xref: /openbmc/linux/drivers/net/ethernet/mellanox/mlxsw/cmd.h (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /*
2  * drivers/net/ethernet/mellanox/mlxsw/cmd.h
3  * Copyright (c) 2015 Mellanox Technologies. All rights reserved.
4  * Copyright (c) 2015 Jiri Pirko <jiri@mellanox.com>
5  * Copyright (c) 2015 Ido Schimmel <idosch@mellanox.com>
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions are met:
9  *
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  *    notice, this list of conditions and the following disclaimer in the
14  *    documentation and/or other materials provided with the distribution.
15  * 3. Neither the names of the copyright holders nor the names of its
16  *    contributors may be used to endorse or promote products derived from
17  *    this software without specific prior written permission.
18  *
19  * Alternatively, this software may be distributed under the terms of the
20  * GNU General Public License ("GPL") version 2 as published by the Free
21  * Software Foundation.
22  *
23  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
24  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
27  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
36 #ifndef _MLXSW_CMD_H
37 #define _MLXSW_CMD_H
38 
39 #include "item.h"
40 
41 #define MLXSW_CMD_MBOX_SIZE	4096
42 
43 static inline char *mlxsw_cmd_mbox_alloc(void)
44 {
45 	return kzalloc(MLXSW_CMD_MBOX_SIZE, GFP_KERNEL);
46 }
47 
48 static inline void mlxsw_cmd_mbox_free(char *mbox)
49 {
50 	kfree(mbox);
51 }
52 
53 static inline void mlxsw_cmd_mbox_zero(char *mbox)
54 {
55 	memset(mbox, 0, MLXSW_CMD_MBOX_SIZE);
56 }
57 
58 struct mlxsw_core;
59 
60 int mlxsw_cmd_exec(struct mlxsw_core *mlxsw_core, u16 opcode, u8 opcode_mod,
61 		   u32 in_mod, bool out_mbox_direct,
62 		   char *in_mbox, size_t in_mbox_size,
63 		   char *out_mbox, size_t out_mbox_size);
64 
65 static inline int mlxsw_cmd_exec_in(struct mlxsw_core *mlxsw_core, u16 opcode,
66 				    u8 opcode_mod, u32 in_mod, char *in_mbox,
67 				    size_t in_mbox_size)
68 {
69 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
70 			      in_mbox, in_mbox_size, NULL, 0);
71 }
72 
73 static inline int mlxsw_cmd_exec_out(struct mlxsw_core *mlxsw_core, u16 opcode,
74 				     u8 opcode_mod, u32 in_mod,
75 				     bool out_mbox_direct,
76 				     char *out_mbox, size_t out_mbox_size)
77 {
78 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod,
79 			      out_mbox_direct, NULL, 0,
80 			      out_mbox, out_mbox_size);
81 }
82 
83 static inline int mlxsw_cmd_exec_none(struct mlxsw_core *mlxsw_core, u16 opcode,
84 				      u8 opcode_mod, u32 in_mod)
85 {
86 	return mlxsw_cmd_exec(mlxsw_core, opcode, opcode_mod, in_mod, false,
87 			      NULL, 0, NULL, 0);
88 }
89 
90 enum mlxsw_cmd_opcode {
91 	MLXSW_CMD_OPCODE_QUERY_FW		= 0x004,
92 	MLXSW_CMD_OPCODE_QUERY_BOARDINFO	= 0x006,
93 	MLXSW_CMD_OPCODE_QUERY_AQ_CAP		= 0x003,
94 	MLXSW_CMD_OPCODE_MAP_FA			= 0xFFF,
95 	MLXSW_CMD_OPCODE_UNMAP_FA		= 0xFFE,
96 	MLXSW_CMD_OPCODE_CONFIG_PROFILE		= 0x100,
97 	MLXSW_CMD_OPCODE_ACCESS_REG		= 0x040,
98 	MLXSW_CMD_OPCODE_SW2HW_DQ		= 0x201,
99 	MLXSW_CMD_OPCODE_HW2SW_DQ		= 0x202,
100 	MLXSW_CMD_OPCODE_2ERR_DQ		= 0x01E,
101 	MLXSW_CMD_OPCODE_QUERY_DQ		= 0x022,
102 	MLXSW_CMD_OPCODE_SW2HW_CQ		= 0x016,
103 	MLXSW_CMD_OPCODE_HW2SW_CQ		= 0x017,
104 	MLXSW_CMD_OPCODE_QUERY_CQ		= 0x018,
105 	MLXSW_CMD_OPCODE_SW2HW_EQ		= 0x013,
106 	MLXSW_CMD_OPCODE_HW2SW_EQ		= 0x014,
107 	MLXSW_CMD_OPCODE_QUERY_EQ		= 0x015,
108 };
109 
110 static inline const char *mlxsw_cmd_opcode_str(u16 opcode)
111 {
112 	switch (opcode) {
113 	case MLXSW_CMD_OPCODE_QUERY_FW:
114 		return "QUERY_FW";
115 	case MLXSW_CMD_OPCODE_QUERY_BOARDINFO:
116 		return "QUERY_BOARDINFO";
117 	case MLXSW_CMD_OPCODE_QUERY_AQ_CAP:
118 		return "QUERY_AQ_CAP";
119 	case MLXSW_CMD_OPCODE_MAP_FA:
120 		return "MAP_FA";
121 	case MLXSW_CMD_OPCODE_UNMAP_FA:
122 		return "UNMAP_FA";
123 	case MLXSW_CMD_OPCODE_CONFIG_PROFILE:
124 		return "CONFIG_PROFILE";
125 	case MLXSW_CMD_OPCODE_ACCESS_REG:
126 		return "ACCESS_REG";
127 	case MLXSW_CMD_OPCODE_SW2HW_DQ:
128 		return "SW2HW_DQ";
129 	case MLXSW_CMD_OPCODE_HW2SW_DQ:
130 		return "HW2SW_DQ";
131 	case MLXSW_CMD_OPCODE_2ERR_DQ:
132 		return "2ERR_DQ";
133 	case MLXSW_CMD_OPCODE_QUERY_DQ:
134 		return "QUERY_DQ";
135 	case MLXSW_CMD_OPCODE_SW2HW_CQ:
136 		return "SW2HW_CQ";
137 	case MLXSW_CMD_OPCODE_HW2SW_CQ:
138 		return "HW2SW_CQ";
139 	case MLXSW_CMD_OPCODE_QUERY_CQ:
140 		return "QUERY_CQ";
141 	case MLXSW_CMD_OPCODE_SW2HW_EQ:
142 		return "SW2HW_EQ";
143 	case MLXSW_CMD_OPCODE_HW2SW_EQ:
144 		return "HW2SW_EQ";
145 	case MLXSW_CMD_OPCODE_QUERY_EQ:
146 		return "QUERY_EQ";
147 	default:
148 		return "*UNKNOWN*";
149 	}
150 }
151 
152 enum mlxsw_cmd_status {
153 	/* Command execution succeeded. */
154 	MLXSW_CMD_STATUS_OK		= 0x00,
155 	/* Internal error (e.g. bus error) occurred while processing command. */
156 	MLXSW_CMD_STATUS_INTERNAL_ERR	= 0x01,
157 	/* Operation/command not supported or opcode modifier not supported. */
158 	MLXSW_CMD_STATUS_BAD_OP		= 0x02,
159 	/* Parameter not supported, parameter out of range. */
160 	MLXSW_CMD_STATUS_BAD_PARAM	= 0x03,
161 	/* System was not enabled or bad system state. */
162 	MLXSW_CMD_STATUS_BAD_SYS_STATE	= 0x04,
163 	/* Attempt to access reserved or unallocated resource, or resource in
164 	 * inappropriate ownership.
