BASE;
1769 }
1770 
1771 u16 qed_get_cm_pq_idx_mcos(struct qed_hwfn *p_hwfn, u8 tc)
1772 {
1773 	u8 max_tc = qed_init_qm_get_num_tcs(p_hwfn);
1774 
1775 	if (max_tc == 0) {
1776 		DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
1777 		       PQ_FLAGS_MCOS);
1778 		return p_hwfn->qm_info.start_pq;
1779 	}
1780 
1781 	if (tc > max_tc)
1782 		DP_ERR(p_hwfn, "tc %d must be smaller than %d\n", tc, max_tc);
1783 
1784 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_MCOS) + (tc % max_tc);
1785 }
1786 
1787 u16 qed_get_cm_pq_idx_vf(struct qed_hwfn *p_hwfn, u16 vf)
1788 {
1789 	u16 max_vf = qed_init_qm_get_num_vfs(p_hwfn);
1790 
1791 	if (max_vf == 0) {
1792 		DP_ERR(p_hwfn, "pq with flag 0x%lx do not exist\n",
1793 		       PQ_FLAGS_VFS);
1794 		return p_hwfn->qm_info.start_pq;
1795 	}
1796 
1797 	if (vf > max_vf)
1798 		DP_ERR(p_hwfn, "vf %d must be smaller than %d\n", vf, max_vf);
1799 
1800 	return qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_VFS) + (vf % max_vf);
1801 }
1802 
1803 u16 qed_get_cm_pq_idx_ofld_mtc(struct qed_hwfn *p_hwfn, u8 tc)
1804 {
1805 	u16 first_ofld_pq, pq_offset;
1806 
1807 	first_ofld_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_OFLD);
1808 	pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
1809 		    tc : PQ_INIT_DEFAULT_TC;
1810 
1811 	return first_ofld_pq + pq_offset;
1812 }
1813 
1814 u16 qed_get_cm_pq_idx_llt_mtc(struct qed_hwfn *p_hwfn, u8 tc)
1815 {
1816 	u16 first_llt_pq, pq_offset;
1817 
1818 	first_llt_pq = qed_get_cm_pq_idx(p_hwfn, PQ_FLAGS_LLT);
1819 	pq_offset = (tc < qed_init_qm_get_num_mtc_tcs(p_hwfn)) ?
1820 		    tc : PQ_INIT_DEFAULT_TC;
1821 
1822 	return first_llt_pq + pq_offset;
1823 }
1824 
1825 /* Functions for creating specific types of pqs */
1826 static void qed_init_qm_lb_pq(struct qed_hwfn *p_hwfn)
1827 {
1828 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1829 
1830 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LB))
1831 		return;
1832 
1833 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LB, qm_info->num_pqs);
1834 	qed_init_qm_pq(p_hwfn, qm_info, PURE_LB_TC, PQ_INIT_SHARE_VPORT);
1835 }
1836 
1837 static void qed_init_qm_ooo_pq(struct qed_hwfn *p_hwfn)
1838 {
1839 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1840 
1841 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OOO))
1842 		return;
1843 
1844 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OOO, qm_info->num_pqs);
1845 	qed_init_qm_pq(p_hwfn, qm_info, qm_info->ooo_tc, PQ_INIT_SHARE_VPORT);
1846 }
1847 
1848 static void qed_init_qm_pure_ack_pq(struct qed_hwfn *p_hwfn)
1849 {
1850 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1851 
1852 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_ACK))
1853 		return;
1854 
1855 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_ACK, qm_info->num_pqs);
1856 	qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1857 		       PQ_INIT_SHARE_VPORT);
1858 }
1859 
1860 static void qed_init_qm_mtc_pqs(struct qed_hwfn *p_hwfn)
1861 {
1862 	u8 num_tcs = qed_init_qm_get_num_mtc_tcs(p_hwfn);
1863 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1864 	u8 tc;
1865 
1866 	/* override pq's TC if offload TC is set */
1867 	for (tc = 0; tc < num_tcs; tc++)
1868 		qed_init_qm_pq(p_hwfn, qm_info,
1869 			       qed_is_offload_tc_set(p_hwfn) ?
1870 			       p_hwfn->hw_info.offload_tc : tc,
1871 			       PQ_INIT_SHARE_VPORT);
1872 }
1873 
1874 static void qed_init_qm_offload_pq(struct qed_hwfn *p_hwfn)
1875 {
1876 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1877 
1878 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_OFLD))
1879 		return;
1880 
1881 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_OFLD, qm_info->num_pqs);
1882 	qed_init_qm_mtc_pqs(p_hwfn);
1883 }
1884 
1885 static void qed_init_qm_low_latency_pq(struct qed_hwfn *p_hwfn)
1886 {
1887 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1888 
1889 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_LLT))
1890 		return;
1891 
1892 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_LLT, qm_info->num_pqs);
1893 	qed_init_qm_mtc_pqs(p_hwfn);
1894 }
1895 
1896 static void qed_init_qm_mcos_pqs(struct qed_hwfn *p_hwfn)
1897 {
1898 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1899 	u8 tc_idx;
1900 
1901 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_MCOS))
1902 		return;
1903 
1904 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_MCOS, qm_info->num_pqs);
1905 	for (tc_idx = 0; tc_idx < qed_init_qm_get_num_tcs(p_hwfn); tc_idx++)
1906 		qed_init_qm_pq(p_hwfn, qm_info, tc_idx, PQ_INIT_SHARE_VPORT);
1907 }
1908 
1909 static void qed_init_qm_vf_pqs(struct qed_hwfn *p_hwfn)
1910 {
1911 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1912 	u16 vf_idx, num_vfs = qed_init_qm_get_num_vfs(p_hwfn);
1913 
1914 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_VFS))
1915 		return;
1916 
1917 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_VFS, qm_info->num_pqs);
1918 	qm_info->num_vf_pqs = num_vfs;
1919 	for (vf_idx = 0; vf_idx < num_vfs; vf_idx++)
1920 		qed_init_qm_pq(p_hwfn,
1921 			       qm_info, PQ_INIT_DEFAULT_TC, PQ_INIT_VF_RL);
1922 }
1923 
1924 static void qed_init_qm_rl_pqs(struct qed_hwfn *p_hwfn)
1925 {
1926 	u16 pf_rls_idx, num_pf_rls = qed_init_qm_get_num_pf_rls(p_hwfn);
1927 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1928 
1929 	if (!(qed_get_pq_flags(p_hwfn) & PQ_FLAGS_RLS))
1930 		return;
1931 
1932 	qed_init_qm_set_idx(p_hwfn, PQ_FLAGS_RLS, qm_info->num_pqs);
1933 	for (pf_rls_idx = 0; pf_rls_idx < num_pf_rls; pf_rls_idx++)
1934 		qed_init_qm_pq(p_hwfn, qm_info, qed_get_offload_tc(p_hwfn),
1935 			       PQ_INIT_PF_RL);
1936 }
1937 
1938 static void qed_init_qm_pq_params(struct qed_hwfn *p_hwfn)
1939 {
1940 	/* rate limited pqs, must come first (FW assumption) */
1941 	qed_init_qm_rl_pqs(p_hwfn);
1942 
1943 	/* pqs for multi cos */
1944 	qed_init_qm_mcos_pqs(p_hwfn);
1945 
1946 	/* pure loopback pq */
1947 	qed_init_qm_lb_pq(p_hwfn);
1948 
1949 	/* out of order pq */
1950 	qed_init_qm_ooo_pq(p_hwfn);
1951 
1952 	/* pure ack pq */
1953 	qed_init_qm_pure_ack_pq(p_hwfn);
1954 
1955 	/* pq for offloaded protocol */
1956 	qed_init_qm_offload_pq(p_hwfn);
1957 
1958 	/* low latency pq */
1959 	qed_init_qm_low_latency_pq(p_hwfn);
1960 
1961 	/* done sharing vports */
1962 	qed_init_qm_advance_vport(p_hwfn);
1963 
1964 	/* pqs for vfs */
1965 	qed_init_qm_vf_pqs(p_hwfn);
1966 }
1967 
1968 /* compare values of getters against resources amounts */
1969 static int qed_init_qm_sanity(struct qed_hwfn *p_hwfn)
1970 {
1971 	if (qed_init_qm_get_num_vports(p_hwfn) > RESC_NUM(p_hwfn, QED_VPORT)) {
1972 		DP_ERR(p_hwfn, "requested amount of vports exceeds resource\n");
1973 		return -EINVAL;
1974 	}
1975 
1976 	if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1977 		return 0;
1978 
1979 	if (QED_IS_ROCE_PERSONALITY(p_hwfn)) {
1980 		p_hwfn->hw_info.multi_tc_roce_en = false;
1981 		DP_NOTICE(p_hwfn,
1982 			  "multi-tc roce was disabled to reduce requested amount of pqs\n");
1983 		if (qed_init_qm_get_num_pqs(p_hwfn) <= RESC_NUM(p_hwfn, QED_PQ))
1984 			return 0;
1985 	}
1986 
1987 	DP_ERR(p_hwfn, "requested amount of pqs exceeds resource\n");
1988 	return -EINVAL;
1989 }
1990 
1991 static void qed_dp_init_qm_params(struct qed_hwfn *p_hwfn)
1992 {
1993 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
1994 	struct init_qm_vport_params *vport;
1995 	struct init_qm_port_params *port;
1996 	struct init_qm_pq_params *pq;
1997 	int i, tc;
1998 
1999 	/* top level params */
2000 	DP_VERBOSE(p_hwfn,
2001 		   NETIF_MSG_HW,
2002 		   "qm init top level params: start_pq %d, start_vport %d, pure_lb_pq %d, offload_pq %d, llt_pq %d, pure_ack_pq %d\n",
2003 		   qm_info->start_pq,
2004 		   qm_info->start_vport,
2005 		   qm_info->pure_lb_pq,
2006 		   qm_info->first_ofld_pq,
2007 		   qm_info->first_llt_pq,
2008 		   qm_info->pure_ack_pq);
2009 	DP_VERBOSE(p_hwfn,
2010 		   NETIF_MSG_HW,
2011 		   "ooo_pq %d, first_vf_pq %d, num_pqs %d, num_vf_pqs %d, num_vports %d, max_phys_tcs_per_port %d\n",
2012 		   qm_info->ooo_pq,
2013 		   qm_info->first_vf_pq,
2014 		   qm_info->num_pqs,
2015 		   qm_info->num_vf_pqs,
2016 		   qm_info->num_vports, qm_info->max_phys_tcs_per_port);
2017 	DP_VERBOSE(p_hwfn,
2018 		   NETIF_MSG_HW,
2019 		   "pf_rl_en %d, pf_wfq_en %d, vport_rl_en %d, vport_wfq_en %d, pf_wfq %d, pf_rl %d, num_pf_rls %d, pq_flags %x\n",
2020 		   qm_info->pf_rl_en,
2021 		   qm_info->pf_wfq_en,
2022 		   qm_info->vport_rl_en,
2023 		   qm_info->vport_wfq_en,
2024 		   qm_info->pf_wfq,
2025 		   qm_info->pf_rl,
2026 		   qm_info->num_pf_rls, qed_get_pq_flags(p_hwfn));
2027 
2028 	/* port table */
2029 	for (i = 0; i < p_hwfn->cdev->num_ports_in_engine; i++) {
2030 		port = &(qm_info->qm_port_params[i]);
2031 		DP_VERBOSE(p_hwfn,
2032 			   NETIF_MSG_HW,
2033 			   "port idx %d, active %d, active_phys_tcs %d, num_pbf_cmd_lines %d, num_btb_blocks %d, reserved %d\n",
2034 			   i,
2035 			   port->active,
2036 			   port->active_phys_tcs,
2037 			   port->num_pbf_cmd_lines,
2038 			   port->num_btb_blocks, port->reserved);
2039 	}
2040 
2041 	/* vport table */
2042 	for (i = 0; i < qm_info->num_vports; i++) {
2043 		vport = &(qm_info->qm_vport_params[i]);
2044 		DP_VERBOSE(p_hwfn,
2045 			   NETIF_MSG_HW,
2046 			   "vport idx %d, wfq %d, first_tx_pq_id [ ",
2047 			   qm_info->start_vport + i, vport->wfq);
2048 		for (tc = 0; tc < NUM_OF_TCS; tc++)
2049 			DP_VERBOSE(p_hwfn,
2050 				   NETIF_MSG_HW,
2051 				   "%d ", vport->first_tx_pq_id[tc]);
2052 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "]\n");
2053 	}
2054 
2055 	/* pq table */
2056 	for (i = 0; i < qm_info->num_pqs; i++) {
2057 		pq = &(qm_info->qm_pq_params[i]);
2058 		DP_VERBOSE(p_hwfn,
2059 			   NETIF_MSG_HW,
2060 			   "pq idx %d, port %d, vport_id %d, tc %d, wrr_grp %d, rl_valid %d rl_id %d\n",
2061 			   qm_info->start_pq + i,
2062 			   pq->port_id,
2063 			   pq->vport_id,
2064 			   pq->tc_id, pq->wrr_group, pq->rl_valid, pq->rl_id);
2065 	}
2066 }
2067 
2068 static void qed_init_qm_info(struct qed_hwfn *p_hwfn)
2069 {
2070 	/* reset params required for init run */
2071 	qed_init_qm_reset_params(p_hwfn);
2072 
2073 	/* init QM top level params */
2074 	qed_init_qm_params(p_hwfn);
2075 
2076 	/* init QM port params */
2077 	qed_init_qm_port_params(p_hwfn);
2078 
2079 	/* init QM vport params */
2080 	qed_init_qm_vport_params(p_hwfn);
2081 
2082 	/* init QM physical queue params */
2083 	qed_init_qm_pq_params(p_hwfn);
2084 
2085 	/* display all that init */
2086 	qed_dp_init_qm_params(p_hwfn);
2087 }
2088 
2089 /* This function reconfigures the QM pf on the fly.
2090  * For this purpose we:
2091  * 1. reconfigure the QM database
2092  * 2. set new values to runtime array
2093  * 3. send an sdm_qm_cmd through the rbc interface to stop the QM
2094  * 4. activate init tool in QM_PF stage
2095  * 5. send an sdm_qm_cmd through rbc interface to release the QM
2096  */
2097 int qed_qm_reconf(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2098 {
2099 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2100 	bool b_rc;
2101 	int rc;
2102 
2103 	/* initialize qed's qm data structure */
2104 	qed_init_qm_info(p_hwfn);
2105 
2106 	/* stop PF's qm queues */
2107 	spin_lock_bh(&qm_lock);
2108 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, false, true,
2109 				    qm_info->start_pq, qm_info->num_pqs);
2110 	spin_unlock_bh(&qm_lock);
2111 	if (!b_rc)
2112 		return -EINVAL;
2113 
2114 	/* prepare QM portion of runtime array */
2115 	qed_qm_init_pf(p_hwfn, p_ptt, false);
2116 
2117 	/* activate init tool on runtime array */
2118 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, p_hwfn->rel_pf_id,
2119 			  p_hwfn->hw_info.hw_mode);
2120 	if (rc)
2121 		return rc;
2122 
2123 	/* start PF's qm queues */
2124 	spin_lock_bh(&qm_lock);
2125 	b_rc = qed_send_qm_stop_cmd(p_hwfn, p_ptt, true, true,
2126 				    qm_info->start_pq, qm_info->num_pqs);
2127 	spin_unlock_bh(&qm_lock);
2128 	if (!b_rc)
2129 		return -EINVAL;
2130 
2131 	return 0;
2132 }
2133 
2134 static int qed_alloc_qm_data(struct qed_hwfn *p_hwfn)
2135 {
2136 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2137 	int rc;
2138 
2139 	rc = qed_init_qm_sanity(p_hwfn);
2140 	if (rc)
2141 		goto alloc_err;
2142 
2143 	qm_info->qm_pq_params = kcalloc(qed_init_qm_get_num_pqs(p_hwfn),
2144 					sizeof(*qm_info->qm_pq_params),
2145 					GFP_KERNEL);
2146 	if (!qm_info->qm_pq_params)
2147 		goto alloc_err;
2148 
2149 	qm_info->qm_vport_params = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
2150 					   sizeof(*qm_info->qm_vport_params),
2151 					   GFP_KERNEL);
2152 	if (!qm_info->qm_vport_params)
2153 		goto alloc_err;
2154 
2155 	qm_info->qm_port_params = kcalloc(p_hwfn->cdev->num_ports_in_engine,
2156 					  sizeof(*qm_info->qm_port_params),
2157 					  GFP_KERNEL);
2158 	if (!qm_info->qm_port_params)
2159 		goto alloc_err;
2160 
2161 	qm_info->wfq_data = kcalloc(qed_init_qm_get_num_vports(p_hwfn),
2162 				    sizeof(*qm_info->wfq_data),
2163 				    GFP_KERNEL);
2164 	if (!qm_info->wfq_data)
2165 		goto alloc_err;
2166 
2167 	return 0;
2168 
2169 alloc_err:
2170 	DP_NOTICE(p_hwfn, "Failed to allocate memory for QM params\n");
2171 	qed_qm_info_free(p_hwfn);
2172 	return -ENOMEM;
2173 }
2174 
2175 int qed_resc_alloc(struct qed_dev *cdev)
2176 {
2177 	u32 rdma_tasks, excess_tasks;
2178 	u32 line_count;
2179 	int i, rc = 0;
2180 
2181 	if (IS_VF(cdev)) {
2182 		for_each_hwfn(cdev, i) {
2183 			rc = qed_l2_alloc(&cdev->hwfns[i]);
2184 			if (rc)
2185 				return rc;
2186 		}
2187 		return rc;
2188 	}
2189 
2190 	cdev->fw_data = kzalloc(sizeof(*cdev->fw_data), GFP_KERNEL);
2191 	if (!cdev->fw_data)
2192 		return -ENOMEM;
2193 
2194 	for_each_hwfn(cdev, i) {
2195 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2196 		u32 n_eqes, num_cons;
2197 
2198 		/* Initialize the doorbell recovery mechanism */
2199 		rc = qed_db_recovery_setup(p_hwfn);
2200 		if (rc)
2201 			goto alloc_err;
2202 
2203 		/* First allocate the context manager structure */
2204 		rc = qed_cxt_mngr_alloc(p_hwfn);
2205 		if (rc)
2206 			goto alloc_err;
2207 
2208 		/* Set the HW cid/tid numbers (in the contest manager)
2209 		 * Must be done prior to any further computations.
2210 		 */
2211 		rc = qed_cxt_set_pf_params(p_hwfn, RDMA_MAX_TIDS);
2212 		if (rc)
2213 			goto alloc_err;
2214 
2215 		rc = qed_alloc_qm_data(p_hwfn);
2216 		if (rc)
2217 			goto alloc_err;
2218 
2219 		/* init qm info */
2220 		qed_init_qm_info(p_hwfn);
2221 
2222 		/* Compute the ILT client partition */
2223 		rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2224 		if (rc) {
2225 			DP_NOTICE(p_hwfn,
2226 				  "too many ILT lines; re-computing with less lines\n");
2227 			/* In case there are not enough ILT lines we reduce the
2228 			 * number of RDMA tasks and re-compute.
