xref: /openbmc/linux/drivers/net/ethernet/natsemi/natsemi.c (revision 643e83501461763032ae51e4d540176e6a887d31)
1 /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
2 /*
3 	Written/copyright 1999-2001 by Donald Becker.
4 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
5 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
6 	Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
7 
8 	This software may be used and distributed according to the terms of
9 	the GNU General Public License (GPL), incorporated herein by reference.
10 	Drivers based on or derived from this code fall under the GPL and must
11 	retain the authorship, copyright and license notice.  This file is not
12 	a complete program and may only be used when the entire operating
13 	system is licensed under the GPL.  License for under other terms may be
14 	available.  Contact the original author for details.
15 
16 	The original author may be reached as becker@scyld.com, or at
17 	Scyld Computing Corporation
18 	410 Severn Ave., Suite 210
19 	Annapolis MD 21403
20 
21 	Support information and updates available at
22 	http://www.scyld.com/network/netsemi.html
23 	[link no longer provides useful info -jgarzik]
24 
25 
26 	TODO:
27 	* big endian support with CFG:BEM instead of cpu_to_le32
28 */
29 
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/string.h>
33 #include <linux/timer.h>
34 #include <linux/errno.h>
35 #include <linux/ioport.h>
36 #include <linux/slab.h>
37 #include <linux/interrupt.h>
38 #include <linux/pci.h>
39 #include <linux/netdevice.h>
40 #include <linux/etherdevice.h>
41 #include <linux/skbuff.h>
42 #include <linux/init.h>
43 #include <linux/spinlock.h>
44 #include <linux/ethtool.h>
45 #include <linux/delay.h>
46 #include <linux/rtnetlink.h>
47 #include <linux/mii.h>
48 #include <linux/crc32.h>
49 #include <linux/bitops.h>
50 #include <linux/prefetch.h>
51 #include <asm/processor.h>	/* Processor type for cache alignment. */
52 #include <asm/io.h>
53 #include <asm/irq.h>
54 #include <linux/uaccess.h>
55 
56 #define DRV_NAME	"natsemi"
57 #define DRV_VERSION	"2.1"
58 #define DRV_RELDATE	"Sept 11, 2006"
59 
60 #define RX_OFFSET	2
61 
62 /* Updated to recommendations in pci-skeleton v2.03. */
63 
64 /* The user-configurable values.
65    These may be modified when a driver module is loaded.*/
66 
67 #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \
68 				 NETIF_MSG_LINK		| \
69 				 NETIF_MSG_WOL		| \
70 				 NETIF_MSG_RX_ERR	| \
71 				 NETIF_MSG_TX_ERR)
72 static int debug = -1;
73 
74 static int mtu;
75 
76 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
77    This chip uses a 512 element hash table based on the Ethernet CRC.  */
78 static const int multicast_filter_limit = 100;
79 
80 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
81    Setting to > 1518 effectively disables this feature. */
82 static int rx_copybreak;
83 
84 static int dspcfg_workaround = 1;
85 
86 /* Used to pass the media type, etc.
87    Both 'options[]' and 'full_duplex[]' should exist for driver
88    interoperability.
89    The media type is usually passed in 'options[]'.
90 */
91 #define MAX_UNITS 8		/* More are supported, limit only on options */
92 static int options[MAX_UNITS];
93 static int full_duplex[MAX_UNITS];
94 
95 /* Operational parameters that are set at compile time. */
96 
97 /* Keep the ring sizes a power of two for compile efficiency.
98    The compiler will convert <unsigned>'%'<2^N> into a bit mask.
99    Making the Tx ring too large decreases the effectiveness of channel
100    bonding and packet priority.
101    There are no ill effects from too-large receive rings. */
102 #define TX_RING_SIZE	16
103 #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */
104 #define RX_RING_SIZE	32
105 
106 /* Operational parameters that usually are not changed. */
107 /* Time in jiffies before concluding the transmitter is hung. */
108 #define TX_TIMEOUT  (2*HZ)
109 
110 #define NATSEMI_HW_TIMEOUT	400
111 #define NATSEMI_TIMER_FREQ	5*HZ
112 #define NATSEMI_PG0_NREGS	64
113 #define NATSEMI_RFDR_NREGS	8
114 #define NATSEMI_PG1_NREGS	4
115 #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
116 				 NATSEMI_PG1_NREGS)
117 #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */
118 #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32))
119 
120 /* Buffer sizes:
121  * The nic writes 32-bit values, even if the upper bytes of
122  * a 32-bit value are beyond the end of the buffer.
123  */
124 #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */
125 #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */
126 #define NATSEMI_LONGPKT		1518	/* limit for normal packets */
127 #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */
128 
129 /* These identify the driver base version and may not be removed. */
130 static const char version[] =
131   KERN_INFO DRV_NAME " dp8381x driver, version "
132       DRV_VERSION ", " DRV_RELDATE "\n"
133   "  originally by Donald Becker <becker@scyld.com>\n"
134   "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
135 
136 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
137 MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
138 MODULE_LICENSE("GPL");
139 
140 module_param(mtu, int, 0);
141 module_param(debug, int, 0);
142 module_param(rx_copybreak, int, 0);
143 module_param(dspcfg_workaround, int, 0);
144 module_param_array(options, int, NULL, 0);
145 module_param_array(full_duplex, int, NULL, 0);
146 MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
147 MODULE_PARM_DESC(debug, "DP8381x default debug level");
148 MODULE_PARM_DESC(rx_copybreak,
149 	"DP8381x copy breakpoint for copy-only-tiny-frames");
150 MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
151 MODULE_PARM_DESC(options,
152 	"DP8381x: Bits 0-3: media type, bit 17: full duplex");
153 MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
154 
155 /*
156 				Theory of Operation
157 
158 I. Board Compatibility
159 
160 This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
161 It also works with other chips in the DP83810 series.
162 
163 II. Board-specific settings
164 
165 This driver requires the PCI interrupt line to be valid.
166 It honors the EEPROM-set values.
167 
168 III. Driver operation
169 
170 IIIa. Ring buffers
171 
172 This driver uses two statically allocated fixed-size descriptor lists
173 formed into rings by a branch from the final descriptor to the beginning of
174 the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
175 The NatSemi design uses a 'next descriptor' pointer that the driver forms
176 into a list.
177 
178 IIIb/c. Transmit/Receive Structure
179 
180 This driver uses a zero-copy receive and transmit scheme.
181 The driver allocates full frame size skbuffs for the Rx ring buffers at
182 open() time and passes the skb->data field to the chip as receive data
183 buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
184 a fresh skbuff is allocated and the frame is copied to the new skbuff.
185 When the incoming frame is larger, the skbuff is passed directly up the
186 protocol stack.  Buffers consumed this way are replaced by newly allocated
187 skbuffs in a later phase of receives.
188 
189 The RX_COPYBREAK value is chosen to trade-off the memory wasted by
190 using a full-sized skbuff for small frames vs. the copying costs of larger
191 frames.  New boards are typically used in generously configured machines
192 and the underfilled buffers have negligible impact compared to the benefit of
193 a single allocation size, so the default value of zero results in never
194 copying packets.  When copying is done, the cost is usually mitigated by using
195 a combined copy/checksum routine.  Copying also preloads the cache, which is
196 most useful with small frames.
197 
198 A subtle aspect of the operation is that unaligned buffers are not permitted
199 by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
200 longword aligned for further processing.  On copies frames are put into the
201 skbuff at an offset of "+2", 16-byte aligning the IP header.
202 
203 IIId. Synchronization
204 
205 Most operations are synchronized on the np->lock irq spinlock, except the
206 receive and transmit paths which are synchronised using a combination of
207 hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
208 
209 IVb. References
210 
211 http://www.scyld.com/expert/100mbps.html
212 http://www.scyld.com/expert/NWay.html
213 Datasheet is available from:
214 http://www.national.com/pf/DP/DP83815.html
215 
216 IVc. Errata
217 
218 None characterised.
219 */
220 
221 
222 
223 /*
224  * Support for fibre connections on Am79C874:
225  * This phy needs a special setup when connected to a fibre cable.
226  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
227  */
228 #define PHYID_AM79C874	0x0022561b
229 
230 enum {
231 	MII_MCTRL	= 0x15,		/* mode control register */
232 	MII_FX_SEL	= 0x0001,	/* 100BASE-FX (fiber) */
233 	MII_EN_SCRM	= 0x0004,	/* enable scrambler (tp) */
234 };
235 
236 enum {
237 	NATSEMI_FLAG_IGNORE_PHY		= 0x1,
238 };
239 
240 /* array of board data directly indexed by pci_tbl[x].driver_data */
241 static struct {
242 	const char *name;
243 	unsigned long flags;
244 	unsigned int eeprom_size;
245 } natsemi_pci_info[] = {
246 	{ "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
247 	{ "NatSemi DP8381[56]", 0, 24 },
248 };
249 
250 static const struct pci_device_id natsemi_pci_tbl[] = {
251 	{ PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
252 	{ PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
253 	{ }	/* terminate list */
254 };
255 MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
256 
257 /* Offsets to the device registers.
258    Unlike software-only systems, device drivers interact with complex hardware.
259    It's not useful to define symbolic names for every register bit in the
260    device.
261 */
262 enum register_offsets {
263 	ChipCmd			= 0x00,
264 	ChipConfig		= 0x04,
265 	EECtrl			= 0x08,
266 	PCIBusCfg		= 0x0C,
267 	IntrStatus		= 0x10,
268 	IntrMask		= 0x14,
269 	IntrEnable		= 0x18,
270 	IntrHoldoff		= 0x1C, /* DP83816 only */
271 	TxRingPtr		= 0x20,
272 	TxConfig		= 0x24,
273 	RxRingPtr		= 0x30,
274 	RxConfig		= 0x34,
275 	ClkRun			= 0x3C,
276 	WOLCmd			= 0x40,
277 	PauseCmd		= 0x44,
278 	RxFilterAddr		= 0x48,
279 	RxFilterData		= 0x4C,
280 	BootRomAddr		= 0x50,
281 	BootRomData		= 0x54,
282 	SiliconRev		= 0x58,
283 	StatsCtrl		= 0x5C,
284 	StatsData		= 0x60,
285 	RxPktErrs		= 0x60,
286 	RxMissed		= 0x68,
287 	RxCRCErrs		= 0x64,
288 	BasicControl		= 0x80,
289 	BasicStatus		= 0x84,
290 	AnegAdv			= 0x90,
291 	AnegPeer		= 0x94,
292 	PhyStatus		= 0xC0,
293 	MIntrCtrl		= 0xC4,
294 	MIntrStatus		= 0xC8,
295 	PhyCtrl			= 0xE4,
296 
297 	/* These are from the spec, around page 78... on a separate table.
298 	 * The meaning of these registers depend on the value of PGSEL. */
299 	PGSEL			= 0xCC,
300 	PMDCSR			= 0xE4,
301 	TSTDAT			= 0xFC,
302 	DSPCFG			= 0xF4,
303 	SDCFG			= 0xF8
304 };
305 /* the values for the 'magic' registers above (PGSEL=1) */
306 #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */
307 #define TSTDAT_VAL	0x0
308 #define DSPCFG_VAL	0x5040
309 #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */
310 #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */
311 #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */
312 #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */
313 
314 /* misc PCI space registers */
315 enum pci_register_offsets {
316 	PCIPM			= 0x44,
317 };
318 
319 enum ChipCmd_bits {
320 	ChipReset		= 0x100,
321 	RxReset			= 0x20,
322 	TxReset			= 0x10,
323 	RxOff			= 0x08,
324 	RxOn			= 0x04,
325 	TxOff			= 0x02,
326 	TxOn			= 0x01,
327 };
328 
329 enum ChipConfig_bits {
330 	CfgPhyDis		= 0x200,
331 	CfgPhyRst		= 0x400,
332 	CfgExtPhy		= 0x1000,
333 	CfgAnegEnable		= 0x2000,
334 	CfgAneg100		= 0x4000,
335 	CfgAnegFull		= 0x8000,
336 	CfgAnegDone		= 0x8000000,
337 	CfgFullDuplex		= 0x20000000,
338 	CfgSpeed100		= 0x40000000,
339 	CfgLink			= 0x80000000,
340 };
341 
342 enum EECtrl_bits {
343 	EE_ShiftClk		= 0x04,
344 	EE_DataIn		= 0x01,
345 	EE_ChipSelect		= 0x08,
346 	EE_DataOut		= 0x02,
347 	MII_Data 		= 0x10,
348 	MII_Write		= 0x20,
349 	MII_ShiftClk		= 0x40,
350 };
351 
352 enum PCIBusCfg_bits {
353 	EepromReload		= 0x4,
354 };
355 
356 /* Bits in the interrupt status/mask registers. */
357 enum IntrStatus_bits {
358 	IntrRxDone		= 0x0001,
359 	IntrRxIntr		= 0x0002,
360 	IntrRxErr		= 0x0004,
361 	IntrRxEarly		= 0x0008,
362 	IntrRxIdle		= 0x0010,
363 	IntrRxOverrun		= 0x0020,
364 	IntrTxDone		= 0x0040,
365 	IntrTxIntr		= 0x0080,
366 	IntrTxErr		= 0x0100,
367 	IntrTxIdle		= 0x0200,
368 	IntrTxUnderrun		= 0x0400,
369 	StatsMax		= 0x0800,
370 	SWInt			= 0x1000,
371 	WOLPkt			= 0x2000,
372 	LinkChange		= 0x4000,
373 	IntrHighBits		= 0x8000,
374 	RxStatusFIFOOver	= 0x10000,
375 	IntrPCIErr		= 0xf00000,
376 	RxResetDone		= 0x1000000,
377 	TxResetDone		= 0x2000000,
378 	IntrAbnormalSummary	= 0xCD20,
379 };
380 
381 /*
382  * Default Interrupts:
383  * Rx OK, Rx Packet Error, Rx Overrun,
384  * Tx OK, Tx Packet Error, Tx Underrun,
385  * MIB Service, Phy Interrupt, High Bits,
386  * Rx Status FIFO overrun,
387  * Received Target Abort, Received Master Abort,
388  * Signalled System Error, Received Parity Error
389  */
390 #define DEFAULT_INTR 0x00f1cd65
391 
392 enum TxConfig_bits {
393 	TxDrthMask		= 0x3f,
394 	TxFlthMask		= 0x3f00,
395 	TxMxdmaMask		= 0x700000,
396 	TxMxdma_512		= 0x0,
397 	TxMxdma_4		= 0x100000,
398 	TxMxdma_8		= 0x200000,
399 	TxMxdma_16		= 0x300000,
400 	TxMxdma_32		= 0x400000,
401 	TxMxdma_64		= 0x500000,
402 	TxMxdma_128		= 0x600000,
403 	TxMxdma_256		= 0x700000,
404 	TxCollRetry		= 0x800000,
405 	TxAutoPad		= 0x10000000,
406 	TxMacLoop		= 0x20000000,
407 	TxHeartIgn		= 0x40000000,
408 	TxCarrierIgn		= 0x80000000
409 };
410 
411 /*
412  * Tx Configuration:
413  * - 256 byte DMA burst length
414  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
415  * - 64 bytes initial drain threshold (i.e. begin actual transmission
416  *   when 64 byte are in the fifo)
417  * - on tx underruns, increase drain threshold by 64.
418  * - at most use a drain threshold of 1472 bytes: The sum of the fill
419  *   threshold and the drain threshold must be less than 2016 bytes.