165 	 */
166 	MLXSW_CMD_STATUS_BAD_RESOURCE	= 0x05,
167 	/* Requested resource is currently executing a command. */
168 	MLXSW_CMD_STATUS_RESOURCE_BUSY	= 0x06,
169 	/* Required capability exceeds device limits. */
170 	MLXSW_CMD_STATUS_EXCEED_LIM	= 0x08,
171 	/* Resource is not in the appropriate state or ownership. */
172 	MLXSW_CMD_STATUS_BAD_RES_STATE	= 0x09,
173 	/* Index out of range (might be beyond table size or attempt to
174 	 * access a reserved resource).
175 	 */
176 	MLXSW_CMD_STATUS_BAD_INDEX	= 0x0A,
177 	/* NVMEM checksum/CRC failed. */
178 	MLXSW_CMD_STATUS_BAD_NVMEM	= 0x0B,
179 	/* Bad management packet (silently discarded). */
180 	MLXSW_CMD_STATUS_BAD_PKT	= 0x30,
181 };
182 
183 static inline const char *mlxsw_cmd_status_str(u8 status)
184 {
185 	switch (status) {
186 	case MLXSW_CMD_STATUS_OK:
187 		return "OK";
188 	case MLXSW_CMD_STATUS_INTERNAL_ERR:
189 		return "INTERNAL_ERR";
190 	case MLXSW_CMD_STATUS_BAD_OP:
191 		return "BAD_OP";
192 	case MLXSW_CMD_STATUS_BAD_PARAM:
193 		return "BAD_PARAM";
194 	case MLXSW_CMD_STATUS_BAD_SYS_STATE:
195 		return "BAD_SYS_STATE";
196 	case MLXSW_CMD_STATUS_BAD_RESOURCE:
197 		return "BAD_RESOURCE";
198 	case MLXSW_CMD_STATUS_RESOURCE_BUSY:
199 		return "RESOURCE_BUSY";
200 	case MLXSW_CMD_STATUS_EXCEED_LIM:
201 		return "EXCEED_LIM";
202 	case MLXSW_CMD_STATUS_BAD_RES_STATE:
203 		return "BAD_RES_STATE";
204 	case MLXSW_CMD_STATUS_BAD_INDEX:
205 		return "BAD_INDEX";
206 	case MLXSW_CMD_STATUS_BAD_NVMEM:
207 		return "BAD_NVMEM";
208 	case MLXSW_CMD_STATUS_BAD_PKT:
209 		return "BAD_PKT";
210 	default:
211 		return "*UNKNOWN*";
212 	}
213 }
214 
215 /* QUERY_FW - Query Firmware
216  * -------------------------
217  * OpMod == 0, INMmod == 0
218  * -----------------------
219  * The QUERY_FW command retrieves information related to firmware, command
220  * interface version and the amount of resources that should be allocated to
221  * the firmware.
222  */
223 
224 static inline int mlxsw_cmd_query_fw(struct mlxsw_core *mlxsw_core,
225 				     char *out_mbox)
226 {
227 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_FW,
228 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
229 }
230 
231 /* cmd_mbox_query_fw_fw_pages
232  * Amount of physical memory to be allocatedfor firmware usage in 4KB pages.
233  */
234 MLXSW_ITEM32(cmd_mbox, query_fw, fw_pages, 0x00, 16, 16);
235 
236 /* cmd_mbox_query_fw_fw_rev_major
237  * Firmware Revision - Major
238  */
239 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_major, 0x00, 0, 16);
240 
241 /* cmd_mbox_query_fw_fw_rev_subminor
242  * Firmware Sub-minor version (Patch level)
243  */
244 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_subminor, 0x04, 16, 16);
245 
246 /* cmd_mbox_query_fw_fw_rev_minor
247  * Firmware Revision - Minor
248  */
249 MLXSW_ITEM32(cmd_mbox, query_fw, fw_rev_minor, 0x04, 0, 16);
250 
251 /* cmd_mbox_query_fw_core_clk
252  * Internal Clock Frequency (in MHz)
253  */
254 MLXSW_ITEM32(cmd_mbox, query_fw, core_clk, 0x08, 16, 16);
255 
256 /* cmd_mbox_query_fw_cmd_interface_rev
257  * Command Interface Interpreter Revision ID. This number is bumped up
258  * every time a non-backward-compatible change is done for the command
259  * interface. The current cmd_interface_rev is 1.
