xref: /openbmc/linux/drivers/net/ethernet/marvell/octeontx2/af/rvu_cpt.c (revision b7e41527bbd7c8469e88b79fa5d18f27734f60cc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Marvell RVU Admin Function driver
3  *
4  * Copyright (C) 2020 Marvell.
5  *
6  */
7 
8 #include <linux/bitfield.h>
9 #include <linux/pci.h>
10 #include "rvu_struct.h"
11 #include "rvu_reg.h"
12 #include "mbox.h"
13 #include "rvu.h"
14 
15 /* CPT PF device id */
16 #define	PCI_DEVID_OTX2_CPT_PF	0xA0FD
17 #define	PCI_DEVID_OTX2_CPT10K_PF 0xA0F2
18 
19 /* Length of initial context fetch in 128 byte words */
20 #define CPT_CTX_ILEN    2ULL
21 
22 #define cpt_get_eng_sts(e_min, e_max, rsp, etype)                   \
23 ({                                                                  \
24 	u64 free_sts = 0, busy_sts = 0;                             \
25 	typeof(rsp) _rsp = rsp;                                     \
26 	u32 e, i;                                                   \
27 								    \
28 	for (e = (e_min), i = 0; e < (e_max); e++, i++) {           \
29 		reg = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_STS(e)); \
30 		if (reg & 0x1)                                      \
31 			busy_sts |= 1ULL << i;                      \
32 								    \
33 		if (reg & 0x2)                                      \
34 			free_sts |= 1ULL << i;                      \
35 	}                                                           \
36 	(_rsp)->busy_sts_##etype = busy_sts;                        \
37 	(_rsp)->free_sts_##etype = free_sts;                        \
38 })
39 
40 static irqreturn_t cpt_af_flt_intr_handler(int vec, void *ptr)
41 {
42 	struct rvu_block *block = ptr;
43 	struct rvu *rvu = block->rvu;
44 	int blkaddr = block->addr;
45 	u64 reg, val;
46 	int i, eng;
47 	u8 grp;
48 
49 	reg = rvu_read64(rvu, blkaddr, CPT_AF_FLTX_INT(vec));
50 	dev_err_ratelimited(rvu->dev, "Received CPTAF FLT%d irq : 0x%llx", vec, reg);
51 
52 	i = -1;
53 	while ((i = find_next_bit((unsigned long *)&reg, 64, i + 1)) < 64) {
54 		switch (vec) {
55 		case 0:
56 			eng = i;
57 			break;
58 		case 1:
59 			eng = i + 64;
60 			break;
61 		case 2:
62 			eng = i + 128;
63 			break;
64 		}
65 		grp = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng)) & 0xFF;
66 		/* Disable and enable the engine which triggers fault */
67 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), 0x0);
68 		val = rvu_read64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng));
69 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val & ~1ULL);
70 
71 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL2(eng), grp);
72 		rvu_write64(rvu, blkaddr, CPT_AF_EXEX_CTL(eng), val | 1ULL);
73 	}
74 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT(vec), reg);
75 
76 	return IRQ_HANDLED;
77 }
78 
79 static irqreturn_t rvu_cpt_af_flt0_intr_handler(int irq, void *ptr)
80 {
81 	return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT0, ptr);
82 }
83 
84 static irqreturn_t rvu_cpt_af_flt1_intr_handler(int irq, void *ptr)
85 {
86 	return cpt_af_flt_intr_handler(CPT_AF_INT_VEC_FLT1, ptr);
87 }
88 
89 static irqreturn_t rvu_cpt_af_flt2_intr_handler(int irq, void *ptr)
90 {
91 	return cpt_af_flt_intr_handler(CPT_10K_AF_INT_VEC_FLT2, ptr);
92 }
93 
94 static irqreturn_t rvu_cpt_af_rvu_intr_handler(int irq, void *ptr)
95 {
96 	struct rvu_block *block = ptr;