420  *
421  */
422 #define TX_FLTH_VAL		((512/32) << 8)
423 #define TX_DRTH_VAL_START	(64/32)
424 #define TX_DRTH_VAL_INC		2
425 #define TX_DRTH_VAL_LIMIT	(1472/32)
426 
427 enum RxConfig_bits {
428 	RxDrthMask		= 0x3e,
429 	RxMxdmaMask		= 0x700000,
430 	RxMxdma_512		= 0x0,
431 	RxMxdma_4		= 0x100000,
432 	RxMxdma_8		= 0x200000,
433 	RxMxdma_16		= 0x300000,
434 	RxMxdma_32		= 0x400000,
435 	RxMxdma_64		= 0x500000,
436 	RxMxdma_128		= 0x600000,
437 	RxMxdma_256		= 0x700000,
438 	RxAcceptLong		= 0x8000000,
439 	RxAcceptTx		= 0x10000000,
440 	RxAcceptRunt		= 0x40000000,
441 	RxAcceptErr		= 0x80000000
442 };
443 #define RX_DRTH_VAL		(128/8)
444 
445 enum ClkRun_bits {
446 	PMEEnable		= 0x100,
447 	PMEStatus		= 0x8000,
448 };
449 
450 enum WolCmd_bits {
451 	WakePhy			= 0x1,
452 	WakeUnicast		= 0x2,
453 	WakeMulticast		= 0x4,
454 	WakeBroadcast		= 0x8,
455 	WakeArp			= 0x10,
456 	WakePMatch0		= 0x20,
457 	WakePMatch1		= 0x40,
458 	WakePMatch2		= 0x80,
459 	WakePMatch3		= 0x100,
460 	WakeMagic		= 0x200,
461 	WakeMagicSecure		= 0x400,
462 	SecureHack		= 0x100000,
463 	WokePhy			= 0x400000,
464 	WokeUnicast		= 0x800000,
465 	WokeMulticast		= 0x1000000,
466 	WokeBroadcast		= 0x2000000,
467 	WokeArp			= 0x4000000,
468 	WokePMatch0		= 0x8000000,
469 	WokePMatch1		= 0x10000000,
470 	WokePMatch2		= 0x20000000,
471 	WokePMatch3		= 0x40000000,
472 	WokeMagic		= 0x80000000,
473 	WakeOptsSummary		= 0x7ff
474 };
475 
476 enum RxFilterAddr_bits {
477 	RFCRAddressMask		= 0x3ff,
478 	AcceptMulticast		= 0x00200000,
479 	AcceptMyPhys		= 0x08000000,
480 	AcceptAllPhys		= 0x10000000,
481 	AcceptAllMulticast	= 0x20000000,
482 	AcceptBroadcast		= 0x40000000,
483 	RxFilterEnable		= 0x80000000
484 };
485 
486 enum StatsCtrl_bits {
487 	StatsWarn		= 0x1,
488 	StatsFreeze		= 0x2,
489 	StatsClear		= 0x4,
490 	StatsStrobe		= 0x8,
491 };
492 
493 enum MIntrCtrl_bits {
494 	MICRIntEn		= 0x2,
495 };
496 
497 enum PhyCtrl_bits {
498 	PhyAddrMask		= 0x1f,
499 };
500 
501 #define PHY_ADDR_NONE		32
502 #define PHY_ADDR_INTERNAL	1
503 
504 /* values we might find in the silicon revision register */
505 #define SRR_DP83815_C	0x0302
506 #define SRR_DP83815_D	0x0403
507 #define SRR_DP83816_A4	0x0504
508 #define SRR_DP83816_A5	0x0505
509 
510 /* The Rx and Tx buffer descriptors. */
511 /* Note that using only 32 bit fields simplifies conversion to big-endian
512    architectures. */
513 struct netdev_desc {
514 	__le32 next_desc;
515 	__le32 cmd_status;
516 	__le32 addr;
517 	__le32 software_use;
518 };
519 
520 /* Bits in network_desc.status */
521 enum desc_status_bits {
522 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
523 	DescNoCRC=0x10000000, DescPktOK=0x08000000,
524 	DescSizeMask=0xfff,
525 
526 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
527 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
528 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
529 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
530 
531 	DescRxAbort=0x04000000, DescRxOver=0x02000000,
532 	DescRxDest=0x01800000, DescRxLong=0x00400000,
533 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
534 	DescRxCRC=0x00080000, DescRxAlign=0x00040000,
535 	DescRxLoop=0x00020000, DesRxColl=0x00010000,
536 };
537 
538 struct netdev_private {
539 	/* Descriptor rings first for alignment */
540 	dma_addr_t ring_dma;
541 	struct netdev_desc *rx_ring;
542 	struct netdev_desc *tx_ring;
543 	/* The addresses of receive-in-place skbuffs */
544 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
545 	dma_addr_t rx_dma[RX_RING_SIZE];
546 	/* address of a sent-in-place packet/buffer, for later free() */
547 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
548 	dma_addr_t tx_dma[TX_RING_SIZE];
549 	struct net_device *dev;
550 	void __iomem *ioaddr;
551 	struct napi_struct napi;
552 	/* Media monitoring timer */
553 	struct timer_list timer;
554 	/* Frequently used values: keep some adjacent for cache effect */
555 	struct pci_dev *pci_dev;
556 	struct netdev_desc *rx_head_desc;
557 	/* Producer/consumer ring indices */
558 	unsigned int cur_rx, dirty_rx;
559 	unsigned int cur_tx, dirty_tx;
560 	/* Based on MTU+slack. */
561 	unsigned int rx_buf_sz;
562 	int oom;
563 	/* Interrupt status */
564 	u32 intr_status;
565 	/* Do not touch the nic registers */
566 	int hands_off;
567 	/* Don't pay attention to the reported link state. */
568 	int ignore_phy;
569 	/* external phy that is used: only valid if dev->if_port != PORT_TP */
570 	int mii;
571 	int phy_addr_external;
572 	unsigned int full_duplex;
573 	/* Rx filter */
574 	u32 cur_rx_mode;
575 	u32 rx_filter[16];
576 	/* FIFO and PCI burst thresholds */
577 	u32 tx_config, rx_config;
578 	/* original contents of ClkRun register */
579 	u32 SavedClkRun;
580 	/* silicon revision */
581 	u32 srr;
582 	/* expected DSPCFG value */
583 	u16 dspcfg;
584 	int dspcfg_workaround;
585 	/* parms saved in ethtool format */
586 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */
587 	u8	duplex;		/* Duplex, half or full */
588 	u8	autoneg;	/* Autonegotiation enabled */
589 	/* MII transceiver section */
590 	u16 advertising;
591 	unsigned int iosize;
592 	spinlock_t lock;
593 	u32 msg_enable;
594 	/* EEPROM data */
595 	int eeprom_size;
596 };
597 
598 static void move_int_phy(struct net_device *dev, int addr);
599 static int eeprom_read(void __iomem *ioaddr, int location);
600 static int mdio_read(struct net_device *dev, int reg);
601 static void mdio_write(struct net_device *dev, int reg, u16 data);
602 static void init_phy_fixup(struct net_device *dev);
603 static int miiport_read(struct net_device *dev, int phy_id, int reg);
604 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
605 static int find_mii(struct net_device *dev);
606 static void natsemi_reset(struct net_device *dev);
607 static void natsemi_reload_eeprom(struct net_device *dev);
608 static void natsemi_stop_rxtx(struct net_device *dev);
609 static int netdev_open(struct net_device *dev);
610 static void do_cable_magic(struct net_device *dev);
611 static void undo_cable_magic(struct net_device *dev);
612 static void check_link(struct net_device *dev);
613 static void netdev_timer(struct timer_list *t);
614 static void dump_ring(struct net_device *dev);
615 static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue);
616 static int alloc_ring(struct net_device *dev);
617 static void refill_rx(struct net_device *dev);
618 static void init_ring(struct net_device *dev);
619 static void drain_tx(struct net_device *dev);
620 static void drain_ring(struct net_device *dev);
621 static void free_ring(struct net_device *dev);
622 static void reinit_ring(struct net_device *dev);
623 static void init_registers(struct net_device *dev);
624 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
625 static irqreturn_t intr_handler(int irq, void *dev_instance);
626 static void netdev_error(struct net_device *dev, int intr_status);
627 static int natsemi_poll(struct napi_struct *napi, int budget);
628 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
629 static void netdev_tx_done(struct net_device *dev);
630 static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
631 #ifdef CONFIG_NET_POLL_CONTROLLER
632 static void natsemi_poll_controller(struct net_device *dev);
633 #endif
634 static void __set_rx_mode(struct net_device *dev);
635 static void set_rx_mode(struct net_device *dev);
636 static void __get_stats(struct net_device *dev);
637 static struct net_device_stats *get_stats(struct net_device *dev);
638 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
639 static int netdev_set_wol(struct net_device *dev, u32 newval);
640 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
641 static int netdev_set_sopass(struct net_device *dev, u8 *newval);
642 static int netdev_get_sopass(struct net_device *dev, u8 *data);
643 static int netdev_get_ecmd(struct net_device *dev,
644 			   struct ethtool_link_ksettings *ecmd);
645 static int netdev_set_ecmd(struct net_device *dev,
646 			   const struct ethtool_link_ksettings *ecmd);
647 static void enable_wol_mode(struct net_device *dev, int enable_intr);
648 static int netdev_close(struct net_device *dev);
649 static int netdev_get_regs(struct net_device *dev, u8 *buf);
650 static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
651 static const struct ethtool_ops ethtool_ops;
652 
653 #define NATSEMI_ATTR(_name) \
654 static ssize_t natsemi_show_##_name(struct device *dev, \
655          struct device_attribute *attr, char *buf); \
656 	 static ssize_t natsemi_set_##_name(struct device *dev, \
657 		struct device_attribute *attr, \
658 	        const char *buf, size_t count); \
659 	 static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
660 
661 #define NATSEMI_CREATE_FILE(_dev, _name) \
662          device_create_file(&_dev->dev, &dev_attr_##_name)
663 #define NATSEMI_REMOVE_FILE(_dev, _name) \
664          device_remove_file(&_dev->dev, &dev_attr_##_name)
665 
666 NATSEMI_ATTR(dspcfg_workaround);
667 
668 static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
669 				  	      struct device_attribute *attr,
670 					      char *buf)
671 {
672 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
673 
674 	return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
675 }
676 
677 static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
678 					     struct device_attribute *attr,
679 					     const char *buf, size_t count)
680 {
681 	struct netdev_private *np = netdev_priv(to_net_dev(dev));
682 	int new_setting;
683 	unsigned long flags;
684 
685         /* Find out the new setting */
686         if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
687                 new_setting = 1;
688         else if (!strncmp("off", buf, count - 1) ||
689                  !strncmp("0", buf, count - 1))
690 		new_setting = 0;
691 	else
692                  return count;
693 
694 	spin_lock_irqsave(&np->lock, flags);
695 
696 	np->dspcfg_workaround = new_setting;
697 
698 	spin_unlock_irqrestore(&np->lock, flags);
699 
700 	return count;
701 }
702 
703 static inline void __iomem *ns_ioaddr(struct net_device *dev)
704 {
705 	struct netdev_private *np = netdev_priv(dev);
706 
707 	return np->ioaddr;
708 }
709 
710 static inline void natsemi_irq_enable(struct net_device *dev)
711 {
712 	writel(1, ns_ioaddr(dev) + IntrEnable);
713 	readl(ns_ioaddr(dev) + IntrEnable);
714 }
715 
716 static inline void natsemi_irq_disable(struct net_device *dev)
717 {
718 	writel(0, ns_ioaddr(dev) + IntrEnable);
719 	readl(ns_ioaddr(dev) + IntrEnable);
720 }
721 
722 static void move_int_phy(struct net_device *dev, int addr)
723 {
724 	struct netdev_private *np = netdev_priv(dev);
725 	void __iomem *ioaddr = ns_ioaddr(dev);
726 	int target = 31;
727 
728 	/*
729 	 * The internal phy is visible on the external mii bus. Therefore we must
730 	 * move it away before we can send commands to an external phy.
731 	 * There are two addresses we must avoid:
732 	 * - the address on the external phy that is used for transmission.
733 	 * - the address that we want to access. User space can access phys
734 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
735 	 *   phy that is used for transmission.
736 	 */
737 
738 	if (target == addr)
739 		target--;
740 	if (target == np->phy_addr_external)
741 		target--;
742 	writew(target, ioaddr + PhyCtrl);
743 	readw(ioaddr + PhyCtrl);
744 	udelay(1);
745 }
746 
747 static void natsemi_init_media(struct net_device *dev)
748 {
749 	struct netdev_private *np = netdev_priv(dev);
750 	u32 tmp;
751 
752 	if (np->ignore_phy)
753 		netif_carrier_on(dev);
754 	else
755 		netif_carrier_off(dev);
756 
757 	/* get the initial settings from hardware */
758 	tmp            = mdio_read(dev, MII_BMCR);
759 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
760 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
761 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
762 	np->advertising= mdio_read(dev, MII_ADVERTISE);
763 
764 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
765 	    netif_msg_probe(np)) {
766 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
767 			"10%s %s duplex.\n",
768 			pci_name(np->pci_dev),
769 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
770 			  "enabled, advertise" : "disabled, force",
771 			(np->advertising &
772 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))?
773 			    "0" : "",
774 			(np->advertising &
775 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))?
776 			    "full" : "half");
777 	}
778 	if (netif_msg_probe(np))
779 		printk(KERN_INFO
780 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n",
781 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
782 			np->advertising);
783 
784 }
785 
786 static const struct net_device_ops natsemi_netdev_ops = {
787 	.ndo_open		= netdev_open,
788 	.ndo_stop		= netdev_close,
789 	.ndo_start_xmit		= start_tx,
790 	.ndo_get_stats		= get_stats,
791 	.ndo_set_rx_mode	= set_rx_mode,
792 	.ndo_change_mtu		= natsemi_change_mtu,
793 	.ndo_eth_ioctl		= netdev_ioctl,
794 	.ndo_tx_timeout 	= ns_tx_timeout,
795 	.ndo_set_mac_address 	= eth_mac_addr,
796 	.ndo_validate_addr	= eth_validate_addr,
797 #ifdef CONFIG_NET_POLL_CONTROLLER
798 	.ndo_poll_controller	= natsemi_poll_controller,
799 #endif
800 };
801 
802 static int natsemi_probe1(struct pci_dev *pdev, const struct pci_device_id *ent)
803 {
804 	struct net_device *dev;
805 	struct netdev_private *np;
806 	int i, option, irq, chip_idx = ent->driver_data;
807 	static int find_cnt = -1;
808 	resource_size_t iostart;
809 	unsigned long iosize;
810 	void __iomem *ioaddr;
811 	const int pcibar = 1; /* PCI base address register */
812 	u8 addr[ETH_ALEN];
813 	int prev_eedata;
814 	u32 tmp;
815 
816 /* when built into the kernel, we only print version if device is found */
817 #ifndef MODULE
818 	static int printed_version;
819 	if (!printed_version++)
820 		printk(version);
821 #endif
822 
823 	i = pcim_enable_device(pdev);
824 	if (i) return i;
825 
826 	/* natsemi has a non-standard PM control register
827 	 * in PCI config space.  Some boards apparently need
828 	 * to be brought to D0 in this manner.