260  */
261 MLXSW_ITEM32(cmd_mbox, query_fw, cmd_interface_rev, 0x08, 0, 16);
262 
263 /* cmd_mbox_query_fw_dt
264  * If set, Debug Trace is supported
265  */
266 MLXSW_ITEM32(cmd_mbox, query_fw, dt, 0x0C, 31, 1);
267 
268 /* cmd_mbox_query_fw_api_version
269  * Indicates the version of the API, to enable software querying
270  * for compatibility. The current api_version is 1.
271  */
272 MLXSW_ITEM32(cmd_mbox, query_fw, api_version, 0x0C, 0, 16);
273 
274 /* cmd_mbox_query_fw_fw_hour
275  * Firmware timestamp - hour
276  */
277 MLXSW_ITEM32(cmd_mbox, query_fw, fw_hour, 0x10, 24, 8);
278 
279 /* cmd_mbox_query_fw_fw_minutes
280  * Firmware timestamp - minutes
281  */
282 MLXSW_ITEM32(cmd_mbox, query_fw, fw_minutes, 0x10, 16, 8);
283 
284 /* cmd_mbox_query_fw_fw_seconds
285  * Firmware timestamp - seconds
286  */
287 MLXSW_ITEM32(cmd_mbox, query_fw, fw_seconds, 0x10, 8, 8);
288 
289 /* cmd_mbox_query_fw_fw_year
290  * Firmware timestamp - year
291  */
292 MLXSW_ITEM32(cmd_mbox, query_fw, fw_year, 0x14, 16, 16);
293 
294 /* cmd_mbox_query_fw_fw_month
295  * Firmware timestamp - month
296  */
297 MLXSW_ITEM32(cmd_mbox, query_fw, fw_month, 0x14, 8, 8);
298 
299 /* cmd_mbox_query_fw_fw_day
300  * Firmware timestamp - day
301  */
302 MLXSW_ITEM32(cmd_mbox, query_fw, fw_day, 0x14, 0, 8);
303 
304 /* cmd_mbox_query_fw_clr_int_base_offset
305  * Clear Interrupt register's offset from clr_int_bar register
306  * in PCI address space.
307  */
308 MLXSW_ITEM64(cmd_mbox, query_fw, clr_int_base_offset, 0x20, 0, 64);
309 
310 /* cmd_mbox_query_fw_clr_int_bar
311  * PCI base address register (BAR) where clr_int register is located.
312  * 00 - BAR 0-1 (64 bit BAR)
313  */
314 MLXSW_ITEM32(cmd_mbox, query_fw, clr_int_bar, 0x28, 30, 2);
315 
316 /* cmd_mbox_query_fw_error_buf_offset
317  * Read Only buffer for internal error reports of offset
318  * from error_buf_bar register in PCI address space).
319  */
320 MLXSW_ITEM64(cmd_mbox, query_fw, error_buf_offset, 0x30, 0, 64);
321 
322 /* cmd_mbox_query_fw_error_buf_size
323  * Internal error buffer size in DWORDs
324  */
325 MLXSW_ITEM32(cmd_mbox, query_fw, error_buf_size, 0x38, 0, 32);
326 
327 /* cmd_mbox_query_fw_error_int_bar
328  * PCI base address register (BAR) where error buffer
329  * register is located.
330  * 00 - BAR 0-1 (64 bit BAR)
331  */
332 MLXSW_ITEM32(cmd_mbox, query_fw, error_int_bar, 0x3C, 30, 2);
333 
334 /* cmd_mbox_query_fw_doorbell_page_offset
335  * Offset of the doorbell page
336  */
337 MLXSW_ITEM64(cmd_mbox, query_fw, doorbell_page_offset, 0x40, 0, 64);
338 
339 /* cmd_mbox_query_fw_doorbell_page_bar
340  * PCI base address register (BAR) of the doorbell page
341  * 00 - BAR 0-1 (64 bit BAR)
342  */
343 MLXSW_ITEM32(cmd_mbox, query_fw, doorbell_page_bar, 0x48, 30, 2);
344 
345 /* QUERY_BOARDINFO - Query Board Information
346  * -----------------------------------------
347  * OpMod == 0 (N/A), INMmod == 0 (N/A)
348  * -----------------------------------
349  * The QUERY_BOARDINFO command retrieves adapter specific parameters.
350  */
351 
352 static inline int mlxsw_cmd_boardinfo(struct mlxsw_core *mlxsw_core,
353 				      char *out_mbox)
354 {
355 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_BOARDINFO,
356 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
357 }
358 
359 /* cmd_mbox_boardinfo_intapin
360  * When PCIe interrupt messages are being used, this value is used for clearing
361  * an interrupt. When using MSI-X, this register is not used.
362  */
363 MLXSW_ITEM32(cmd_mbox, boardinfo, intapin, 0x10, 24, 8);
364 
365 /* cmd_mbox_boardinfo_vsd_vendor_id
366  * PCISIG Vendor ID (www.pcisig.com/membership/vid_search) of the vendor
367  * specifying/formatting the VSD. The vsd_vendor_id identifies the management
368  * domain of the VSD/PSID data. Different vendors may choose different VSD/PSID
369  * format and encoding as long as they use their assigned vsd_vendor_id.
370  */
371 MLXSW_ITEM32(cmd_mbox, boardinfo, vsd_vendor_id, 0x1C, 0, 16);
372 
373 /* cmd_mbox_boardinfo_vsd
374  * Vendor Specific Data. The VSD string that is burnt to the Flash
375  * with the firmware.
376  */
377 #define MLXSW_CMD_BOARDINFO_VSD_LEN 208
378 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, vsd, 0x20, MLXSW_CMD_BOARDINFO_VSD_LEN);
379 
380 /* cmd_mbox_boardinfo_psid
381  * The PSID field is a 16-ascii (byte) character string which acts as
382  * the board ID. The PSID format is used in conjunction with
383  * Mellanox vsd_vendor_id (15B3h).
384  */
385 #define MLXSW_CMD_BOARDINFO_PSID_LEN 16
386 MLXSW_ITEM_BUF(cmd_mbox, boardinfo, psid, 0xF0, MLXSW_CMD_BOARDINFO_PSID_LEN);
387 
388 /* QUERY_AQ_CAP - Query Asynchronous Queues Capabilities
389  * -----------------------------------------------------
390  * OpMod == 0 (N/A), INMmod == 0 (N/A)
391  * -----------------------------------
392  * The QUERY_AQ_CAP command returns the device asynchronous queues
393  * capabilities supported.