97 	struct rvu *rvu = block->rvu;
98 	int blkaddr = block->addr;
99 	u64 reg;
100 
101 	reg = rvu_read64(rvu, blkaddr, CPT_AF_RVU_INT);
102 	dev_err_ratelimited(rvu->dev, "Received CPTAF RVU irq : 0x%llx", reg);
103 
104 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT, reg);
105 	return IRQ_HANDLED;
106 }
107 
108 static irqreturn_t rvu_cpt_af_ras_intr_handler(int irq, void *ptr)
109 {
110 	struct rvu_block *block = ptr;
111 	struct rvu *rvu = block->rvu;
112 	int blkaddr = block->addr;
113 	u64 reg;
114 
115 	reg = rvu_read64(rvu, blkaddr, CPT_AF_RAS_INT);
116 	dev_err_ratelimited(rvu->dev, "Received CPTAF RAS irq : 0x%llx", reg);
117 
118 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT, reg);
119 	return IRQ_HANDLED;
120 }
121 
122 static int rvu_cpt_do_register_interrupt(struct rvu_block *block, int irq_offs,
123 					 irq_handler_t handler,
124 					 const char *name)
125 {
126 	struct rvu *rvu = block->rvu;
127 	int ret;
128 
129 	ret = request_irq(pci_irq_vector(rvu->pdev, irq_offs), handler, 0,
130 			  name, block);
131 	if (ret) {
132 		dev_err(rvu->dev, "RVUAF: %s irq registration failed", name);
133 		return ret;
134 	}
135 
136 	WARN_ON(rvu->irq_allocated[irq_offs]);
137 	rvu->irq_allocated[irq_offs] = true;
138 	return 0;
139 }
140 
141 static void cpt_10k_unregister_interrupts(struct rvu_block *block, int off)
142 {
143 	struct rvu *rvu = block->rvu;
144 	int blkaddr = block->addr;
145 	int i;
146 
147 	/* Disable all CPT AF interrupts */
148 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(0), ~0ULL);
149 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(1), ~0ULL);
150 	rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(2), 0xFFFF);
151 
152 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
153 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
154 
155 	for (i = 0; i < CPT_10K_AF_INT_VEC_CNT; i++)
156 		if (rvu->irq_allocated[off + i]) {
157 			free_irq(pci_irq_vector(rvu->pdev, off + i), block);
158 			rvu->irq_allocated[off + i] = false;
159 		}
160 }
161 
162 static void cpt_unregister_interrupts(struct rvu *rvu, int blkaddr)
163 {
164 	struct rvu_hwinfo *hw = rvu->hw;
165 	struct rvu_block *block;
166 	int i, offs;
167 
168 	if (!is_block_implemented(rvu->hw, blkaddr))
169 		return;
170 	offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
171 	if (!offs) {
172 		dev_warn(rvu->dev,
173 			 "Failed to get CPT_AF_INT vector offsets\n");
174 		return;
175 	}
176 	block = &hw->block[blkaddr];
177 	if (!is_rvu_otx2(rvu))
178 		return cpt_10k_unregister_interrupts(block, offs);
179 
180 	/* Disable all CPT AF interrupts */
181 	for (i = 0; i < CPT_AF_INT_VEC_RVU; i++)
182 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1C(i), ~0ULL);
183 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1C, 0x1);
184 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1C, 0x1);
185 
186 	for (i = 0; i < CPT_AF_INT_VEC_CNT; i++)
187 		if (rvu->irq_allocated[offs + i]) {
188 			free_irq(pci_irq_vector(rvu->pdev, offs + i), block);
189 			rvu->irq_allocated[offs + i] = false;
190 		}
191 }
192 
193 void rvu_cpt_unregister_interrupts(struct rvu *rvu)
194 {
195 	cpt_unregister_interrupts(rvu, BLKADDR_CPT0);
196 	cpt_unregister_interrupts(rvu, BLKADDR_CPT1);
197 }
198 
199 static int cpt_10k_register_interrupts(struct rvu_block *block, int off)