2229 			 */
2230 			excess_tasks =
2231 			    qed_cxt_cfg_ilt_compute_excess(p_hwfn, line_count);
2232 			if (!excess_tasks)
2233 				goto alloc_err;
2234 
2235 			rdma_tasks = RDMA_MAX_TIDS - excess_tasks;
2236 			rc = qed_cxt_set_pf_params(p_hwfn, rdma_tasks);
2237 			if (rc)
2238 				goto alloc_err;
2239 
2240 			rc = qed_cxt_cfg_ilt_compute(p_hwfn, &line_count);
2241 			if (rc) {
2242 				DP_ERR(p_hwfn,
2243 				       "failed ILT compute. Requested too many lines: %u\n",
2244 				       line_count);
2245 
2246 				goto alloc_err;
2247 			}
2248 		}
2249 
2250 		/* CID map / ILT shadow table / T2
2251 		 * The talbes sizes are determined by the computations above
2252 		 */
2253 		rc = qed_cxt_tables_alloc(p_hwfn);
2254 		if (rc)
2255 			goto alloc_err;
2256 
2257 		/* SPQ, must follow ILT because initializes SPQ context */
2258 		rc = qed_spq_alloc(p_hwfn);
2259 		if (rc)
2260 			goto alloc_err;
2261 
2262 		/* SP status block allocation */
2263 		p_hwfn->p_dpc_ptt = qed_get_reserved_ptt(p_hwfn,
2264 							 RESERVED_PTT_DPC);
2265 
2266 		rc = qed_int_alloc(p_hwfn, p_hwfn->p_main_ptt);
2267 		if (rc)
2268 			goto alloc_err;
2269 
2270 		rc = qed_iov_alloc(p_hwfn);
2271 		if (rc)
2272 			goto alloc_err;
2273 
2274 		/* EQ */
2275 		n_eqes = qed_chain_get_capacity(&p_hwfn->p_spq->chain);
2276 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2277 			u32 n_srq = qed_cxt_get_total_srq_count(p_hwfn);
2278 			enum protocol_type rdma_proto;
2279 
2280 			if (QED_IS_ROCE_PERSONALITY(p_hwfn))
2281 				rdma_proto = PROTOCOLID_ROCE;
2282 			else
2283 				rdma_proto = PROTOCOLID_IWARP;
2284 
2285 			num_cons = qed_cxt_get_proto_cid_count(p_hwfn,
2286 							       rdma_proto,
2287 							       NULL) * 2;
2288 			/* EQ should be able to get events from all SRQ's
2289 			 * at the same time
2290 			 */
2291 			n_eqes += num_cons + 2 * MAX_NUM_VFS_BB + n_srq;
2292 		} else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2293 			num_cons =
2294 			    qed_cxt_get_proto_cid_count(p_hwfn,
2295 							PROTOCOLID_ISCSI,
2296 							NULL);
2297 			n_eqes += 2 * num_cons;
2298 		}
2299 
2300 		if (n_eqes > 0xFFFF) {
2301 			DP_ERR(p_hwfn,
2302 			       "Cannot allocate 0x%x EQ elements. The maximum of a u16 chain is 0x%x\n",
2303 			       n_eqes, 0xFFFF);
2304 			goto alloc_no_mem;
2305 		}
2306 
2307 		rc = qed_eq_alloc(p_hwfn, (u16) n_eqes);
2308 		if (rc)
2309 			goto alloc_err;
2310 
2311 		rc = qed_consq_alloc(p_hwfn);
2312 		if (rc)
2313 			goto alloc_err;
2314 
2315 		rc = qed_l2_alloc(p_hwfn);
2316 		if (rc)
2317 			goto alloc_err;
2318 
2319 #ifdef CONFIG_QED_LL2
2320 		if (p_hwfn->using_ll2) {
2321 			rc = qed_ll2_alloc(p_hwfn);
2322 			if (rc)
2323 				goto alloc_err;
2324 		}
2325 #endif
2326 
2327 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
2328 			rc = qed_fcoe_alloc(p_hwfn);
2329 			if (rc)
2330 				goto alloc_err;
2331 		}
2332 
2333 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2334 			rc = qed_iscsi_alloc(p_hwfn);
2335 			if (rc)
2336 				goto alloc_err;
2337 			rc = qed_ooo_alloc(p_hwfn);
2338 			if (rc)
2339 				goto alloc_err;
2340 		}
2341 
2342 		if (QED_IS_RDMA_PERSONALITY(p_hwfn)) {
2343 			rc = qed_rdma_info_alloc(p_hwfn);
2344 			if (rc)
2345 				goto alloc_err;
2346 		}
2347 
2348 		/* DMA info initialization */
2349 		rc = qed_dmae_info_alloc(p_hwfn);
2350 		if (rc)
2351 			goto alloc_err;
2352 
2353 		/* DCBX initialization */
2354 		rc = qed_dcbx_info_alloc(p_hwfn);
2355 		if (rc)
2356 			goto alloc_err;
2357 
2358 		rc = qed_dbg_alloc_user_data(p_hwfn, &p_hwfn->dbg_user_info);
2359 		if (rc)
2360 			goto alloc_err;
2361 	}
2362 
2363 	rc = qed_llh_alloc(cdev);
2364 	if (rc) {
2365 		DP_NOTICE(cdev,
2366 			  "Failed to allocate memory for the llh_info structure\n");
2367 		goto alloc_err;
2368 	}
2369 
2370 	cdev->reset_stats = kzalloc(sizeof(*cdev->reset_stats), GFP_KERNEL);
2371 	if (!cdev->reset_stats)
2372 		goto alloc_no_mem;
2373 
2374 	return 0;
2375 
2376 alloc_no_mem:
2377 	rc = -ENOMEM;
2378 alloc_err:
2379 	qed_resc_free(cdev);
2380 	return rc;
2381 }
2382 
2383 void qed_resc_setup(struct qed_dev *cdev)
2384 {
2385 	int i;
2386 
2387 	if (IS_VF(cdev)) {
2388 		for_each_hwfn(cdev, i)
2389 			qed_l2_setup(&cdev->hwfns[i]);
2390 		return;
2391 	}
2392 
2393 	for_each_hwfn(cdev, i) {
2394 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2395 
2396 		qed_cxt_mngr_setup(p_hwfn);
2397 		qed_spq_setup(p_hwfn);
2398 		qed_eq_setup(p_hwfn);
2399 		qed_consq_setup(p_hwfn);
2400 
2401 		/* Read shadow of current MFW mailbox */
2402 		qed_mcp_read_mb(p_hwfn, p_hwfn->p_main_ptt);
2403 		memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2404 		       p_hwfn->mcp_info->mfw_mb_cur,
2405 		       p_hwfn->mcp_info->mfw_mb_length);
2406 
2407 		qed_int_setup(p_hwfn, p_hwfn->p_main_ptt);
2408 
2409 		qed_l2_setup(p_hwfn);
2410 		qed_iov_setup(p_hwfn);
2411 #ifdef CONFIG_QED_LL2
2412 		if (p_hwfn->using_ll2)
2413 			qed_ll2_setup(p_hwfn);
2414 #endif
2415 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
2416 			qed_fcoe_setup(p_hwfn);
2417 
2418 		if (p_hwfn->hw_info.personality == QED_PCI_ISCSI) {
2419 			qed_iscsi_setup(p_hwfn);
2420 			qed_ooo_setup(p_hwfn);
2421 		}
2422 	}
2423 }
2424 
2425 #define FINAL_CLEANUP_POLL_CNT          (100)
2426 #define FINAL_CLEANUP_POLL_TIME         (10)
2427 int qed_final_cleanup(struct qed_hwfn *p_hwfn,
2428 		      struct qed_ptt *p_ptt, u16 id, bool is_vf)
2429 {
2430 	u32 command = 0, addr, count = FINAL_CLEANUP_POLL_CNT;
2431 	int rc = -EBUSY;
2432 
2433 	addr = GTT_BAR0_MAP_REG_USDM_RAM +
2434 		USTORM_FLR_FINAL_ACK_OFFSET(p_hwfn->rel_pf_id);
2435 
2436 	if (is_vf)
2437 		id += 0x10;
2438 
2439 	command |= X_FINAL_CLEANUP_AGG_INT <<
2440 		SDM_AGG_INT_COMP_PARAMS_AGG_INT_INDEX_SHIFT;
2441 	command |= 1 << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_ENABLE_SHIFT;
2442 	command |= id << SDM_AGG_INT_COMP_PARAMS_AGG_VECTOR_BIT_SHIFT;
2443 	command |= SDM_COMP_TYPE_AGG_INT << SDM_OP_GEN_COMP_TYPE_SHIFT;
2444 
2445 	/* Make sure notification is not set before initiating final cleanup */
2446 	if (REG_RD(p_hwfn, addr)) {
2447 		DP_NOTICE(p_hwfn,
2448 			  "Unexpected; Found final cleanup notification before initiating final cleanup\n");
2449 		REG_WR(p_hwfn, addr, 0);
2450 	}
2451 
2452 	DP_VERBOSE(p_hwfn, QED_MSG_IOV,
2453 		   "Sending final cleanup for PFVF[%d] [Command %08x]\n",
2454 		   id, command);
2455 
2456 	qed_wr(p_hwfn, p_ptt, XSDM_REG_OPERATION_GEN, command);
2457 
2458 	/* Poll until completion */
2459 	while (!REG_RD(p_hwfn, addr) && count--)
2460 		msleep(FINAL_CLEANUP_POLL_TIME);
2461 
2462 	if (REG_RD(p_hwfn, addr))
2463 		rc = 0;
2464 	else
2465 		DP_NOTICE(p_hwfn,
2466 			  "Failed to receive FW final cleanup notification\n");
2467 
2468 	/* Cleanup afterwards */
2469 	REG_WR(p_hwfn, addr, 0);
2470 
2471 	return rc;
2472 }
2473 
2474 static int qed_calc_hw_mode(struct qed_hwfn *p_hwfn)
2475 {
2476 	int hw_mode = 0;
2477 
2478 	if (QED_IS_BB_B0(p_hwfn->cdev)) {
2479 		hw_mode |= 1 << MODE_BB;
2480 	} else if (QED_IS_AH(p_hwfn->cdev)) {
2481 		hw_mode |= 1 << MODE_K2;
2482 	} else {
2483 		DP_NOTICE(p_hwfn, "Unknown chip type %#x\n",
2484 			  p_hwfn->cdev->type);
2485 		return -EINVAL;
2486 	}
2487 
2488 	switch (p_hwfn->cdev->num_ports_in_engine) {
2489 	case 1:
2490 		hw_mode |= 1 << MODE_PORTS_PER_ENG_1;
2491 		break;
2492 	case 2:
2493 		hw_mode |= 1 << MODE_PORTS_PER_ENG_2;
2494 		break;
2495 	case 4:
2496 		hw_mode |= 1 << MODE_PORTS_PER_ENG_4;
2497 		break;
2498 	default:
2499 		DP_NOTICE(p_hwfn, "num_ports_in_engine = %d not supported\n",
2500 			  p_hwfn->cdev->num_ports_in_engine);
2501 		return -EINVAL;
2502 	}
2503 
2504 	if (test_bit(QED_MF_OVLAN_CLSS, &p_hwfn->cdev->mf_bits))
2505 		hw_mode |= 1 << MODE_MF_SD;
2506 	else
2507 		hw_mode |= 1 << MODE_MF_SI;
2508 
2509 	hw_mode |= 1 << MODE_ASIC;
2510 
2511 	if (p_hwfn->cdev->num_hwfns > 1)
2512 		hw_mode |= 1 << MODE_100G;
2513 
2514 	p_hwfn->hw_info.hw_mode = hw_mode;
2515 
2516 	DP_VERBOSE(p_hwfn, (NETIF_MSG_PROBE | NETIF_MSG_IFUP),
2517 		   "Configuring function for hw_mode: 0x%08x\n",
2518 		   p_hwfn->hw_info.hw_mode);
2519 
2520 	return 0;
2521 }
2522 
2523 /* Init run time data for all PFs on an engine. */
2524 static void qed_init_cau_rt_data(struct qed_dev *cdev)
2525 {
2526 	u32 offset = CAU_REG_SB_VAR_MEMORY_RT_OFFSET;
2527 	int i, igu_sb_id;
2528 
2529 	for_each_hwfn(cdev, i) {
2530 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
2531 		struct qed_igu_info *p_igu_info;
2532 		struct qed_igu_block *p_block;
2533 		struct cau_sb_entry sb_entry;
2534 
2535 		p_igu_info = p_hwfn->hw_info.p_igu_info;
2536 
2537 		for (igu_sb_id = 0;
2538 		     igu_sb_id < QED_MAPPING_MEMORY_SIZE(cdev); igu_sb_id++) {
2539 			p_block = &p_igu_info->entry[igu_sb_id];
2540 
2541 			if (!p_block->is_pf)
2542 				continue;
2543 
2544 			qed_init_cau_sb_entry(p_hwfn, &sb_entry,
2545 					      p_block->function_id, 0, 0);
2546 			STORE_RT_REG_AGG(p_hwfn, offset + igu_sb_id * 2,
2547 					 sb_entry);
2548 		}
2549 	}
2550 }
2551 
2552 static void qed_init_cache_line_size(struct qed_hwfn *p_hwfn,
2553 				     struct qed_ptt *p_ptt)
2554 {
2555 	u32 val, wr_mbs, cache_line_size;
2556 
2557 	val = qed_rd(p_hwfn, p_ptt, PSWRQ2_REG_WR_MBS0);
2558 	switch (val) {
2559 	case 0:
2560 		wr_mbs = 128;
2561 		break;
2562 	case 1:
2563 		wr_mbs = 256;
2564 		break;
2565 	case 2:
2566 		wr_mbs = 512;
2567 		break;
2568 	default:
2569 		DP_INFO(p_hwfn,
2570 			"Unexpected value of PSWRQ2_REG_WR_MBS0 [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2571 			val);
2572 		return;
2573 	}
2574 
2575 	cache_line_size = min_t(u32, L1_CACHE_BYTES, wr_mbs);
2576 	switch (cache_line_size) {
2577 	case 32:
2578 		val = 0;
2579 		break;
2580 	case 64:
2581 		val = 1;
2582 		break;
2583 	case 128:
2584 		val = 2;
2585 		break;
2586 	case 256:
2587 		val = 3;
2588 		break;
2589 	default:
2590 		DP_INFO(p_hwfn,
2591 			"Unexpected value of cache line size [0x%x]. Avoid configuring PGLUE_B_REG_CACHE_LINE_SIZE.\n",
2592 			cache_line_size);
2593 	}
2594 
2595 	if (L1_CACHE_BYTES > wr_mbs)
2596 		DP_INFO(p_hwfn,
2597 			"The cache line size for padding is suboptimal for performance [OS cache line size 0x%x, wr mbs 0x%x]\n",
2598 			L1_CACHE_BYTES, wr_mbs);
2599 
2600 	STORE_RT_REG(p_hwfn, PGLUE_REG_B_CACHE_LINE_SIZE_RT_OFFSET, val);
2601 	if (val > 0) {
2602 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_WR_RT_OFFSET, val);
2603 		STORE_RT_REG(p_hwfn, PSWRQ2_REG_DRAM_ALIGN_RD_RT_OFFSET, val);
2604 	}
2605 }
2606 
2607 static int qed_hw_init_common(struct qed_hwfn *p_hwfn,
2608 			      struct qed_ptt *p_ptt, int hw_mode)
2609 {
2610 	struct qed_qm_info *qm_info = &p_hwfn->qm_info;
2611 	struct qed_qm_common_rt_init_params params;
2612 	struct qed_dev *cdev = p_hwfn->cdev;
2613 	u8 vf_id, max_num_vfs;
2614 	u16 num_pfs, pf_id;
2615 	u32 concrete_fid;
2616 	int rc = 0;
2617 
2618 	qed_init_cau_rt_data(cdev);
2619 
2620 	/* Program GTT windows */
2621 	qed_gtt_init(p_hwfn);
2622 
2623 	if (p_hwfn->mcp_info) {
2624 		if (p_hwfn->mcp_info->func_info.bandwidth_max)
2625 			qm_info->pf_rl_en = true;
2626 		if (p_hwfn->mcp_info->func_info.bandwidth_min)
2627 			qm_info->pf_wfq_en = true;
2628 	}
2629 
2630 	memset(&params, 0, sizeof(params));
2631 	params.max_ports_per_engine = p_hwfn->cdev->num_ports_in_engine;
2632 	params.max_phys_tcs_per_port = qm_info->max_phys_tcs_per_port;
2633 	params.pf_rl_en = qm_info->pf_rl_en;
2634 	params.pf_wfq_en = qm_info->pf_wfq_en;
2635 	params.global_rl_en = qm_info->vport_rl_en;
2636 	params.vport_wfq_en = qm_info->vport_wfq_en;
2637 	params.port_params = qm_info->qm_port_params;
2638 
2639 	qed_qm_common_rt_init(p_hwfn, &params);
2640 
2641 	qed_cxt_hw_init_common(p_hwfn);
2642 
2643 	qed_init_cache_line_size(p_hwfn, p_ptt);
2644 
2645 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_ENGINE, ANY_PHASE_ID, hw_mode);
2646 	if (rc)
2647 		return rc;
2648 
2649 	qed_wr(p_hwfn, p_ptt, PSWRQ2_REG_L2P_VALIDATE_VFID, 0);
2650 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_USE_CLIENTID_IN_TAG, 1);
2651 
2652 	if (QED_IS_BB(p_hwfn->cdev)) {
2653 		num_pfs = NUM_OF_ENG_PFS(p_hwfn->cdev);
2654 		for (pf_id = 0; pf_id < num_pfs; pf_id++) {
2655 			qed_fid_pretend(p_hwfn, p_ptt, pf_id);
2656 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
2657 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
2658 		}
2659 		/* pretend to original PF */
2660 		qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2661 	}
2662 
2663 	max_num_vfs = QED_IS_AH(cdev) ? MAX_NUM_VFS_K2 : MAX_NUM_VFS_BB;
2664 	for (vf_id = 0; vf_id < max_num_vfs; vf_id++) {
2665 		concrete_fid = qed_vfid_to_concrete(p_hwfn, vf_id);
2666 		qed_fid_pretend(p_hwfn, p_ptt, (u16) concrete_fid);
2667 		qed_wr(p_hwfn, p_ptt, CCFC_REG_STRONG_ENABLE_VF, 0x1);
2668 		qed_wr(p_hwfn, p_ptt, CCFC_REG_WEAK_ENABLE_VF, 0x0);
2669 		qed_wr(p_hwfn, p_ptt, TCFC_REG_STRONG_ENABLE_VF, 0x1);
2670 		qed_wr(p_hwfn, p_ptt, TCFC_REG_WEAK_ENABLE_VF, 0x0);
2671 	}
2672 	/* pretend to original PF */
2673 	qed_fid_pretend(p_hwfn, p_ptt, p_hwfn->rel_pf_id);
2674 
2675 	return rc;
2676 }
2677 
2678 static int
2679 qed_hw_init_dpi_size(struct qed_hwfn *p_hwfn,
2680 		     struct qed_ptt *p_ptt, u32 pwm_region_size, u32 n_cpus)
2681 {
2682 	u32 dpi_bit_shift, dpi_count, dpi_page_size;
2683 	u32 min_dpis;
2684 	u32 n_wids;
2685 
2686 	/* Calculate DPI size */
2687 	n_wids = max_t(u32, QED_MIN_WIDS, n_cpus);
2688 	dpi_page_size = QED_WID_SIZE * roundup_pow_of_two(n_wids);
2689 	dpi_page_size = (dpi_page_size + PAGE_SIZE - 1) & ~(PAGE_SIZE - 1);
2690 	dpi_bit_shift = ilog2(dpi_page_size / 4096);
2691 	dpi_count = pwm_region_size / dpi_page_size;
2692 
2693 	min_dpis = p_hwfn->pf_params.rdma_pf_params.min_dpis;
2694 	min_dpis = max_t(u32, QED_MIN_DPIS, min_dpis);
2695 
2696 	p_hwfn->dpi_size = dpi_page_size;
2697 	p_hwfn->dpi_count = dpi_count;
2698 
2699 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DPI_BIT_SHIFT, dpi_bit_shift);
2700 
2701 	if (dpi_count < min_dpis)
2702 		return -EINVAL;
2703 
2704 	return 0;
2705 }
2706 
2707 enum QED_ROCE_EDPM_MODE {
2708 	QED_ROCE_EDPM_MODE_ENABLE = 0,
2709 	QED_ROCE_EDPM_MODE_FORCE_ON = 1,
2710 	QED_ROCE_EDPM_MODE_DISABLE = 2,
2711 };
2712 
2713 bool qed_edpm_enabled(struct qed_hwfn *p_hwfn)
2714 {
2715 	if (p_hwfn->dcbx_no_edpm || p_hwfn->db_bar_no_edpm)
2716 		return false;
2717 
2718 	return true;
2719 }
2720 
2721 static int
2722 qed_hw_init_pf_doorbell_bar(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
2723 {
2724 	u32 pwm_regsize, norm_regsize;
2725 	u32 non_pwm_conn, min_addr_reg1;
2726 	u32 db_bar_size, n_cpus = 1;
2727 	u32 roce_edpm_mode;
2728 	u32 pf_dems_shift;
2729 	int rc = 0;
2730 	u8 cond;
2731 
2732 	db_bar_size = qed_hw_bar_size(p_hwfn, p_ptt, BAR_ID_1);
2733 	if (p_hwfn->cdev->num_hwfns > 1)
2734 		db_bar_size /= 2;
2735 
2736 	/* Calculate doorbell regions */
2737 	non_pwm_conn = qed_cxt_get_proto_cid_start(p_hwfn, PROTOCOLID_CORE) +
2738 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_CORE,
2739 						   NULL) +
2740 		       qed_cxt_get_proto_cid_count(p_hwfn, PROTOCOLID_ETH,
2741 						   NULL);
2742 	norm_regsize = roundup(QED_PF_DEMS_SIZE * non_pwm_conn, PAGE_SIZE);
2743 	min_addr_reg1 = norm_regsize / 4096;
2744 	pwm_regsize = db_bar_size - norm_regsize;
2745 
2746 	/* Check that the normal and PWM sizes are valid */
2747 	if (db_bar_size < norm_regsize) {
2748 		DP_ERR(p_hwfn->cdev,
2749 		       "Doorbell BAR size 0x%x is too small (normal region is 0x%0x )\n",
2750 		       db_bar_size, norm_regsize);
2751 		return -EINVAL;
2752 	}
2753 
2754 	if (pwm_regsize < QED_MIN_PWM_REGION) {
2755 		DP_ERR(p_hwfn->cdev,
2756 		       "PWM region size 0x%0x is too small. Should be at least 0x%0x (Doorbell BAR size is 0x%x and normal region size is 0x%0x)\n",
2757 		       pwm_regsize,
2758 		       QED_MIN_PWM_REGION, db_bar_size, norm_regsize);
2759 		return -EINVAL;
2760 	}
2761 
2762 	/* Calculate number of DPIs */
2763 	roce_edpm_mode = p_hwfn->pf_params.rdma_pf_params.roce_edpm_mode;
2764 	if ((roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE) ||
2765 	    ((roce_edpm_mode == QED_ROCE_EDPM_MODE_FORCE_ON))) {
2766 		/* Either EDPM is mandatory, or we are attempting to allocate a
2767 		 * WID per CPU.