394  */
395 
396 static inline int mlxsw_cmd_query_aq_cap(struct mlxsw_core *mlxsw_core,
397 					 char *out_mbox)
398 {
399 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_AQ_CAP,
400 				  0, 0, false, out_mbox, MLXSW_CMD_MBOX_SIZE);
401 }
402 
403 /* cmd_mbox_query_aq_cap_log_max_sdq_sz
404  * Log (base 2) of max WQEs allowed on SDQ.
405  */
406 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_sdq_sz, 0x00, 24, 8);
407 
408 /* cmd_mbox_query_aq_cap_max_num_sdqs
409  * Maximum number of SDQs.
410  */
411 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_sdqs, 0x00, 0, 8);
412 
413 /* cmd_mbox_query_aq_cap_log_max_rdq_sz
414  * Log (base 2) of max WQEs allowed on RDQ.
415  */
416 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_rdq_sz, 0x04, 24, 8);
417 
418 /* cmd_mbox_query_aq_cap_max_num_rdqs
419  * Maximum number of RDQs.
420  */
421 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_rdqs, 0x04, 0, 8);
422 
423 /* cmd_mbox_query_aq_cap_log_max_cq_sz
424  * Log (base 2) of max CQEs allowed on CQ.
425  */
426 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_cq_sz, 0x08, 24, 8);
427 
428 /* cmd_mbox_query_aq_cap_max_num_cqs
429  * Maximum number of CQs.
430  */
431 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_cqs, 0x08, 0, 8);
432 
433 /* cmd_mbox_query_aq_cap_log_max_eq_sz
434  * Log (base 2) of max EQEs allowed on EQ.
435  */
436 MLXSW_ITEM32(cmd_mbox, query_aq_cap, log_max_eq_sz, 0x0C, 24, 8);
437 
438 /* cmd_mbox_query_aq_cap_max_num_eqs
439  * Maximum number of EQs.
440  */
441 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_num_eqs, 0x0C, 0, 8);
442 
443 /* cmd_mbox_query_aq_cap_max_sg_sq
444  * The maximum S/G list elements in an DSQ. DSQ must not contain
445  * more S/G entries than indicated here.
446  */
447 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_sq, 0x10, 8, 8);
448 
449 /* cmd_mbox_query_aq_cap_
450  * The maximum S/G list elements in an DRQ. DRQ must not contain
451  * more S/G entries than indicated here.
452  */
453 MLXSW_ITEM32(cmd_mbox, query_aq_cap, max_sg_rq, 0x10, 0, 8);
454 
455 /* MAP_FA - Map Firmware Area
456  * --------------------------
457  * OpMod == 0 (N/A), INMmod == Number of VPM entries
458  * -------------------------------------------------
459  * The MAP_FA command passes physical pages to the switch. These pages
460  * are used to store the device firmware. MAP_FA can be executed multiple
461  * times until all the firmware area is mapped (the size that should be
462  * mapped is retrieved through the QUERY_FW command). All required pages
463  * must be mapped to finish the initialization phase. Physical memory
464  * passed in this command must be pinned.
465  */
466 
467 static inline int mlxsw_cmd_map_fa(struct mlxsw_core *mlxsw_core,
468 				   char *in_mbox, u32 vpm_entries_count)
469 {
470 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_MAP_FA,
471 				 0, vpm_entries_count,
472 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
473 }
474 
475 /* cmd_mbox_map_fa_pa
476  * Physical Address.
477  */
478 MLXSW_ITEM64_INDEXED(cmd_mbox, map_fa, pa, 0x00, 12, 52, 0x08, 0x00, true);
479 
480 /* cmd_mbox_map_fa_log2size
481  * Log (base 2) of the size in 4KB pages of the physical and contiguous memory
482  * that starts at PA_L/H.
483  */
484 MLXSW_ITEM32_INDEXED(cmd_mbox, map_fa, log2size, 0x00, 0, 5, 0x08, 0x04, false);
485 
486 /* UNMAP_FA - Unmap Firmware Area
487  * ------------------------------
488  * OpMod == 0 (N/A), INMmod == 0 (N/A)
489  * -----------------------------------
490  * The UNMAP_FA command unload the firmware and unmaps all the
491  * firmware area. After this command is completed the device will not access
492  * the pages that were mapped to the firmware area. After executing UNMAP_FA
493  * command, software reset must be done prior to execution of MAP_FW command.
494  */
495 
496 static inline int mlxsw_cmd_unmap_fa(struct mlxsw_core *mlxsw_core)
497 {
498 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_UNMAP_FA, 0, 0);
499 }
500 
501 /* CONFIG_PROFILE (Set) - Configure Switch Profile
502  * ------------------------------
503  * OpMod == 1 (Set), INMmod == 0 (N/A)
504  * -----------------------------------
505  * The CONFIG_PROFILE command sets the switch profile. The command can be
506  * executed on the device only once at startup in order to allocate and
507  * configure all switch resources and prepare it for operational mode.
508  * It is not possible to change the device profile after the chip is
509  * in operational mode.
510  * Failure of the CONFIG_PROFILE command leaves the hardware in an indeterminate
511  * state therefore it is required to perform software reset to the device
512  * following an unsuccessful completion of the command. It is required
513  * to perform software reset to the device to change an existing profile.
514  */
515 
516 static inline int mlxsw_cmd_config_profile_set(struct mlxsw_core *mlxsw_core,
517 					       char *in_mbox)
518 {
519 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_CONFIG_PROFILE,
520 				 1, 0, in_mbox, MLXSW_CMD_MBOX_SIZE);
521 }
522 
523 /* cmd_mbox_config_profile_set_max_vepa_channels
524  * Capability bit. Setting a bit to 1 configures the profile
525  * according to the mailbox contents.
526  */
527 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vepa_channels, 0x0C, 0, 1);
528 
529 /* cmd_mbox_config_profile_set_max_lag
530  * Capability bit. Setting a bit to 1 configures the profile
531  * according to the mailbox contents.