200 {
201 	struct rvu *rvu = block->rvu;
202 	int blkaddr = block->addr;
203 	irq_handler_t flt_fn;
204 	int i, ret;
205 
206 	for (i = CPT_10K_AF_INT_VEC_FLT0; i < CPT_10K_AF_INT_VEC_RVU; i++) {
207 		sprintf(&rvu->irq_name[(off + i) * NAME_SIZE], "CPTAF FLT%d", i);
208 
209 		switch (i) {
210 		case CPT_10K_AF_INT_VEC_FLT0:
211 			flt_fn = rvu_cpt_af_flt0_intr_handler;
212 			break;
213 		case CPT_10K_AF_INT_VEC_FLT1:
214 			flt_fn = rvu_cpt_af_flt1_intr_handler;
215 			break;
216 		case CPT_10K_AF_INT_VEC_FLT2:
217 			flt_fn = rvu_cpt_af_flt2_intr_handler;
218 			break;
219 		}
220 		ret = rvu_cpt_do_register_interrupt(block, off + i,
221 						    flt_fn, &rvu->irq_name[(off + i) * NAME_SIZE]);
222 		if (ret)
223 			goto err;
224 		if (i == CPT_10K_AF_INT_VEC_FLT2)
225 			rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), 0xFFFF);
226 		else
227 			rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL);
228 	}
229 
230 	ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RVU,
231 					    rvu_cpt_af_rvu_intr_handler,
232 					    "CPTAF RVU");
233 	if (ret)
234 		goto err;
235 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
236 
237 	ret = rvu_cpt_do_register_interrupt(block, off + CPT_10K_AF_INT_VEC_RAS,
238 					    rvu_cpt_af_ras_intr_handler,
239 					    "CPTAF RAS");
240 	if (ret)
241 		goto err;
242 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
243 
244 	return 0;
245 err:
246 	rvu_cpt_unregister_interrupts(rvu);
247 	return ret;
248 }
249 
250 static int cpt_register_interrupts(struct rvu *rvu, int blkaddr)
251 {
252 	struct rvu_hwinfo *hw = rvu->hw;
253 	struct rvu_block *block;
254 	irq_handler_t flt_fn;
255 	int i, offs, ret = 0;
256 
257 	if (!is_block_implemented(rvu->hw, blkaddr))
258 		return 0;
259 
260 	block = &hw->block[blkaddr];
261 	offs = rvu_read64(rvu, blkaddr, CPT_PRIV_AF_INT_CFG) & 0x7FF;
262 	if (!offs) {
263 		dev_warn(rvu->dev,
264 			 "Failed to get CPT_AF_INT vector offsets\n");
265 		return 0;
266 	}
267 
268 	if (!is_rvu_otx2(rvu))
269 		return cpt_10k_register_interrupts(block, offs);
270 
271 	for (i = CPT_AF_INT_VEC_FLT0; i < CPT_AF_INT_VEC_RVU; i++) {
272 		sprintf(&rvu->irq_name[(offs + i) * NAME_SIZE], "CPTAF FLT%d", i);
273 		switch (i) {
274 		case CPT_AF_INT_VEC_FLT0:
275 			flt_fn = rvu_cpt_af_flt0_intr_handler;
276 			break;
277 		case CPT_AF_INT_VEC_FLT1:
278 			flt_fn = rvu_cpt_af_flt1_intr_handler;
279 			break;
280 		}
281 		ret = rvu_cpt_do_register_interrupt(block, offs + i,
282 						    flt_fn, &rvu->irq_name[(offs + i) * NAME_SIZE]);
283 		if (ret)
284 			goto err;
285 		rvu_write64(rvu, blkaddr, CPT_AF_FLTX_INT_ENA_W1S(i), ~0ULL);
286 	}
287 
288 	ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RVU,
289 					    rvu_cpt_af_rvu_intr_handler,
290 					    "CPTAF RVU");
291 	if (ret)
292 		goto err;
293 	rvu_write64(rvu, blkaddr, CPT_AF_RVU_INT_ENA_W1S, 0x1);
294 
295 	ret = rvu_cpt_do_register_interrupt(block, offs + CPT_AF_INT_VEC_RAS,
296 					    rvu_cpt_af_ras_intr_handler,
297 					    "CPTAF RAS");
298 	if (ret)
299 		goto err;
300 	rvu_write64(rvu, blkaddr, CPT_AF_RAS_INT_ENA_W1S, 0x1);
301 
302 	return 0;
303 err:
304 	rvu_cpt_unregister_interrupts(rvu);
305 	return ret;
306 }
307 
308 int rvu_cpt_register_interrupts(struct rvu *rvu)
309 {
310 	int ret;
311 
312 	ret = cpt_register_interrupts(rvu, BLKADDR_CPT0);