2768 		 */
2769 		n_cpus = num_present_cpus();
2770 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2771 	}
2772 
2773 	cond = (rc && (roce_edpm_mode == QED_ROCE_EDPM_MODE_ENABLE)) ||
2774 	       (roce_edpm_mode == QED_ROCE_EDPM_MODE_DISABLE);
2775 	if (cond || p_hwfn->dcbx_no_edpm) {
2776 		/* Either EDPM is disabled from user configuration, or it is
2777 		 * disabled via DCBx, or it is not mandatory and we failed to
2778 		 * allocated a WID per CPU.
2779 		 */
2780 		n_cpus = 1;
2781 		rc = qed_hw_init_dpi_size(p_hwfn, p_ptt, pwm_regsize, n_cpus);
2782 
2783 		if (cond)
2784 			qed_rdma_dpm_bar(p_hwfn, p_ptt);
2785 	}
2786 
2787 	p_hwfn->wid_count = (u16) n_cpus;
2788 
2789 	DP_INFO(p_hwfn,
2790 		"doorbell bar: normal_region_size=%d, pwm_region_size=%d, dpi_size=%d, dpi_count=%d, roce_edpm=%s, page_size=%lu\n",
2791 		norm_regsize,
2792 		pwm_regsize,
2793 		p_hwfn->dpi_size,
2794 		p_hwfn->dpi_count,
2795 		(!qed_edpm_enabled(p_hwfn)) ?
2796 		"disabled" : "enabled", PAGE_SIZE);
2797 
2798 	if (rc) {
2799 		DP_ERR(p_hwfn,
2800 		       "Failed to allocate enough DPIs. Allocated %d but the current minimum is %d.\n",
2801 		       p_hwfn->dpi_count,
2802 		       p_hwfn->pf_params.rdma_pf_params.min_dpis);
2803 		return -EINVAL;
2804 	}
2805 
2806 	p_hwfn->dpi_start_offset = norm_regsize;
2807 
2808 	/* DEMS size is configured log2 of DWORDs, hence the division by 4 */
2809 	pf_dems_shift = ilog2(QED_PF_DEMS_SIZE / 4);
2810 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_ICID_BIT_SHIFT_NORM, pf_dems_shift);
2811 	qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_MIN_ADDR_REG1, min_addr_reg1);
2812 
2813 	return 0;
2814 }
2815 
2816 static int qed_hw_init_port(struct qed_hwfn *p_hwfn,
2817 			    struct qed_ptt *p_ptt, int hw_mode)
2818 {
2819 	int rc = 0;
2820 
2821 	/* In CMT the gate should be cleared by the 2nd hwfn */
2822 	if (!QED_IS_CMT(p_hwfn->cdev) || !IS_LEAD_HWFN(p_hwfn))
2823 		STORE_RT_REG(p_hwfn, NIG_REG_BRB_GATE_DNTFWD_PORT_RT_OFFSET, 0);
2824 
2825 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PORT, p_hwfn->port_id, hw_mode);
2826 	if (rc)
2827 		return rc;
2828 
2829 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_MASTER_WRITE_PAD_ENABLE, 0);
2830 
2831 	return 0;
2832 }
2833 
2834 static int qed_hw_init_pf(struct qed_hwfn *p_hwfn,
2835 			  struct qed_ptt *p_ptt,
2836 			  struct qed_tunnel_info *p_tunn,
2837 			  int hw_mode,
2838 			  bool b_hw_start,
2839 			  enum qed_int_mode int_mode,
2840 			  bool allow_npar_tx_switch)
2841 {
2842 	u8 rel_pf_id = p_hwfn->rel_pf_id;
2843 	int rc = 0;
2844 
2845 	if (p_hwfn->mcp_info) {
2846 		struct qed_mcp_function_info *p_info;
2847 
2848 		p_info = &p_hwfn->mcp_info->func_info;
2849 		if (p_info->bandwidth_min)
2850 			p_hwfn->qm_info.pf_wfq = p_info->bandwidth_min;
2851 
2852 		/* Update rate limit once we'll actually have a link */
2853 		p_hwfn->qm_info.pf_rl = 100000;
2854 	}
2855 
2856 	qed_cxt_hw_init_pf(p_hwfn, p_ptt);
2857 
2858 	qed_int_igu_init_rt(p_hwfn);
2859 
2860 	/* Set VLAN in NIG if needed */
2861 	if (hw_mode & BIT(MODE_MF_SD)) {
2862 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW, "Configuring LLH_FUNC_TAG\n");
2863 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_EN_RT_OFFSET, 1);
2864 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_TAG_VALUE_RT_OFFSET,
2865 			     p_hwfn->hw_info.ovlan);
2866 
2867 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2868 			   "Configuring LLH_FUNC_FILTER_HDR_SEL\n");
2869 		STORE_RT_REG(p_hwfn, NIG_REG_LLH_FUNC_FILTER_HDR_SEL_RT_OFFSET,
2870 			     1);
2871 	}
2872 
2873 	/* Enable classification by MAC if needed */
2874 	if (hw_mode & BIT(MODE_MF_SI)) {
2875 		DP_VERBOSE(p_hwfn, NETIF_MSG_HW,
2876 			   "Configuring TAGMAC_CLS_TYPE\n");
2877 		STORE_RT_REG(p_hwfn,
2878 			     NIG_REG_LLH_FUNC_TAGMAC_CLS_TYPE_RT_OFFSET, 1);
2879 	}
2880 
2881 	/* Protocol Configuration */
2882 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_TCP_RT_OFFSET,
2883 		     (p_hwfn->hw_info.personality == QED_PCI_ISCSI) ? 1 : 0);
2884 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_FCOE_RT_OFFSET,
2885 		     (p_hwfn->hw_info.personality == QED_PCI_FCOE) ? 1 : 0);
2886 	STORE_RT_REG(p_hwfn, PRS_REG_SEARCH_ROCE_RT_OFFSET, 0);
2887 
2888 	/* Sanity check before the PF init sequence that uses DMAE */
2889 	rc = qed_dmae_sanity(p_hwfn, p_ptt, "pf_phase");
2890 	if (rc)
2891 		return rc;
2892 
2893 	/* PF Init sequence */
2894 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_PF, rel_pf_id, hw_mode);
2895 	if (rc)
2896 		return rc;
2897 
2898 	/* QM_PF Init sequence (may be invoked separately e.g. for DCB) */
2899 	rc = qed_init_run(p_hwfn, p_ptt, PHASE_QM_PF, rel_pf_id, hw_mode);
2900 	if (rc)
2901 		return rc;
2902 
2903 	qed_fw_overlay_init_ram(p_hwfn, p_ptt, p_hwfn->fw_overlay_mem);
2904 
2905 	/* Pure runtime initializations - directly to the HW  */
2906 	qed_int_igu_init_pure_rt(p_hwfn, p_ptt, true, true);
2907 
2908 	rc = qed_hw_init_pf_doorbell_bar(p_hwfn, p_ptt);
2909 	if (rc)
2910 		return rc;
2911 
2912 	/* Use the leading hwfn since in CMT only NIG #0 is operational */
2913 	if (IS_LEAD_HWFN(p_hwfn)) {
2914 		rc = qed_llh_hw_init_pf(p_hwfn, p_ptt);
2915 		if (rc)
2916 			return rc;
2917 	}
2918 
2919 	if (b_hw_start) {
2920 		/* enable interrupts */
2921 		qed_int_igu_enable(p_hwfn, p_ptt, int_mode);
2922 
2923 		/* send function start command */
2924 		rc = qed_sp_pf_start(p_hwfn, p_ptt, p_tunn,
2925 				     allow_npar_tx_switch);
2926 		if (rc) {
2927 			DP_NOTICE(p_hwfn, "Function start ramrod failed\n");
2928 			return rc;
2929 		}
2930 		if (p_hwfn->hw_info.personality == QED_PCI_FCOE) {
2931 			qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TAG1, BIT(2));
2932 			qed_wr(p_hwfn, p_ptt,
2933 			       PRS_REG_PKT_LEN_STAT_TAGS_NOT_COUNTED_FIRST,
2934 			       0x100);
2935 		}
2936 	}
2937 	return rc;
2938 }
2939 
2940 int qed_pglueb_set_pfid_enable(struct qed_hwfn *p_hwfn,
2941 			       struct qed_ptt *p_ptt, bool b_enable)
2942 {
2943 	u32 delay_idx = 0, val, set_val = b_enable ? 1 : 0;
2944 
2945 	/* Configure the PF's internal FID_enable for master transactions */
2946 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER, set_val);
2947 
2948 	/* Wait until value is set - try for 1 second every 50us */
2949 	for (delay_idx = 0; delay_idx < 20000; delay_idx++) {
2950 		val = qed_rd(p_hwfn, p_ptt,
2951 			     PGLUE_B_REG_INTERNAL_PFID_ENABLE_MASTER);
2952 		if (val == set_val)
2953 			break;
2954 
2955 		usleep_range(50, 60);
2956 	}
2957 
2958 	if (val != set_val) {
2959 		DP_NOTICE(p_hwfn,
2960 			  "PFID_ENABLE_MASTER wasn't changed after a second\n");
2961 		return -EAGAIN;
2962 	}
2963 
2964 	return 0;
2965 }
2966 
2967 static void qed_reset_mb_shadow(struct qed_hwfn *p_hwfn,
2968 				struct qed_ptt *p_main_ptt)
2969 {
2970 	/* Read shadow of current MFW mailbox */
2971 	qed_mcp_read_mb(p_hwfn, p_main_ptt);
2972 	memcpy(p_hwfn->mcp_info->mfw_mb_shadow,
2973 	       p_hwfn->mcp_info->mfw_mb_cur, p_hwfn->mcp_info->mfw_mb_length);
2974 }
2975 
2976 static void
2977 qed_fill_load_req_params(struct qed_load_req_params *p_load_req,
2978 			 struct qed_drv_load_params *p_drv_load)
2979 {
2980 	memset(p_load_req, 0, sizeof(*p_load_req));
2981 
2982 	p_load_req->drv_role = p_drv_load->is_crash_kernel ?
2983 			       QED_DRV_ROLE_KDUMP : QED_DRV_ROLE_OS;
2984 	p_load_req->timeout_val = p_drv_load->mfw_timeout_val;
2985 	p_load_req->avoid_eng_reset = p_drv_load->avoid_eng_reset;
2986 	p_load_req->override_force_load = p_drv_load->override_force_load;
2987 }
2988 
2989 static int qed_vf_start(struct qed_hwfn *p_hwfn,
2990 			struct qed_hw_init_params *p_params)
2991 {
2992 	if (p_params->p_tunn) {
2993 		qed_vf_set_vf_start_tunn_update_param(p_params->p_tunn);
2994 		qed_vf_pf_tunnel_param_update(p_hwfn, p_params->p_tunn);
2995 	}
2996 
2997 	p_hwfn->b_int_enabled = true;
2998 
2999 	return 0;
3000 }
3001 
3002 static void qed_pglueb_clear_err(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3003 {
3004 	qed_wr(p_hwfn, p_ptt, PGLUE_B_REG_WAS_ERROR_PF_31_0_CLR,
3005 	       BIT(p_hwfn->abs_pf_id));
3006 }
3007 
3008 int qed_hw_init(struct qed_dev *cdev, struct qed_hw_init_params *p_params)
3009 {
3010 	struct qed_load_req_params load_req_params;
3011 	u32 load_code, resp, param, drv_mb_param;
3012 	bool b_default_mtu = true;
3013 	struct qed_hwfn *p_hwfn;
3014 	const u32 *fw_overlays;
3015 	u32 fw_overlays_len;
3016 	u16 ether_type;
3017 	int rc = 0, i;
3018 
3019 	if ((p_params->int_mode == QED_INT_MODE_MSI) && (cdev->num_hwfns > 1)) {
3020 		DP_NOTICE(cdev, "MSI mode is not supported for CMT devices\n");
3021 		return -EINVAL;
3022 	}
3023 
3024 	if (IS_PF(cdev)) {
3025 		rc = qed_init_fw_data(cdev, p_params->bin_fw_data);
3026 		if (rc)
3027 			return rc;
3028 	}
3029 
3030 	for_each_hwfn(cdev, i) {
3031 		p_hwfn = &cdev->hwfns[i];
3032 
3033 		/* If management didn't provide a default, set one of our own */
3034 		if (!p_hwfn->hw_info.mtu) {
3035 			p_hwfn->hw_info.mtu = 1500;
3036 			b_default_mtu = false;
3037 		}
3038 
3039 		if (IS_VF(cdev)) {
3040 			qed_vf_start(p_hwfn, p_params);
3041 			continue;
3042 		}
3043 
3044 		rc = qed_calc_hw_mode(p_hwfn);
3045 		if (rc)
3046 			return rc;
3047 
3048 		if (IS_PF(cdev) && (test_bit(QED_MF_8021Q_TAGGING,
3049 					     &cdev->mf_bits) ||
3050 				    test_bit(QED_MF_8021AD_TAGGING,
3051 					     &cdev->mf_bits))) {
3052 			if (test_bit(QED_MF_8021Q_TAGGING, &cdev->mf_bits))
3053 				ether_type = ETH_P_8021Q;
3054 			else
3055 				ether_type = ETH_P_8021AD;
3056 			STORE_RT_REG(p_hwfn, PRS_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3057 				     ether_type);
3058 			STORE_RT_REG(p_hwfn, NIG_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3059 				     ether_type);
3060 			STORE_RT_REG(p_hwfn, PBF_REG_TAG_ETHERTYPE_0_RT_OFFSET,
3061 				     ether_type);
3062 			STORE_RT_REG(p_hwfn, DORQ_REG_TAG1_ETHERTYPE_RT_OFFSET,
3063 				     ether_type);
3064 		}
3065 
3066 		qed_fill_load_req_params(&load_req_params,
3067 					 p_params->p_drv_load_params);
3068 		rc = qed_mcp_load_req(p_hwfn, p_hwfn->p_main_ptt,
3069 				      &load_req_params);
3070 		if (rc) {
3071 			DP_NOTICE(p_hwfn, "Failed sending a LOAD_REQ command\n");
3072 			return rc;
3073 		}
3074 
3075 		load_code = load_req_params.load_code;
3076 		DP_VERBOSE(p_hwfn, QED_MSG_SP,
3077 			   "Load request was sent. Load code: 0x%x\n",
3078 			   load_code);
3079 
3080 		/* Only relevant for recovery:
3081 		 * Clear the indication after LOAD_REQ is responded by the MFW.
3082 		 */
3083 		cdev->recov_in_prog = false;
3084 
3085 		qed_mcp_set_capabilities(p_hwfn, p_hwfn->p_main_ptt);
3086 
3087 		qed_reset_mb_shadow(p_hwfn, p_hwfn->p_main_ptt);
3088 
3089 		/* Clean up chip from previous driver if such remains exist.
3090 		 * This is not needed when the PF is the first one on the
3091 		 * engine, since afterwards we are going to init the FW.
3092 		 */
3093 		if (load_code != FW_MSG_CODE_DRV_LOAD_ENGINE) {
3094 			rc = qed_final_cleanup(p_hwfn, p_hwfn->p_main_ptt,
3095 					       p_hwfn->rel_pf_id, false);
3096 			if (rc) {
3097 				qed_hw_err_notify(p_hwfn, p_hwfn->p_main_ptt,
3098 						  QED_HW_ERR_RAMROD_FAIL,
3099 						  "Final cleanup failed\n");
3100 				goto load_err;
3101 			}
3102 		}
3103 
3104 		/* Log and clear previous pglue_b errors if such exist */
3105 		qed_pglueb_rbc_attn_handler(p_hwfn, p_hwfn->p_main_ptt);
3106 
3107 		/* Enable the PF's internal FID_enable in the PXP */
3108 		rc = qed_pglueb_set_pfid_enable(p_hwfn, p_hwfn->p_main_ptt,
3109 						true);
3110 		if (rc)
3111 			goto load_err;
3112 
3113 		/* Clear the pglue_b was_error indication.
3114 		 * In E4 it must be done after the BME and the internal
3115 		 * FID_enable for the PF are set, since VDMs may cause the
3116 		 * indication to be set again.
3117 		 */
3118 		qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3119 
3120 		fw_overlays = cdev->fw_data->fw_overlays;
3121 		fw_overlays_len = cdev->fw_data->fw_overlays_len;
3122 		p_hwfn->fw_overlay_mem =
3123 		    qed_fw_overlay_mem_alloc(p_hwfn, fw_overlays,
3124 					     fw_overlays_len);
3125 		if (!p_hwfn->fw_overlay_mem) {
3126 			DP_NOTICE(p_hwfn,
3127 				  "Failed to allocate fw overlay memory\n");
3128 			rc = -ENOMEM;
3129 			goto load_err;
3130 		}
3131 
3132 		switch (load_code) {
3133 		case FW_MSG_CODE_DRV_LOAD_ENGINE:
3134 			rc = qed_hw_init_common(p_hwfn, p_hwfn->p_main_ptt,
3135 						p_hwfn->hw_info.hw_mode);
3136 			if (rc)
3137 				break;
3138 		/* Fall through */
3139 		case FW_MSG_CODE_DRV_LOAD_PORT:
3140 			rc = qed_hw_init_port(p_hwfn, p_hwfn->p_main_ptt,
3141 					      p_hwfn->hw_info.hw_mode);
3142 			if (rc)
3143 				break;
3144 
3145 		/* Fall through */
3146 		case FW_MSG_CODE_DRV_LOAD_FUNCTION:
3147 			rc = qed_hw_init_pf(p_hwfn, p_hwfn->p_main_ptt,
3148 					    p_params->p_tunn,
3149 					    p_hwfn->hw_info.hw_mode,
3150 					    p_params->b_hw_start,
3151 					    p_params->int_mode,
3152 					    p_params->allow_npar_tx_switch);
3153 			break;
3154 		default:
3155 			DP_NOTICE(p_hwfn,
3156 				  "Unexpected load code [0x%08x]", load_code);
3157 			rc = -EINVAL;
3158 			break;
3159 		}
3160 
3161 		if (rc) {
3162 			DP_NOTICE(p_hwfn,
3163 				  "init phase failed for loadcode 0x%x (rc %d)\n",
3164 				  load_code, rc);
3165 			goto load_err;
3166 		}
3167 
3168 		rc = qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3169 		if (rc)
3170 			return rc;
3171 
3172 		/* send DCBX attention request command */
3173 		DP_VERBOSE(p_hwfn,
3174 			   QED_MSG_DCB,
3175 			   "sending phony dcbx set command to trigger DCBx attention handling\n");
3176 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3177 				 DRV_MSG_CODE_SET_DCBX,
3178 				 1 << DRV_MB_PARAM_DCBX_NOTIFY_SHIFT,
3179 				 &resp, &param);
3180 		if (rc) {
3181 			DP_NOTICE(p_hwfn,
3182 				  "Failed to send DCBX attention request\n");
3183 			return rc;
3184 		}
3185 
3186 		p_hwfn->hw_init_done = true;
3187 	}
3188 
3189 	if (IS_PF(cdev)) {
3190 		p_hwfn = QED_LEADING_HWFN(cdev);
3191 
3192 		/* Get pre-negotiated values for stag, bandwidth etc. */
3193 		DP_VERBOSE(p_hwfn,
3194 			   QED_MSG_SPQ,
3195 			   "Sending GET_OEM_UPDATES command to trigger stag/bandwidth attention handling\n");
3196 		drv_mb_param = 1 << DRV_MB_PARAM_DUMMY_OEM_UPDATES_OFFSET;
3197 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3198 				 DRV_MSG_CODE_GET_OEM_UPDATES,
3199 				 drv_mb_param, &resp, &param);
3200 		if (rc)
3201 			DP_NOTICE(p_hwfn,
3202 				  "Failed to send GET_OEM_UPDATES attention request\n");
3203 
3204 		drv_mb_param = STORM_FW_VERSION;
3205 		rc = qed_mcp_cmd(p_hwfn, p_hwfn->p_main_ptt,
3206 				 DRV_MSG_CODE_OV_UPDATE_STORM_FW_VER,
3207 				 drv_mb_param, &load_code, &param);
3208 		if (rc)
3209 			DP_INFO(p_hwfn, "Failed to update firmware version\n");
3210 
3211 		if (!b_default_mtu) {
3212 			rc = qed_mcp_ov_update_mtu(p_hwfn, p_hwfn->p_main_ptt,
3213 						   p_hwfn->hw_info.mtu);
3214 			if (rc)
3215 				DP_INFO(p_hwfn,
3216 					"Failed to update default mtu\n");
3217 		}
3218 
3219 		rc = qed_mcp_ov_update_driver_state(p_hwfn,
3220 						    p_hwfn->p_main_ptt,
3221 						  QED_OV_DRIVER_STATE_DISABLED);
3222 		if (rc)
3223 			DP_INFO(p_hwfn, "Failed to update driver state\n");
3224 
3225 		rc = qed_mcp_ov_update_eswitch(p_hwfn, p_hwfn->p_main_ptt,
3226 					       QED_OV_ESWITCH_NONE);
3227 		if (rc)
3228 			DP_INFO(p_hwfn, "Failed to update eswitch mode\n");
3229 	}
3230 
3231 	return 0;
3232 
3233 load_err:
3234 	/* The MFW load lock should be released also when initialization fails.