532  */
533 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_lag, 0x0C, 1, 1);
534 
535 /* cmd_mbox_config_profile_set_max_port_per_lag
536  * Capability bit. Setting a bit to 1 configures the profile
537  * according to the mailbox contents.
538  */
539 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_port_per_lag, 0x0C, 2, 1);
540 
541 /* cmd_mbox_config_profile_set_max_mid
542  * Capability bit. Setting a bit to 1 configures the profile
543  * according to the mailbox contents.
544  */
545 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_mid, 0x0C, 3, 1);
546 
547 /* cmd_mbox_config_profile_set_max_pgt
548  * Capability bit. Setting a bit to 1 configures the profile
549  * according to the mailbox contents.
550  */
551 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pgt, 0x0C, 4, 1);
552 
553 /* cmd_mbox_config_profile_set_max_system_port
554  * Capability bit. Setting a bit to 1 configures the profile
555  * according to the mailbox contents.
556  */
557 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_system_port, 0x0C, 5, 1);
558 
559 /* cmd_mbox_config_profile_set_max_vlan_groups
560  * Capability bit. Setting a bit to 1 configures the profile
561  * according to the mailbox contents.
562  */
563 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_vlan_groups, 0x0C, 6, 1);
564 
565 /* cmd_mbox_config_profile_set_max_regions
566  * Capability bit. Setting a bit to 1 configures the profile
567  * according to the mailbox contents.
568  */
569 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_regions, 0x0C, 7, 1);
570 
571 /* cmd_mbox_config_profile_set_fid_based
572  * Capability bit. Setting a bit to 1 configures the profile
573  * according to the mailbox contents.
574  */
575 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_mode, 0x0C, 8, 1);
576 
577 /* cmd_mbox_config_profile_set_max_flood_tables
578  * Capability bit. Setting a bit to 1 configures the profile
579  * according to the mailbox contents.
580  */
581 MLXSW_ITEM32(cmd_mbox, config_profile, set_flood_tables, 0x0C, 9, 1);
582 
583 /* cmd_mbox_config_profile_set_max_ib_mc
584  * Capability bit. Setting a bit to 1 configures the profile
585  * according to the mailbox contents.
586  */
587 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_ib_mc, 0x0C, 12, 1);
588 
589 /* cmd_mbox_config_profile_set_max_pkey
590  * Capability bit. Setting a bit to 1 configures the profile
591  * according to the mailbox contents.
592  */
593 MLXSW_ITEM32(cmd_mbox, config_profile, set_max_pkey, 0x0C, 13, 1);
594 
595 /* cmd_mbox_config_profile_set_adaptive_routing_group_cap
596  * Capability bit. Setting a bit to 1 configures the profile
597  * according to the mailbox contents.
598  */
599 MLXSW_ITEM32(cmd_mbox, config_profile,
600 	     set_adaptive_routing_group_cap, 0x0C, 14, 1);
601 
602 /* cmd_mbox_config_profile_set_ar_sec
603  * Capability bit. Setting a bit to 1 configures the profile
604  * according to the mailbox contents.
605  */
606 MLXSW_ITEM32(cmd_mbox, config_profile, set_ar_sec, 0x0C, 15, 1);
607 
608 /* cmd_mbox_config_profile_max_vepa_channels
609  * Maximum number of VEPA channels per port (0 through 16)
610  * 0 - multi-channel VEPA is disabled
611  */
612 MLXSW_ITEM32(cmd_mbox, config_profile, max_vepa_channels, 0x10, 0, 8);
613 
614 /* cmd_mbox_config_profile_max_lag
615  * Maximum number of LAG IDs requested.
616  */
617 MLXSW_ITEM32(cmd_mbox, config_profile, max_lag, 0x14, 0, 16);
618 
619 /* cmd_mbox_config_profile_max_port_per_lag
620  * Maximum number of ports per LAG requested.
621  */
622 MLXSW_ITEM32(cmd_mbox, config_profile, max_port_per_lag, 0x18, 0, 16);
623 
624 /* cmd_mbox_config_profile_max_mid
625  * Maximum Multicast IDs.
626  * Multicast IDs are allocated from 0 to max_mid-1
627  */
628 MLXSW_ITEM32(cmd_mbox, config_profile, max_mid, 0x1C, 0, 16);
629 
630 /* cmd_mbox_config_profile_max_pgt
631  * Maximum records in the Port Group Table per Switch Partition.
632  * Port Group Table indexes are from 0 to max_pgt-1
633  */
634 MLXSW_ITEM32(cmd_mbox, config_profile, max_pgt, 0x20, 0, 16);
635 
636 /* cmd_mbox_config_profile_max_system_port
637  * The maximum number of system ports that can be allocated.
638  */
639 MLXSW_ITEM32(cmd_mbox, config_profile, max_system_port, 0x24, 0, 16);
640 
641 /* cmd_mbox_config_profile_max_vlan_groups
642  * Maximum number VLAN Groups for VLAN binding.
643  */
644 MLXSW_ITEM32(cmd_mbox, config_profile, max_vlan_groups, 0x28, 0, 12);
645 
646 /* cmd_mbox_config_profile_max_regions
647  * Maximum number of TCAM Regions.
648  */
649 MLXSW_ITEM32(cmd_mbox, config_profile, max_regions, 0x2C, 0, 16);
650 
651 /* cmd_mbox_config_profile_max_flood_tables
652  * Maximum number of Flooding Tables. Flooding Tables are associated to
653  * the different packet types for the different switch partitions.
654  * Note that the table size depends on the fid_based mode.
655  * In SwitchX silicon, tables are split equally between the switch
656  * partitions. e.g. for 2 swids and 8 tables, the first 4 are associated
657  * with swid-1 and the last 4 are associated with swid-2.
658  */
659 MLXSW_ITEM32(cmd_mbox, config_profile, max_flood_tables, 0x30, 16, 4);
660 
661 /* cmd_mbox_config_profile_max_vid_flood_tables
662  * Maximum number of per-vid flooding tables. Flooding tables are associated
663  * to the different packet types for the different switch partitions.
664  * Table size is 4K entries covering all VID space.