313 	if (ret)
314 		return ret;
315 
316 	return cpt_register_interrupts(rvu, BLKADDR_CPT1);
317 }
318 
319 static int get_cpt_pf_num(struct rvu *rvu)
320 {
321 	int i, domain_nr, cpt_pf_num = -1;
322 	struct pci_dev *pdev;
323 
324 	domain_nr = pci_domain_nr(rvu->pdev->bus);
325 	for (i = 0; i < rvu->hw->total_pfs; i++) {
326 		pdev = pci_get_domain_bus_and_slot(domain_nr, i + 1, 0);
327 		if (!pdev)
328 			continue;
329 
330 		if (pdev->device == PCI_DEVID_OTX2_CPT_PF ||
331 		    pdev->device == PCI_DEVID_OTX2_CPT10K_PF) {
332 			cpt_pf_num = i;
333 			put_device(&pdev->dev);
334 			break;
335 		}
336 		put_device(&pdev->dev);
337 	}
338 	return cpt_pf_num;
339 }
340 
341 static bool is_cpt_pf(struct rvu *rvu, u16 pcifunc)
342 {
343 	int cpt_pf_num = get_cpt_pf_num(rvu);
344 
345 	if (rvu_get_pf(pcifunc) != cpt_pf_num)
346 		return false;
347 	if (pcifunc & RVU_PFVF_FUNC_MASK)
348 		return false;
349 
350 	return true;
351 }
352 
353 static bool is_cpt_vf(struct rvu *rvu, u16 pcifunc)
354 {
355 	int cpt_pf_num = get_cpt_pf_num(rvu);
356 
357 	if (rvu_get_pf(pcifunc) != cpt_pf_num)
358 		return false;
359 	if (!(pcifunc & RVU_PFVF_FUNC_MASK))
360 		return false;
361 
362 	return true;
363 }
364 
365 static int validate_and_get_cpt_blkaddr(int req_blkaddr)
366 {
367 	int blkaddr;
368 
369 	blkaddr = req_blkaddr ? req_blkaddr : BLKADDR_CPT0;
370 	if (blkaddr != BLKADDR_CPT0 && blkaddr != BLKADDR_CPT1)
371 		return -EINVAL;
372 
373 	return blkaddr;
374 }
375 
376 int rvu_mbox_handler_cpt_lf_alloc(struct rvu *rvu,
377 				  struct cpt_lf_alloc_req_msg *req,
378 				  struct msg_rsp *rsp)
379 {
380 	u16 pcifunc = req->hdr.pcifunc;
381 	struct rvu_block *block;
382 	int cptlf, blkaddr;
383 	int num_lfs, slot;
384 	u64 val;
385 
386 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
387 	if (blkaddr < 0)
388 		return blkaddr;
389 
390 	if (req->eng_grpmsk == 0x0)
391 		return CPT_AF_ERR_GRP_INVALID;
392 
393 	block = &rvu->hw->block[blkaddr];
394 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
395 					block->addr);
396 	if (!num_lfs)
397 		return CPT_AF_ERR_LF_INVALID;
398 
399 	/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
400 	if (req->nix_pf_func) {
401 		/* If default, use 'this' CPTLF's PFFUNC */
402 		if (req->nix_pf_func == RVU_DEFAULT_PF_FUNC)
403 			req->nix_pf_func = pcifunc;
404 		if (!is_pffunc_map_valid(rvu, req->nix_pf_func, BLKTYPE_NIX))
405 			return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
406 	}
407 
408 	/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
409 	if (req->sso_pf_func) {
410 		/* If default, use 'this' CPTLF's PFFUNC */
411 		if (req->sso_pf_func == RVU_DEFAULT_PF_FUNC)
412 			req->sso_pf_func = pcifunc;
413 		if (!is_pffunc_map_valid(rvu, req->sso_pf_func, BLKTYPE_SSO))
414 			return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
415 	}
416 
417 	for (slot = 0; slot < num_lfs; slot++) {
418 		cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
419 		if (cptlf < 0)
420 			return CPT_AF_ERR_LF_INVALID;
421 
422 		/* Set CPT LF group and priority */
423 		val = (u64)req->eng_grpmsk << 48 | 1;
424 		if (!is_rvu_otx2(rvu))
425 			val |= (CPT_CTX_ILEN << 17);
426 
427 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
428 
429 		/* Set CPT LF NIX_PF_FUNC and SSO_PF_FUNC. EXE_LDWB is set
430 		 * on reset.