3235 	 */
3236 	qed_mcp_load_done(p_hwfn, p_hwfn->p_main_ptt);
3237 	return rc;
3238 }
3239 
3240 #define QED_HW_STOP_RETRY_LIMIT (10)
3241 static void qed_hw_timers_stop(struct qed_dev *cdev,
3242 			       struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3243 {
3244 	int i;
3245 
3246 	/* close timers */
3247 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_CONN, 0x0);
3248 	qed_wr(p_hwfn, p_ptt, TM_REG_PF_ENABLE_TASK, 0x0);
3249 
3250 	if (cdev->recov_in_prog)
3251 		return;
3252 
3253 	for (i = 0; i < QED_HW_STOP_RETRY_LIMIT; i++) {
3254 		if ((!qed_rd(p_hwfn, p_ptt,
3255 			     TM_REG_PF_SCAN_ACTIVE_CONN)) &&
3256 		    (!qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK)))
3257 			break;
3258 
3259 		/* Dependent on number of connection/tasks, possibly
3260 		 * 1ms sleep is required between polls
3261 		 */
3262 		usleep_range(1000, 2000);
3263 	}
3264 
3265 	if (i < QED_HW_STOP_RETRY_LIMIT)
3266 		return;
3267 
3268 	DP_NOTICE(p_hwfn,
3269 		  "Timers linear scans are not over [Connection %02x Tasks %02x]\n",
3270 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_CONN),
3271 		  (u8)qed_rd(p_hwfn, p_ptt, TM_REG_PF_SCAN_ACTIVE_TASK));
3272 }
3273 
3274 void qed_hw_timers_stop_all(struct qed_dev *cdev)
3275 {
3276 	int j;
3277 
3278 	for_each_hwfn(cdev, j) {
3279 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
3280 		struct qed_ptt *p_ptt = p_hwfn->p_main_ptt;
3281 
3282 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
3283 	}
3284 }
3285 
3286 int qed_hw_stop(struct qed_dev *cdev)
3287 {
3288 	struct qed_hwfn *p_hwfn;
3289 	struct qed_ptt *p_ptt;
3290 	int rc, rc2 = 0;
3291 	int j;
3292 
3293 	for_each_hwfn(cdev, j) {
3294 		p_hwfn = &cdev->hwfns[j];
3295 		p_ptt = p_hwfn->p_main_ptt;
3296 
3297 		DP_VERBOSE(p_hwfn, NETIF_MSG_IFDOWN, "Stopping hw/fw\n");
3298 
3299 		if (IS_VF(cdev)) {
3300 			qed_vf_pf_int_cleanup(p_hwfn);
3301 			rc = qed_vf_pf_reset(p_hwfn);
3302 			if (rc) {
3303 				DP_NOTICE(p_hwfn,
3304 					  "qed_vf_pf_reset failed. rc = %d.\n",
3305 					  rc);
3306 				rc2 = -EINVAL;
3307 			}
3308 			continue;
3309 		}
3310 
3311 		/* mark the hw as uninitialized... */
3312 		p_hwfn->hw_init_done = false;
3313 
3314 		/* Send unload command to MCP */
3315 		if (!cdev->recov_in_prog) {
3316 			rc = qed_mcp_unload_req(p_hwfn, p_ptt);
3317 			if (rc) {
3318 				DP_NOTICE(p_hwfn,
3319 					  "Failed sending a UNLOAD_REQ command. rc = %d.\n",
3320 					  rc);
3321 				rc2 = -EINVAL;
3322 			}
3323 		}
3324 
3325 		qed_slowpath_irq_sync(p_hwfn);
3326 
3327 		/* After this point no MFW attentions are expected, e.g. prevent
3328 		 * race between pf stop and dcbx pf update.
3329 		 */
3330 		rc = qed_sp_pf_stop(p_hwfn);
3331 		if (rc) {
3332 			DP_NOTICE(p_hwfn,
3333 				  "Failed to close PF against FW [rc = %d]. Continue to stop HW to prevent illegal host access by the device.\n",
3334 				  rc);
3335 			rc2 = -EINVAL;
3336 		}
3337 
3338 		qed_wr(p_hwfn, p_ptt,
3339 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
3340 
3341 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3342 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
3343 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
3344 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3345 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
3346 
3347 		qed_hw_timers_stop(cdev, p_hwfn, p_ptt);
3348 
3349 		/* Disable Attention Generation */
3350 		qed_int_igu_disable_int(p_hwfn, p_ptt);
3351 
3352 		qed_wr(p_hwfn, p_ptt, IGU_REG_LEADING_EDGE_LATCH, 0);
3353 		qed_wr(p_hwfn, p_ptt, IGU_REG_TRAILING_EDGE_LATCH, 0);
3354 
3355 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, true);
3356 
3357 		/* Need to wait 1ms to guarantee SBs are cleared */
3358 		usleep_range(1000, 2000);
3359 
3360 		/* Disable PF in HW blocks */
3361 		qed_wr(p_hwfn, p_ptt, DORQ_REG_PF_DB_ENABLE, 0);
3362 		qed_wr(p_hwfn, p_ptt, QM_REG_PF_EN, 0);
3363 
3364 		if (IS_LEAD_HWFN(p_hwfn) &&
3365 		    test_bit(QED_MF_LLH_MAC_CLSS, &cdev->mf_bits) &&
3366 		    !QED_IS_FCOE_PERSONALITY(p_hwfn))
3367 			qed_llh_remove_mac_filter(cdev, 0,
3368 						  p_hwfn->hw_info.hw_mac_addr);
3369 
3370 		if (!cdev->recov_in_prog) {
3371 			rc = qed_mcp_unload_done(p_hwfn, p_ptt);
3372 			if (rc) {
3373 				DP_NOTICE(p_hwfn,
3374 					  "Failed sending a UNLOAD_DONE command. rc = %d.\n",
3375 					  rc);
3376 				rc2 = -EINVAL;
3377 			}
3378 		}
3379 	}
3380 
3381 	if (IS_PF(cdev) && !cdev->recov_in_prog) {
3382 		p_hwfn = QED_LEADING_HWFN(cdev);
3383 		p_ptt = QED_LEADING_HWFN(cdev)->p_main_ptt;
3384 
3385 		/* Clear the PF's internal FID_enable in the PXP.
3386 		 * In CMT this should only be done for first hw-function, and
3387 		 * only after all transactions have stopped for all active
3388 		 * hw-functions.
3389 		 */
3390 		rc = qed_pglueb_set_pfid_enable(p_hwfn, p_ptt, false);
3391 		if (rc) {
3392 			DP_NOTICE(p_hwfn,
3393 				  "qed_pglueb_set_pfid_enable() failed. rc = %d.\n",
3394 				  rc);
3395 			rc2 = -EINVAL;
3396 		}
3397 	}
3398 
3399 	return rc2;
3400 }
3401 
3402 int qed_hw_stop_fastpath(struct qed_dev *cdev)
3403 {
3404 	int j;
3405 
3406 	for_each_hwfn(cdev, j) {
3407 		struct qed_hwfn *p_hwfn = &cdev->hwfns[j];
3408 		struct qed_ptt *p_ptt;
3409 
3410 		if (IS_VF(cdev)) {
3411 			qed_vf_pf_int_cleanup(p_hwfn);
3412 			continue;
3413 		}
3414 		p_ptt = qed_ptt_acquire(p_hwfn);
3415 		if (!p_ptt)
3416 			return -EAGAIN;
3417 
3418 		DP_VERBOSE(p_hwfn,
3419 			   NETIF_MSG_IFDOWN, "Shutting down the fastpath\n");
3420 
3421 		qed_wr(p_hwfn, p_ptt,
3422 		       NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x1);
3423 
3424 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_TCP, 0x0);
3425 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_UDP, 0x0);
3426 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_FCOE, 0x0);
3427 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_ROCE, 0x0);
3428 		qed_wr(p_hwfn, p_ptt, PRS_REG_SEARCH_OPENFLOW, 0x0);
3429 
3430 		qed_int_igu_init_pure_rt(p_hwfn, p_ptt, false, false);
3431 
3432 		/* Need to wait 1ms to guarantee SBs are cleared */
3433 		usleep_range(1000, 2000);
3434 		qed_ptt_release(p_hwfn, p_ptt);
3435 	}
3436 
3437 	return 0;
3438 }
3439 
3440 int qed_hw_start_fastpath(struct qed_hwfn *p_hwfn)
3441 {
3442 	struct qed_ptt *p_ptt;
3443 
3444 	if (IS_VF(p_hwfn->cdev))
3445 		return 0;
3446 
3447 	p_ptt = qed_ptt_acquire(p_hwfn);
3448 	if (!p_ptt)
3449 		return -EAGAIN;
3450 
3451 	if (p_hwfn->p_rdma_info &&
3452 	    p_hwfn->p_rdma_info->active && p_hwfn->b_rdma_enabled_in_prs)
3453 		qed_wr(p_hwfn, p_ptt, p_hwfn->rdma_prs_search_reg, 0x1);
3454 
3455 	/* Re-open incoming traffic */
3456 	qed_wr(p_hwfn, p_ptt, NIG_REG_RX_LLH_BRB_GATE_DNTFWD_PERPF, 0x0);
3457 	qed_ptt_release(p_hwfn, p_ptt);
3458 
3459 	return 0;
3460 }
3461 
3462 /* Free hwfn memory and resources acquired in hw_hwfn_prepare */
3463 static void qed_hw_hwfn_free(struct qed_hwfn *p_hwfn)
3464 {
3465 	qed_ptt_pool_free(p_hwfn);
3466 	kfree(p_hwfn->hw_info.p_igu_info);
3467 	p_hwfn->hw_info.p_igu_info = NULL;
3468 }
3469 
3470 /* Setup bar access */
3471 static void qed_hw_hwfn_prepare(struct qed_hwfn *p_hwfn)
3472 {
3473 	/* clear indirect access */
3474 	if (QED_IS_AH(p_hwfn->cdev)) {
3475 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3476 		       PGLUE_B_REG_PGL_ADDR_E8_F0_K2, 0);
3477 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3478 		       PGLUE_B_REG_PGL_ADDR_EC_F0_K2, 0);
3479 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3480 		       PGLUE_B_REG_PGL_ADDR_F0_F0_K2, 0);
3481 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3482 		       PGLUE_B_REG_PGL_ADDR_F4_F0_K2, 0);
3483 	} else {
3484 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3485 		       PGLUE_B_REG_PGL_ADDR_88_F0_BB, 0);
3486 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3487 		       PGLUE_B_REG_PGL_ADDR_8C_F0_BB, 0);
3488 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3489 		       PGLUE_B_REG_PGL_ADDR_90_F0_BB, 0);
3490 		qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3491 		       PGLUE_B_REG_PGL_ADDR_94_F0_BB, 0);
3492 	}
3493 
3494 	/* Clean previous pglue_b errors if such exist */
3495 	qed_pglueb_clear_err(p_hwfn, p_hwfn->p_main_ptt);
3496 
3497 	/* enable internal target-read */
3498 	qed_wr(p_hwfn, p_hwfn->p_main_ptt,
3499 	       PGLUE_B_REG_INTERNAL_PFID_ENABLE_TARGET_READ, 1);
3500 }
3501 
3502 static void get_function_id(struct qed_hwfn *p_hwfn)
3503 {
3504 	/* ME Register */
3505 	p_hwfn->hw_info.opaque_fid = (u16) REG_RD(p_hwfn,
3506 						  PXP_PF_ME_OPAQUE_ADDR);
3507 
3508 	p_hwfn->hw_info.concrete_fid = REG_RD(p_hwfn, PXP_PF_ME_CONCRETE_ADDR);
3509 
3510 	p_hwfn->abs_pf_id = (p_hwfn->hw_info.concrete_fid >> 16) & 0xf;
3511 	p_hwfn->rel_pf_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3512 				      PXP_CONCRETE_FID_PFID);
3513 	p_hwfn->port_id = GET_FIELD(p_hwfn->hw_info.concrete_fid,
3514 				    PXP_CONCRETE_FID_PORT);
3515 
3516 	DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE,
3517 		   "Read ME register: Concrete 0x%08x Opaque 0x%04x\n",
3518 		   p_hwfn->hw_info.concrete_fid, p_hwfn->hw_info.opaque_fid);
3519 }
3520 
3521 static void qed_hw_set_feat(struct qed_hwfn *p_hwfn)
3522 {
3523 	u32 *feat_num = p_hwfn->hw_info.feat_num;
3524 	struct qed_sb_cnt_info sb_cnt;
3525 	u32 non_l2_sbs = 0;
3526 
3527 	memset(&sb_cnt, 0, sizeof(sb_cnt));
3528 	qed_int_get_num_sbs(p_hwfn, &sb_cnt);
3529 
3530 	if (IS_ENABLED(CONFIG_QED_RDMA) &&
3531 	    QED_IS_RDMA_PERSONALITY(p_hwfn)) {
3532 		/* Roce CNQ each requires: 1 status block + 1 CNQ. We divide
3533 		 * the status blocks equally between L2 / RoCE but with
3534 		 * consideration as to how many l2 queues / cnqs we have.
3535 		 */
3536 		feat_num[QED_RDMA_CNQ] =
3537 			min_t(u32, sb_cnt.cnt / 2,
3538 			      RESC_NUM(p_hwfn, QED_RDMA_CNQ_RAM));
3539 
3540 		non_l2_sbs = feat_num[QED_RDMA_CNQ];
3541 	}
3542 	if (QED_IS_L2_PERSONALITY(p_hwfn)) {
3543 		/* Start by allocating VF queues, then PF's */
3544 		feat_num[QED_VF_L2_QUE] = min_t(u32,
3545 						RESC_NUM(p_hwfn, QED_L2_QUEUE),
3546 						sb_cnt.iov_cnt);
3547 		feat_num[QED_PF_L2_QUE] = min_t(u32,
3548 						sb_cnt.cnt - non_l2_sbs,
3549 						RESC_NUM(p_hwfn,
3550 							 QED_L2_QUEUE) -
3551 						FEAT_NUM(p_hwfn,
3552 							 QED_VF_L2_QUE));
3553 	}
3554 
3555 	if (QED_IS_FCOE_PERSONALITY(p_hwfn))
3556 		feat_num[QED_FCOE_CQ] =  min_t(u32, sb_cnt.cnt,
3557 					       RESC_NUM(p_hwfn,
3558 							QED_CMDQS_CQS));
3559 
3560 	if (QED_IS_ISCSI_PERSONALITY(p_hwfn))
3561 		feat_num[QED_ISCSI_CQ] = min_t(u32, sb_cnt.cnt,
3562 					       RESC_NUM(p_hwfn,
3563 							QED_CMDQS_CQS));
3564 	DP_VERBOSE(p_hwfn,
3565 		   NETIF_MSG_PROBE,
3566 		   "#PF_L2_QUEUES=%d VF_L2_QUEUES=%d #ROCE_CNQ=%d FCOE_CQ=%d ISCSI_CQ=%d #SBS=%d\n",
3567 		   (int)FEAT_NUM(p_hwfn, QED_PF_L2_QUE),
3568 		   (int)FEAT_NUM(p_hwfn, QED_VF_L2_QUE),
3569 		   (int)FEAT_NUM(p_hwfn, QED_RDMA_CNQ),
3570 		   (int)FEAT_NUM(p_hwfn, QED_FCOE_CQ),
3571 		   (int)FEAT_NUM(p_hwfn, QED_ISCSI_CQ),
3572 		   (int)sb_cnt.cnt);
3573 }
3574 
3575 const char *qed_hw_get_resc_name(enum qed_resources res_id)
3576 {
3577 	switch (res_id) {
3578 	case QED_L2_QUEUE:
3579 		return "L2_QUEUE";
3580 	case QED_VPORT:
3581 		return "VPORT";
3582 	case QED_RSS_ENG:
3583 		return "RSS_ENG";
3584 	case QED_PQ:
3585 		return "PQ";
3586 	case QED_RL:
3587 		return "RL";
3588 	case QED_MAC:
3589 		return "MAC";
3590 	case QED_VLAN:
3591 		return "VLAN";
3592 	case QED_RDMA_CNQ_RAM:
3593 		return "RDMA_CNQ_RAM";
3594 	case QED_ILT:
3595 		return "ILT";
3596 	case QED_LL2_RAM_QUEUE:
3597 		return "LL2_RAM_QUEUE";
3598 	case QED_LL2_CTX_QUEUE:
3599 		return "LL2_CTX_QUEUE";
3600 	case QED_CMDQS_CQS:
3601 		return "CMDQS_CQS";
3602 	case QED_RDMA_STATS_QUEUE:
3603 		return "RDMA_STATS_QUEUE";
3604 	case QED_BDQ:
3605 		return "BDQ";
3606 	case QED_SB:
3607 		return "SB";
3608 	default:
3609 		return "UNKNOWN_RESOURCE";
3610 	}
3611 }
3612 
3613 static int
3614 __qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn,
3615 			    struct qed_ptt *p_ptt,
3616 			    enum qed_resources res_id,
3617 			    u32 resc_max_val, u32 *p_mcp_resp)
3618 {
3619 	int rc;
3620 
3621 	rc = qed_mcp_set_resc_max_val(p_hwfn, p_ptt, res_id,
3622 				      resc_max_val, p_mcp_resp);
3623 	if (rc) {
3624 		DP_NOTICE(p_hwfn,
3625 			  "MFW response failure for a max value setting of resource %d [%s]\n",
3626 			  res_id, qed_hw_get_resc_name(res_id));
3627 		return rc;
3628 	}
3629 
3630 	if (*p_mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK)
3631 		DP_INFO(p_hwfn,
3632 			"Failed to set the max value of resource %d [%s]. mcp_resp = 0x%08x.\n",
3633 			res_id, qed_hw_get_resc_name(res_id), *p_mcp_resp);
3634 
3635 	return 0;
3636 }
3637 
3638 static u32 qed_hsi_def_val[][MAX_CHIP_IDS] = {
3639 	{MAX_NUM_VFS_BB, MAX_NUM_VFS_K2},
3640 	{MAX_NUM_L2_QUEUES_BB, MAX_NUM_L2_QUEUES_K2},
3641 	{MAX_NUM_PORTS_BB, MAX_NUM_PORTS_K2},
3642 	{MAX_SB_PER_PATH_BB, MAX_SB_PER_PATH_K2,},
3643 	{MAX_NUM_PFS_BB, MAX_NUM_PFS_K2},
3644 	{MAX_NUM_VPORTS_BB, MAX_NUM_VPORTS_K2},
3645 	{ETH_RSS_ENGINE_NUM_BB, ETH_RSS_ENGINE_NUM_K2},
3646 	{MAX_QM_TX_QUEUES_BB, MAX_QM_TX_QUEUES_K2},
3647 	{PXP_NUM_ILT_RECORDS_BB, PXP_NUM_ILT_RECORDS_K2},
3648 	{RDMA_NUM_STATISTIC_COUNTERS_BB, RDMA_NUM_STATISTIC_COUNTERS_K2},
3649 	{MAX_QM_GLOBAL_RLS, MAX_QM_GLOBAL_RLS},
3650 	{PBF_MAX_CMD_LINES, PBF_MAX_CMD_LINES},
3651 	{BTB_MAX_BLOCKS_BB, BTB_MAX_BLOCKS_K2},
3652 };
3653 
3654 u32 qed_get_hsi_def_val(struct qed_dev *cdev, enum qed_hsi_def_type type)
3655 {
3656 	enum chip_ids chip_id = QED_IS_BB(cdev) ? CHIP_BB : CHIP_K2;
3657 
3658 	if (type >= QED_NUM_HSI_DEFS) {
3659 		DP_ERR(cdev, "Unexpected HSI definition type [%d]\n", type);
3660 		return 0;
3661 	}
3662 
3663 	return qed_hsi_def_val[type][chip_id];
3664 }
3665 static int
3666 qed_hw_set_soft_resc_size(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3667 {
3668 	u32 resc_max_val, mcp_resp;
3669 	u8 res_id;
3670 	int rc;
3671 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
3672 		switch (res_id) {
3673 		case QED_LL2_RAM_QUEUE:
3674 			resc_max_val = MAX_NUM_LL2_RX_RAM_QUEUES;
3675 			break;
3676 		case QED_LL2_CTX_QUEUE:
3677 			resc_max_val = MAX_NUM_LL2_RX_CTX_QUEUES;
3678 			break;
3679 		case QED_RDMA_CNQ_RAM:
3680 			/* No need for a case for QED_CMDQS_CQS since
3681 			 * CNQ/CMDQS are the same resource.