665  */
666 MLXSW_ITEM32(cmd_mbox, config_profile, max_vid_flood_tables, 0x30, 8, 4);
667 
668 /* cmd_mbox_config_profile_fid_based
669  * FID Based Flood Mode
670  * 00 Do not use FID to offset the index into the Port Group Table/Multicast ID
671  * 01 Use FID to offset the index to the Port Group Table (pgi)
672  * 10 Use FID to offset the index to the Port Group Table (pgi) and
673  * the Multicast ID
674  */
675 MLXSW_ITEM32(cmd_mbox, config_profile, flood_mode, 0x30, 0, 2);
676 
677 /* cmd_mbox_config_profile_max_ib_mc
678  * Maximum number of multicast FDB records for InfiniBand
679  * FDB (in 512 chunks) per InfiniBand switch partition.
680  */
681 MLXSW_ITEM32(cmd_mbox, config_profile, max_ib_mc, 0x40, 0, 15);
682 
683 /* cmd_mbox_config_profile_max_pkey
684  * Maximum per port PKEY table size (for PKEY enforcement)
685  */
686 MLXSW_ITEM32(cmd_mbox, config_profile, max_pkey, 0x44, 0, 15);
687 
688 /* cmd_mbox_config_profile_ar_sec
689  * Primary/secondary capability
690  * Describes the number of adaptive routing sub-groups
691  * 0 - disable primary/secondary (single group)
692  * 1 - enable primary/secondary (2 sub-groups)
693  * 2 - 3 sub-groups: Not supported in SwitchX, SwitchX-2
694  * 3 - 4 sub-groups: Not supported in SwitchX, SwitchX-2
695  */
696 MLXSW_ITEM32(cmd_mbox, config_profile, ar_sec, 0x4C, 24, 2);
697 
698 /* cmd_mbox_config_profile_adaptive_routing_group_cap
699  * Adaptive Routing Group Capability. Indicates the number of AR groups
700  * supported. Note that when Primary/secondary is enabled, each
701  * primary/secondary couple consumes 2 adaptive routing entries.
702  */
703 MLXSW_ITEM32(cmd_mbox, config_profile, adaptive_routing_group_cap, 0x4C, 0, 16);
704 
705 /* cmd_mbox_config_profile_arn
706  * Adaptive Routing Notification Enable
707  * Not supported in SwitchX, SwitchX-2
708  */
709 MLXSW_ITEM32(cmd_mbox, config_profile, arn, 0x50, 31, 1);
710 
711 /* cmd_mbox_config_profile_swid_config_mask
712  * Modify Switch Partition Configuration mask. When set, the configu-
713  * ration value for the Switch Partition are taken from the mailbox.
714  * When clear, the current configuration values are used.
715  * Bit 0 - set type
716  * Bit 1 - properties
717  * Other - reserved
718  */
719 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_mask,
720 		     0x60, 24, 8, 0x08, 0x00, false);
721 
722 /* cmd_mbox_config_profile_swid_config_type
723  * Switch Partition type.
724  * 0000 - disabled (Switch Partition does not exist)
725  * 0001 - InfiniBand
726  * 0010 - Ethernet
727  * 1000 - router port (SwitchX-2 only)
728  * Other - reserved
729  */
730 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_type,
731 		     0x60, 20, 4, 0x08, 0x00, false);
732 
733 /* cmd_mbox_config_profile_swid_config_properties
734  * Switch Partition properties.
735  */
736 MLXSW_ITEM32_INDEXED(cmd_mbox, config_profile, swid_config_properties,
737 		     0x60, 0, 8, 0x08, 0x00, false);
738 
739 /* ACCESS_REG - Access EMAD Supported Register
740  * ----------------------------------
741  * OpMod == 0 (N/A), INMmod == 0 (N/A)
742  * -------------------------------------
743  * The ACCESS_REG command supports accessing device registers. This access
744  * is mainly used for bootstrapping.
745  */
746 
747 static inline int mlxsw_cmd_access_reg(struct mlxsw_core *mlxsw_core,
748 				       char *in_mbox, char *out_mbox)
749 {
750 	return mlxsw_cmd_exec(mlxsw_core, MLXSW_CMD_OPCODE_ACCESS_REG,
751 			      0, 0, false, in_mbox, MLXSW_CMD_MBOX_SIZE,
752 			      out_mbox, MLXSW_CMD_MBOX_SIZE);
753 }
754 
755 /* SW2HW_DQ - Software to Hardware DQ
756  * ----------------------------------
757  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
758  * INMmod == DQ number
759  * ----------------------------------------------
760  * The SW2HW_DQ command transitions a descriptor queue from software to
761  * hardware ownership. The command enables posting WQEs and ringing DoorBells
762  * on the descriptor queue.
763  */
764 
765 static inline int __mlxsw_cmd_sw2hw_dq(struct mlxsw_core *mlxsw_core,
766 				       char *in_mbox, u32 dq_number,
767 				       u8 opcode_mod)
768 {
769 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_DQ,
770 				 opcode_mod, dq_number,
771 				 in_mbox, MLXSW_CMD_MBOX_SIZE);
772 }
773 
774 enum {
775 	MLXSW_CMD_OPCODE_MOD_SDQ = 0,
776 	MLXSW_CMD_OPCODE_MOD_RDQ = 1,
777 };
778 
779 static inline int mlxsw_cmd_sw2hw_sdq(struct mlxsw_core *mlxsw_core,
780 				      char *in_mbox, u32 dq_number)
781 {
782 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
783 				    MLXSW_CMD_OPCODE_MOD_SDQ);
784 }
785 
786 static inline int mlxsw_cmd_sw2hw_rdq(struct mlxsw_core *mlxsw_core,
787 				      char *in_mbox, u32 dq_number)
788 {
789 	return __mlxsw_cmd_sw2hw_dq(mlxsw_core, in_mbox, dq_number,
790 				    MLXSW_CMD_OPCODE_MOD_RDQ);
791 }
792 
793 /* cmd_mbox_sw2hw_dq_cq
794  * Number of the CQ that this Descriptor Queue reports completions to.