829 	 */
830 	pci_read_config_dword(pdev, PCIPM, &tmp);
831 	if (tmp & PCI_PM_CTRL_STATE_MASK) {
832 		/* D0 state, disable PME assertion */
833 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
834 		pci_write_config_dword(pdev, PCIPM, newtmp);
835 	}
836 
837 	find_cnt++;
838 	iostart = pci_resource_start(pdev, pcibar);
839 	iosize = pci_resource_len(pdev, pcibar);
840 	irq = pdev->irq;
841 
842 	pci_set_master(pdev);
843 
844 	dev = alloc_etherdev(sizeof (struct netdev_private));
845 	if (!dev)
846 		return -ENOMEM;
847 	SET_NETDEV_DEV(dev, &pdev->dev);
848 
849 	i = pci_request_regions(pdev, DRV_NAME);
850 	if (i)
851 		goto err_pci_request_regions;
852 
853 	ioaddr = ioremap(iostart, iosize);
854 	if (!ioaddr) {
855 		i = -ENOMEM;
856 		goto err_pci_request_regions;
857 	}
858 
859 	/* Work around the dropped serial bit. */
860 	prev_eedata = eeprom_read(ioaddr, 6);
861 	for (i = 0; i < 3; i++) {
862 		int eedata = eeprom_read(ioaddr, i + 7);
863 		addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
864 		addr[i*2+1] = eedata >> 7;
865 		prev_eedata = eedata;
866 	}
867 	eth_hw_addr_set(dev, addr);
868 
869 	np = netdev_priv(dev);
870 	np->ioaddr = ioaddr;
871 
872 	netif_napi_add(dev, &np->napi, natsemi_poll);
873 	np->dev = dev;
874 
875 	np->pci_dev = pdev;
876 	pci_set_drvdata(pdev, dev);
877 	np->iosize = iosize;
878 	spin_lock_init(&np->lock);
879 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
880 	np->hands_off = 0;
881 	np->intr_status = 0;
882 	np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
883 	if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
884 		np->ignore_phy = 1;
885 	else
886 		np->ignore_phy = 0;
887 	np->dspcfg_workaround = dspcfg_workaround;
888 
889 	/* Initial port:
890 	 * - If configured to ignore the PHY set up for external.
891 	 * - If the nic was configured to use an external phy and if find_mii
892 	 *   finds a phy: use external port, first phy that replies.
893 	 * - Otherwise: internal port.
894 	 * Note that the phy address for the internal phy doesn't matter:
895 	 * The address would be used to access a phy over the mii bus, but
896 	 * the internal phy is accessed through mapped registers.
897 	 */
898 	if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
899 		dev->if_port = PORT_MII;
900 	else
901 		dev->if_port = PORT_TP;
902 	/* Reset the chip to erase previous misconfiguration. */
903 	natsemi_reload_eeprom(dev);
904 	natsemi_reset(dev);
905 
906 	if (dev->if_port != PORT_TP) {
907 		np->phy_addr_external = find_mii(dev);
908 		/* If we're ignoring the PHY it doesn't matter if we can't
909 		 * find one. */
910 		if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
911 			dev->if_port = PORT_TP;
912 			np->phy_addr_external = PHY_ADDR_INTERNAL;
913 		}
914 	} else {
915 		np->phy_addr_external = PHY_ADDR_INTERNAL;
916 	}
917 
918 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
919 	/* The lower four bits are the media type. */
920 	if (option) {
921 		if (option & 0x200)
922 			np->full_duplex = 1;
923 		if (option & 15)
924 			printk(KERN_INFO
925 				"natsemi %s: ignoring user supplied media type %d",
926 				pci_name(np->pci_dev), option & 15);
927 	}
928 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
929 		np->full_duplex = 1;
930 
931 	dev->netdev_ops = &natsemi_netdev_ops;
932 	dev->watchdog_timeo = TX_TIMEOUT;
933 
934 	dev->ethtool_ops = &ethtool_ops;
935 
936 	/* MTU range: 64 - 2024 */
937 	dev->min_mtu = ETH_ZLEN + ETH_FCS_LEN;
938 	dev->max_mtu = NATSEMI_RX_LIMIT - NATSEMI_HEADERS;
939 
940 	if (mtu)
941 		dev->mtu = mtu;
942 
943 	natsemi_init_media(dev);
944 
945 	/* save the silicon revision for later querying */
946 	np->srr = readl(ioaddr + SiliconRev);
947 	if (netif_msg_hw(np))
948 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
949 				pci_name(np->pci_dev), np->srr);
950 
951 	i = register_netdev(dev);
952 	if (i)
953 		goto err_register_netdev;
954 	i = NATSEMI_CREATE_FILE(pdev, dspcfg_workaround);
955 	if (i)
956 		goto err_create_file;
957 
958 	if (netif_msg_drv(np)) {
959 		printk(KERN_INFO "natsemi %s: %s at %#08llx "
960 		       "(%s), %pM, IRQ %d",
961 		       dev->name, natsemi_pci_info[chip_idx].name,
962 		       (unsigned long long)iostart, pci_name(np->pci_dev),
963 		       dev->dev_addr, irq);
964 		if (dev->if_port == PORT_TP)
965 			printk(", port TP.\n");
966 		else if (np->ignore_phy)
967 			printk(", port MII, ignoring PHY\n");
968 		else
969 			printk(", port MII, phy ad %d.\n", np->phy_addr_external);
970 	}
971 	return 0;
972 
973  err_create_file:
974 	unregister_netdev(dev);
975 
976  err_register_netdev:
977 	iounmap(ioaddr);
978 
979  err_pci_request_regions:
980 	free_netdev(dev);
981 	return i;
982 }
983 
984 
985 /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
986    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
987 
988 /* Delay between EEPROM clock transitions.
989    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
990    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
991    made udelay() unreliable.
992 */
993 #define eeprom_delay(ee_addr)	readl(ee_addr)
994 
995 #define EE_Write0 (EE_ChipSelect)
996 #define EE_Write1 (EE_ChipSelect | EE_DataIn)
997 
998 /* The EEPROM commands include the alway-set leading bit. */
999 enum EEPROM_Cmds {
1000 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1001 };
1002 
1003 static int eeprom_read(void __iomem *addr, int location)
1004 {
1005 	int i;
1006 	int retval = 0;
1007 	void __iomem *ee_addr = addr + EECtrl;
1008 	int read_cmd = location | EE_ReadCmd;
1009 
1010 	writel(EE_Write0, ee_addr);
1011 
1012 	/* Shift the read command bits out. */
1013 	for (i = 10; i >= 0; i--) {
1014 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1015 		writel(dataval, ee_addr);
1016 		eeprom_delay(ee_addr);
1017 		writel(dataval | EE_ShiftClk, ee_addr);
1018 		eeprom_delay(ee_addr);
1019 	}
1020 	writel(EE_ChipSelect, ee_addr);
1021 	eeprom_delay(ee_addr);
1022 
1023 	for (i = 0; i < 16; i++) {
1024 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1025 		eeprom_delay(ee_addr);
1026 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1027 		writel(EE_ChipSelect, ee_addr);
1028 		eeprom_delay(ee_addr);
1029 	}
1030 
1031 	/* Terminate the EEPROM access. */
1032 	writel(EE_Write0, ee_addr);
1033 	writel(0, ee_addr);
1034 	return retval;
1035 }
1036 
1037 /* MII transceiver control section.
1038  * The 83815 series has an internal transceiver, and we present the
1039  * internal management registers as if they were MII connected.
1040  * External Phy registers are referenced through the MII interface.
1041  */
1042 
1043 /* clock transitions >= 20ns (25MHz)
1044  * One readl should be good to PCI @ 100MHz
1045  */
1046 #define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1047 
1048 static int mii_getbit (struct net_device *dev)
1049 {
1050 	int data;
1051 	void __iomem *ioaddr = ns_ioaddr(dev);
1052 
1053 	writel(MII_ShiftClk, ioaddr + EECtrl);
1054 	data = readl(ioaddr + EECtrl);
1055 	writel(0, ioaddr + EECtrl);
1056 	mii_delay(ioaddr);
1057 	return (data & MII_Data)? 1 : 0;
1058 }
1059 
1060 static void mii_send_bits (struct net_device *dev, u32 data, int len)
1061 {
1062 	u32 i;
1063 	void __iomem *ioaddr = ns_ioaddr(dev);
1064 
1065 	for (i = (1 << (len-1)); i; i >>= 1)
1066 	{
1067 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1068 		writel(mdio_val, ioaddr + EECtrl);
1069 		mii_delay(ioaddr);
1070 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1071 		mii_delay(ioaddr);
1072 	}
1073 	writel(0, ioaddr + EECtrl);
1074 	mii_delay(ioaddr);
1075 }
1076 
1077 static int miiport_read(struct net_device *dev, int phy_id, int reg)
1078 {
1079 	u32 cmd;
1080 	int i;
1081 	u32 retval = 0;
1082 
1083 	/* Ensure sync */
1084 	mii_send_bits (dev, 0xffffffff, 32);
1085 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1086 	/* ST,OP = 0110'b for read operation */
1087 	cmd = (0x06 << 10) | (phy_id << 5) | reg;
1088 	mii_send_bits (dev, cmd, 14);
1089 	/* Turnaround */
1090 	if (mii_getbit (dev))
1091 		return 0;
1092 	/* Read data */
1093 	for (i = 0; i < 16; i++) {
1094 		retval <<= 1;
1095 		retval |= mii_getbit (dev);
1096 	}
1097 	/* End cycle */
1098 	mii_getbit (dev);
1099 	return retval;
1100 }
1101 
1102 static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1103 {
1104 	u32 cmd;
1105 
1106 	/* Ensure sync */
1107 	mii_send_bits (dev, 0xffffffff, 32);
1108 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1109 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1110 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1111 	mii_send_bits (dev, cmd, 32);
1112 	/* End cycle */
1113 	mii_getbit (dev);
1114 }
1115 
1116 static int mdio_read(struct net_device *dev, int reg)
1117 {
1118 	struct netdev_private *np = netdev_priv(dev);
1119 	void __iomem *ioaddr = ns_ioaddr(dev);
1120 
1121 	/* The 83815 series has two ports:
1122 	 * - an internal transceiver
1123 	 * - an external mii bus
1124 	 */
1125 	if (dev->if_port == PORT_TP)
1126 		return readw(ioaddr+BasicControl+(reg<<2));
1127 	else
1128 		return miiport_read(dev, np->phy_addr_external, reg);
1129 }
1130 
1131 static void mdio_write(struct net_device *dev, int reg, u16 data)
1132 {
1133 	struct netdev_private *np = netdev_priv(dev);
1134 	void __iomem *ioaddr = ns_ioaddr(dev);
1135 
1136 	/* The 83815 series has an internal transceiver; handle separately */
1137 	if (dev->if_port == PORT_TP)
1138 		writew(data, ioaddr+BasicControl+(reg<<2));
1139 	else
1140 		miiport_write(dev, np->phy_addr_external, reg, data);
1141 }
1142 
1143 static void init_phy_fixup(struct net_device *dev)
1144 {
1145 	struct netdev_private *np = netdev_priv(dev);
1146 	void __iomem *ioaddr = ns_ioaddr(dev);
1147 	int i;
1148 	u32 cfg;
1149 	u16 tmp;
1150 
1151 	/* restore stuff lost when power was out */
1152 	tmp = mdio_read(dev, MII_BMCR);
1153 	if (np->autoneg == AUTONEG_ENABLE) {
1154 		/* renegotiate if something changed */
1155 		if ((tmp & BMCR_ANENABLE) == 0 ||
1156 		    np->advertising != mdio_read(dev, MII_ADVERTISE))
1157 		{
1158 			/* turn on autonegotiation and force negotiation */
1159 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1160 			mdio_write(dev, MII_ADVERTISE, np->advertising);
1161 		}
1162 	} else {
1163 		/* turn off auto negotiation, set speed and duplexity */
1164 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1165 		if (np->speed == SPEED_100)
1166 			tmp |= BMCR_SPEED100;
1167 		if (np->duplex == DUPLEX_FULL)
1168 			tmp |= BMCR_FULLDPLX;
1169 		/*
1170 		 * Note: there is no good way to inform the link partner
1171 		 * that our capabilities changed. The user has to unplug
1172 		 * and replug the network cable after some changes, e.g.
1173 		 * after switching from 10HD, autoneg off to 100 HD,
1174 		 * autoneg off.
1175 		 */
1176 	}
1177 	mdio_write(dev, MII_BMCR, tmp);
1178 	readl(ioaddr + ChipConfig);
1179 	udelay(1);
1180 
1181 	/* find out what phy this is */
1182 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1183 				+ mdio_read(dev, MII_PHYSID2);
1184 
1185 	/* handle external phys here */
1186 	switch (np->mii) {
1187 	case PHYID_AM79C874:
1188 		/* phy specific configuration for fibre/tp operation */
1189 		tmp = mdio_read(dev, MII_MCTRL);
1190 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1191 		if (dev->if_port == PORT_FIBRE)
1192 			tmp |= MII_FX_SEL;
1193 		else
1194 			tmp |= MII_EN_SCRM;
1195 		mdio_write(dev, MII_MCTRL, tmp);
1196 		break;
1197 	default:
1198 		break;
1199 	}
1200 	cfg = readl(ioaddr + ChipConfig);
1201 	if (cfg & CfgExtPhy)
1202 		return;
1203 
1204 	/* On page 78 of the spec, they recommend some settings for "optimum
1205 	   performance" to be done in sequence.  These settings optimize some
1206 	   of the 100Mbit autodetection circuitry.  They say we only want to
1207 	   do this for rev C of the chip, but engineers at NSC (Bradley
1208 	   Kennedy) recommends always setting them.  If you don't, you get
1209 	   errors on some autonegotiations that make the device unusable.
1210 
1211 	   It seems that the DSP needs a few usec to reinitialize after
1212 	   the start of the phy. Just retry writing these values until they
1213 	   stick.
1214 	*/
1215 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1216 
1217 		int dspcfg;
1218 		writew(1, ioaddr + PGSEL);
1219 		writew(PMDCSR_VAL, ioaddr + PMDCSR);
1220 		writew(TSTDAT_VAL, ioaddr + TSTDAT);
1221 		np->dspcfg = (np->srr <= SRR_DP83815_C)?
1222 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1223 		writew(np->dspcfg, ioaddr + DSPCFG);
1224 		writew(SDCFG_VAL, ioaddr + SDCFG);
1225 		writew(0, ioaddr + PGSEL);
1226 		readl(ioaddr + ChipConfig);
1227 		udelay(10);
1228 
1229 		writew(1, ioaddr + PGSEL);
1230 		dspcfg = readw(ioaddr + DSPCFG);
1231 		writew(0, ioaddr + PGSEL);
1232 		if (np->dspcfg == dspcfg)
1233 			break;
1234 	}
1235 
1236 	if (netif_msg_link(np)) {
1237 		if (i==NATSEMI_HW_TIMEOUT) {
1238 			printk(KERN_INFO
1239 				"%s: DSPCFG mismatch after retrying for %d usec.\n",
1240 				dev->name, i*10);
1241 		} else {
1242 			printk(KERN_INFO
1243 				"%s: DSPCFG accepted after %d usec.\n",
1244 				dev->name, i*10);
1245 		}
1246 	}
1247 	/*
1248 	 * Enable PHY Specific event based interrupts.  Link state change
1249 	 * and Auto-Negotiation Completion are among the affected.
1250 	 * Read the intr status to clear it (needed for wake events).