3682 			 */
3683 			resc_max_val = NUM_OF_GLOBAL_QUEUES;
3684 			break;
3685 		case QED_RDMA_STATS_QUEUE:
3686 			resc_max_val =
3687 			    NUM_OF_RDMA_STATISTIC_COUNTERS(p_hwfn->cdev);
3688 			break;
3689 		case QED_BDQ:
3690 			resc_max_val = BDQ_NUM_RESOURCES;
3691 			break;
3692 		default:
3693 			continue;
3694 		}
3695 
3696 		rc = __qed_hw_set_soft_resc_size(p_hwfn, p_ptt, res_id,
3697 						 resc_max_val, &mcp_resp);
3698 		if (rc)
3699 			return rc;
3700 
3701 		/* There's no point to continue to the next resource if the
3702 		 * command is not supported by the MFW.
3703 		 * We do continue if the command is supported but the resource
3704 		 * is unknown to the MFW. Such a resource will be later
3705 		 * configured with the default allocation values.
3706 		 */
3707 		if (mcp_resp == FW_MSG_CODE_UNSUPPORTED)
3708 			return -EINVAL;
3709 	}
3710 
3711 	return 0;
3712 }
3713 
3714 static
3715 int qed_hw_get_dflt_resc(struct qed_hwfn *p_hwfn,
3716 			 enum qed_resources res_id,
3717 			 u32 *p_resc_num, u32 *p_resc_start)
3718 {
3719 	u8 num_funcs = p_hwfn->num_funcs_on_engine;
3720 	struct qed_dev *cdev = p_hwfn->cdev;
3721 
3722 	switch (res_id) {
3723 	case QED_L2_QUEUE:
3724 		*p_resc_num = NUM_OF_L2_QUEUES(cdev) / num_funcs;
3725 		break;
3726 	case QED_VPORT:
3727 		*p_resc_num = NUM_OF_VPORTS(cdev) / num_funcs;
3728 		break;
3729 	case QED_RSS_ENG:
3730 		*p_resc_num = NUM_OF_RSS_ENGINES(cdev) / num_funcs;
3731 		break;
3732 	case QED_PQ:
3733 		*p_resc_num = NUM_OF_QM_TX_QUEUES(cdev) / num_funcs;
3734 		*p_resc_num &= ~0x7;	/* The granularity of the PQs is 8 */
3735 		break;
3736 	case QED_RL:
3737 		*p_resc_num = NUM_OF_QM_GLOBAL_RLS(cdev) / num_funcs;
3738 		break;
3739 	case QED_MAC:
3740 	case QED_VLAN:
3741 		/* Each VFC resource can accommodate both a MAC and a VLAN */
3742 		*p_resc_num = ETH_NUM_MAC_FILTERS / num_funcs;
3743 		break;
3744 	case QED_ILT:
3745 		*p_resc_num = NUM_OF_PXP_ILT_RECORDS(cdev) / num_funcs;
3746 		break;
3747 	case QED_LL2_RAM_QUEUE:
3748 		*p_resc_num = MAX_NUM_LL2_RX_RAM_QUEUES / num_funcs;
3749 		break;
3750 	case QED_LL2_CTX_QUEUE:
3751 		*p_resc_num = MAX_NUM_LL2_RX_CTX_QUEUES / num_funcs;
3752 		break;
3753 	case QED_RDMA_CNQ_RAM:
3754 	case QED_CMDQS_CQS:
3755 		/* CNQ/CMDQS are the same resource */
3756 		*p_resc_num = NUM_OF_GLOBAL_QUEUES / num_funcs;
3757 		break;
3758 	case QED_RDMA_STATS_QUEUE:
3759 		*p_resc_num = NUM_OF_RDMA_STATISTIC_COUNTERS(cdev) / num_funcs;
3760 		break;
3761 	case QED_BDQ:
3762 		if (p_hwfn->hw_info.personality != QED_PCI_ISCSI &&
3763 		    p_hwfn->hw_info.personality != QED_PCI_FCOE)
3764 			*p_resc_num = 0;
3765 		else
3766 			*p_resc_num = 1;
3767 		break;
3768 	case QED_SB:
3769 		/* Since we want its value to reflect whether MFW supports
3770 		 * the new scheme, have a default of 0.
3771 		 */
3772 		*p_resc_num = 0;
3773 		break;
3774 	default:
3775 		return -EINVAL;
3776 	}
3777 
3778 	switch (res_id) {
3779 	case QED_BDQ:
3780 		if (!*p_resc_num)
3781 			*p_resc_start = 0;
3782 		else if (p_hwfn->cdev->num_ports_in_engine == 4)
3783 			*p_resc_start = p_hwfn->port_id;
3784 		else if (p_hwfn->hw_info.personality == QED_PCI_ISCSI)
3785 			*p_resc_start = p_hwfn->port_id;
3786 		else if (p_hwfn->hw_info.personality == QED_PCI_FCOE)
3787 			*p_resc_start = p_hwfn->port_id + 2;
3788 		break;
3789 	default:
3790 		*p_resc_start = *p_resc_num * p_hwfn->enabled_func_idx;
3791 		break;
3792 	}
3793 
3794 	return 0;
3795 }
3796 
3797 static int __qed_hw_set_resc_info(struct qed_hwfn *p_hwfn,
3798 				  enum qed_resources res_id)
3799 {
3800 	u32 dflt_resc_num = 0, dflt_resc_start = 0;
3801 	u32 mcp_resp, *p_resc_num, *p_resc_start;
3802 	int rc;
3803 
3804 	p_resc_num = &RESC_NUM(p_hwfn, res_id);
3805 	p_resc_start = &RESC_START(p_hwfn, res_id);
3806 
3807 	rc = qed_hw_get_dflt_resc(p_hwfn, res_id, &dflt_resc_num,
3808 				  &dflt_resc_start);
3809 	if (rc) {
3810 		DP_ERR(p_hwfn,
3811 		       "Failed to get default amount for resource %d [%s]\n",
3812 		       res_id, qed_hw_get_resc_name(res_id));
3813 		return rc;
3814 	}
3815 
3816 	rc = qed_mcp_get_resc_info(p_hwfn, p_hwfn->p_main_ptt, res_id,
3817 				   &mcp_resp, p_resc_num, p_resc_start);
3818 	if (rc) {
3819 		DP_NOTICE(p_hwfn,
3820 			  "MFW response failure for an allocation request for resource %d [%s]\n",
3821 			  res_id, qed_hw_get_resc_name(res_id));
3822 		return rc;
3823 	}
3824 
3825 	/* Default driver values are applied in the following cases:
3826 	 * - The resource allocation MB command is not supported by the MFW
3827 	 * - There is an internal error in the MFW while processing the request
3828 	 * - The resource ID is unknown to the MFW
3829 	 */
3830 	if (mcp_resp != FW_MSG_CODE_RESOURCE_ALLOC_OK) {
3831 		DP_INFO(p_hwfn,
3832 			"Failed to receive allocation info for resource %d [%s]. mcp_resp = 0x%x. Applying default values [%d,%d].\n",
3833 			res_id,
3834 			qed_hw_get_resc_name(res_id),
3835 			mcp_resp, dflt_resc_num, dflt_resc_start);
3836 		*p_resc_num = dflt_resc_num;
3837 		*p_resc_start = dflt_resc_start;
3838 		goto out;
3839 	}
3840 
3841 out:
3842 	/* PQs have to divide by 8 [that's the HW granularity].
3843 	 * Reduce number so it would fit.
3844 	 */
3845 	if ((res_id == QED_PQ) && ((*p_resc_num % 8) || (*p_resc_start % 8))) {
3846 		DP_INFO(p_hwfn,
3847 			"PQs need to align by 8; Number %08x --> %08x, Start %08x --> %08x\n",
3848 			*p_resc_num,
3849 			(*p_resc_num) & ~0x7,
3850 			*p_resc_start, (*p_resc_start) & ~0x7);
3851 		*p_resc_num &= ~0x7;
3852 		*p_resc_start &= ~0x7;
3853 	}
3854 
3855 	return 0;
3856 }
3857 
3858 static int qed_hw_set_resc_info(struct qed_hwfn *p_hwfn)
3859 {
3860 	int rc;
3861 	u8 res_id;
3862 
3863 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++) {
3864 		rc = __qed_hw_set_resc_info(p_hwfn, res_id);
3865 		if (rc)
3866 			return rc;
3867 	}
3868 
3869 	return 0;
3870 }
3871 
3872 static int qed_hw_get_ppfid_bitmap(struct qed_hwfn *p_hwfn,
3873 				   struct qed_ptt *p_ptt)
3874 {
3875 	struct qed_dev *cdev = p_hwfn->cdev;
3876 	u8 native_ppfid_idx;
3877 	int rc;
3878 
3879 	/* Calculation of BB/AH is different for native_ppfid_idx */
3880 	if (QED_IS_BB(cdev))
3881 		native_ppfid_idx = p_hwfn->rel_pf_id;
3882 	else
3883 		native_ppfid_idx = p_hwfn->rel_pf_id /
3884 		    cdev->num_ports_in_engine;
3885 
3886 	rc = qed_mcp_get_ppfid_bitmap(p_hwfn, p_ptt);
3887 	if (rc != 0 && rc != -EOPNOTSUPP)
3888 		return rc;
3889 	else if (rc == -EOPNOTSUPP)
3890 		cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
3891 
3892 	if (!(cdev->ppfid_bitmap & (0x1 << native_ppfid_idx))) {
3893 		DP_INFO(p_hwfn,
3894 			"Fix the PPFID bitmap to include the native PPFID [native_ppfid_idx %hhd, orig_bitmap 0x%hhx]\n",
3895 			native_ppfid_idx, cdev->ppfid_bitmap);
3896 		cdev->ppfid_bitmap = 0x1 << native_ppfid_idx;
3897 	}
3898 
3899 	return 0;
3900 }
3901 
3902 static int qed_hw_get_resc(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3903 {
3904 	struct qed_resc_unlock_params resc_unlock_params;
3905 	struct qed_resc_lock_params resc_lock_params;
3906 	bool b_ah = QED_IS_AH(p_hwfn->cdev);
3907 	u8 res_id;
3908 	int rc;
3909 
3910 	/* Setting the max values of the soft resources and the following
3911 	 * resources allocation queries should be atomic. Since several PFs can
3912 	 * run in parallel - a resource lock is needed.
3913 	 * If either the resource lock or resource set value commands are not
3914 	 * supported - skip the the max values setting, release the lock if
3915 	 * needed, and proceed to the queries. Other failures, including a
3916 	 * failure to acquire the lock, will cause this function to fail.
3917 	 */
3918 	qed_mcp_resc_lock_default_init(&resc_lock_params, &resc_unlock_params,
3919 				       QED_RESC_LOCK_RESC_ALLOC, false);
3920 
3921 	rc = qed_mcp_resc_lock(p_hwfn, p_ptt, &resc_lock_params);
3922 	if (rc && rc != -EINVAL) {
3923 		return rc;
3924 	} else if (rc == -EINVAL) {
3925 		DP_INFO(p_hwfn,
3926 			"Skip the max values setting of the soft resources since the resource lock is not supported by the MFW\n");
3927 	} else if (!rc && !resc_lock_params.b_granted) {
3928 		DP_NOTICE(p_hwfn,
3929 			  "Failed to acquire the resource lock for the resource allocation commands\n");
3930 		return -EBUSY;
3931 	} else {
3932 		rc = qed_hw_set_soft_resc_size(p_hwfn, p_ptt);
3933 		if (rc && rc != -EINVAL) {
3934 			DP_NOTICE(p_hwfn,
3935 				  "Failed to set the max values of the soft resources\n");
3936 			goto unlock_and_exit;
3937 		} else if (rc == -EINVAL) {
3938 			DP_INFO(p_hwfn,
3939 				"Skip the max values setting of the soft resources since it is not supported by the MFW\n");
3940 			rc = qed_mcp_resc_unlock(p_hwfn, p_ptt,
3941 						 &resc_unlock_params);
3942 			if (rc)
3943 				DP_INFO(p_hwfn,
3944 					"Failed to release the resource lock for the resource allocation commands\n");
3945 		}
3946 	}
3947 
3948 	rc = qed_hw_set_resc_info(p_hwfn);
3949 	if (rc)
3950 		goto unlock_and_exit;
3951 
3952 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released) {
3953 		rc = qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
3954 		if (rc)
3955 			DP_INFO(p_hwfn,
3956 				"Failed to release the resource lock for the resource allocation commands\n");
3957 	}
3958 
3959 	/* PPFID bitmap */
3960 	if (IS_LEAD_HWFN(p_hwfn)) {
3961 		rc = qed_hw_get_ppfid_bitmap(p_hwfn, p_ptt);
3962 		if (rc)
3963 			return rc;
3964 	}
3965 
3966 	/* Sanity for ILT */
3967 	if ((b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_K2)) ||
3968 	    (!b_ah && (RESC_END(p_hwfn, QED_ILT) > PXP_NUM_ILT_RECORDS_BB))) {
3969 		DP_NOTICE(p_hwfn, "Can't assign ILT pages [%08x,...,%08x]\n",
3970 			  RESC_START(p_hwfn, QED_ILT),
3971 			  RESC_END(p_hwfn, QED_ILT) - 1);
3972 		return -EINVAL;
3973 	}
3974 
3975 	/* This will also learn the number of SBs from MFW */
3976 	if (qed_int_igu_reset_cam(p_hwfn, p_ptt))
3977 		return -EINVAL;
3978 
3979 	qed_hw_set_feat(p_hwfn);
3980 
3981 	for (res_id = 0; res_id < QED_MAX_RESC; res_id++)
3982 		DP_VERBOSE(p_hwfn, NETIF_MSG_PROBE, "%s = %d start = %d\n",
3983 			   qed_hw_get_resc_name(res_id),
3984 			   RESC_NUM(p_hwfn, res_id),
3985 			   RESC_START(p_hwfn, res_id));
3986 
3987 	return 0;
3988 
3989 unlock_and_exit:
3990 	if (resc_lock_params.b_granted && !resc_unlock_params.b_released)
3991 		qed_mcp_resc_unlock(p_hwfn, p_ptt, &resc_unlock_params);
3992 	return rc;
3993 }
3994 
3995 static int qed_hw_get_nvm_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
3996 {
3997 	u32 port_cfg_addr, link_temp, nvm_cfg_addr, device_capabilities;
3998 	u32 nvm_cfg1_offset, mf_mode, addr, generic_cont0, core_cfg;
3999 	struct qed_mcp_link_capabilities *p_caps;
4000 	struct qed_mcp_link_params *link;
4001 
4002 	/* Read global nvm_cfg address */
4003 	nvm_cfg_addr = qed_rd(p_hwfn, p_ptt, MISC_REG_GEN_PURP_CR0);
4004 
4005 	/* Verify MCP has initialized it */
4006 	if (!nvm_cfg_addr) {
4007 		DP_NOTICE(p_hwfn, "Shared memory not initialized\n");
4008 		return -EINVAL;
4009 	}
4010 
4011 	/* Read nvm_cfg1  (Notice this is just offset, and not offsize (TBD) */
4012 	nvm_cfg1_offset = qed_rd(p_hwfn, p_ptt, nvm_cfg_addr + 4);
4013 
4014 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4015 	       offsetof(struct nvm_cfg1, glob) +
4016 	       offsetof(struct nvm_cfg1_glob, core_cfg);
4017 
4018 	core_cfg = qed_rd(p_hwfn, p_ptt, addr);
4019 
4020 	switch ((core_cfg & NVM_CFG1_GLOB_NETWORK_PORT_MODE_MASK) >>
4021 		NVM_CFG1_GLOB_NETWORK_PORT_MODE_OFFSET) {
4022 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_2X40G:
4023 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X40G;
4024 		break;
4025 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X50G:
4026 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X50G;
4027 		break;
4028 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_1X100G:
4029 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X100G;
4030 		break;
4031 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X10G_F:
4032 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_F;
4033 		break;
4034 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X10G_E:
4035 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X10G_E;
4036 		break;
4037 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_BB_4X20G:
4038 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X20G;
4039 		break;
4040 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X40G:
4041 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X40G;
4042 		break;
4043 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X25G:
4044 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X25G;
4045 		break;
4046 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_2X10G:
4047 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_2X10G;
4048 		break;
4049 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_1X25G:
4050 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_1X25G;
4051 		break;
4052 	case NVM_CFG1_GLOB_NETWORK_PORT_MODE_4X25G:
4053 		p_hwfn->hw_info.port_mode = QED_PORT_MODE_DE_4X25G;
4054 		break;
4055 	default:
4056 		DP_NOTICE(p_hwfn, "Unknown port mode in 0x%08x\n", core_cfg);
4057 		break;
4058 	}
4059 
4060 	/* Read default link configuration */
4061 	link = &p_hwfn->mcp_info->link_input;
4062 	p_caps = &p_hwfn->mcp_info->link_capabilities;
4063 	port_cfg_addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4064 			offsetof(struct nvm_cfg1, port[MFW_PORT(p_hwfn)]);
4065 	link_temp = qed_rd(p_hwfn, p_ptt,
4066 			   port_cfg_addr +
4067 			   offsetof(struct nvm_cfg1_port, speed_cap_mask));
4068 	link_temp &= NVM_CFG1_PORT_DRV_SPEED_CAPABILITY_MASK_MASK;
4069 	link->speed.advertised_speeds = link_temp;
4070 
4071 	link_temp = link->speed.advertised_speeds;
4072 	p_hwfn->mcp_info->link_capabilities.speed_capabilities = link_temp;
4073 
4074 	link_temp = qed_rd(p_hwfn, p_ptt,
4075 			   port_cfg_addr +
4076 			   offsetof(struct nvm_cfg1_port, link_settings));
4077 	switch ((link_temp & NVM_CFG1_PORT_DRV_LINK_SPEED_MASK) >>
4078 		NVM_CFG1_PORT_DRV_LINK_SPEED_OFFSET) {
4079 	case NVM_CFG1_PORT_DRV_LINK_SPEED_AUTONEG:
4080 		link->speed.autoneg = true;
4081 		break;
4082 	case NVM_CFG1_PORT_DRV_LINK_SPEED_1G:
4083 		link->speed.forced_speed = 1000;
4084 		break;
4085 	case NVM_CFG1_PORT_DRV_LINK_SPEED_10G:
4086 		link->speed.forced_speed = 10000;
4087 		break;
4088 	case NVM_CFG1_PORT_DRV_LINK_SPEED_20G:
4089 		link->speed.forced_speed = 20000;
4090 		break;
4091 	case NVM_CFG1_PORT_DRV_LINK_SPEED_25G:
4092 		link->speed.forced_speed = 25000;
4093 		break;
4094 	case NVM_CFG1_PORT_DRV_LINK_SPEED_40G:
4095 		link->speed.forced_speed = 40000;
4096 		break;
4097 	case NVM_CFG1_PORT_DRV_LINK_SPEED_50G:
4098 		link->speed.forced_speed = 50000;
4099 		break;
4100 	case NVM_CFG1_PORT_DRV_LINK_SPEED_BB_100G:
4101 		link->speed.forced_speed = 100000;
4102 		break;
4103 	default:
4104 		DP_NOTICE(p_hwfn, "Unknown Speed in 0x%08x\n", link_temp);
4105 	}
4106 