431 		 */
432 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
433 		val &= ~(GENMASK_ULL(63, 48) | GENMASK_ULL(47, 32));
434 		val |= ((u64)req->nix_pf_func << 48 |
435 			(u64)req->sso_pf_func << 32);
436 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
437 	}
438 
439 	return 0;
440 }
441 
442 static int cpt_lf_free(struct rvu *rvu, struct msg_req *req, int blkaddr)
443 {
444 	u16 pcifunc = req->hdr.pcifunc;
445 	int num_lfs, cptlf, slot, err;
446 	struct rvu_block *block;
447 
448 	block = &rvu->hw->block[blkaddr];
449 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
450 					block->addr);
451 	if (!num_lfs)
452 		return 0;
453 
454 	for (slot = 0; slot < num_lfs; slot++) {
455 		cptlf = rvu_get_lf(rvu, block, pcifunc, slot);
456 		if (cptlf < 0)
457 			return CPT_AF_ERR_LF_INVALID;
458 
459 		/* Perform teardown */
460 		rvu_cpt_lf_teardown(rvu, pcifunc, blkaddr, cptlf, slot);
461 
462 		/* Reset LF */
463 		err = rvu_lf_reset(rvu, block, cptlf);
464 		if (err) {
465 			dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
466 				block->addr, cptlf);
467 		}
468 	}
469 
470 	return 0;
471 }
472 
473 int rvu_mbox_handler_cpt_lf_free(struct rvu *rvu, struct msg_req *req,
474 				 struct msg_rsp *rsp)
475 {
476 	int ret;
477 
478 	ret = cpt_lf_free(rvu, req, BLKADDR_CPT0);
479 	if (ret)
480 		return ret;
481 
482 	if (is_block_implemented(rvu->hw, BLKADDR_CPT1))
483 		ret = cpt_lf_free(rvu, req, BLKADDR_CPT1);
484 
485 	return ret;
486 }
487 
488 static int cpt_inline_ipsec_cfg_inbound(struct rvu *rvu, int blkaddr, u8 cptlf,
489 					struct cpt_inline_ipsec_cfg_msg *req)
490 {
491 	u16 sso_pf_func = req->sso_pf_func;
492 	u8 nix_sel;
493 	u64 val;
494 
495 	val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
496 	if (req->enable && (val & BIT_ULL(16))) {
497 		/* IPSec inline outbound path is already enabled for a given
498 		 * CPT LF, HRM states that inline inbound & outbound paths
499 		 * must not be enabled at the same time for a given CPT LF
500 		 */
501 		return CPT_AF_ERR_INLINE_IPSEC_INB_ENA;
502 	}
503 	/* Check if requested 'CPTLF <=> SSOLF' mapping is valid */
504 	if (sso_pf_func && !is_pffunc_map_valid(rvu, sso_pf_func, BLKTYPE_SSO))
505 		return CPT_AF_ERR_SSO_PF_FUNC_INVALID;
506 
507 	nix_sel = (blkaddr == BLKADDR_CPT1) ? 1 : 0;
508 	/* Enable CPT LF for IPsec inline inbound operations */
509 	if (req->enable)
510 		val |= BIT_ULL(9);
511 	else
512 		val &= ~BIT_ULL(9);
513 
514 	val |= (u64)nix_sel << 8;
515 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
516 
517 	if (sso_pf_func) {
518 		/* Set SSO_PF_FUNC */
519 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
520 		val |= (u64)sso_pf_func << 32;
521 		val |= (u64)req->nix_pf_func << 48;
522 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
523 	}
524 	if (req->sso_pf_func_ovrd)
525 		/* Set SSO_PF_FUNC_OVRD for inline IPSec */
526 		rvu_write64(rvu, blkaddr, CPT_AF_ECO, 0x1);
527 
528 	/* Configure the X2P Link register with the cpt base channel number and
529 	 * range of channels it should propagate to X2P
530 	 */
531 	if (!is_rvu_otx2(rvu)) {
532 		val = (ilog2(NIX_CHAN_CPT_X2P_MASK + 1) << 16);
533 		val |= (u64)rvu->hw->cpt_chan_base;
534 
535 		rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0), val);
536 		rvu_write64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1), val);
537 	}
538 
539 	return 0;
540 }
541 
542 static int cpt_inline_ipsec_cfg_outbound(struct rvu *rvu, int blkaddr, u8 cptlf,
543 					 struct cpt_inline_ipsec_cfg_msg *req)
544 {
545 	u16 nix_pf_func = req->nix_pf_func;