1251 	 */
1252 	readw(ioaddr + MIntrStatus);
1253 	writew(MICRIntEn, ioaddr + MIntrCtrl);
1254 }
1255 
1256 static int switch_port_external(struct net_device *dev)
1257 {
1258 	struct netdev_private *np = netdev_priv(dev);
1259 	void __iomem *ioaddr = ns_ioaddr(dev);
1260 	u32 cfg;
1261 
1262 	cfg = readl(ioaddr + ChipConfig);
1263 	if (cfg & CfgExtPhy)
1264 		return 0;
1265 
1266 	if (netif_msg_link(np)) {
1267 		printk(KERN_INFO "%s: switching to external transceiver.\n",
1268 				dev->name);
1269 	}
1270 
1271 	/* 1) switch back to external phy */
1272 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1273 	readl(ioaddr + ChipConfig);
1274 	udelay(1);
1275 
1276 	/* 2) reset the external phy: */
1277 	/* resetting the external PHY has been known to cause a hub supplying
1278 	 * power over Ethernet to kill the power.  We don't want to kill
1279 	 * power to this computer, so we avoid resetting the phy.
1280 	 */
1281 
1282 	/* 3) reinit the phy fixup, it got lost during power down. */
1283 	move_int_phy(dev, np->phy_addr_external);
1284 	init_phy_fixup(dev);
1285 
1286 	return 1;
1287 }
1288 
1289 static int switch_port_internal(struct net_device *dev)
1290 {
1291 	struct netdev_private *np = netdev_priv(dev);
1292 	void __iomem *ioaddr = ns_ioaddr(dev);
1293 	int i;
1294 	u32 cfg;
1295 	u16 bmcr;
1296 
1297 	cfg = readl(ioaddr + ChipConfig);
1298 	if (!(cfg &CfgExtPhy))
1299 		return 0;
1300 
1301 	if (netif_msg_link(np)) {
1302 		printk(KERN_INFO "%s: switching to internal transceiver.\n",
1303 				dev->name);
1304 	}
1305 	/* 1) switch back to internal phy: */
1306 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1307 	writel(cfg, ioaddr + ChipConfig);
1308 	readl(ioaddr + ChipConfig);
1309 	udelay(1);
1310 
1311 	/* 2) reset the internal phy: */
1312 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1313 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1314 	readl(ioaddr + ChipConfig);
1315 	udelay(10);
1316 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1317 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1318 		if (!(bmcr & BMCR_RESET))
1319 			break;
1320 		udelay(10);
1321 	}
1322 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1323 		printk(KERN_INFO
1324 			"%s: phy reset did not complete in %d usec.\n",
1325 			dev->name, i*10);
1326 	}
1327 	/* 3) reinit the phy fixup, it got lost during power down. */
1328 	init_phy_fixup(dev);
1329 
1330 	return 1;
1331 }
1332 
1333 /* Scan for a PHY on the external mii bus.
1334  * There are two tricky points:
1335  * - Do not scan while the internal phy is enabled. The internal phy will
1336  *   crash: e.g. reads from the DSPCFG register will return odd values and
1337  *   the nasty random phy reset code will reset the nic every few seconds.
1338  * - The internal phy must be moved around, an external phy could
1339  *   have the same address as the internal phy.
1340  */
1341 static int find_mii(struct net_device *dev)
1342 {
1343 	struct netdev_private *np = netdev_priv(dev);
1344 	int tmp;
1345 	int i;
1346 	int did_switch;
1347 
1348 	/* Switch to external phy */
1349 	did_switch = switch_port_external(dev);
1350 
1351 	/* Scan the possible phy addresses:
1352 	 *
1353 	 * PHY address 0 means that the phy is in isolate mode. Not yet
1354 	 * supported due to lack of test hardware. User space should
1355 	 * handle it through ethtool.
1356 	 */
1357 	for (i = 1; i <= 31; i++) {
1358 		move_int_phy(dev, i);
1359 		tmp = miiport_read(dev, i, MII_BMSR);
1360 		if (tmp != 0xffff && tmp != 0x0000) {
1361 			/* found something! */
1362 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1363 					+ mdio_read(dev, MII_PHYSID2);
1364 	 		if (netif_msg_probe(np)) {
1365 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1366 						pci_name(np->pci_dev), np->mii, i);
1367 			}
1368 			break;
1369 		}
1370 	}
1371 	/* And switch back to internal phy: */
1372 	if (did_switch)
1373 		switch_port_internal(dev);
1374 	return i;
1375 }
1376 
1377 /* CFG bits [13:16] [18:23] */
1378 #define CFG_RESET_SAVE 0xfde000
1379 /* WCSR bits [0:4] [9:10] */
1380 #define WCSR_RESET_SAVE 0x61f
1381 /* RFCR bits [20] [22] [27:31] */
1382 #define RFCR_RESET_SAVE 0xf8500000
1383 
1384 static void natsemi_reset(struct net_device *dev)
1385 {
1386 	int i;
1387 	u32 cfg;
1388 	u32 wcsr;
1389 	u32 rfcr;
1390 	u16 pmatch[3];
1391 	u16 sopass[3];
1392 	struct netdev_private *np = netdev_priv(dev);
1393 	void __iomem *ioaddr = ns_ioaddr(dev);
1394 
1395 	/*
1396 	 * Resetting the chip causes some registers to be lost.
1397 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead
1398 	 * we save the state that would have been loaded from EEPROM
1399 	 * on a normal power-up (see the spec EEPROM map).  This assumes
1400 	 * whoever calls this will follow up with init_registers() eventually.
1401 	 */
1402 
1403 	/* CFG */
1404 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1405 	/* WCSR */
1406 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1407 	/* RFCR */
1408 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1409 	/* PMATCH */
1410 	for (i = 0; i < 3; i++) {
1411 		writel(i*2, ioaddr + RxFilterAddr);
1412 		pmatch[i] = readw(ioaddr + RxFilterData);
1413 	}
1414 	/* SOPAS */
1415 	for (i = 0; i < 3; i++) {
1416 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1417 		sopass[i] = readw(ioaddr + RxFilterData);
1418 	}
1419 
1420 	/* now whack the chip */
1421 	writel(ChipReset, ioaddr + ChipCmd);
1422 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1423 		if (!(readl(ioaddr + ChipCmd) & ChipReset))
1424 			break;
1425 		udelay(5);
1426 	}
1427 	if (i==NATSEMI_HW_TIMEOUT) {
1428 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1429 			dev->name, i*5);
1430 	} else if (netif_msg_hw(np)) {
1431 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1432 			dev->name, i*5);
1433 	}
1434 
1435 	/* restore CFG */
1436 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1437 	/* turn on external phy if it was selected */
1438 	if (dev->if_port == PORT_TP)
1439 		cfg &= ~(CfgExtPhy | CfgPhyDis);
1440 	else
1441 		cfg |= (CfgExtPhy | CfgPhyDis);
1442 	writel(cfg, ioaddr + ChipConfig);
1443 	/* restore WCSR */
1444 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1445 	writel(wcsr, ioaddr + WOLCmd);
1446 	/* read RFCR */
1447 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1448 	/* restore PMATCH */
1449 	for (i = 0; i < 3; i++) {
1450 		writel(i*2, ioaddr + RxFilterAddr);
1451 		writew(pmatch[i], ioaddr + RxFilterData);
1452 	}
1453 	for (i = 0; i < 3; i++) {
1454 		writel(0xa+(i*2), ioaddr + RxFilterAddr);
1455 		writew(sopass[i], ioaddr + RxFilterData);
1456 	}
1457 	/* restore RFCR */
1458 	writel(rfcr, ioaddr + RxFilterAddr);
1459 }
1460 
1461 static void reset_rx(struct net_device *dev)
1462 {
1463 	int i;
1464 	struct netdev_private *np = netdev_priv(dev);
1465 	void __iomem *ioaddr = ns_ioaddr(dev);
1466 
1467 	np->intr_status &= ~RxResetDone;
1468 
1469 	writel(RxReset, ioaddr + ChipCmd);
1470 
1471 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1472 		np->intr_status |= readl(ioaddr + IntrStatus);
1473 		if (np->intr_status & RxResetDone)
1474 			break;
1475 		udelay(15);
1476 	}
1477 	if (i==NATSEMI_HW_TIMEOUT) {
1478 		printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1479 		       dev->name, i*15);
1480 	} else if (netif_msg_hw(np)) {
1481 		printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1482 		       dev->name, i*15);
1483 	}
1484 }
1485 
1486 static void natsemi_reload_eeprom(struct net_device *dev)
1487 {
1488 	struct netdev_private *np = netdev_priv(dev);
1489 	void __iomem *ioaddr = ns_ioaddr(dev);
1490 	int i;
1491 
1492 	writel(EepromReload, ioaddr + PCIBusCfg);
1493 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1494 		udelay(50);
1495 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1496 			break;
1497 	}
1498 	if (i==NATSEMI_HW_TIMEOUT) {
1499 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1500 			pci_name(np->pci_dev), i*50);
1501 	} else if (netif_msg_hw(np)) {
1502 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1503 			pci_name(np->pci_dev), i*50);
1504 	}
1505 }
1506 
1507 static void natsemi_stop_rxtx(struct net_device *dev)
1508 {
1509 	void __iomem * ioaddr = ns_ioaddr(dev);
1510 	struct netdev_private *np = netdev_priv(dev);
1511 	int i;
1512 
1513 	writel(RxOff | TxOff, ioaddr + ChipCmd);
1514 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1515 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1516 			break;
1517 		udelay(5);
1518 	}
1519 	if (i==NATSEMI_HW_TIMEOUT) {
1520 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1521 			dev->name, i*5);
1522 	} else if (netif_msg_hw(np)) {
1523 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1524 			dev->name, i*5);
1525 	}
1526 }
1527 
1528 static int netdev_open(struct net_device *dev)
1529 {
1530 	struct netdev_private *np = netdev_priv(dev);
1531 	void __iomem * ioaddr = ns_ioaddr(dev);
1532 	const int irq = np->pci_dev->irq;
1533 	int i;
1534 
1535 	/* Reset the chip, just in case. */
1536 	natsemi_reset(dev);
1537 
1538 	i = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
1539 	if (i) return i;
1540 
1541 	if (netif_msg_ifup(np))
1542 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1543 			dev->name, irq);
1544 	i = alloc_ring(dev);
1545 	if (i < 0) {
1546 		free_irq(irq, dev);
1547 		return i;
1548 	}
1549 	napi_enable(&np->napi);
1550 
1551 	init_ring(dev);
1552 	spin_lock_irq(&np->lock);
1553 	init_registers(dev);
1554 	/* now set the MAC address according to dev->dev_addr */
1555 	for (i = 0; i < 3; i++) {
1556 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1557 
1558 		writel(i*2, ioaddr + RxFilterAddr);
1559 		writew(mac, ioaddr + RxFilterData);
1560 	}
1561 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1562 	spin_unlock_irq(&np->lock);
1563 
1564 	netif_start_queue(dev);
1565 
1566 	if (netif_msg_ifup(np))
1567 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1568 			dev->name, (int)readl(ioaddr + ChipCmd));
1569 
1570 	/* Set the timer to check for link beat. */
1571 	timer_setup(&np->timer, netdev_timer, 0);
1572 	np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1573 	add_timer(&np->timer);
1574 
1575 	return 0;
1576 }
1577 
1578 static void do_cable_magic(struct net_device *dev)
1579 {
1580 	struct netdev_private *np = netdev_priv(dev);
1581 	void __iomem *ioaddr = ns_ioaddr(dev);
1582 
1583 	if (dev->if_port != PORT_TP)
1584 		return;
1585 
1586 	if (np->srr >= SRR_DP83816_A5)
1587 		return;
1588 
1589 	/*
1590 	 * 100 MBit links with short cables can trip an issue with the chip.
1591 	 * The problem manifests as lots of CRC errors and/or flickering
1592 	 * activity LED while idle.  This process is based on instructions
1593 	 * from engineers at National.
1594 	 */
1595 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1596 		u16 data;
1597 
1598 		writew(1, ioaddr + PGSEL);
1599 		/*
1600 		 * coefficient visibility should already be enabled via
1601 		 * DSPCFG | 0x1000
1602 		 */
1603 		data = readw(ioaddr + TSTDAT) & 0xff;
1604 		/*
1605 		 * the value must be negative, and within certain values
1606 		 * (these values all come from National)
1607 		 */
1608 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1609 			np = netdev_priv(dev);
1610 
1611 			/* the bug has been triggered - fix the coefficient */
1612 			writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1613 			/* lock the value */
1614 			data = readw(ioaddr + DSPCFG);
1615 			np->dspcfg = data | DSPCFG_LOCK;
1616 			writew(np->dspcfg, ioaddr + DSPCFG);
1617 		}
1618 		writew(0, ioaddr + PGSEL);
1619 	}
1620 }
1621 
1622 static void undo_cable_magic(struct net_device *dev)
1623 {
1624 	u16 data;
1625 	struct netdev_private *np = netdev_priv(dev);
1626 	void __iomem * ioaddr = ns_ioaddr(dev);
1627 
1628 	if (dev->if_port != PORT_TP)
1629 		return;
1630 
1631 	if (np->srr >= SRR_DP83816_A5)
1632 		return;
1633 
1634 	writew(1, ioaddr + PGSEL);
1635 	/* make sure the lock bit is clear */
1636 	data = readw(ioaddr + DSPCFG);
1637 	np->dspcfg = data & ~DSPCFG_LOCK;
1638 	writew(np->dspcfg, ioaddr + DSPCFG);
1639 	writew(0, ioaddr + PGSEL);
1640 }
1641 
1642 static void check_link(struct net_device *dev)
1643 {
1644 	struct netdev_private *np = netdev_priv(dev);
1645 	void __iomem * ioaddr = ns_ioaddr(dev);
1646 	int duplex = np->duplex;
1647 	u16 bmsr;
1648 
1649 	/* If we are ignoring the PHY then don't try reading it. */
1650 	if (np->ignore_phy)
1651 		goto propagate_state;
1652 
1653 	/* The link status field is latched: it remains low after a temporary
1654 	 * link failure until it's read. We need the current link status,
1655 	 * thus read twice.
1656 	 */
1657 	mdio_read(dev, MII_BMSR);
1658 	bmsr = mdio_read(dev, MII_BMSR);
1659 
1660 	if (!(bmsr & BMSR_LSTATUS)) {
1661 		if (netif_carrier_ok(dev)) {
1662 			if (netif_msg_link(np))
1663 				printk(KERN_NOTICE "%s: link down.\n",
1664 				       dev->name);
1665 			netif_carrier_off(dev);
1666 			undo_cable_magic(dev);
1667 		}
1668 		return;
1669 	}
1670 	if (!netif_carrier_ok(dev)) {
1671 		if (netif_msg_link(np))
1672 			printk(KERN_NOTICE "%s: link up.\n", dev->name);
1673 		netif_carrier_on(dev);
1674 		do_cable_magic(dev);
1675 	}
1676 
1677 	duplex = np->full_duplex;
1678 	if (!duplex) {
1679 		if (bmsr & BMSR_ANEGCOMPLETE) {
1680 			int tmp = mii_nway_result(
1681 				np->advertising & mdio_read(dev, MII_LPA));
1682 			if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1683 				duplex = 1;
1684 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1685 			duplex = 1;
1686 	}
1687 
1688 propagate_state:
1689 	/* if duplex is set then bit 28 must be set, too */
1690 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1691 		if (netif_msg_link(np))
1692 			printk(KERN_INFO
1693 				"%s: Setting %s-duplex based on negotiated "
1694 				"link capability.\n", dev->name,
1695 				duplex ? "full" : "half");
1696 		if (duplex) {
1697 			np->rx_config |= RxAcceptTx;
1698 			np->tx_config |= TxCarrierIgn | TxHeartIgn;
1699 		} else {
1700 			np->rx_config &= ~RxAcceptTx;
1701 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1702 		}
1703 		writel(np->tx_config, ioaddr + TxConfig);
1704 		writel(np->rx_config, ioaddr + RxConfig);
1705 	}
1706 }
1707 
1708 static void init_registers(struct net_device *dev)
1709 {
1710 	struct netdev_private *np = netdev_priv(dev);
1711 	void __iomem * ioaddr = ns_ioaddr(dev);
1712 
1713 	init_phy_fixup(dev);
1714 
1715 	/* clear any interrupts that are pending, such as wake events */
1716 	readl(ioaddr + IntrStatus);
1717 
1718 	writel(np->ring_dma, ioaddr + RxRingPtr);
1719 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1720 		ioaddr + TxRingPtr);
1721 
1722 	/* Initialize other registers.