4107 	p_hwfn->mcp_info->link_capabilities.default_speed_autoneg =
4108 		link->speed.autoneg;
4109 
4110 	link_temp &= NVM_CFG1_PORT_DRV_FLOW_CONTROL_MASK;
4111 	link_temp >>= NVM_CFG1_PORT_DRV_FLOW_CONTROL_OFFSET;
4112 	link->pause.autoneg = !!(link_temp &
4113 				 NVM_CFG1_PORT_DRV_FLOW_CONTROL_AUTONEG);
4114 	link->pause.forced_rx = !!(link_temp &
4115 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_RX);
4116 	link->pause.forced_tx = !!(link_temp &
4117 				   NVM_CFG1_PORT_DRV_FLOW_CONTROL_TX);
4118 	link->loopback_mode = 0;
4119 
4120 	if (p_hwfn->mcp_info->capabilities & FW_MB_PARAM_FEATURE_SUPPORT_EEE) {
4121 		link_temp = qed_rd(p_hwfn, p_ptt, port_cfg_addr +
4122 				   offsetof(struct nvm_cfg1_port, ext_phy));
4123 		link_temp &= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_MASK;
4124 		link_temp >>= NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_OFFSET;
4125 		p_caps->default_eee = QED_MCP_EEE_ENABLED;
4126 		link->eee.enable = true;
4127 		switch (link_temp) {
4128 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_DISABLED:
4129 			p_caps->default_eee = QED_MCP_EEE_DISABLED;
4130 			link->eee.enable = false;
4131 			break;
4132 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_BALANCED:
4133 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_BALANCED_TIME;
4134 			break;
4135 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_AGGRESSIVE:
4136 			p_caps->eee_lpi_timer =
4137 			    EEE_TX_TIMER_USEC_AGGRESSIVE_TIME;
4138 			break;
4139 		case NVM_CFG1_PORT_EEE_POWER_SAVING_MODE_LOW_LATENCY:
4140 			p_caps->eee_lpi_timer = EEE_TX_TIMER_USEC_LATENCY_TIME;
4141 			break;
4142 		}
4143 
4144 		link->eee.tx_lpi_timer = p_caps->eee_lpi_timer;
4145 		link->eee.tx_lpi_enable = link->eee.enable;
4146 		link->eee.adv_caps = QED_EEE_1G_ADV | QED_EEE_10G_ADV;
4147 	} else {
4148 		p_caps->default_eee = QED_MCP_EEE_UNSUPPORTED;
4149 	}
4150 
4151 	DP_VERBOSE(p_hwfn,
4152 		   NETIF_MSG_LINK,
4153 		   "Read default link: Speed 0x%08x, Adv. Speed 0x%08x, AN: 0x%02x, PAUSE AN: 0x%02x EEE: %02x [%08x usec]\n",
4154 		   link->speed.forced_speed,
4155 		   link->speed.advertised_speeds,
4156 		   link->speed.autoneg,
4157 		   link->pause.autoneg,
4158 		   p_caps->default_eee, p_caps->eee_lpi_timer);
4159 
4160 	if (IS_LEAD_HWFN(p_hwfn)) {
4161 		struct qed_dev *cdev = p_hwfn->cdev;
4162 
4163 		/* Read Multi-function information from shmem */
4164 		addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4165 		       offsetof(struct nvm_cfg1, glob) +
4166 		       offsetof(struct nvm_cfg1_glob, generic_cont0);
4167 
4168 		generic_cont0 = qed_rd(p_hwfn, p_ptt, addr);
4169 
4170 		mf_mode = (generic_cont0 & NVM_CFG1_GLOB_MF_MODE_MASK) >>
4171 			  NVM_CFG1_GLOB_MF_MODE_OFFSET;
4172 
4173 		switch (mf_mode) {
4174 		case NVM_CFG1_GLOB_MF_MODE_MF_ALLOWED:
4175 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS);
4176 			break;
4177 		case NVM_CFG1_GLOB_MF_MODE_UFP:
4178 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
4179 					BIT(QED_MF_LLH_PROTO_CLSS) |
4180 					BIT(QED_MF_UFP_SPECIFIC) |
4181 					BIT(QED_MF_8021Q_TAGGING) |
4182 					BIT(QED_MF_DONT_ADD_VLAN0_TAG);
4183 			break;
4184 		case NVM_CFG1_GLOB_MF_MODE_BD:
4185 			cdev->mf_bits = BIT(QED_MF_OVLAN_CLSS) |
4186 					BIT(QED_MF_LLH_PROTO_CLSS) |
4187 					BIT(QED_MF_8021AD_TAGGING) |
4188 					BIT(QED_MF_DONT_ADD_VLAN0_TAG);
4189 			break;
4190 		case NVM_CFG1_GLOB_MF_MODE_NPAR1_0:
4191 			cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
4192 					BIT(QED_MF_LLH_PROTO_CLSS) |
4193 					BIT(QED_MF_LL2_NON_UNICAST) |
4194 					BIT(QED_MF_INTER_PF_SWITCH);
4195 			break;
4196 		case NVM_CFG1_GLOB_MF_MODE_DEFAULT:
4197 			cdev->mf_bits = BIT(QED_MF_LLH_MAC_CLSS) |
4198 					BIT(QED_MF_LLH_PROTO_CLSS) |
4199 					BIT(QED_MF_LL2_NON_UNICAST);
4200 			if (QED_IS_BB(p_hwfn->cdev))
4201 				cdev->mf_bits |= BIT(QED_MF_NEED_DEF_PF);
4202 			break;
4203 		}
4204 
4205 		DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4206 			cdev->mf_bits);
4207 	}
4208 
4209 	DP_INFO(p_hwfn, "Multi function mode is 0x%lx\n",
4210 		p_hwfn->cdev->mf_bits);
4211 
4212 	/* Read device capabilities information from shmem */
4213 	addr = MCP_REG_SCRATCH + nvm_cfg1_offset +
4214 		offsetof(struct nvm_cfg1, glob) +
4215 		offsetof(struct nvm_cfg1_glob, device_capabilities);
4216 
4217 	device_capabilities = qed_rd(p_hwfn, p_ptt, addr);
4218 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ETHERNET)
4219 		__set_bit(QED_DEV_CAP_ETH,
4220 			  &p_hwfn->hw_info.device_capabilities);
4221 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_FCOE)
4222 		__set_bit(QED_DEV_CAP_FCOE,
4223 			  &p_hwfn->hw_info.device_capabilities);
4224 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ISCSI)
4225 		__set_bit(QED_DEV_CAP_ISCSI,
4226 			  &p_hwfn->hw_info.device_capabilities);
4227 	if (device_capabilities & NVM_CFG1_GLOB_DEVICE_CAPABILITIES_ROCE)
4228 		__set_bit(QED_DEV_CAP_ROCE,
4229 			  &p_hwfn->hw_info.device_capabilities);
4230 
4231 	return qed_mcp_fill_shmem_func_info(p_hwfn, p_ptt);
4232 }
4233 
4234 static void qed_get_num_funcs(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4235 {
4236 	u8 num_funcs, enabled_func_idx = p_hwfn->rel_pf_id;
4237 	u32 reg_function_hide, tmp, eng_mask, low_pfs_mask;
4238 	struct qed_dev *cdev = p_hwfn->cdev;
4239 
4240 	num_funcs = QED_IS_AH(cdev) ? MAX_NUM_PFS_K2 : MAX_NUM_PFS_BB;
4241 
4242 	/* Bit 0 of MISCS_REG_FUNCTION_HIDE indicates whether the bypass values
4243 	 * in the other bits are selected.
4244 	 * Bits 1-15 are for functions 1-15, respectively, and their value is
4245 	 * '0' only for enabled functions (function 0 always exists and
4246 	 * enabled).
4247 	 * In case of CMT, only the "even" functions are enabled, and thus the
4248 	 * number of functions for both hwfns is learnt from the same bits.
4249 	 */
4250 	reg_function_hide = qed_rd(p_hwfn, p_ptt, MISCS_REG_FUNCTION_HIDE);
4251 
4252 	if (reg_function_hide & 0x1) {
4253 		if (QED_IS_BB(cdev)) {
4254 			if (QED_PATH_ID(p_hwfn) && cdev->num_hwfns == 1) {
4255 				num_funcs = 0;
4256 				eng_mask = 0xaaaa;
4257 			} else {
4258 				num_funcs = 1;
4259 				eng_mask = 0x5554;
4260 			}
4261 		} else {
4262 			num_funcs = 1;
4263 			eng_mask = 0xfffe;
4264 		}
4265 
4266 		/* Get the number of the enabled functions on the engine */
4267 		tmp = (reg_function_hide ^ 0xffffffff) & eng_mask;
4268 		while (tmp) {
4269 			if (tmp & 0x1)
4270 				num_funcs++;
4271 			tmp >>= 0x1;
4272 		}
4273 
4274 		/* Get the PF index within the enabled functions */
4275 		low_pfs_mask = (0x1 << p_hwfn->abs_pf_id) - 1;
4276 		tmp = reg_function_hide & eng_mask & low_pfs_mask;
4277 		while (tmp) {
4278 			if (tmp & 0x1)
4279 				enabled_func_idx--;
4280 			tmp >>= 0x1;
4281 		}
4282 	}
4283 
4284 	p_hwfn->num_funcs_on_engine = num_funcs;
4285 	p_hwfn->enabled_func_idx = enabled_func_idx;
4286 
4287 	DP_VERBOSE(p_hwfn,
4288 		   NETIF_MSG_PROBE,
4289 		   "PF [rel_id %d, abs_id %d] occupies index %d within the %d enabled functions on the engine\n",
4290 		   p_hwfn->rel_pf_id,
4291 		   p_hwfn->abs_pf_id,
4292 		   p_hwfn->enabled_func_idx, p_hwfn->num_funcs_on_engine);
4293 }
4294 
4295 static void qed_hw_info_port_num(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4296 {
4297 	u32 addr, global_offsize, global_addr, port_mode;
4298 	struct qed_dev *cdev = p_hwfn->cdev;
4299 
4300 	/* In CMT there is always only one port */
4301 	if (cdev->num_hwfns > 1) {
4302 		cdev->num_ports_in_engine = 1;
4303 		cdev->num_ports = 1;
4304 		return;
4305 	}
4306 
4307 	/* Determine the number of ports per engine */
4308 	port_mode = qed_rd(p_hwfn, p_ptt, MISC_REG_PORT_MODE);
4309 	switch (port_mode) {
4310 	case 0x0:
4311 		cdev->num_ports_in_engine = 1;
4312 		break;
4313 	case 0x1:
4314 		cdev->num_ports_in_engine = 2;
4315 		break;
4316 	case 0x2:
4317 		cdev->num_ports_in_engine = 4;
4318 		break;
4319 	default:
4320 		DP_NOTICE(p_hwfn, "Unknown port mode 0x%08x\n", port_mode);
4321 		cdev->num_ports_in_engine = 1;	/* Default to something */
4322 		break;
4323 	}
4324 
4325 	/* Get the total number of ports of the device */
4326 	addr = SECTION_OFFSIZE_ADDR(p_hwfn->mcp_info->public_base,
4327 				    PUBLIC_GLOBAL);
4328 	global_offsize = qed_rd(p_hwfn, p_ptt, addr);
4329 	global_addr = SECTION_ADDR(global_offsize, 0);
4330 	addr = global_addr + offsetof(struct public_global, max_ports);
4331 	cdev->num_ports = (u8)qed_rd(p_hwfn, p_ptt, addr);
4332 }
4333 
4334 static void qed_get_eee_caps(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4335 {
4336 	struct qed_mcp_link_capabilities *p_caps;
4337 	u32 eee_status;
4338 
4339 	p_caps = &p_hwfn->mcp_info->link_capabilities;
4340 	if (p_caps->default_eee == QED_MCP_EEE_UNSUPPORTED)
4341 		return;
4342 
4343 	p_caps->eee_speed_caps = 0;
4344 	eee_status = qed_rd(p_hwfn, p_ptt, p_hwfn->mcp_info->port_addr +
4345 			    offsetof(struct public_port, eee_status));
4346 	eee_status = (eee_status & EEE_SUPPORTED_SPEED_MASK) >>
4347 			EEE_SUPPORTED_SPEED_OFFSET;
4348 
4349 	if (eee_status & EEE_1G_SUPPORTED)
4350 		p_caps->eee_speed_caps |= QED_EEE_1G_ADV;
4351 	if (eee_status & EEE_10G_ADV)
4352 		p_caps->eee_speed_caps |= QED_EEE_10G_ADV;
4353 }
4354 
4355 static int
4356 qed_get_hw_info(struct qed_hwfn *p_hwfn,
4357 		struct qed_ptt *p_ptt,
4358 		enum qed_pci_personality personality)
4359 {
4360 	int rc;
4361 
4362 	/* Since all information is common, only first hwfns should do this */
4363 	if (IS_LEAD_HWFN(p_hwfn)) {
4364 		rc = qed_iov_hw_info(p_hwfn);
4365 		if (rc)
4366 			return rc;
4367 	}
4368 
4369 	if (IS_LEAD_HWFN(p_hwfn))
4370 		qed_hw_info_port_num(p_hwfn, p_ptt);
4371 
4372 	qed_mcp_get_capabilities(p_hwfn, p_ptt);
4373 
4374 	qed_hw_get_nvm_info(p_hwfn, p_ptt);
4375 
4376 	rc = qed_int_igu_read_cam(p_hwfn, p_ptt);
4377 	if (rc)
4378 		return rc;
4379 
4380 	if (qed_mcp_is_init(p_hwfn))
4381 		ether_addr_copy(p_hwfn->hw_info.hw_mac_addr,
4382 				p_hwfn->mcp_info->func_info.mac);
4383 	else
4384 		eth_random_addr(p_hwfn->hw_info.hw_mac_addr);
4385 
4386 	if (qed_mcp_is_init(p_hwfn)) {
4387 		if (p_hwfn->mcp_info->func_info.ovlan != QED_MCP_VLAN_UNSET)
4388 			p_hwfn->hw_info.ovlan =
4389 				p_hwfn->mcp_info->func_info.ovlan;
4390 
4391 		qed_mcp_cmd_port_init(p_hwfn, p_ptt);
4392 
4393 		qed_get_eee_caps(p_hwfn, p_ptt);
4394 
4395 		qed_mcp_read_ufp_config(p_hwfn, p_ptt);
4396 	}
4397 
4398 	if (qed_mcp_is_init(p_hwfn)) {
4399 		enum qed_pci_personality protocol;
4400 
4401 		protocol = p_hwfn->mcp_info->func_info.protocol;
4402 		p_hwfn->hw_info.personality = protocol;
4403 	}
4404 
4405 	if (QED_IS_ROCE_PERSONALITY(p_hwfn))
4406 		p_hwfn->hw_info.multi_tc_roce_en = true;
4407 
4408 	p_hwfn->hw_info.num_hw_tc = NUM_PHYS_TCS_4PORT_K2;
4409 	p_hwfn->hw_info.num_active_tc = 1;
4410 
4411 	qed_get_num_funcs(p_hwfn, p_ptt);
4412 
4413 	if (qed_mcp_is_init(p_hwfn))
4414 		p_hwfn->hw_info.mtu = p_hwfn->mcp_info->func_info.mtu;
4415 
4416 	return qed_hw_get_resc(p_hwfn, p_ptt);
4417 }
4418 
4419 static int qed_get_dev_info(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
4420 {
4421 	struct qed_dev *cdev = p_hwfn->cdev;
4422 	u16 device_id_mask;
4423 	u32 tmp;
4424 
4425 	/* Read Vendor Id / Device Id */
4426 	pci_read_config_word(cdev->pdev, PCI_VENDOR_ID, &cdev->vendor_id);
4427 	pci_read_config_word(cdev->pdev, PCI_DEVICE_ID, &cdev->device_id);
4428 
4429 	/* Determine type */
4430 	device_id_mask = cdev->device_id & QED_DEV_ID_MASK;
4431 	switch (device_id_mask) {
4432 	case QED_DEV_ID_MASK_BB:
4433 		cdev->type = QED_DEV_TYPE_BB;
4434 		break;
4435 	case QED_DEV_ID_MASK_AH:
4436 		cdev->type = QED_DEV_TYPE_AH;
4437 		break;
4438 	default:
4439 		DP_NOTICE(p_hwfn, "Unknown device id 0x%x\n", cdev->device_id);
4440 		return -EBUSY;
4441 	}
4442 
4443 	cdev->chip_num = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_NUM);
4444 	cdev->chip_rev = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_REV);
4445 
4446 	MASK_FIELD(CHIP_REV, cdev->chip_rev);
4447 
4448 	/* Learn number of HW-functions */
4449 	tmp = qed_rd(p_hwfn, p_ptt, MISCS_REG_CMT_ENABLED_FOR_PAIR);
4450 
4451 	if (tmp & (1 << p_hwfn->rel_pf_id)) {
4452 		DP_NOTICE(cdev->hwfns, "device in CMT mode\n");
4453 		cdev->num_hwfns = 2;
4454 	} else {
4455 		cdev->num_hwfns = 1;
4456 	}
4457 
4458 	cdev->chip_bond_id = qed_rd(p_hwfn, p_ptt,
4459 				    MISCS_REG_CHIP_TEST_REG) >> 4;
4460 	MASK_FIELD(CHIP_BOND_ID, cdev->chip_bond_id);
4461 	cdev->chip_metal = (u16)qed_rd(p_hwfn, p_ptt, MISCS_REG_CHIP_METAL);
4462 	MASK_FIELD(CHIP_METAL, cdev->chip_metal);
4463 
4464 	DP_INFO(cdev->hwfns,
4465 		"Chip details - %s %c%d, Num: %04x Rev: %04x Bond id: %04x Metal: %04x\n",
4466 		QED_IS_BB(cdev) ? "BB" : "AH",
4467 		'A' + cdev->chip_rev,
4468 		(int)cdev->chip_metal,
4469 		cdev->chip_num, cdev->chip_rev,
4470 		cdev->chip_bond_id, cdev->chip_metal);
4471 
4472 	return 0;
4473 }
4474 
4475 static void qed_nvm_info_free(struct qed_hwfn *p_hwfn)
4476 {
4477 	kfree(p_hwfn->nvm_info.image_att);
4478 	p_hwfn->nvm_info.image_att = NULL;
4479 }
4480 
4481 static int qed_hw_prepare_single(struct qed_hwfn *p_hwfn,
4482 				 void __iomem *p_regview,
4483 				 void __iomem *p_doorbells,
4484 				 u64 db_phys_addr,
4485 				 enum qed_pci_personality personality)
4486 {
4487 	struct qed_dev *cdev = p_hwfn->cdev;
4488 	int rc = 0;
4489 
4490 	/* Split PCI bars evenly between hwfns */
4491 	p_hwfn->regview = p_regview;
4492 	p_hwfn->doorbells = p_doorbells;
4493 	p_hwfn->db_phys_addr = db_phys_addr;
4494 
4495 	if (IS_VF(p_hwfn->cdev))
4496 		return qed_vf_hw_prepare(p_hwfn);
4497 
4498 	/* Validate that chip access is feasible */
4499 	if (REG_RD(p_hwfn, PXP_PF_ME_OPAQUE_ADDR) == 0xffffffff) {
4500 		DP_ERR(p_hwfn,
4501 		       "Reading the ME register returns all Fs; Preventing further chip access\n");
4502 		return -EINVAL;
4503 	}
4504 
4505 	get_function_id(p_hwfn);
4506 
4507 	/* Allocate PTT pool */
4508 	rc = qed_ptt_pool_alloc(p_hwfn);
4509 	if (rc)
4510 		goto err0;
4511 
4512 	/* Allocate the main PTT */
4513 	p_hwfn->p_main_ptt = qed_get_reserved_ptt(p_hwfn, RESERVED_PTT_MAIN);
4514 
4515 	/* First hwfn learns basic information, e.g., number of hwfns */
4516 	if (!p_hwfn->my_id) {
4517 		rc = qed_get_dev_info(p_hwfn, p_hwfn->p_main_ptt);
4518 		if (rc)
4519 			goto err1;
4520 	}
4521 
4522 	qed_hw_hwfn_prepare(p_hwfn);
4523 
4524 	/* Initialize MCP structure */
4525 	rc = qed_mcp_cmd_init(p_hwfn, p_hwfn->p_main_ptt);
4526 	if (rc) {
4527 		DP_NOTICE(p_hwfn, "Failed initializing mcp command\n");
4528 		goto err1;
4529 	}
4530 
4531 	/* Read the device configuration information from the HW and SHMEM */
4532 	rc = qed_get_hw_info(p_hwfn, p_hwfn->p_main_ptt, personality);
4533 	if (rc) {
4534 		DP_NOTICE(p_hwfn, "Failed to get HW information\n");
4535 		goto err2;
4536 	}
4537 
4538 	/* Sending a mailbox to the MFW should be done after qed_get_hw_info()
4539 	 * is called as it sets the ports number in an engine.