795  */
796 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, cq, 0x00, 24, 8);
797 
798 /* cmd_mbox_sw2hw_dq_sdq_tclass
799  * SDQ: CPU Egress TClass
800  * RDQ: Reserved
801  */
802 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, sdq_tclass, 0x00, 16, 6);
803 
804 /* cmd_mbox_sw2hw_dq_log2_dq_sz
805  * Log (base 2) of the Descriptor Queue size in 4KB pages.
806  */
807 MLXSW_ITEM32(cmd_mbox, sw2hw_dq, log2_dq_sz, 0x00, 0, 6);
808 
809 /* cmd_mbox_sw2hw_dq_pa
810  * Physical Address.
811  */
812 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_dq, pa, 0x10, 12, 52, 0x08, 0x00, true);
813 
814 /* HW2SW_DQ - Hardware to Software DQ
815  * ----------------------------------
816  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
817  * INMmod == DQ number
818  * ----------------------------------------------
819  * The HW2SW_DQ command transitions a descriptor queue from hardware to
820  * software ownership. Incoming packets on the DQ are silently discarded,
821  * SW should not post descriptors on nonoperational DQs.
822  */
823 
824 static inline int __mlxsw_cmd_hw2sw_dq(struct mlxsw_core *mlxsw_core,
825 				       u32 dq_number, u8 opcode_mod)
826 {
827 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_DQ,
828 				   opcode_mod, dq_number);
829 }
830 
831 static inline int mlxsw_cmd_hw2sw_sdq(struct mlxsw_core *mlxsw_core,
832 				      u32 dq_number)
833 {
834 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
835 				    MLXSW_CMD_OPCODE_MOD_SDQ);
836 }
837 
838 static inline int mlxsw_cmd_hw2sw_rdq(struct mlxsw_core *mlxsw_core,
839 				      u32 dq_number)
840 {
841 	return __mlxsw_cmd_hw2sw_dq(mlxsw_core, dq_number,
842 				    MLXSW_CMD_OPCODE_MOD_RDQ);
843 }
844 
845 /* 2ERR_DQ - To Error DQ
846  * ---------------------
847  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
848  * INMmod == DQ number
849  * ----------------------------------------------
850  * The 2ERR_DQ command transitions the DQ into the error state from the state
851  * in which it has been. While the command is executed, some in-process
852  * descriptors may complete. Once the DQ transitions into the error state,
853  * if there are posted descriptors on the RDQ/SDQ, the hardware writes
854  * a completion with error (flushed) for all descriptors posted in the RDQ/SDQ.
855  * When the command is completed successfully, the DQ is already in
856  * the error state.
857  */
858 
859 static inline int __mlxsw_cmd_2err_dq(struct mlxsw_core *mlxsw_core,
860 				      u32 dq_number, u8 opcode_mod)
861 {
862 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
863 				   opcode_mod, dq_number);
864 }
865 
866 static inline int mlxsw_cmd_2err_sdq(struct mlxsw_core *mlxsw_core,
867 				     u32 dq_number)
868 {
869 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
870 				   MLXSW_CMD_OPCODE_MOD_SDQ);
871 }
872 
873 static inline int mlxsw_cmd_2err_rdq(struct mlxsw_core *mlxsw_core,
874 				     u32 dq_number)
875 {
876 	return __mlxsw_cmd_2err_dq(mlxsw_core, dq_number,
877 				   MLXSW_CMD_OPCODE_MOD_RDQ);
878 }
879 
880 /* QUERY_DQ - Query DQ
881  * ---------------------
882  * OpMod == 0 (send DQ) / OpMod == 1 (receive DQ)
883  * INMmod == DQ number
884  * ----------------------------------------------
885  * The QUERY_DQ command retrieves a snapshot of DQ parameters from the hardware.
886  *
887  * Note: Output mailbox has the same format as SW2HW_DQ.
888  */
889 
890 static inline int __mlxsw_cmd_query_dq(struct mlxsw_core *mlxsw_core,
891 				       char *out_mbox, u32 dq_number,
892 				       u8 opcode_mod)
893 {
894 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_2ERR_DQ,
895 				  opcode_mod, dq_number, false,
896 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
897 }
898 
899 static inline int mlxsw_cmd_query_sdq(struct mlxsw_core *mlxsw_core,
900 				      char *out_mbox, u32 dq_number)
901 {
902 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
903 				    MLXSW_CMD_OPCODE_MOD_SDQ);
904 }
905 
906 static inline int mlxsw_cmd_query_rdq(struct mlxsw_core *mlxsw_core,
907 				      char *out_mbox, u32 dq_number)
908 {
909 	return __mlxsw_cmd_query_dq(mlxsw_core, out_mbox, dq_number,
910 				    MLXSW_CMD_OPCODE_MOD_RDQ);
911 }
912 
913 /* SW2HW_CQ - Software to Hardware CQ
914  * ----------------------------------
915  * OpMod == 0 (N/A), INMmod == CQ number
916  * -------------------------------------
917  * The SW2HW_CQ command transfers ownership of a CQ context entry from software
918  * to hardware. The command takes the CQ context entry from the input mailbox
919  * and stores it in the CQC in the ownership of the hardware. The command fails
920  * if the requested CQC entry is already in the ownership of the hardware.
921  */
922 
923 static inline int mlxsw_cmd_sw2hw_cq(struct mlxsw_core *mlxsw_core,
924 				     char *in_mbox, u32 cq_number)
925 {
926 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_CQ,
927 				 0, cq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
928 }
929 
930 /* cmd_mbox_sw2hw_cq_cv
931  * CQE Version.
932  * 0 - CQE Version 0, 1 - CQE Version 1
933  */
934 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, cv, 0x00, 28, 4);
935 
936 /* cmd_mbox_sw2hw_cq_c_eqn
937  * Event Queue this CQ reports completion events to.
938  */
939 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, c_eqn, 0x00, 24, 1);
940 
941 /* cmd_mbox_sw2hw_cq_oi
942  * When set, overrun ignore is enabled. When set, updates of
943  * CQ consumer counter (poll for completion) or Request completion
944  * notifications (Arm CQ) DoorBells should not be rung on that CQ.