1723 	 * Configure the PCI bus bursts and FIFO thresholds.
1724 	 * Configure for standard, in-spec Ethernet.
1725 	 * Start with half-duplex. check_link will update
1726 	 * to the correct settings.
1727 	 */
1728 
1729 	/* DRTH: 2: start tx if 64 bytes are in the fifo
1730 	 * FLTH: 0x10: refill with next packet if 512 bytes are free
1731 	 * MXDMA: 0: up to 256 byte bursts.
1732 	 * 	MXDMA must be <= FLTH
1733 	 * ECRETRY=1
1734 	 * ATP=1
1735 	 */
1736 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1737 				TX_FLTH_VAL | TX_DRTH_VAL_START;
1738 	writel(np->tx_config, ioaddr + TxConfig);
1739 
1740 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1741 	 * MXDMA 0: up to 256 byte bursts
1742 	 */
1743 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1744 	/* if receive ring now has bigger buffers than normal, enable jumbo */
1745 	if (np->rx_buf_sz > NATSEMI_LONGPKT)
1746 		np->rx_config |= RxAcceptLong;
1747 
1748 	writel(np->rx_config, ioaddr + RxConfig);
1749 
1750 	/* Disable PME:
1751 	 * The PME bit is initialized from the EEPROM contents.
1752 	 * PCI cards probably have PME disabled, but motherboard
1753 	 * implementations may have PME set to enable WakeOnLan.
1754 	 * With PME set the chip will scan incoming packets but
1755 	 * nothing will be written to memory. */
1756 	np->SavedClkRun = readl(ioaddr + ClkRun);
1757 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1758 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1759 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1760 			dev->name, readl(ioaddr + WOLCmd));
1761 	}
1762 
1763 	check_link(dev);
1764 	__set_rx_mode(dev);
1765 
1766 	/* Enable interrupts by setting the interrupt mask. */
1767 	writel(DEFAULT_INTR, ioaddr + IntrMask);
1768 	natsemi_irq_enable(dev);
1769 
1770 	writel(RxOn | TxOn, ioaddr + ChipCmd);
1771 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1772 }
1773 
1774 /*
1775  * netdev_timer:
1776  * Purpose:
1777  * 1) check for link changes. Usually they are handled by the MII interrupt
1778  *    but it doesn't hurt to check twice.
1779  * 2) check for sudden death of the NIC:
1780  *    It seems that a reference set for this chip went out with incorrect info,
1781  *    and there exist boards that aren't quite right.  An unexpected voltage
1782  *    drop can cause the PHY to get itself in a weird state (basically reset).
1783  *    NOTE: this only seems to affect revC chips.  The user can disable
1784  *    this check via dspcfg_workaround sysfs option.
1785  * 3) check of death of the RX path due to OOM
1786  */
1787 static void netdev_timer(struct timer_list *t)
1788 {
1789 	struct netdev_private *np = from_timer(np, t, timer);
1790 	struct net_device *dev = np->dev;
1791 	void __iomem * ioaddr = ns_ioaddr(dev);
1792 	int next_tick = NATSEMI_TIMER_FREQ;
1793 	const int irq = np->pci_dev->irq;
1794 
1795 	if (netif_msg_timer(np)) {
1796 		/* DO NOT read the IntrStatus register,
1797 		 * a read clears any pending interrupts.
1798 		 */
1799 		printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1800 			dev->name);
1801 	}
1802 
1803 	if (dev->if_port == PORT_TP) {
1804 		u16 dspcfg;
1805 
1806 		spin_lock_irq(&np->lock);
1807 		/* check for a nasty random phy-reset - use dspcfg as a flag */
1808 		writew(1, ioaddr+PGSEL);
1809 		dspcfg = readw(ioaddr+DSPCFG);
1810 		writew(0, ioaddr+PGSEL);
1811 		if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1812 			if (!netif_queue_stopped(dev)) {
1813 				spin_unlock_irq(&np->lock);
1814 				if (netif_msg_drv(np))
1815 					printk(KERN_NOTICE "%s: possible phy reset: "
1816 						"re-initializing\n", dev->name);
1817 				disable_irq(irq);
1818 				spin_lock_irq(&np->lock);
1819 				natsemi_stop_rxtx(dev);
1820 				dump_ring(dev);
1821 				reinit_ring(dev);
1822 				init_registers(dev);
1823 				spin_unlock_irq(&np->lock);
1824 				enable_irq(irq);
1825 			} else {
1826 				/* hurry back */
1827 				next_tick = HZ;
1828 				spin_unlock_irq(&np->lock);
1829 			}
1830 		} else {
1831 			/* init_registers() calls check_link() for the above case */
1832 			check_link(dev);
1833 			spin_unlock_irq(&np->lock);
1834 		}
1835 	} else {
1836 		spin_lock_irq(&np->lock);
1837 		check_link(dev);
1838 		spin_unlock_irq(&np->lock);
1839 	}
1840 	if (np->oom) {
1841 		disable_irq(irq);
1842 		np->oom = 0;
1843 		refill_rx(dev);
1844 		enable_irq(irq);
1845 		if (!np->oom) {
1846 			writel(RxOn, ioaddr + ChipCmd);
1847 		} else {
1848 			next_tick = 1;
1849 		}
1850 	}
1851 
1852 	if (next_tick > 1)
1853 		mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1854 	else
1855 		mod_timer(&np->timer, jiffies + next_tick);
1856 }
1857 
1858 static void dump_ring(struct net_device *dev)
1859 {
1860 	struct netdev_private *np = netdev_priv(dev);
1861 
1862 	if (netif_msg_pktdata(np)) {
1863 		int i;
1864 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1865 		for (i = 0; i < TX_RING_SIZE; i++) {
1866 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1867 				i, np->tx_ring[i].next_desc,
1868 				np->tx_ring[i].cmd_status,
1869 				np->tx_ring[i].addr);
1870 		}
1871 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1872 		for (i = 0; i < RX_RING_SIZE; i++) {
1873 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1874 				i, np->rx_ring[i].next_desc,
1875 				np->rx_ring[i].cmd_status,
1876 				np->rx_ring[i].addr);
1877 		}
1878 	}
1879 }
1880 
1881 static void ns_tx_timeout(struct net_device *dev, unsigned int txqueue)
1882 {
1883 	struct netdev_private *np = netdev_priv(dev);
1884 	void __iomem * ioaddr = ns_ioaddr(dev);
1885 	const int irq = np->pci_dev->irq;
1886 
1887 	disable_irq(irq);
1888 	spin_lock_irq(&np->lock);
1889 	if (!np->hands_off) {
1890 		if (netif_msg_tx_err(np))
1891 			printk(KERN_WARNING
1892 				"%s: Transmit timed out, status %#08x,"
1893 				" resetting...\n",
1894 				dev->name, readl(ioaddr + IntrStatus));
1895 		dump_ring(dev);
1896 
1897 		natsemi_reset(dev);
1898 		reinit_ring(dev);
1899 		init_registers(dev);
1900 	} else {
1901 		printk(KERN_WARNING
1902 			"%s: tx_timeout while in hands_off state?\n",
1903 			dev->name);
1904 	}
1905 	spin_unlock_irq(&np->lock);
1906 	enable_irq(irq);
1907 
1908 	netif_trans_update(dev); /* prevent tx timeout */
1909 	dev->stats.tx_errors++;
1910 	netif_wake_queue(dev);
1911 }
1912 
1913 static int alloc_ring(struct net_device *dev)
1914 {
1915 	struct netdev_private *np = netdev_priv(dev);
1916 	np->rx_ring = dma_alloc_coherent(&np->pci_dev->dev,
1917 					 sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
1918 					 &np->ring_dma, GFP_KERNEL);
1919 	if (!np->rx_ring)
1920 		return -ENOMEM;
1921 	np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1922 	return 0;
1923 }
1924 
1925 static void refill_rx(struct net_device *dev)
1926 {
1927 	struct netdev_private *np = netdev_priv(dev);
1928 
1929 	/* Refill the Rx ring buffers. */
1930 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1931 		struct sk_buff *skb;
1932 		int entry = np->dirty_rx % RX_RING_SIZE;
1933 		if (np->rx_skbuff[entry] == NULL) {
1934 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1935 			skb = netdev_alloc_skb(dev, buflen);
1936 			np->rx_skbuff[entry] = skb;
1937 			if (skb == NULL)
1938 				break; /* Better luck next round. */
1939 			np->rx_dma[entry] = dma_map_single(&np->pci_dev->dev,
1940 							   skb->data, buflen,
1941 							   DMA_FROM_DEVICE);
1942 			if (dma_mapping_error(&np->pci_dev->dev, np->rx_dma[entry])) {
1943 				dev_kfree_skb_any(skb);
1944 				np->rx_skbuff[entry] = NULL;
1945 				break; /* Better luck next round. */
1946 			}
1947 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1948 		}
1949 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1950 	}
1951 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1952 		if (netif_msg_rx_err(np))
1953 			printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1954 		np->oom = 1;
1955 	}
1956 }
1957 
1958 static void set_bufsize(struct net_device *dev)
1959 {
1960 	struct netdev_private *np = netdev_priv(dev);
1961 	if (dev->mtu <= ETH_DATA_LEN)
1962 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1963 	else
1964 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1965 }
1966 
1967 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1968 static void init_ring(struct net_device *dev)
1969 {
1970 	struct netdev_private *np = netdev_priv(dev);
1971 	int i;
1972 
1973 	/* 1) TX ring */
1974 	np->dirty_tx = np->cur_tx = 0;
1975 	for (i = 0; i < TX_RING_SIZE; i++) {
1976 		np->tx_skbuff[i] = NULL;
1977 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1978 			+sizeof(struct netdev_desc)
1979 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1980 		np->tx_ring[i].cmd_status = 0;
1981 	}
1982 
1983 	/* 2) RX ring */
1984 	np->dirty_rx = 0;
1985 	np->cur_rx = RX_RING_SIZE;
1986 	np->oom = 0;
1987 	set_bufsize(dev);
1988 
1989 	np->rx_head_desc = &np->rx_ring[0];
1990 
1991 	/* Please be careful before changing this loop - at least gcc-2.95.1
1992 	 * miscompiles it otherwise.
1993 	 */
1994 	/* Initialize all Rx descriptors. */
1995 	for (i = 0; i < RX_RING_SIZE; i++) {
1996 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1997 				+sizeof(struct netdev_desc)
1998 				*((i+1)%RX_RING_SIZE));
1999 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2000 		np->rx_skbuff[i] = NULL;
2001 	}
2002 	refill_rx(dev);
2003 	dump_ring(dev);
2004 }
2005 
2006 static void drain_tx(struct net_device *dev)
2007 {
2008 	struct netdev_private *np = netdev_priv(dev);
2009 	int i;
2010 
2011 	for (i = 0; i < TX_RING_SIZE; i++) {
2012 		if (np->tx_skbuff[i]) {
2013 			dma_unmap_single(&np->pci_dev->dev, np->tx_dma[i],
2014 					 np->tx_skbuff[i]->len, DMA_TO_DEVICE);
2015 			dev_kfree_skb(np->tx_skbuff[i]);
2016 			dev->stats.tx_dropped++;
2017 		}
2018 		np->tx_skbuff[i] = NULL;
2019 	}
2020 }
2021 
2022 static void drain_rx(struct net_device *dev)
2023 {
2024 	struct netdev_private *np = netdev_priv(dev);
2025 	unsigned int buflen = np->rx_buf_sz;
2026 	int i;
2027 
2028 	/* Free all the skbuffs in the Rx queue. */
2029 	for (i = 0; i < RX_RING_SIZE; i++) {
2030 		np->rx_ring[i].cmd_status = 0;
2031 		np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2032 		if (np->rx_skbuff[i]) {
2033 			dma_unmap_single(&np->pci_dev->dev, np->rx_dma[i],
2034 					 buflen + NATSEMI_PADDING,
2035 					 DMA_FROM_DEVICE);
2036 			dev_kfree_skb(np->rx_skbuff[i]);
2037 		}
2038 		np->rx_skbuff[i] = NULL;
2039 	}
2040 }
2041 
2042 static void drain_ring(struct net_device *dev)
2043 {
2044 	drain_rx(dev);
2045 	drain_tx(dev);
2046 }
2047 
2048 static void free_ring(struct net_device *dev)
2049 {
2050 	struct netdev_private *np = netdev_priv(dev);
2051 	dma_free_coherent(&np->pci_dev->dev,
2052 			  sizeof(struct netdev_desc) * (RX_RING_SIZE + TX_RING_SIZE),
2053 			  np->rx_ring, np->ring_dma);
2054 }
2055 
2056 static void reinit_rx(struct net_device *dev)
2057 {
2058 	struct netdev_private *np = netdev_priv(dev);
2059 	int i;
2060 
2061 	/* RX Ring */
2062 	np->dirty_rx = 0;
2063 	np->cur_rx = RX_RING_SIZE;
2064 	np->rx_head_desc = &np->rx_ring[0];
2065 	/* Initialize all Rx descriptors. */
2066 	for (i = 0; i < RX_RING_SIZE; i++)
2067 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2068 
2069 	refill_rx(dev);
2070 }
2071 
2072 static void reinit_ring(struct net_device *dev)
2073 {
2074 	struct netdev_private *np = netdev_priv(dev);
2075 	int i;
2076 
2077 	/* drain TX ring */
2078 	drain_tx(dev);
2079 	np->dirty_tx = np->cur_tx = 0;
2080 	for (i=0;i<TX_RING_SIZE;i++)
2081 		np->tx_ring[i].cmd_status = 0;
2082 
2083 	reinit_rx(dev);
2084 }
2085 
2086 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2087 {
2088 	struct netdev_private *np = netdev_priv(dev);
2089 	void __iomem * ioaddr = ns_ioaddr(dev);
2090 	unsigned entry;
2091 	unsigned long flags;
2092 
2093 	/* Note: Ordering is important here, set the field with the
2094 	   "ownership" bit last, and only then increment cur_tx. */
2095 
2096 	/* Calculate the next Tx descriptor entry. */
2097 	entry = np->cur_tx % TX_RING_SIZE;
2098 
2099 	np->tx_skbuff[entry] = skb;
2100 	np->tx_dma[entry] = dma_map_single(&np->pci_dev->dev, skb->data,
2101 					   skb->len, DMA_TO_DEVICE);
2102 	if (dma_mapping_error(&np->pci_dev->dev, np->tx_dma[entry])) {
2103 		np->tx_skbuff[entry] = NULL;
2104 		dev_kfree_skb_irq(skb);
2105 		dev->stats.tx_dropped++;
2106 		return NETDEV_TX_OK;
2107 	}
2108 
2109 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2110 
2111 	spin_lock_irqsave(&np->lock, flags);
2112 
2113 	if (!np->hands_off) {
2114 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2115 		/* StrongARM: Explicitly cache flush np->tx_ring and
2116 		 * skb->data,skb->len. */
2117 		wmb();
2118 		np->cur_tx++;
2119 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2120 			netdev_tx_done(dev);
2121 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2122 				netif_stop_queue(dev);
2123 		}
2124 		/* Wake the potentially-idle transmit channel. */
2125 		writel(TxOn, ioaddr + ChipCmd);
2126 	} else {
2127 		dev_kfree_skb_irq(skb);
2128 		dev->stats.tx_dropped++;
2129 	}
2130 	spin_unlock_irqrestore(&np->lock, flags);
2131 
2132 	if (netif_msg_tx_queued(np)) {
2133 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2134 			dev->name, np->cur_tx, entry);
2135 	}
2136 	return NETDEV_TX_OK;
2137 }
2138 
2139 static void netdev_tx_done(struct net_device *dev)
2140 {
2141 	struct netdev_private *np = netdev_priv(dev);
2142 
2143 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2144 		int entry = np->dirty_tx % TX_RING_SIZE;
2145 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2146 			break;
2147 		if (netif_msg_tx_done(np))
2148 			printk(KERN_DEBUG
2149 				"%s: tx frame #%d finished, status %#08x.\n",
2150 					dev->name, np->dirty_tx,
2151 					le32_to_cpu(np->tx_ring[entry].cmd_status));
2152 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2153 			dev->stats.tx_packets++;
2154 			dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2155 		} else { /* Various Tx errors */
2156 			int tx_status =
2157 				le32_to_cpu(np->tx_ring[entry].cmd_status);
2158 			if (tx_status & (DescTxAbort|DescTxExcColl))
2159 				dev->stats.tx_aborted_errors++;
2160 			if (tx_status & DescTxFIFO)
2161 				dev->stats.tx_fifo_errors++;
2162 			if (tx_status & DescTxCarrier)
2163 				dev->stats.tx_carrier_errors++;
2164 			if (tx_status & DescTxOOWCol)
2165 				dev->stats.tx_window_errors++;
2166 			dev->stats.tx_errors++;
2167 		}
2168 		dma_unmap_single(&np->pci_dev->dev, np->tx_dma[entry],
2169 				 np->tx_skbuff[entry]->len, DMA_TO_DEVICE);
2170 		/* Free the original skb. */
2171 		dev_consume_skb_irq(np->tx_skbuff[entry]);
2172 		np->tx_skbuff[entry] = NULL;
2173 	}
2174 	if (netif_queue_stopped(dev) &&
2175 	    np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2176 		/* The ring is no longer full, wake queue. */
2177 		netif_wake_queue(dev);
2178 	}
2179 }
2180 
2181 /* The interrupt handler doesn't actually handle interrupts itself, it
2182  * schedules a NAPI poll if there is anything to do. */
2183 static irqreturn_t intr_handler(int irq, void *dev_instance)
2184 {
2185 	struct net_device *dev = dev_instance;
2186 	struct netdev_private *np = netdev_priv(dev);
2187 	void __iomem * ioaddr = ns_ioaddr(dev);
2188 
2189 	/* Reading IntrStatus automatically acknowledges so don't do
2190 	 * that while interrupts are disabled, (for example, while a
2191 	 * poll is scheduled).  */
2192 	if (np->hands_off || !readl(ioaddr + IntrEnable))
2193 		return IRQ_NONE;
2194 
2195 	np->intr_status = readl(ioaddr + IntrStatus);
2196 
2197 	if (!np->intr_status)
2198 		return IRQ_NONE;
2199 
2200 	if (netif_msg_intr(np))
2201 		printk(KERN_DEBUG
2202 		       "%s: Interrupt, status %#08x, mask %#08x.\n",
2203 		       dev->name, np->intr_status,
2204 		       readl(ioaddr + IntrMask));
2205 
2206 	prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2207 
2208 	if (napi_schedule_prep(&np->napi)) {
2209 		/* Disable interrupts and register for poll */
2210 		natsemi_irq_disable(dev);
2211 		__napi_schedule(&np->napi);
2212 	} else
2213 		printk(KERN_WARNING
2214 	       	       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2215 		       dev->name, np->intr_status,
2216 		       readl(ioaddr + IntrMask));
2217 
2218 	return IRQ_HANDLED;
2219 }
2220 
2221 /* This is the NAPI poll routine.  As well as the standard RX handling
2222  * it also handles all other interrupts that the chip might raise.