4540 	 */
4541 	if (IS_LEAD_HWFN(p_hwfn) && !cdev->recov_in_prog) {
4542 		rc = qed_mcp_initiate_pf_flr(p_hwfn, p_hwfn->p_main_ptt);
4543 		if (rc)
4544 			DP_NOTICE(p_hwfn, "Failed to initiate PF FLR\n");
4545 	}
4546 
4547 	/* NVRAM info initialization and population */
4548 	if (IS_LEAD_HWFN(p_hwfn)) {
4549 		rc = qed_mcp_nvm_info_populate(p_hwfn);
4550 		if (rc) {
4551 			DP_NOTICE(p_hwfn,
4552 				  "Failed to populate nvm info shadow\n");
4553 			goto err2;
4554 		}
4555 	}
4556 
4557 	/* Allocate the init RT array and initialize the init-ops engine */
4558 	rc = qed_init_alloc(p_hwfn);
4559 	if (rc)
4560 		goto err3;
4561 
4562 	return rc;
4563 err3:
4564 	if (IS_LEAD_HWFN(p_hwfn))
4565 		qed_nvm_info_free(p_hwfn);
4566 err2:
4567 	if (IS_LEAD_HWFN(p_hwfn))
4568 		qed_iov_free_hw_info(p_hwfn->cdev);
4569 	qed_mcp_free(p_hwfn);
4570 err1:
4571 	qed_hw_hwfn_free(p_hwfn);
4572 err0:
4573 	return rc;
4574 }
4575 
4576 int qed_hw_prepare(struct qed_dev *cdev,
4577 		   int personality)
4578 {
4579 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
4580 	int rc;
4581 
4582 	/* Store the precompiled init data ptrs */
4583 	if (IS_PF(cdev))
4584 		qed_init_iro_array(cdev);
4585 
4586 	/* Initialize the first hwfn - will learn number of hwfns */
4587 	rc = qed_hw_prepare_single(p_hwfn,
4588 				   cdev->regview,
4589 				   cdev->doorbells,
4590 				   cdev->db_phys_addr,
4591 				   personality);
4592 	if (rc)
4593 		return rc;
4594 
4595 	personality = p_hwfn->hw_info.personality;
4596 
4597 	/* Initialize the rest of the hwfns */
4598 	if (cdev->num_hwfns > 1) {
4599 		void __iomem *p_regview, *p_doorbell;
4600 		u64 db_phys_addr;
4601 		u32 offset;
4602 
4603 		/* adjust bar offset for second engine */
4604 		offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
4605 					 BAR_ID_0) / 2;
4606 		p_regview = cdev->regview + offset;
4607 
4608 		offset = qed_hw_bar_size(p_hwfn, p_hwfn->p_main_ptt,
4609 					 BAR_ID_1) / 2;
4610 
4611 		p_doorbell = cdev->doorbells + offset;
4612 
4613 		db_phys_addr = cdev->db_phys_addr + offset;
4614 
4615 		/* prepare second hw function */
4616 		rc = qed_hw_prepare_single(&cdev->hwfns[1], p_regview,
4617 					   p_doorbell, db_phys_addr,
4618 					   personality);
4619 
4620 		/* in case of error, need to free the previously
4621 		 * initiliazed hwfn 0.
4622 		 */
4623 		if (rc) {
4624 			if (IS_PF(cdev)) {
4625 				qed_init_free(p_hwfn);
4626 				qed_nvm_info_free(p_hwfn);
4627 				qed_mcp_free(p_hwfn);
4628 				qed_hw_hwfn_free(p_hwfn);
4629 			}
4630 		}
4631 	}
4632 
4633 	return rc;
4634 }
4635 
4636 void qed_hw_remove(struct qed_dev *cdev)
4637 {
4638 	struct qed_hwfn *p_hwfn = QED_LEADING_HWFN(cdev);
4639 	int i;
4640 
4641 	if (IS_PF(cdev))
4642 		qed_mcp_ov_update_driver_state(p_hwfn, p_hwfn->p_main_ptt,
4643 					       QED_OV_DRIVER_STATE_NOT_LOADED);
4644 
4645 	for_each_hwfn(cdev, i) {
4646 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
4647 
4648 		if (IS_VF(cdev)) {
4649 			qed_vf_pf_release(p_hwfn);
4650 			continue;
4651 		}
4652 
4653 		qed_init_free(p_hwfn);
4654 		qed_hw_hwfn_free(p_hwfn);
4655 		qed_mcp_free(p_hwfn);
4656 	}
4657 
4658 	qed_iov_free_hw_info(cdev);
4659 
4660 	qed_nvm_info_free(p_hwfn);
4661 }
4662 
4663 static void qed_chain_free_next_ptr(struct qed_dev *cdev,
4664 				    struct qed_chain *p_chain)
4665 {
4666 	void *p_virt = p_chain->p_virt_addr, *p_virt_next = NULL;
4667 	dma_addr_t p_phys = p_chain->p_phys_addr, p_phys_next = 0;
4668 	struct qed_chain_next *p_next;
4669 	u32 size, i;
4670 
4671 	if (!p_virt)
4672 		return;
4673 
4674 	size = p_chain->elem_size * p_chain->usable_per_page;
4675 
4676 	for (i = 0; i < p_chain->page_cnt; i++) {
4677 		if (!p_virt)
4678 			break;
4679 
4680 		p_next = (struct qed_chain_next *)((u8 *)p_virt + size);
4681 		p_virt_next = p_next->next_virt;
4682 		p_phys_next = HILO_DMA_REGPAIR(p_next->next_phys);
4683 
4684 		dma_free_coherent(&cdev->pdev->dev,
4685 				  QED_CHAIN_PAGE_SIZE, p_virt, p_phys);
4686 
4687 		p_virt = p_virt_next;
4688 		p_phys = p_phys_next;
4689 	}
4690 }
4691 
4692 static void qed_chain_free_single(struct qed_dev *cdev,
4693 				  struct qed_chain *p_chain)
4694 {
4695 	if (!p_chain->p_virt_addr)
4696 		return;
4697 
4698 	dma_free_coherent(&cdev->pdev->dev,
4699 			  QED_CHAIN_PAGE_SIZE,
4700 			  p_chain->p_virt_addr, p_chain->p_phys_addr);
4701 }
4702 
4703 static void qed_chain_free_pbl(struct qed_dev *cdev, struct qed_chain *p_chain)
4704 {
4705 	struct addr_tbl_entry *pp_addr_tbl = p_chain->pbl.pp_addr_tbl;
4706 	u32 page_cnt = p_chain->page_cnt, i, pbl_size;
4707 
4708 	if (!pp_addr_tbl)
4709 		return;
4710 
4711 	for (i = 0; i < page_cnt; i++) {
4712 		if (!pp_addr_tbl[i].virt_addr || !pp_addr_tbl[i].dma_map)
4713 			break;
4714 
4715 		dma_free_coherent(&cdev->pdev->dev,
4716 				  QED_CHAIN_PAGE_SIZE,
4717 				  pp_addr_tbl[i].virt_addr,
4718 				  pp_addr_tbl[i].dma_map);
4719 	}
4720 
4721 	pbl_size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
4722 
4723 	if (!p_chain->b_external_pbl)
4724 		dma_free_coherent(&cdev->pdev->dev,
4725 				  pbl_size,
4726 				  p_chain->pbl_sp.p_virt_table,
4727 				  p_chain->pbl_sp.p_phys_table);
4728 
4729 	vfree(p_chain->pbl.pp_addr_tbl);
4730 	p_chain->pbl.pp_addr_tbl = NULL;
4731 }
4732 
4733 void qed_chain_free(struct qed_dev *cdev, struct qed_chain *p_chain)
4734 {
4735 	switch (p_chain->mode) {
4736 	case QED_CHAIN_MODE_NEXT_PTR:
4737 		qed_chain_free_next_ptr(cdev, p_chain);
4738 		break;
4739 	case QED_CHAIN_MODE_SINGLE:
4740 		qed_chain_free_single(cdev, p_chain);
4741 		break;
4742 	case QED_CHAIN_MODE_PBL:
4743 		qed_chain_free_pbl(cdev, p_chain);
4744 		break;
4745 	}
4746 }
4747 
4748 static int
4749 qed_chain_alloc_sanity_check(struct qed_dev *cdev,
4750 			     enum qed_chain_cnt_type cnt_type,
4751 			     size_t elem_size, u32 page_cnt)
4752 {
4753 	u64 chain_size = ELEMS_PER_PAGE(elem_size) * page_cnt;
4754 
4755 	/* The actual chain size can be larger than the maximal possible value
4756 	 * after rounding up the requested elements number to pages, and after
4757 	 * taking into acount the unusuable elements (next-ptr elements).
4758 	 * The size of a "u16" chain can be (U16_MAX + 1) since the chain
4759 	 * size/capacity fields are of a u32 type.
4760 	 */
4761 	if ((cnt_type == QED_CHAIN_CNT_TYPE_U16 &&
4762 	     chain_size > ((u32)U16_MAX + 1)) ||
4763 	    (cnt_type == QED_CHAIN_CNT_TYPE_U32 && chain_size > U32_MAX)) {
4764 		DP_NOTICE(cdev,
4765 			  "The actual chain size (0x%llx) is larger than the maximal possible value\n",
4766 			  chain_size);
4767 		return -EINVAL;
4768 	}
4769 
4770 	return 0;
4771 }
4772 
4773 static int
4774 qed_chain_alloc_next_ptr(struct qed_dev *cdev, struct qed_chain *p_chain)
4775 {
4776 	void *p_virt = NULL, *p_virt_prev = NULL;
4777 	dma_addr_t p_phys = 0;
4778 	u32 i;
4779 
4780 	for (i = 0; i < p_chain->page_cnt; i++) {
4781 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4782 					    QED_CHAIN_PAGE_SIZE,
4783 					    &p_phys, GFP_KERNEL);
4784 		if (!p_virt)
4785 			return -ENOMEM;
4786 
4787 		if (i == 0) {
4788 			qed_chain_init_mem(p_chain, p_virt, p_phys);
4789 			qed_chain_reset(p_chain);
4790 		} else {
4791 			qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4792 						     p_virt, p_phys);
4793 		}
4794 
4795 		p_virt_prev = p_virt;
4796 	}
4797 	/* Last page's next element should point to the beginning of the
4798 	 * chain.
4799 	 */
4800 	qed_chain_init_next_ptr_elem(p_chain, p_virt_prev,
4801 				     p_chain->p_virt_addr,
4802 				     p_chain->p_phys_addr);
4803 
4804 	return 0;
4805 }
4806 
4807 static int
4808 qed_chain_alloc_single(struct qed_dev *cdev, struct qed_chain *p_chain)
4809 {
4810 	dma_addr_t p_phys = 0;
4811 	void *p_virt = NULL;
4812 
4813 	p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4814 				    QED_CHAIN_PAGE_SIZE, &p_phys, GFP_KERNEL);
4815 	if (!p_virt)
4816 		return -ENOMEM;
4817 
4818 	qed_chain_init_mem(p_chain, p_virt, p_phys);
4819 	qed_chain_reset(p_chain);
4820 
4821 	return 0;
4822 }
4823 
4824 static int
4825 qed_chain_alloc_pbl(struct qed_dev *cdev,
4826 		    struct qed_chain *p_chain,
4827 		    struct qed_chain_ext_pbl *ext_pbl)
4828 {
4829 	u32 page_cnt = p_chain->page_cnt, size, i;
4830 	dma_addr_t p_phys = 0, p_pbl_phys = 0;
4831 	struct addr_tbl_entry *pp_addr_tbl;
4832 	u8 *p_pbl_virt = NULL;
4833 	void *p_virt = NULL;
4834 
4835 	size = page_cnt * sizeof(*pp_addr_tbl);
4836 	pp_addr_tbl =  vzalloc(size);
4837 	if (!pp_addr_tbl)
4838 		return -ENOMEM;
4839 
4840 	/* The allocation of the PBL table is done with its full size, since it
4841 	 * is expected to be successive.
4842 	 * qed_chain_init_pbl_mem() is called even in a case of an allocation
4843 	 * failure, since tbl was previously allocated, and it
4844 	 * should be saved to allow its freeing during the error flow.
4845 	 */
4846 	size = page_cnt * QED_CHAIN_PBL_ENTRY_SIZE;
4847 
4848 	if (!ext_pbl) {
4849 		p_pbl_virt = dma_alloc_coherent(&cdev->pdev->dev,
4850 						size, &p_pbl_phys, GFP_KERNEL);
4851 	} else {
4852 		p_pbl_virt = ext_pbl->p_pbl_virt;
4853 		p_pbl_phys = ext_pbl->p_pbl_phys;
4854 		p_chain->b_external_pbl = true;
4855 	}
4856 
4857 	qed_chain_init_pbl_mem(p_chain, p_pbl_virt, p_pbl_phys, pp_addr_tbl);
4858 	if (!p_pbl_virt)
4859 		return -ENOMEM;
4860 
4861 	for (i = 0; i < page_cnt; i++) {
4862 		p_virt = dma_alloc_coherent(&cdev->pdev->dev,
4863 					    QED_CHAIN_PAGE_SIZE,
4864 					    &p_phys, GFP_KERNEL);
4865 		if (!p_virt)
4866 			return -ENOMEM;
4867 
4868 		if (i == 0) {
4869 			qed_chain_init_mem(p_chain, p_virt, p_phys);
4870 			qed_chain_reset(p_chain);
4871 		}
4872 
4873 		/* Fill the PBL table with the physical address of the page */
4874 		*(dma_addr_t *)p_pbl_virt = p_phys;
4875 		/* Keep the virtual address of the page */
4876 		p_chain->pbl.pp_addr_tbl[i].virt_addr = p_virt;
4877 		p_chain->pbl.pp_addr_tbl[i].dma_map = p_phys;
4878 
4879 		p_pbl_virt += QED_CHAIN_PBL_ENTRY_SIZE;
4880 	}
4881 
4882 	return 0;
4883 }
4884 
4885 int qed_chain_alloc(struct qed_dev *cdev,
4886 		    enum qed_chain_use_mode intended_use,
4887 		    enum qed_chain_mode mode,
4888 		    enum qed_chain_cnt_type cnt_type,
4889 		    u32 num_elems,
4890 		    size_t elem_size,
4891 		    struct qed_chain *p_chain,
4892 		    struct qed_chain_ext_pbl *ext_pbl)
4893 {
4894 	u32 page_cnt;
4895 	int rc = 0;
4896 
4897 	if (mode == QED_CHAIN_MODE_SINGLE)
4898 		page_cnt = 1;
4899 	else
4900 		page_cnt = QED_CHAIN_PAGE_CNT(num_elems, elem_size, mode);
4901 
4902 	rc = qed_chain_alloc_sanity_check(cdev, cnt_type, elem_size, page_cnt);
4903 	if (rc) {
4904 		DP_NOTICE(cdev,
4905 			  "Cannot allocate a chain with the given arguments:\n");
4906 		DP_NOTICE(cdev,
4907 			  "[use_mode %d, mode %d, cnt_type %d, num_elems %d, elem_size %zu]\n",
4908 			  intended_use, mode, cnt_type, num_elems, elem_size);
4909 		return rc;
4910 	}
4911 
4912 	qed_chain_init_params(p_chain, page_cnt, (u8) elem_size, intended_use,
4913 			      mode, cnt_type);
4914 
4915 	switch (mode) {
4916 	case QED_CHAIN_MODE_NEXT_PTR:
4917 		rc = qed_chain_alloc_next_ptr(cdev, p_chain);
4918 		break;
4919 	case QED_CHAIN_MODE_SINGLE:
4920 		rc = qed_chain_alloc_single(cdev, p_chain);
4921 		break;
4922 	case QED_CHAIN_MODE_PBL:
4923 		rc = qed_chain_alloc_pbl(cdev, p_chain, ext_pbl);
4924 		break;
4925 	}
4926 	if (rc)
4927 		goto nomem;
4928 
4929 	return 0;
4930 
4931 nomem:
4932 	qed_chain_free(cdev, p_chain);
4933 	return rc;
4934 }
4935 
4936 int qed_fw_l2_queue(struct qed_hwfn *p_hwfn, u16 src_id, u16 *dst_id)
4937 {
4938 	if (src_id >= RESC_NUM(p_hwfn, QED_L2_QUEUE)) {
4939 		u16 min, max;
4940 
4941 		min = (u16) RESC_START(p_hwfn, QED_L2_QUEUE);
4942 		max = min + RESC_NUM(p_hwfn, QED_L2_QUEUE);
4943 		DP_NOTICE(p_hwfn,
4944 			  "l2_queue id [%d] is not valid, available indices [%d - %d]\n",
4945 			  src_id, min, max);
4946 
4947 		return -EINVAL;
4948 	}
4949 
4950 	*dst_id = RESC_START(p_hwfn, QED_L2_QUEUE) + src_id;
4951 
4952 	return 0;
4953 }
4954 
4955 int qed_fw_vport(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
4956 {
4957 	if (src_id >= RESC_NUM(p_hwfn, QED_VPORT)) {
4958 		u8 min, max;
4959 
4960 		min = (u8)RESC_START(p_hwfn, QED_VPORT);
4961 		max = min + RESC_NUM(p_hwfn, QED_VPORT);
4962 		DP_NOTICE(p_hwfn,
4963 			  "vport id [%d] is not valid, available indices [%d - %d]\n",
4964 			  src_id, min, max);
4965 
4966 		return -EINVAL;
4967 	}
4968 
4969 	*dst_id = RESC_START(p_hwfn, QED_VPORT) + src_id;
4970 
4971 	return 0;
4972 }
4973 
4974 int qed_fw_rss_eng(struct qed_hwfn *p_hwfn, u8 src_id, u8 *dst_id)
4975 {
4976 	if (src_id >= RESC_NUM(p_hwfn, QED_RSS_ENG)) {
4977 		u8 min, max;
4978 
4979 		min = (u8)RESC_START(p_hwfn, QED_RSS_ENG);
4980 		max = min + RESC_NUM(p_hwfn, QED_RSS_ENG);
4981 		DP_NOTICE(p_hwfn,
4982 			  "rss_eng id [%d] is not valid, available indices [%d - %d]\n",
4983 			  src_id, min, max);
4984 
4985 		return -EINVAL;
4986 	}
4987 
4988 	*dst_id = RESC_START(p_hwfn, QED_RSS_ENG) + src_id;
4989 
4990 	return 0;
4991 }
4992 
4993 static int qed_set_coalesce(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt,
4994 			    u32 hw_addr, void *p_eth_qzone,
4995 			    size_t eth_qzone_size, u8 timeset)
4996 {
4997 	struct coalescing_timeset *p_coal_timeset;
4998 
4999 	if (p_hwfn->cdev->int_coalescing_mode != QED_COAL_MODE_ENABLE) {
5000 		DP_NOTICE(p_hwfn, "Coalescing configuration not enabled\n");
5001 		return -EINVAL;
5002 	}
5003 
5004 	p_coal_timeset = p_eth_qzone;
5005 	memset(p_eth_qzone, 0, eth_qzone_size);
5006 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_TIMESET, timeset);
5007 	SET_FIELD(p_coal_timeset->value, COALESCING_TIMESET_VALID, 1);
5008 	qed_memcpy_to(p_hwfn, p_ptt, hw_addr, p_eth_qzone, eth_qzone_size);
5009 
5010 	return 0;
5011 }
5012 
5013 int qed_set_queue_coalesce(u16 rx_coal, u16 tx_coal, void *p_handle)
5014 {
5015 	struct qed_queue_cid *p_cid = p_handle;
5016 	struct qed_hwfn *p_hwfn;
5017 	struct qed_ptt *p_ptt;
5018 	int rc = 0;
5019 
5020 	p_hwfn = p_cid->p_owner;
5021 
5022 	if (IS_VF(p_hwfn->cdev))
5023 		return qed_vf_pf_set_coalesce(p_hwfn, rx_coal, tx_coal, p_cid);
5024 
5025 	p_ptt = qed_ptt_acquire(p_hwfn);
5026 	if (!p_ptt)
5027 		return -EAGAIN;
5028 
5029 	if (rx_coal) {
5030 		rc = qed_set_rxq_coalesce(p_hwfn, p_ptt, rx_coal, p_cid);
5031 		if (rc)
5032 			goto out;
5033 		p_hwfn->cdev->rx_coalesce_usecs = rx_coal;
5034 	}
5035 
5036 	if (tx_coal) {
5037 		rc = qed_set_txq_coalesce(p_hwfn, p_ptt, tx_coal, p_cid);
5038 		if (rc)
5039 			goto out;
5040 		p_hwfn->cdev->tx_coalesce_usecs = tx_coal;
5041 	}
5042 out:
5043 	qed_ptt_release(p_hwfn, p_ptt);
5044 	return rc;
5045 }
5046 
5047 int qed_set_rxq_coalesce(struct qed_hwfn *p_hwfn,
5048 			 struct qed_ptt *p_ptt,
5049 			 u16 coalesce, struct qed_queue_cid *p_cid)
5050 {
5051 	struct ustorm_eth_queue_zone eth_qzone;
5052 	u8 timeset, timer_res;
5053 	u32 address;
5054 	int rc;
5055 
5056 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5057 	if (coalesce <= 0x7F) {
5058 		timer_res = 0;
5059 	} else if (coalesce <= 0xFF) {
5060 		timer_res = 1;
5061 	} else if (coalesce <= 0x1FF) {
5062 		timer_res = 2;
5063 	} else {
5064 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5065 		return -EINVAL;
5066 	}
5067 	timeset = (u8)(coalesce >> timer_res);
5068 
5069 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5070 				   p_cid->sb_igu_id, false);
5071 	if (rc)
5072 		goto out;
5073 
5074 	address = BAR0_MAP_REG_USDM_RAM +
5075 		  USTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5076 
5077 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5078 			      sizeof(struct ustorm_eth_queue_zone), timeset);
5079 	if (rc)
5080 		goto out;
5081 
5082 out:
5083 	return rc;
5084 }
5085 
5086 int qed_set_txq_coalesce(struct qed_hwfn *p_hwfn,
5087 			 struct qed_ptt *p_ptt,
5088 			 u16 coalesce, struct qed_queue_cid *p_cid)
5089 {
5090 	struct xstorm_eth_queue_zone eth_qzone;
5091 	u8 timeset, timer_res;
5092 	u32 address;
5093 	int rc;
5094 
5095 	/* Coalesce = (timeset << timer-resolution), timeset is 7bit wide */
5096 	if (coalesce <= 0x7F) {
5097 		timer_res = 0;
5098 	} else if (coalesce <= 0xFF) {
5099 		timer_res = 1;
5100 	} else if (coalesce <= 0x1FF) {
5101 		timer_res = 2;
5102 	} else {
5103 		DP_ERR(p_hwfn, "Invalid coalesce value - %d\n", coalesce);
5104 		return -EINVAL;
5105 	}
5106 	timeset = (u8)(coalesce >> timer_res);
5107 
5108 	rc = qed_int_set_timer_res(p_hwfn, p_ptt, timer_res,
5109 				   p_cid->sb_igu_id, true);
5110 	if (rc)
5111 		goto out;
5112 
5113 	address = BAR0_MAP_REG_XSDM_RAM +
5114 		  XSTORM_ETH_QUEUE_ZONE_OFFSET(p_cid->abs.queue_id);
5115 
5116 	rc = qed_set_coalesce(p_hwfn, p_ptt, address, &eth_qzone,
5117 			      sizeof(struct xstorm_eth_queue_zone), timeset);
5118 out:
5119 	return rc;
5120 }
5121 
5122 /* Calculate final WFQ values for all vports and configure them.