945  */
946 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, oi, 0x00, 12, 1);
947 
948 /* cmd_mbox_sw2hw_cq_st
949  * Event delivery state machine
950  * 0x0 - FIRED
951  * 0x1 - ARMED (Request for Notification)
952  */
953 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, st, 0x00, 8, 1);
954 
955 /* cmd_mbox_sw2hw_cq_log_cq_size
956  * Log (base 2) of the CQ size (in entries).
957  */
958 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, log_cq_size, 0x00, 0, 4);
959 
960 /* cmd_mbox_sw2hw_cq_producer_counter
961  * Producer Counter. The counter is incremented for each CQE that is
962  * written by the HW to the CQ.
963  * Maintained by HW (valid for the QUERY_CQ command only)
964  */
965 MLXSW_ITEM32(cmd_mbox, sw2hw_cq, producer_counter, 0x04, 0, 16);
966 
967 /* cmd_mbox_sw2hw_cq_pa
968  * Physical Address.
969  */
970 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_cq, pa, 0x10, 11, 53, 0x08, 0x00, true);
971 
972 /* HW2SW_CQ - Hardware to Software CQ
973  * ----------------------------------
974  * OpMod == 0 (N/A), INMmod == CQ number
975  * -------------------------------------
976  * The HW2SW_CQ command transfers ownership of a CQ context entry from hardware
977  * to software. The CQC entry is invalidated as a result of this command.
978  */
979 
980 static inline int mlxsw_cmd_hw2sw_cq(struct mlxsw_core *mlxsw_core,
981 				     u32 cq_number)
982 {
983 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_CQ,
984 				   0, cq_number);
985 }
986 
987 /* QUERY_CQ - Query CQ
988  * ----------------------------------
989  * OpMod == 0 (N/A), INMmod == CQ number
990  * -------------------------------------
991  * The QUERY_CQ command retrieves a snapshot of the current CQ context entry.
992  * The command stores the snapshot in the output mailbox in the software format.
993  * Note that the CQ context state and values are not affected by the QUERY_CQ
994  * command. The QUERY_CQ command is for debug purposes only.
995  *
996  * Note: Output mailbox has the same format as SW2HW_CQ.
997  */
998 
999 static inline int mlxsw_cmd_query_cq(struct mlxsw_core *mlxsw_core,
1000 				     char *out_mbox, u32 cq_number)
1001 {
1002 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_CQ,
1003 				  0, cq_number, false,
1004 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1005 }
1006 
1007 /* SW2HW_EQ - Software to Hardware EQ
1008  * ----------------------------------
1009  * OpMod == 0 (N/A), INMmod == EQ number
1010  * -------------------------------------
1011  * The SW2HW_EQ command transfers ownership of an EQ context entry from software
1012  * to hardware. The command takes the EQ context entry from the input mailbox
1013  * and stores it in the EQC in the ownership of the hardware. The command fails
1014  * if the requested EQC entry is already in the ownership of the hardware.
1015  */
1016 
1017 static inline int mlxsw_cmd_sw2hw_eq(struct mlxsw_core *mlxsw_core,
1018 				     char *in_mbox, u32 eq_number)
1019 {
1020 	return mlxsw_cmd_exec_in(mlxsw_core, MLXSW_CMD_OPCODE_SW2HW_EQ,
1021 				 0, eq_number, in_mbox, MLXSW_CMD_MBOX_SIZE);
1022 }
1023 
1024 /* cmd_mbox_sw2hw_eq_int_msix
1025  * When set, MSI-X cycles will be generated by this EQ.
1026  * When cleared, an interrupt will be generated by this EQ.
1027  */
1028 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, int_msix, 0x00, 24, 1);
1029 
1030 /* cmd_mbox_sw2hw_eq_int_oi
1031  * When set, overrun ignore is enabled.
1032  */
1033 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, oi, 0x00, 12, 1);
1034 
1035 /* cmd_mbox_sw2hw_eq_int_st
1036  * Event delivery state machine
1037  * 0x0 - FIRED
1038  * 0x1 - ARMED (Request for Notification)
1039  * 0x11 - Always ARMED
1040  * other - reserved
1041  */
1042 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, st, 0x00, 8, 2);
1043 
1044 /* cmd_mbox_sw2hw_eq_int_log_eq_size
1045  * Log (base 2) of the EQ size (in entries).
1046  */
1047 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, log_eq_size, 0x00, 0, 4);
1048 
1049 /* cmd_mbox_sw2hw_eq_int_producer_counter
1050  * Producer Counter. The counter is incremented for each EQE that is written
1051  * by the HW to the EQ.
1052  * Maintained by HW (valid for the QUERY_EQ command only)
1053  */
1054 MLXSW_ITEM32(cmd_mbox, sw2hw_eq, producer_counter, 0x04, 0, 16);
1055 
1056 /* cmd_mbox_sw2hw_eq_int_pa
1057  * Physical Address.
1058  */
1059 MLXSW_ITEM64_INDEXED(cmd_mbox, sw2hw_eq, pa, 0x10, 11, 53, 0x08, 0x00, true);
1060 
1061 /* HW2SW_EQ - Hardware to Software EQ
1062  * ----------------------------------
1063  * OpMod == 0 (N/A), INMmod == EQ number
1064  * -------------------------------------
1065  */
1066 
1067 static inline int mlxsw_cmd_hw2sw_eq(struct mlxsw_core *mlxsw_core,
1068 				     u32 eq_number)
1069 {
1070 	return mlxsw_cmd_exec_none(mlxsw_core, MLXSW_CMD_OPCODE_HW2SW_EQ,
1071 				   0, eq_number);
1072 }
1073 
1074 /* QUERY_EQ - Query EQ
1075  * ----------------------------------
1076  * OpMod == 0 (N/A), INMmod == EQ number
1077  * -------------------------------------
1078  *
1079  * Note: Output mailbox has the same format as SW2HW_EQ.
1080  */
1081 
1082 static inline int mlxsw_cmd_query_eq(struct mlxsw_core *mlxsw_core,
1083 				     char *out_mbox, u32 eq_number)
1084 {
1085 	return mlxsw_cmd_exec_out(mlxsw_core, MLXSW_CMD_OPCODE_QUERY_EQ,
1086 				  0, eq_number, false,
1087 				  out_mbox, MLXSW_CMD_MBOX_SIZE);
1088 }
1089 
1090 #endif
1091