2223  */
2224 static int natsemi_poll(struct napi_struct *napi, int budget)
2225 {
2226 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2227 	struct net_device *dev = np->dev;
2228 	void __iomem * ioaddr = ns_ioaddr(dev);
2229 	int work_done = 0;
2230 
2231 	do {
2232 		if (netif_msg_intr(np))
2233 			printk(KERN_DEBUG
2234 			       "%s: Poll, status %#08x, mask %#08x.\n",
2235 			       dev->name, np->intr_status,
2236 			       readl(ioaddr + IntrMask));
2237 
2238 		/* netdev_rx() may read IntrStatus again if the RX state
2239 		 * machine falls over so do it first. */
2240 		if (np->intr_status &
2241 		    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2242 		     IntrRxErr | IntrRxOverrun)) {
2243 			netdev_rx(dev, &work_done, budget);
2244 		}
2245 
2246 		if (np->intr_status &
2247 		    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2248 			spin_lock(&np->lock);
2249 			netdev_tx_done(dev);
2250 			spin_unlock(&np->lock);
2251 		}
2252 
2253 		/* Abnormal error summary/uncommon events handlers. */
2254 		if (np->intr_status & IntrAbnormalSummary)
2255 			netdev_error(dev, np->intr_status);
2256 
2257 		if (work_done >= budget)
2258 			return work_done;
2259 
2260 		np->intr_status = readl(ioaddr + IntrStatus);
2261 	} while (np->intr_status);
2262 
2263 	napi_complete_done(napi, work_done);
2264 
2265 	/* Reenable interrupts providing nothing is trying to shut
2266 	 * the chip down. */
2267 	spin_lock(&np->lock);
2268 	if (!np->hands_off)
2269 		natsemi_irq_enable(dev);
2270 	spin_unlock(&np->lock);
2271 
2272 	return work_done;
2273 }
2274 
2275 /* This routine is logically part of the interrupt handler, but separated
2276    for clarity and better register allocation. */
2277 static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2278 {
2279 	struct netdev_private *np = netdev_priv(dev);
2280 	int entry = np->cur_rx % RX_RING_SIZE;
2281 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2282 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2283 	unsigned int buflen = np->rx_buf_sz;
2284 	void __iomem * ioaddr = ns_ioaddr(dev);
2285 
2286 	/* If the driver owns the next entry it's a new packet. Send it up. */
2287 	while (desc_status < 0) { /* e.g. & DescOwn */
2288 		int pkt_len;
2289 		if (netif_msg_rx_status(np))
2290 			printk(KERN_DEBUG
2291 				"  netdev_rx() entry %d status was %#08x.\n",
2292 				entry, desc_status);
2293 		if (--boguscnt < 0)
2294 			break;
2295 
2296 		if (*work_done >= work_to_do)
2297 			break;
2298 
2299 		(*work_done)++;
2300 
2301 		pkt_len = (desc_status & DescSizeMask) - 4;
2302 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2303 			if (desc_status & DescMore) {
2304 				unsigned long flags;
2305 
2306 				if (netif_msg_rx_err(np))
2307 					printk(KERN_WARNING
2308 						"%s: Oversized(?) Ethernet "
2309 						"frame spanned multiple "
2310 						"buffers, entry %#08x "
2311 						"status %#08x.\n", dev->name,
2312 						np->cur_rx, desc_status);
2313 				dev->stats.rx_length_errors++;
2314 
2315 				/* The RX state machine has probably
2316 				 * locked up beneath us.  Follow the
2317 				 * reset procedure documented in
2318 				 * AN-1287. */
2319 
2320 				spin_lock_irqsave(&np->lock, flags);
2321 				reset_rx(dev);
2322 				reinit_rx(dev);
2323 				writel(np->ring_dma, ioaddr + RxRingPtr);
2324 				check_link(dev);
2325 				spin_unlock_irqrestore(&np->lock, flags);
2326 
2327 				/* We'll enable RX on exit from this
2328 				 * function. */
2329 				break;
2330 
2331 			} else {
2332 				/* There was an error. */
2333 				dev->stats.rx_errors++;
2334 				if (desc_status & (DescRxAbort|DescRxOver))
2335 					dev->stats.rx_over_errors++;
2336 				if (desc_status & (DescRxLong|DescRxRunt))
2337 					dev->stats.rx_length_errors++;
2338 				if (desc_status & (DescRxInvalid|DescRxAlign))
2339 					dev->stats.rx_frame_errors++;
2340 				if (desc_status & DescRxCRC)
2341 					dev->stats.rx_crc_errors++;
2342 			}
2343 		} else if (pkt_len > np->rx_buf_sz) {
2344 			/* if this is the tail of a double buffer
2345 			 * packet, we've already counted the error
2346 			 * on the first part.  Ignore the second half.
2347 			 */
2348 		} else {
2349 			struct sk_buff *skb;
2350 			/* Omit CRC size. */
2351 			/* Check if the packet is long enough to accept
2352 			 * without copying to a minimally-sized skbuff. */
2353 			if (pkt_len < rx_copybreak &&
2354 			    (skb = netdev_alloc_skb(dev, pkt_len + RX_OFFSET)) != NULL) {
2355 				/* 16 byte align the IP header */
2356 				skb_reserve(skb, RX_OFFSET);
2357 				dma_sync_single_for_cpu(&np->pci_dev->dev,
2358 							np->rx_dma[entry],
2359 							buflen,
2360 							DMA_FROM_DEVICE);
2361 				skb_copy_to_linear_data(skb,
2362 					np->rx_skbuff[entry]->data, pkt_len);
2363 				skb_put(skb, pkt_len);
2364 				dma_sync_single_for_device(&np->pci_dev->dev,
2365 							   np->rx_dma[entry],
2366 							   buflen,
2367 							   DMA_FROM_DEVICE);
2368 			} else {
2369 				dma_unmap_single(&np->pci_dev->dev,
2370 						 np->rx_dma[entry],
2371 						 buflen + NATSEMI_PADDING,
2372 						 DMA_FROM_DEVICE);
2373 				skb_put(skb = np->rx_skbuff[entry], pkt_len);
2374 				np->rx_skbuff[entry] = NULL;
2375 			}
2376 			skb->protocol = eth_type_trans(skb, dev);
2377 			netif_receive_skb(skb);
2378 			dev->stats.rx_packets++;
2379 			dev->stats.rx_bytes += pkt_len;
2380 		}
2381 		entry = (++np->cur_rx) % RX_RING_SIZE;
2382 		np->rx_head_desc = &np->rx_ring[entry];
2383 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2384 	}
2385 	refill_rx(dev);
2386 
2387 	/* Restart Rx engine if stopped. */
2388 	if (np->oom)
2389 		mod_timer(&np->timer, jiffies + 1);
2390 	else
2391 		writel(RxOn, ioaddr + ChipCmd);
2392 }
2393 
2394 static void netdev_error(struct net_device *dev, int intr_status)
2395 {
2396 	struct netdev_private *np = netdev_priv(dev);
2397 	void __iomem * ioaddr = ns_ioaddr(dev);
2398 
2399 	spin_lock(&np->lock);
2400 	if (intr_status & LinkChange) {
2401 		u16 lpa = mdio_read(dev, MII_LPA);
2402 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2403 		    netif_msg_link(np)) {
2404 			printk(KERN_INFO
2405 				"%s: Autonegotiation advertising"
2406 				" %#04x  partner %#04x.\n", dev->name,
2407 				np->advertising, lpa);
2408 		}
2409 
2410 		/* read MII int status to clear the flag */
2411 		readw(ioaddr + MIntrStatus);
2412 		check_link(dev);
2413 	}
2414 	if (intr_status & StatsMax) {
2415 		__get_stats(dev);
2416 	}
2417 	if (intr_status & IntrTxUnderrun) {
2418 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2419 			np->tx_config += TX_DRTH_VAL_INC;
2420 			if (netif_msg_tx_err(np))
2421 				printk(KERN_NOTICE
2422 					"%s: increased tx threshold, txcfg %#08x.\n",
2423 					dev->name, np->tx_config);
2424 		} else {
2425 			if (netif_msg_tx_err(np))
2426 				printk(KERN_NOTICE
2427 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2428 					dev->name, np->tx_config);
2429 		}
2430 		writel(np->tx_config, ioaddr + TxConfig);
2431 	}
2432 	if (intr_status & WOLPkt && netif_msg_wol(np)) {
2433 		int wol_status = readl(ioaddr + WOLCmd);
2434 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2435 			dev->name, wol_status);
2436 	}
2437 	if (intr_status & RxStatusFIFOOver) {
2438 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2439 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2440 				dev->name);
2441 		}
2442 		dev->stats.rx_fifo_errors++;
2443 		dev->stats.rx_errors++;
2444 	}
2445 	/* Hmmmmm, it's not clear how to recover from PCI faults. */
2446 	if (intr_status & IntrPCIErr) {
2447 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2448 			intr_status & IntrPCIErr);
2449 		dev->stats.tx_fifo_errors++;
2450 		dev->stats.tx_errors++;
2451 		dev->stats.rx_fifo_errors++;
2452 		dev->stats.rx_errors++;
2453 	}
2454 	spin_unlock(&np->lock);
2455 }
2456 
2457 static void __get_stats(struct net_device *dev)
2458 {
2459 	void __iomem * ioaddr = ns_ioaddr(dev);
2460 
2461 	/* The chip only need report frame silently dropped. */
2462 	dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2463 	dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2464 }
2465 
2466 static struct net_device_stats *get_stats(struct net_device *dev)
2467 {
2468 	struct netdev_private *np = netdev_priv(dev);
2469 
2470 	/* The chip only need report frame silently dropped. */
2471 	spin_lock_irq(&np->lock);
2472 	if (netif_running(dev) && !np->hands_off)
2473 		__get_stats(dev);
2474 	spin_unlock_irq(&np->lock);
2475 
2476 	return &dev->stats;
2477 }
2478 
2479 #ifdef CONFIG_NET_POLL_CONTROLLER
2480 static void natsemi_poll_controller(struct net_device *dev)
2481 {
2482 	struct netdev_private *np = netdev_priv(dev);
2483 	const int irq = np->pci_dev->irq;
2484 
2485 	disable_irq(irq);
2486 	intr_handler(irq, dev);
2487 	enable_irq(irq);
2488 }
2489 #endif
2490 
2491 #define HASH_TABLE	0x200
2492 static void __set_rx_mode(struct net_device *dev)
2493 {
2494 	void __iomem * ioaddr = ns_ioaddr(dev);
2495 	struct netdev_private *np = netdev_priv(dev);
2496 	u8 mc_filter[64]; /* Multicast hash filter */
2497 	u32 rx_mode;
2498 
2499 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2500 		rx_mode = RxFilterEnable | AcceptBroadcast
2501 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2502 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2503 		   (dev->flags & IFF_ALLMULTI)) {
2504 		rx_mode = RxFilterEnable | AcceptBroadcast
2505 			| AcceptAllMulticast | AcceptMyPhys;
2506 	} else {
2507 		struct netdev_hw_addr *ha;
2508 		int i;
2509 
2510 		memset(mc_filter, 0, sizeof(mc_filter));
2511 		netdev_for_each_mc_addr(ha, dev) {
2512 			int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2513 			mc_filter[b/8] |= (1 << (b & 0x07));
2514 		}
2515 		rx_mode = RxFilterEnable | AcceptBroadcast
2516 			| AcceptMulticast | AcceptMyPhys;
2517 		for (i = 0; i < 64; i += 2) {
2518 			writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2519 			writel((mc_filter[i + 1] << 8) + mc_filter[i],
2520 			       ioaddr + RxFilterData);
2521 		}
2522 	}
2523 	writel(rx_mode, ioaddr + RxFilterAddr);
2524 	np->cur_rx_mode = rx_mode;
2525 }
2526 
2527 static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2528 {
2529 	dev->mtu = new_mtu;
2530 
2531 	/* synchronized against open : rtnl_lock() held by caller */
2532 	if (netif_running(dev)) {
2533 		struct netdev_private *np = netdev_priv(dev);
2534 		void __iomem * ioaddr = ns_ioaddr(dev);
2535 		const int irq = np->pci_dev->irq;
2536 
2537 		disable_irq(irq);
2538 		spin_lock(&np->lock);
2539 		/* stop engines */
2540 		natsemi_stop_rxtx(dev);
2541 		/* drain rx queue */
2542 		drain_rx(dev);
2543 		/* change buffers */
2544 		set_bufsize(dev);
2545 		reinit_rx(dev);
2546 		writel(np->ring_dma, ioaddr + RxRingPtr);
2547 		/* restart engines */
2548 		writel(RxOn | TxOn, ioaddr + ChipCmd);
2549 		spin_unlock(&np->lock);
2550 		enable_irq(irq);
2551 	}
2552 	return 0;
2553 }
2554 
2555 static void set_rx_mode(struct net_device *dev)
2556 {
2557 	struct netdev_private *np = netdev_priv(dev);
2558 	spin_lock_irq(&np->lock);
2559 	if (!np->hands_off)
2560 		__set_rx_mode(dev);
2561 	spin_unlock_irq(&np->lock);
2562 }
2563 
2564 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2565 {
2566 	struct netdev_private *np = netdev_priv(dev);
2567 	strscpy(info->driver, DRV_NAME, sizeof(info->driver));
2568 	strscpy(info->version, DRV_VERSION, sizeof(info->version));
2569 	strscpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
2570 }
2571 
2572 static int get_regs_len(struct net_device *dev)
2573 {
2574 	return NATSEMI_REGS_SIZE;