5123  * After this configuration each vport will have
5124  * approx min rate =  min_pf_rate * (vport_wfq / QED_WFQ_UNIT)
5125  */
5126 static void qed_configure_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
5127 					     struct qed_ptt *p_ptt,
5128 					     u32 min_pf_rate)
5129 {
5130 	struct init_qm_vport_params *vport_params;
5131 	int i;
5132 
5133 	vport_params = p_hwfn->qm_info.qm_vport_params;
5134 
5135 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5136 		u32 wfq_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5137 
5138 		vport_params[i].wfq = (wfq_speed * QED_WFQ_UNIT) /
5139 						min_pf_rate;
5140 		qed_init_vport_wfq(p_hwfn, p_ptt,
5141 				   vport_params[i].first_tx_pq_id,
5142 				   vport_params[i].wfq);
5143 	}
5144 }
5145 
5146 static void qed_init_wfq_default_param(struct qed_hwfn *p_hwfn,
5147 				       u32 min_pf_rate)
5148 
5149 {
5150 	int i;
5151 
5152 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++)
5153 		p_hwfn->qm_info.qm_vport_params[i].wfq = 1;
5154 }
5155 
5156 static void qed_disable_wfq_for_all_vports(struct qed_hwfn *p_hwfn,
5157 					   struct qed_ptt *p_ptt,
5158 					   u32 min_pf_rate)
5159 {
5160 	struct init_qm_vport_params *vport_params;
5161 	int i;
5162 
5163 	vport_params = p_hwfn->qm_info.qm_vport_params;
5164 
5165 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5166 		qed_init_wfq_default_param(p_hwfn, min_pf_rate);
5167 		qed_init_vport_wfq(p_hwfn, p_ptt,
5168 				   vport_params[i].first_tx_pq_id,
5169 				   vport_params[i].wfq);
5170 	}
5171 }
5172 
5173 /* This function performs several validations for WFQ
5174  * configuration and required min rate for a given vport
5175  * 1. req_rate must be greater than one percent of min_pf_rate.
5176  * 2. req_rate should not cause other vports [not configured for WFQ explicitly]
5177  *    rates to get less than one percent of min_pf_rate.
5178  * 3. total_req_min_rate [all vports min rate sum] shouldn't exceed min_pf_rate.
5179  */
5180 static int qed_init_wfq_param(struct qed_hwfn *p_hwfn,
5181 			      u16 vport_id, u32 req_rate, u32 min_pf_rate)
5182 {
5183 	u32 total_req_min_rate = 0, total_left_rate = 0, left_rate_per_vp = 0;
5184 	int non_requested_count = 0, req_count = 0, i, num_vports;
5185 
5186 	num_vports = p_hwfn->qm_info.num_vports;
5187 
5188 	/* Accounting for the vports which are configured for WFQ explicitly */
5189 	for (i = 0; i < num_vports; i++) {
5190 		u32 tmp_speed;
5191 
5192 		if ((i != vport_id) &&
5193 		    p_hwfn->qm_info.wfq_data[i].configured) {
5194 			req_count++;
5195 			tmp_speed = p_hwfn->qm_info.wfq_data[i].min_speed;
5196 			total_req_min_rate += tmp_speed;
5197 		}
5198 	}
5199 
5200 	/* Include current vport data as well */
5201 	req_count++;
5202 	total_req_min_rate += req_rate;
5203 	non_requested_count = num_vports - req_count;
5204 
5205 	if (req_rate < min_pf_rate / QED_WFQ_UNIT) {
5206 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5207 			   "Vport [%d] - Requested rate[%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5208 			   vport_id, req_rate, min_pf_rate);
5209 		return -EINVAL;
5210 	}
5211 
5212 	if (num_vports > QED_WFQ_UNIT) {
5213 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5214 			   "Number of vports is greater than %d\n",
5215 			   QED_WFQ_UNIT);
5216 		return -EINVAL;
5217 	}
5218 
5219 	if (total_req_min_rate > min_pf_rate) {
5220 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5221 			   "Total requested min rate for all vports[%d Mbps] is greater than configured PF min rate[%d Mbps]\n",
5222 			   total_req_min_rate, min_pf_rate);
5223 		return -EINVAL;
5224 	}
5225 
5226 	total_left_rate	= min_pf_rate - total_req_min_rate;
5227 
5228 	left_rate_per_vp = total_left_rate / non_requested_count;
5229 	if (left_rate_per_vp <  min_pf_rate / QED_WFQ_UNIT) {
5230 		DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5231 			   "Non WFQ configured vports rate [%d Mbps] is less than one percent of configured PF min rate[%d Mbps]\n",
5232 			   left_rate_per_vp, min_pf_rate);
5233 		return -EINVAL;
5234 	}
5235 
5236 	p_hwfn->qm_info.wfq_data[vport_id].min_speed = req_rate;
5237 	p_hwfn->qm_info.wfq_data[vport_id].configured = true;
5238 
5239 	for (i = 0; i < num_vports; i++) {
5240 		if (p_hwfn->qm_info.wfq_data[i].configured)
5241 			continue;
5242 
5243 		p_hwfn->qm_info.wfq_data[i].min_speed = left_rate_per_vp;
5244 	}
5245 
5246 	return 0;
5247 }
5248 
5249 static int __qed_configure_vport_wfq(struct qed_hwfn *p_hwfn,
5250 				     struct qed_ptt *p_ptt, u16 vp_id, u32 rate)
5251 {
5252 	struct qed_mcp_link_state *p_link;
5253 	int rc = 0;
5254 
5255 	p_link = &p_hwfn->cdev->hwfns[0].mcp_info->link_output;
5256 
5257 	if (!p_link->min_pf_rate) {
5258 		p_hwfn->qm_info.wfq_data[vp_id].min_speed = rate;
5259 		p_hwfn->qm_info.wfq_data[vp_id].configured = true;
5260 		return rc;
5261 	}
5262 
5263 	rc = qed_init_wfq_param(p_hwfn, vp_id, rate, p_link->min_pf_rate);
5264 
5265 	if (!rc)
5266 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt,
5267 						 p_link->min_pf_rate);
5268 	else
5269 		DP_NOTICE(p_hwfn,
5270 			  "Validation failed while configuring min rate\n");
5271 
5272 	return rc;
5273 }
5274 
5275 static int __qed_configure_vp_wfq_on_link_change(struct qed_hwfn *p_hwfn,
5276 						 struct qed_ptt *p_ptt,
5277 						 u32 min_pf_rate)
5278 {
5279 	bool use_wfq = false;
5280 	int rc = 0;
5281 	u16 i;
5282 
5283 	/* Validate all pre configured vports for wfq */
5284 	for (i = 0; i < p_hwfn->qm_info.num_vports; i++) {
5285 		u32 rate;
5286 
5287 		if (!p_hwfn->qm_info.wfq_data[i].configured)
5288 			continue;
5289 
5290 		rate = p_hwfn->qm_info.wfq_data[i].min_speed;
5291 		use_wfq = true;
5292 
5293 		rc = qed_init_wfq_param(p_hwfn, i, rate, min_pf_rate);
5294 		if (rc) {
5295 			DP_NOTICE(p_hwfn,
5296 				  "WFQ validation failed while configuring min rate\n");
5297 			break;
5298 		}
5299 	}
5300 
5301 	if (!rc && use_wfq)
5302 		qed_configure_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5303 	else
5304 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt, min_pf_rate);
5305 
5306 	return rc;
5307 }
5308 
5309 /* Main API for qed clients to configure vport min rate.
5310  * vp_id - vport id in PF Range[0 - (total_num_vports_per_pf - 1)]
5311  * rate - Speed in Mbps needs to be assigned to a given vport.
5312  */
5313 int qed_configure_vport_wfq(struct qed_dev *cdev, u16 vp_id, u32 rate)
5314 {
5315 	int i, rc = -EINVAL;
5316 
5317 	/* Currently not supported; Might change in future */
5318 	if (cdev->num_hwfns > 1) {
5319 		DP_NOTICE(cdev,
5320 			  "WFQ configuration is not supported for this device\n");
5321 		return rc;
5322 	}
5323 
5324 	for_each_hwfn(cdev, i) {
5325 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5326 		struct qed_ptt *p_ptt;
5327 
5328 		p_ptt = qed_ptt_acquire(p_hwfn);
5329 		if (!p_ptt)
5330 			return -EBUSY;
5331 
5332 		rc = __qed_configure_vport_wfq(p_hwfn, p_ptt, vp_id, rate);
5333 
5334 		if (rc) {
5335 			qed_ptt_release(p_hwfn, p_ptt);
5336 			return rc;
5337 		}
5338 
5339 		qed_ptt_release(p_hwfn, p_ptt);
5340 	}
5341 
5342 	return rc;
5343 }
5344 
5345 /* API to configure WFQ from mcp link change */
5346 void qed_configure_vp_wfq_on_link_change(struct qed_dev *cdev,
5347 					 struct qed_ptt *p_ptt, u32 min_pf_rate)
5348 {
5349 	int i;
5350 
5351 	if (cdev->num_hwfns > 1) {
5352 		DP_VERBOSE(cdev,
5353 			   NETIF_MSG_LINK,
5354 			   "WFQ configuration is not supported for this device\n");
5355 		return;
5356 	}
5357 
5358 	for_each_hwfn(cdev, i) {
5359 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5360 
5361 		__qed_configure_vp_wfq_on_link_change(p_hwfn, p_ptt,
5362 						      min_pf_rate);
5363 	}
5364 }
5365 
5366 int __qed_configure_pf_max_bandwidth(struct qed_hwfn *p_hwfn,
5367 				     struct qed_ptt *p_ptt,
5368 				     struct qed_mcp_link_state *p_link,
5369 				     u8 max_bw)
5370 {
5371 	int rc = 0;
5372 
5373 	p_hwfn->mcp_info->func_info.bandwidth_max = max_bw;
5374 
5375 	if (!p_link->line_speed && (max_bw != 100))
5376 		return rc;
5377 
5378 	p_link->speed = (p_link->line_speed * max_bw) / 100;
5379 	p_hwfn->qm_info.pf_rl = p_link->speed;
5380 
5381 	/* Since the limiter also affects Tx-switched traffic, we don't want it
5382 	 * to limit such traffic in case there's no actual limit.
5383 	 * In that case, set limit to imaginary high boundary.
5384 	 */
5385 	if (max_bw == 100)
5386 		p_hwfn->qm_info.pf_rl = 100000;
5387 
5388 	rc = qed_init_pf_rl(p_hwfn, p_ptt, p_hwfn->rel_pf_id,
5389 			    p_hwfn->qm_info.pf_rl);
5390 
5391 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5392 		   "Configured MAX bandwidth to be %08x Mb/sec\n",
5393 		   p_link->speed);
5394 
5395 	return rc;
5396 }
5397 
5398 /* Main API to configure PF max bandwidth where bw range is [1 - 100] */
5399 int qed_configure_pf_max_bandwidth(struct qed_dev *cdev, u8 max_bw)
5400 {
5401 	int i, rc = -EINVAL;
5402 
5403 	if (max_bw < 1 || max_bw > 100) {
5404 		DP_NOTICE(cdev, "PF max bw valid range is [1-100]\n");
5405 		return rc;
5406 	}
5407 
5408 	for_each_hwfn(cdev, i) {
5409 		struct qed_hwfn	*p_hwfn = &cdev->hwfns[i];
5410 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
5411 		struct qed_mcp_link_state *p_link;
5412 		struct qed_ptt *p_ptt;
5413 
5414 		p_link = &p_lead->mcp_info->link_output;
5415 
5416 		p_ptt = qed_ptt_acquire(p_hwfn);
5417 		if (!p_ptt)
5418 			return -EBUSY;
5419 
5420 		rc = __qed_configure_pf_max_bandwidth(p_hwfn, p_ptt,
5421 						      p_link, max_bw);
5422 
5423 		qed_ptt_release(p_hwfn, p_ptt);
5424 
5425 		if (rc)
5426 			break;
5427 	}
5428 
5429 	return rc;
5430 }
5431 
5432 int __qed_configure_pf_min_bandwidth(struct qed_hwfn *p_hwfn,
5433 				     struct qed_ptt *p_ptt,
5434 				     struct qed_mcp_link_state *p_link,
5435 				     u8 min_bw)
5436 {
5437 	int rc = 0;
5438 
5439 	p_hwfn->mcp_info->func_info.bandwidth_min = min_bw;
5440 	p_hwfn->qm_info.pf_wfq = min_bw;
5441 
5442 	if (!p_link->line_speed)
5443 		return rc;
5444 
5445 	p_link->min_pf_rate = (p_link->line_speed * min_bw) / 100;
5446 
5447 	rc = qed_init_pf_wfq(p_hwfn, p_ptt, p_hwfn->rel_pf_id, min_bw);
5448 
5449 	DP_VERBOSE(p_hwfn, NETIF_MSG_LINK,
5450 		   "Configured MIN bandwidth to be %d Mb/sec\n",
5451 		   p_link->min_pf_rate);
5452 
5453 	return rc;
5454 }
5455 
5456 /* Main API to configure PF min bandwidth where bw range is [1-100] */
5457 int qed_configure_pf_min_bandwidth(struct qed_dev *cdev, u8 min_bw)
5458 {
5459 	int i, rc = -EINVAL;
5460 
5461 	if (min_bw < 1 || min_bw > 100) {
5462 		DP_NOTICE(cdev, "PF min bw valid range is [1-100]\n");
5463 		return rc;
5464 	}
5465 
5466 	for_each_hwfn(cdev, i) {
5467 		struct qed_hwfn *p_hwfn = &cdev->hwfns[i];
5468 		struct qed_hwfn *p_lead = QED_LEADING_HWFN(cdev);
5469 		struct qed_mcp_link_state *p_link;
5470 		struct qed_ptt *p_ptt;
5471 
5472 		p_link = &p_lead->mcp_info->link_output;
5473 
5474 		p_ptt = qed_ptt_acquire(p_hwfn);
5475 		if (!p_ptt)
5476 			return -EBUSY;
5477 
5478 		rc = __qed_configure_pf_min_bandwidth(p_hwfn, p_ptt,
5479 						      p_link, min_bw);
5480 		if (rc) {
5481 			qed_ptt_release(p_hwfn, p_ptt);
5482 			return rc;
5483 		}
5484 
5485 		if (p_link->min_pf_rate) {
5486 			u32 min_rate = p_link->min_pf_rate;
5487 
5488 			rc = __qed_configure_vp_wfq_on_link_change(p_hwfn,
5489 								   p_ptt,
5490 								   min_rate);
5491 		}
5492 
5493 		qed_ptt_release(p_hwfn, p_ptt);
5494 	}
5495 
5496 	return rc;
5497 }
5498 
5499 void qed_clean_wfq_db(struct qed_hwfn *p_hwfn, struct qed_ptt *p_ptt)
5500 {
5501 	struct qed_mcp_link_state *p_link;
5502 
5503 	p_link = &p_hwfn->mcp_info->link_output;
5504 
5505 	if (p_link->min_pf_rate)
5506 		qed_disable_wfq_for_all_vports(p_hwfn, p_ptt,
5507 					       p_link->min_pf_rate);
5508 
5509 	memset(p_hwfn->qm_info.wfq_data, 0,
5510 	       sizeof(*p_hwfn->qm_info.wfq_data) * p_hwfn->qm_info.num_vports);
5511 }
5512 
5513 int qed_device_num_ports(struct qed_dev *cdev)
5514 {
5515 	return cdev->num_ports;
5516 }
5517 
5518 void qed_set_fw_mac_addr(__le16 *fw_msb,
5519 			 __le16 *fw_mid, __le16 *fw_lsb, u8 *mac)
5520 {
5521 	((u8 *)fw_msb)[0] = mac[1];
5522 	((u8 *)fw_msb)[1] = mac[0];
5523 	((u8 *)fw_mid)[0] = mac[3];
5524 	((u8 *)fw_mid)[1] = mac[2];
5525 	((u8 *)fw_lsb)[0] = mac[5];
5526 	((u8 *)fw_lsb)[1] = mac[4];
5527 }
5528