2575 }
2576 
2577 static int get_eeprom_len(struct net_device *dev)
2578 {
2579 	struct netdev_private *np = netdev_priv(dev);
2580 	return np->eeprom_size;
2581 }
2582 
2583 static int get_link_ksettings(struct net_device *dev,
2584 			      struct ethtool_link_ksettings *ecmd)
2585 {
2586 	struct netdev_private *np = netdev_priv(dev);
2587 	spin_lock_irq(&np->lock);
2588 	netdev_get_ecmd(dev, ecmd);
2589 	spin_unlock_irq(&np->lock);
2590 	return 0;
2591 }
2592 
2593 static int set_link_ksettings(struct net_device *dev,
2594 			      const struct ethtool_link_ksettings *ecmd)
2595 {
2596 	struct netdev_private *np = netdev_priv(dev);
2597 	int res;
2598 	spin_lock_irq(&np->lock);
2599 	res = netdev_set_ecmd(dev, ecmd);
2600 	spin_unlock_irq(&np->lock);
2601 	return res;
2602 }
2603 
2604 static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2605 {
2606 	struct netdev_private *np = netdev_priv(dev);
2607 	spin_lock_irq(&np->lock);
2608 	netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2609 	netdev_get_sopass(dev, wol->sopass);
2610 	spin_unlock_irq(&np->lock);
2611 }
2612 
2613 static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2614 {
2615 	struct netdev_private *np = netdev_priv(dev);
2616 	int res;
2617 	spin_lock_irq(&np->lock);
2618 	netdev_set_wol(dev, wol->wolopts);
2619 	res = netdev_set_sopass(dev, wol->sopass);
2620 	spin_unlock_irq(&np->lock);
2621 	return res;
2622 }
2623 
2624 static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2625 {
2626 	struct netdev_private *np = netdev_priv(dev);
2627 	regs->version = NATSEMI_REGS_VER;
2628 	spin_lock_irq(&np->lock);
2629 	netdev_get_regs(dev, buf);
2630 	spin_unlock_irq(&np->lock);
2631 }
2632 
2633 static u32 get_msglevel(struct net_device *dev)
2634 {
2635 	struct netdev_private *np = netdev_priv(dev);
2636 	return np->msg_enable;
2637 }
2638 
2639 static void set_msglevel(struct net_device *dev, u32 val)
2640 {
2641 	struct netdev_private *np = netdev_priv(dev);
2642 	np->msg_enable = val;
2643 }
2644 
2645 static int nway_reset(struct net_device *dev)
2646 {
2647 	int tmp;
2648 	int r = -EINVAL;
2649 	/* if autoneg is off, it's an error */
2650 	tmp = mdio_read(dev, MII_BMCR);
2651 	if (tmp & BMCR_ANENABLE) {
2652 		tmp |= (BMCR_ANRESTART);
2653 		mdio_write(dev, MII_BMCR, tmp);
2654 		r = 0;
2655 	}
2656 	return r;
2657 }
2658 
2659 static u32 get_link(struct net_device *dev)
2660 {
2661 	/* LSTATUS is latched low until a read - so read twice */
2662 	mdio_read(dev, MII_BMSR);
2663 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2664 }
2665 
2666 static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2667 {
2668 	struct netdev_private *np = netdev_priv(dev);
2669 	u8 *eebuf;
2670 	int res;
2671 
2672 	eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2673 	if (!eebuf)
2674 		return -ENOMEM;
2675 
2676 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2677 	spin_lock_irq(&np->lock);
2678 	res = netdev_get_eeprom(dev, eebuf);
2679 	spin_unlock_irq(&np->lock);
2680 	if (!res)
2681 		memcpy(data, eebuf+eeprom->offset, eeprom->len);
2682 	kfree(eebuf);
2683 	return res;
2684 }
2685 
2686 static const struct ethtool_ops ethtool_ops = {
2687 	.get_drvinfo = get_drvinfo,
2688 	.get_regs_len = get_regs_len,
2689 	.get_eeprom_len = get_eeprom_len,
2690 	.get_wol = get_wol,
2691 	.set_wol = set_wol,
2692 	.get_regs = get_regs,
2693 	.get_msglevel = get_msglevel,
2694 	.set_msglevel = set_msglevel,
2695 	.nway_reset = nway_reset,
2696 	.get_link = get_link,
2697 	.get_eeprom = get_eeprom,
2698 	.get_link_ksettings = get_link_ksettings,
2699 	.set_link_ksettings = set_link_ksettings,
2700 };
2701 
2702 static int netdev_set_wol(struct net_device *dev, u32 newval)
2703 {
2704 	struct netdev_private *np = netdev_priv(dev);
2705 	void __iomem * ioaddr = ns_ioaddr(dev);
2706 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2707 
2708 	/* translate to bitmasks this chip understands */
2709 	if (newval & WAKE_PHY)
2710 		data |= WakePhy;
2711 	if (newval & WAKE_UCAST)
2712 		data |= WakeUnicast;
2713 	if (newval & WAKE_MCAST)
2714 		data |= WakeMulticast;
2715 	if (newval & WAKE_BCAST)
2716 		data |= WakeBroadcast;
2717 	if (newval & WAKE_ARP)
2718 		data |= WakeArp;
2719 	if (newval & WAKE_MAGIC)
2720 		data |= WakeMagic;
2721 	if (np->srr >= SRR_DP83815_D) {
2722 		if (newval & WAKE_MAGICSECURE) {
2723 			data |= WakeMagicSecure;
2724 		}
2725 	}
2726 
2727 	writel(data, ioaddr + WOLCmd);
2728 
2729 	return 0;
2730 }
2731 
2732 static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2733 {
2734 	struct netdev_private *np = netdev_priv(dev);
2735 	void __iomem * ioaddr = ns_ioaddr(dev);
2736 	u32 regval = readl(ioaddr + WOLCmd);
2737 
2738 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2739 			| WAKE_ARP | WAKE_MAGIC);
2740 
2741 	if (np->srr >= SRR_DP83815_D) {
2742 		/* SOPASS works on revD and higher */
2743 		*supported |= WAKE_MAGICSECURE;
2744 	}
2745 	*cur = 0;
2746 
2747 	/* translate from chip bitmasks */
2748 	if (regval & WakePhy)
2749 		*cur |= WAKE_PHY;
2750 	if (regval & WakeUnicast)
2751 		*cur |= WAKE_UCAST;
2752 	if (regval & WakeMulticast)
2753 		*cur |= WAKE_MCAST;
2754 	if (regval & WakeBroadcast)
2755 		*cur |= WAKE_BCAST;
2756 	if (regval & WakeArp)
2757 		*cur |= WAKE_ARP;
2758 	if (regval & WakeMagic)
2759 		*cur |= WAKE_MAGIC;
2760 	if (regval & WakeMagicSecure) {
2761 		/* this can be on in revC, but it's broken */
2762 		*cur |= WAKE_MAGICSECURE;
2763 	}
2764 
2765 	return 0;
2766 }
2767 
2768 static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2769 {
2770 	struct netdev_private *np = netdev_priv(dev);
2771 	void __iomem * ioaddr = ns_ioaddr(dev);
2772 	u16 *sval = (u16 *)newval;
2773 	u32 addr;
2774 
2775 	if (np->srr < SRR_DP83815_D) {
2776 		return 0;
2777 	}
2778 
2779 	/* enable writing to these registers by disabling the RX filter */
2780 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2781 	addr &= ~RxFilterEnable;
2782 	writel(addr, ioaddr + RxFilterAddr);
2783 
2784 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2785 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2786 	writew(sval[0], ioaddr + RxFilterData);
2787 
2788 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2789 	writew(sval[1], ioaddr + RxFilterData);
2790 
2791 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2792 	writew(sval[2], ioaddr + RxFilterData);
2793 
2794 	/* re-enable the RX filter */
2795 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2796 
2797 	return 0;
2798 }
2799 
2800 static int netdev_get_sopass(struct net_device *dev, u8 *data)
2801 {
2802 	struct netdev_private *np = netdev_priv(dev);
2803 	void __iomem * ioaddr = ns_ioaddr(dev);
2804 	u16 *sval = (u16 *)data;
2805 	u32 addr;
2806 
2807 	if (np->srr < SRR_DP83815_D) {
2808 		sval[0] = sval[1] = sval[2] = 0;
2809 		return 0;
2810 	}
2811 
2812 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2813 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2814 
2815 	writel(addr | 0xa, ioaddr + RxFilterAddr);
2816 	sval[0] = readw(ioaddr + RxFilterData);
2817 
2818 	writel(addr | 0xc, ioaddr + RxFilterAddr);
2819 	sval[1] = readw(ioaddr + RxFilterData);
2820 
2821 	writel(addr | 0xe, ioaddr + RxFilterAddr);
2822 	sval[2] = readw(ioaddr + RxFilterData);
2823 
2824 	writel(addr, ioaddr + RxFilterAddr);
2825 
2826 	return 0;
2827 }
2828 
2829 static int netdev_get_ecmd(struct net_device *dev,
2830 			   struct ethtool_link_ksettings *ecmd)
2831 {
2832 	struct netdev_private *np = netdev_priv(dev);
2833 	u32 supported, advertising;
2834 	u32 tmp;
2835 
2836 	ecmd->base.port   = dev->if_port;
2837 	ecmd->base.speed  = np->speed;
2838 	ecmd->base.duplex = np->duplex;
2839 	ecmd->base.autoneg = np->autoneg;
2840 	advertising = 0;
2841 
2842 	if (np->advertising & ADVERTISE_10HALF)
2843 		advertising |= ADVERTISED_10baseT_Half;
2844 	if (np->advertising & ADVERTISE_10FULL)
2845 		advertising |= ADVERTISED_10baseT_Full;
2846 	if (np->advertising & ADVERTISE_100HALF)
2847 		advertising |= ADVERTISED_100baseT_Half;
2848 	if (np->advertising & ADVERTISE_100FULL)
2849 		advertising |= ADVERTISED_100baseT_Full;
2850 	supported   = (SUPPORTED_Autoneg |
2851 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2852 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2853 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2854 	ecmd->base.phy_address = np->phy_addr_external;
2855 	/*
2856 	 * We intentionally report the phy address of the external
2857 	 * phy, even if the internal phy is used. This is necessary
2858 	 * to work around a deficiency of the ethtool interface:
2859 	 * It's only possible to query the settings of the active
2860 	 * port. Therefore
2861 	 * # ethtool -s ethX port mii
2862 	 * actually sends an ioctl to switch to port mii with the
2863 	 * settings that are used for the current active port.
2864 	 * If we would report a different phy address in this
2865 	 * command, then
2866 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii
2867 	 * would unintentionally change the phy address.
2868 	 *
2869 	 * Fortunately the phy address doesn't matter with the
2870 	 * internal phy...
2871 	 */
2872 
2873 	/* set information based on active port type */
2874 	switch (ecmd->base.port) {
2875 	default:
2876 	case PORT_TP:
2877 		advertising |= ADVERTISED_TP;
2878 		break;
2879 	case PORT_MII:
2880 		advertising |= ADVERTISED_MII;
2881 		break;
2882 	case PORT_FIBRE:
2883 		advertising |= ADVERTISED_FIBRE;
2884 		break;
2885 	}
2886 
2887 	/* if autonegotiation is on, try to return the active speed/duplex */
2888 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2889 		advertising |= ADVERTISED_Autoneg;
2890 		tmp = mii_nway_result(
2891 			np->advertising & mdio_read(dev, MII_LPA));
2892 		if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2893 			ecmd->base.speed = SPEED_100;
2894 		else
2895 			ecmd->base.speed = SPEED_10;
2896 		if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2897 			ecmd->base.duplex = DUPLEX_FULL;
2898 		else
2899 			ecmd->base.duplex = DUPLEX_HALF;
2900 	}
2901 
2902 	/* ignore maxtxpkt, maxrxpkt for now */
2903 
2904 	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.supported,
2905 						supported);
2906 	ethtool_convert_legacy_u32_to_link_mode(ecmd->link_modes.advertising,
2907 						advertising);
2908 
2909 	return 0;
2910 }
2911 
2912 static int netdev_set_ecmd(struct net_device *dev,
2913 			   const struct ethtool_link_ksettings *ecmd)
2914 {
2915 	struct netdev_private *np = netdev_priv(dev);
2916 	u32 advertising;
2917 
2918 	ethtool_convert_link_mode_to_legacy_u32(&advertising,
2919 						ecmd->link_modes.advertising);
2920 
2921 	if (ecmd->base.port != PORT_TP &&
2922 	    ecmd->base.port != PORT_MII &&
2923 	    ecmd->base.port != PORT_FIBRE)
2924 		return -EINVAL;
2925 	if (ecmd->base.autoneg == AUTONEG_ENABLE) {
2926 		if ((advertising & (ADVERTISED_10baseT_Half |
2927 					  ADVERTISED_10baseT_Full |
2928 					  ADVERTISED_100baseT_Half |
2929 					  ADVERTISED_100baseT_Full)) == 0) {
2930 			return -EINVAL;
2931 		}
2932 	} else if (ecmd->base.autoneg == AUTONEG_DISABLE) {
2933 		u32 speed = ecmd->base.speed;
2934 		if (speed != SPEED_10 && speed != SPEED_100)
2935 			return -EINVAL;
2936 		if (ecmd->base.duplex != DUPLEX_HALF &&
2937 		    ecmd->base.duplex != DUPLEX_FULL)
2938 			return -EINVAL;
2939 	} else {
2940 		return -EINVAL;
2941 	}
2942 
2943 	/*
2944 	 * If we're ignoring the PHY then autoneg and the internal
2945 	 * transceiver are really not going to work so don't let the
2946 	 * user select them.
2947 	 */
2948 	if (np->ignore_phy && (ecmd->base.autoneg == AUTONEG_ENABLE ||
2949 			       ecmd->base.port == PORT_TP))
2950 		return -EINVAL;
2951 
2952 	/*
2953 	 * maxtxpkt, maxrxpkt: ignored for now.
2954 	 *
2955 	 * transceiver:
2956 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2957 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2958 	 * selects based on ecmd->port.
2959 	 *
2960 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2961 	 * phys that are connected to the mii bus. It's used to apply fibre
2962 	 * specific updates.
2963 	 */
2964 
2965 	/* WHEW! now lets bang some bits */
2966 
2967 	/* save the parms */
2968 	dev->if_port          = ecmd->base.port;
2969 	np->autoneg           = ecmd->base.autoneg;
2970 	np->phy_addr_external = ecmd->base.phy_address & PhyAddrMask;
2971 	if (np->autoneg == AUTONEG_ENABLE) {
2972 		/* advertise only what has been requested */
2973 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2974 		if (advertising & ADVERTISED_10baseT_Half)
2975 			np->advertising |= ADVERTISE_10HALF;
2976 		if (advertising & ADVERTISED_10baseT_Full)
2977 			np->advertising |= ADVERTISE_10FULL;
2978 		if (advertising & ADVERTISED_100baseT_Half)
2979 			np->advertising |= ADVERTISE_100HALF;
2980 		if (advertising & ADVERTISED_100baseT_Full)
2981 			np->advertising |= ADVERTISE_100FULL;
2982 	} else {
2983 		np->speed  = ecmd->base.speed;
2984 		np->duplex = ecmd->base.duplex;
2985 		/* user overriding the initial full duplex parm? */
2986 		if (np->duplex == DUPLEX_HALF)
2987 			np->full_duplex = 0;
2988 	}
2989 
2990 	/* get the right phy enabled */
2991 	if (ecmd->base.port == PORT_TP)
2992 		switch_port_internal(dev);
2993 	else
2994 		switch_port_external(dev);
2995 
2996 	/* set parms and see how this affected our link status */
2997 	init_phy_fixup(dev);
2998 	check_link(dev);
2999 	return 0;
3000 }
3001 
3002 static int netdev_get_regs(struct net_device *dev, u8 *buf)
3003 {
3004 	int i;
3005 	int j;
3006 	u32 rfcr;
3007 	u32 *rbuf = (u32 *)buf;
3008 	void __iomem * ioaddr = ns_ioaddr(dev);
3009 
3010 	/* read non-mii page 0 of registers */
3011 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
3012 		rbuf[i] = readl(ioaddr + i*4);
3013 	}
3014 
3015 	/* read current mii registers */
3016 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
3017 		rbuf[i] = mdio_read(dev, i & 0x1f);
3018 
3019 	/* read only the 'magic' registers from page 1 */
3020 	writew(1, ioaddr + PGSEL);
3021 	rbuf[i++] = readw(ioaddr + PMDCSR);
3022 	rbuf[i++] = readw(ioaddr + TSTDAT);
3023 	rbuf[i++] = readw(ioaddr + DSPCFG);
3024 	rbuf[i++] = readw(ioaddr + SDCFG);
3025 	writew(0, ioaddr + PGSEL);
3026 
3027 	/* read RFCR indexed registers */
3028 	rfcr = readl(ioaddr + RxFilterAddr);
3029 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3030 		writel(j*2, ioaddr + RxFilterAddr);
3031 		rbuf[i++] = readw(ioaddr + RxFilterData);
3032 	}
3033 	writel(rfcr, ioaddr + RxFilterAddr);
3034 
3035 	/* the interrupt status is clear-on-read - see if we missed any */
3036 	if (rbuf[4] & rbuf[5]) {
3037 		printk(KERN_WARNING
3038 			"%s: shoot, we dropped an interrupt (%#08x)\n",
3039 			dev->name, rbuf[4] & rbuf[5]);
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3046 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3047 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3048 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3049 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3050 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3051 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3052 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3053 
3054 static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3055 {
3056 	int i;
3057 	u16 *ebuf = (u16 *)buf;
3058 	void __iomem * ioaddr = ns_ioaddr(dev);
3059 	struct netdev_private *np = netdev_priv(dev);
3060 
3061 	/* eeprom_read reads 16 bits, and indexes by 16 bits */
3062 	for (i = 0; i < np->eeprom_size/2; i++) {
3063 		ebuf[i] = eeprom_read(ioaddr, i);
3064 		/* The EEPROM itself stores data bit-swapped, but eeprom_read
3065 		 * reads it back "sanely". So we swap it back here in order to
3066 		 * present it to userland as it is stored. */
3067 		ebuf[i] = SWAP_BITS(ebuf[i]);
3068 	}
3069 	return 0;
3070 }
3071 
3072 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3073 {
3074 	struct mii_ioctl_data *data = if_mii(rq);
3075 	struct netdev_private *np = netdev_priv(dev);
3076 
3077 	switch(cmd) {
3078 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */
3079 		data->phy_id = np->phy_addr_external;
3080 		fallthrough;
3081 
3082 	case SIOCGMIIREG:		/* Read MII PHY register. */
3083 		/* The phy_id is not enough to uniquely identify
3084 		 * the intended target. Therefore the command is sent to
3085 		 * the given mii on the current port.
3086 		 */
3087 		if (dev->if_port == PORT_TP) {
3088 			if ((data->phy_id & 0x1f) == np->phy_addr_external)
3089 				data->val_out = mdio_read(dev,
3090 							data->reg_num & 0x1f);
3091 			else
3092 				data->val_out = 0;
3093 		} else {
3094 			move_int_phy(dev, data->phy_id & 0x1f);
3095 			data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3096 							data->reg_num & 0x1f);
3097 		}
3098 		return 0;
3099 
3100 	case SIOCSMIIREG:		/* Write MII PHY register. */
3101 		if (dev->if_port == PORT_TP) {
3102 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3103 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3104 					np->advertising = data->val_in;
3105 				mdio_write(dev, data->reg_num & 0x1f,
3106 							data->val_in);
3107 			}
3108 		} else {
3109 			if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3110 				if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3111 					np->advertising = data->val_in;
3112 			}
3113 			move_int_phy(dev, data->phy_id & 0x1f);
3114 			miiport_write(dev, data->phy_id & 0x1f,
3115 						data->reg_num & 0x1f,
3116 						data->val_in);
3117 		}
3118 		return 0;
3119 	default:
3120 		return -EOPNOTSUPP;
3121 	}
3122 }
3123 
3124 static void enable_wol_mode(struct net_device *dev, int enable_intr)
3125 {
3126 	void __iomem * ioaddr = ns_ioaddr(dev);
3127 	struct netdev_private *np = netdev_priv(dev);
3128 
3129 	if (netif_msg_wol(np))
3130 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3131 			dev->name);
3132 
3133 	/* For WOL we must restart the rx process in silent mode.
3134 	 * Write NULL to the RxRingPtr. Only possible if
3135 	 * rx process is stopped
3136 	 */
3137 	writel(0, ioaddr + RxRingPtr);
3138 
3139 	/* read WoL status to clear */
3140 	readl(ioaddr + WOLCmd);
3141 
3142 	/* PME on, clear status */
3143 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3144 
3145 	/* and restart the rx process */
3146 	writel(RxOn, ioaddr + ChipCmd);
3147 
3148 	if (enable_intr) {
3149 		/* enable the WOL interrupt.
3150 		 * Could be used to send a netlink message.
3151 		 */
3152 		writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3153 		natsemi_irq_enable(dev);
3154 	}
3155 }
3156 
3157 static int netdev_close(struct net_device *dev)
3158 {
3159 	void __iomem * ioaddr = ns_ioaddr(dev);
3160 	struct netdev_private *np = netdev_priv(dev);
3161 	const int irq = np->pci_dev->irq;
3162 
3163 	if (netif_msg_ifdown(np))
3164 		printk(KERN_DEBUG
3165 			"%s: Shutting down ethercard, status was %#04x.\n",
3166 			dev->name, (int)readl(ioaddr + ChipCmd));
3167 	if (netif_msg_pktdata(np))
3168 		printk(KERN_DEBUG
3169 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3170 			dev->name, np->cur_tx, np->dirty_tx,
3171 			np->cur_rx, np->dirty_rx);
3172 
3173 	napi_disable(&np->napi);
3174 
3175 	/*
3176 	 * FIXME: what if someone tries to close a device
3177 	 * that is suspended?
3178 	 * Should we reenable the nic to switch to
3179 	 * the final WOL settings?
3180 	 */
3181 
3182 	del_timer_sync(&np->timer);
3183 	disable_irq(irq);
3184 	spin_lock_irq(&np->lock);
3185 	natsemi_irq_disable(dev);
3186 	np->hands_off = 1;
3187 	spin_unlock_irq(&np->lock);
3188 	enable_irq(irq);
3189 
3190 	free_irq(irq, dev);
3191 
3192 	/* Interrupt disabled, interrupt handler released,
3193 	 * queue stopped, timer deleted, rtnl_lock held
3194 	 * All async codepaths that access the driver are disabled.
3195 	 */
3196 	spin_lock_irq(&np->lock);
3197 	np->hands_off = 0;
3198 	readl(ioaddr + IntrMask);
3199 	readw(ioaddr + MIntrStatus);
3200 
3201 	/* Freeze Stats */
3202 	writel(StatsFreeze, ioaddr + StatsCtrl);
3203 
3204 	/* Stop the chip's Tx and Rx processes. */
3205 	natsemi_stop_rxtx(dev);
3206 
3207 	__get_stats(dev);
3208 	spin_unlock_irq(&np->lock);
3209 
3210 	/* clear the carrier last - an interrupt could reenable it otherwise */
3211 	netif_carrier_off(dev);
3212 	netif_stop_queue(dev);
3213 
3214 	dump_ring(dev);
3215 	drain_ring(dev);
3216 	free_ring(dev);
3217 
3218 	{
3219 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3220 		if (wol) {
3221 			/* restart the NIC in WOL mode.
3222 			 * The nic must be stopped for this.
3223 			 */
3224 			enable_wol_mode(dev, 0);
3225 		} else {
3226 			/* Restore PME enable bit unmolested */
3227 			writel(np->SavedClkRun, ioaddr + ClkRun);
3228 		}
3229 	}
3230 	return 0;
3231 }
3232 
3233 
3234 static void natsemi_remove1(struct pci_dev *pdev)
3235 {
3236 	struct net_device *dev = pci_get_drvdata(pdev);
3237 	void __iomem * ioaddr = ns_ioaddr(dev);
3238 
3239 	NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3240 	unregister_netdev (dev);
3241 	iounmap(ioaddr);
3242 	free_netdev (dev);
3243 }
3244 
3245 /*
3246  * The ns83815 chip doesn't have explicit RxStop bits.
3247  * Kicking the Rx or Tx process for a new packet reenables the Rx process
3248  * of the nic, thus this function must be very careful:
3249  *
3250  * suspend/resume synchronization:
3251  * entry points:
3252  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3253  *   start_tx, ns_tx_timeout
3254  *
3255  * No function accesses the hardware without checking np->hands_off.
3256  *	the check occurs under spin_lock_irq(&np->lock);
3257  * exceptions:
3258  *	* netdev_ioctl: noncritical access.
3259  *	* netdev_open: cannot happen due to the device_detach
3260  *	* netdev_close: doesn't hurt.
3261  *	* netdev_timer: timer stopped by natsemi_suspend.
3262  *	* intr_handler: doesn't acquire the spinlock. suspend calls
3263  *		disable_irq() to enforce synchronization.
3264  *      * natsemi_poll: checks before reenabling interrupts.  suspend
3265  *              sets hands_off, disables interrupts and then waits with
3266  *              napi_disable().
3267  *
3268  * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3269  */
3270 
3271 static int __maybe_unused natsemi_suspend(struct device *dev_d)
3272 {
3273 	struct net_device *dev = dev_get_drvdata(dev_d);
3274 	struct netdev_private *np = netdev_priv(dev);
3275 	void __iomem * ioaddr = ns_ioaddr(dev);
3276 
3277 	rtnl_lock();
3278 	if (netif_running (dev)) {
3279 		const int irq = np->pci_dev->irq;
3280 
3281 		del_timer_sync(&np->timer);
3282 
3283 		disable_irq(irq);
3284 		spin_lock_irq(&np->lock);
3285 
3286 		natsemi_irq_disable(dev);
3287 		np->hands_off = 1;
3288 		natsemi_stop_rxtx(dev);
3289 		netif_stop_queue(dev);
3290 
3291 		spin_unlock_irq(&np->lock);
3292 		enable_irq(irq);
3293 
3294 		napi_disable(&np->napi);
3295 
3296 		/* Update the error counts. */
3297 		__get_stats(dev);
3298 
3299 		/* pci_power_off(pdev, -1); */
3300 		drain_ring(dev);
3301 		{
3302 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3303 			/* Restore PME enable bit */
3304 			if (wol) {
3305 				/* restart the NIC in WOL mode.
3306 				 * The nic must be stopped for this.
3307 				 * FIXME: use the WOL interrupt
3308 				 */
3309 				enable_wol_mode(dev, 0);
3310 			} else {
3311 				/* Restore PME enable bit unmolested */
3312 				writel(np->SavedClkRun, ioaddr + ClkRun);
3313 			}
3314 		}
3315 	}
3316 	netif_device_detach(dev);
3317 	rtnl_unlock();
3318 	return 0;
3319 }
3320 
3321 
3322 static int __maybe_unused natsemi_resume(struct device *dev_d)
3323 {
3324 	struct net_device *dev = dev_get_drvdata(dev_d);
3325 	struct netdev_private *np = netdev_priv(dev);
3326 
3327 	rtnl_lock();
3328 	if (netif_device_present(dev))
3329 		goto out;
3330 	if (netif_running(dev)) {
3331 		const int irq = np->pci_dev->irq;
3332 
3333 		BUG_ON(!np->hands_off);
3334 	/*	pci_power_on(pdev); */
3335 
3336 		napi_enable(&np->napi);
3337 
3338 		natsemi_reset(dev);
3339 		init_ring(dev);
3340 		disable_irq(irq);
3341 		spin_lock_irq(&np->lock);
3342 		np->hands_off = 0;
3343 		init_registers(dev);
3344 		netif_device_attach(dev);
3345 		spin_unlock_irq(&np->lock);
3346 		enable_irq(irq);
3347 
3348 		mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3349 	}
3350 	netif_device_attach(dev);
3351 out:
3352 	rtnl_unlock();
3353 	return 0;
3354 }
3355 
3356 static SIMPLE_DEV_PM_OPS(natsemi_pm_ops, natsemi_suspend, natsemi_resume);
3357 
3358 static struct pci_driver natsemi_driver = {
3359 	.name		= DRV_NAME,
3360 	.id_table	= natsemi_pci_tbl,
3361 	.probe		= natsemi_probe1,
3362 	.remove		= natsemi_remove1,
3363 	.driver.pm	= &natsemi_pm_ops,
3364 };
3365 
3366 static int __init natsemi_init_mod (void)
3367 {
3368 /* when a module, this is printed whether or not devices are found in probe */
3369 #ifdef MODULE
3370 	printk(version);
3371 #endif
3372 
3373 	return pci_register_driver(&natsemi_driver);
3374 }
3375 
3376 static void __exit natsemi_exit_mod (void)
3377 {
3378 	pci_unregister_driver (&natsemi_driver);
3379 }
3380 
3381 module_init(natsemi_init_mod);
3382 module_exit(natsemi_exit_mod);
3383 
3384