546 	int nix_blkaddr;
547 	u8 nix_sel;
548 	u64 val;
549 
550 	val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
551 	if (req->enable && (val & BIT_ULL(9))) {
552 		/* IPSec inline inbound path is already enabled for a given
553 		 * CPT LF, HRM states that inline inbound & outbound paths
554 		 * must not be enabled at the same time for a given CPT LF
555 		 */
556 		return CPT_AF_ERR_INLINE_IPSEC_OUT_ENA;
557 	}
558 
559 	/* Check if requested 'CPTLF <=> NIXLF' mapping is valid */
560 	if (nix_pf_func && !is_pffunc_map_valid(rvu, nix_pf_func, BLKTYPE_NIX))
561 		return CPT_AF_ERR_NIX_PF_FUNC_INVALID;
562 
563 	/* Enable CPT LF for IPsec inline outbound operations */
564 	if (req->enable)
565 		val |= BIT_ULL(16);
566 	else
567 		val &= ~BIT_ULL(16);
568 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
569 
570 	if (nix_pf_func) {
571 		/* Set NIX_PF_FUNC */
572 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
573 		val |= (u64)nix_pf_func << 48;
574 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), val);
575 
576 		nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, nix_pf_func);
577 		nix_sel = (nix_blkaddr == BLKADDR_NIX0) ? 0 : 1;
578 
579 		val = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
580 		val |= (u64)nix_sel << 8;
581 		rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), val);
582 	}
583 
584 	return 0;
585 }
586 
587 int rvu_mbox_handler_cpt_inline_ipsec_cfg(struct rvu *rvu,
588 					  struct cpt_inline_ipsec_cfg_msg *req,
589 					  struct msg_rsp *rsp)
590 {
591 	u16 pcifunc = req->hdr.pcifunc;
592 	struct rvu_block *block;
593 	int cptlf, blkaddr, ret;
594 	u16 actual_slot;
595 
596 	blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
597 					    req->slot, &actual_slot);
598 	if (blkaddr < 0)
599 		return CPT_AF_ERR_LF_INVALID;
600 
601 	block = &rvu->hw->block[blkaddr];
602 
603 	cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
604 	if (cptlf < 0)
605 		return CPT_AF_ERR_LF_INVALID;
606 
607 	switch (req->dir) {
608 	case CPT_INLINE_INBOUND:
609 		ret = cpt_inline_ipsec_cfg_inbound(rvu, blkaddr, cptlf, req);
610 		break;
611 
612 	case CPT_INLINE_OUTBOUND:
613 		ret = cpt_inline_ipsec_cfg_outbound(rvu, blkaddr, cptlf, req);
614 		break;
615 
616 	default:
617 		return CPT_AF_ERR_PARAM;
618 	}
619 
620 	return ret;
621 }
622 
623 static bool is_valid_offset(struct rvu *rvu, struct cpt_rd_wr_reg_msg *req)
624 {
625 	u64 offset = req->reg_offset;
626 	int blkaddr, num_lfs, lf;
627 	struct rvu_block *block;
628 	struct rvu_pfvf *pfvf;
629 
630 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
631 	if (blkaddr < 0)
632 		return false;
633 
634 	/* Registers that can be accessed from PF/VF */
635 	if ((offset & 0xFF000) ==  CPT_AF_LFX_CTL(0) ||
636 	    (offset & 0xFF000) ==  CPT_AF_LFX_CTL2(0)) {
637 		if (offset & 7)
638 			return false;
639 
640 		lf = (offset & 0xFFF) >> 3;
641 		block = &rvu->hw->block[blkaddr];
642 		pfvf = rvu_get_pfvf(rvu, req->hdr.pcifunc);
643 		num_lfs = rvu_get_rsrc_mapcount(pfvf, block->addr);
644 		if (lf >= num_lfs)
645 			/* Slot is not valid for that PF/VF */
646 			return false;
647 
648 		/* Translate local LF used by VFs to global CPT LF */
649 		lf = rvu_get_lf(rvu, &rvu->hw->block[blkaddr],
650 				req->hdr.pcifunc, lf);
651 		if (lf < 0)
652 			return false;
653 
654 		return true;
655 	} else if (!(req->hdr.pcifunc & RVU_PFVF_FUNC_MASK)) {
656 		/* Registers that can be accessed from PF */
657 		switch (offset) {
658 		case CPT_AF_DIAG:
659 		case CPT_AF_CTL:
660 		case CPT_AF_PF_FUNC:
661 		case CPT_AF_BLK_RST:
662 		case CPT_AF_CONSTANTS1:
663 		case CPT_AF_CTX_FLUSH_TIMER:
664 			return true;
665 		}
666 
667 		switch (offset & 0xFF000) {
668 		case CPT_AF_EXEX_STS(0):
669 		case CPT_AF_EXEX_CTL(0):
670 		case CPT_AF_EXEX_CTL2(0):
671 		case CPT_AF_EXEX_UCODE_BASE(0):
672 			if (offset & 7)
673 				return false;
674 			break;
675 		default:
676 			return false;
677 		}
678 		return true;
679 	}
680 	return false;
681 }
682 
683 int rvu_mbox_handler_cpt_rd_wr_register(struct rvu *rvu,
684 					struct cpt_rd_wr_reg_msg *req,
685 					struct cpt_rd_wr_reg_msg *rsp)
686 {
687 	int blkaddr;
688 
689 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
690 	if (blkaddr < 0)
691 		return blkaddr;
692 
693 	/* This message is accepted only if sent from CPT PF/VF */
694 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
695 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
696 		return CPT_AF_ERR_ACCESS_DENIED;
697 
698 	rsp->reg_offset = req->reg_offset;
699 	rsp->ret_val = req->ret_val;
700 	rsp->is_write = req->is_write;
701 
702 	if (!is_valid_offset(rvu, req))
703 		return CPT_AF_ERR_ACCESS_DENIED;
704 
705 	if (req->is_write)
706 		rvu_write64(rvu, blkaddr, req->reg_offset, req->val);
707 	else
708 		rsp->val = rvu_read64(rvu, blkaddr, req->reg_offset);
709 
710 	return 0;
711 }
712 
713 static void get_ctx_pc(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
714 {
715 	if (is_rvu_otx2(rvu))
716 		return;
717 
718 	rsp->ctx_mis_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_MIS_PC);
719 	rsp->ctx_hit_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_HIT_PC);
720 	rsp->ctx_aop_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_AOP_PC);
721 	rsp->ctx_aop_lat_pc = rvu_read64(rvu, blkaddr,
722 					 CPT_AF_CTX_AOP_LATENCY_PC);
723 	rsp->ctx_ifetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_IFETCH_PC);
724 	rsp->ctx_ifetch_lat_pc = rvu_read64(rvu, blkaddr,
725 					    CPT_AF_CTX_IFETCH_LATENCY_PC);
726 	rsp->ctx_ffetch_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
727 	rsp->ctx_ffetch_lat_pc = rvu_read64(rvu, blkaddr,
728 					    CPT_AF_CTX_FFETCH_LATENCY_PC);
729 	rsp->ctx_wback_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
730 	rsp->ctx_wback_lat_pc = rvu_read64(rvu, blkaddr,
731 					   CPT_AF_CTX_FFETCH_LATENCY_PC);
732 	rsp->ctx_psh_pc = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FFETCH_PC);
733 	rsp->ctx_psh_lat_pc = rvu_read64(rvu, blkaddr,
734 					 CPT_AF_CTX_FFETCH_LATENCY_PC);
735 	rsp->ctx_err = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ERR);
736 	rsp->ctx_enc_id = rvu_read64(rvu, blkaddr, CPT_AF_CTX_ENC_ID);
737 	rsp->ctx_flush_timer = rvu_read64(rvu, blkaddr, CPT_AF_CTX_FLUSH_TIMER);
738 
739 	rsp->rxc_time = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME);
740 	rsp->rxc_time_cfg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG);
741 	rsp->rxc_active_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
742 	rsp->rxc_zombie_sts = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
743 	rsp->rxc_dfrg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_DFRG);
744 	rsp->x2p_link_cfg0 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(0));
745 	rsp->x2p_link_cfg1 = rvu_read64(rvu, blkaddr, CPT_AF_X2PX_LINK_CFG(1));
746 }
747 
748 static void get_eng_sts(struct rvu *rvu, struct cpt_sts_rsp *rsp, int blkaddr)
749 {
750 	u16 max_ses, max_ies, max_aes;
751 	u32 e_min = 0, e_max = 0;
752 	u64 reg;
753 
754 	reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS1);
755 	max_ses = reg & 0xffff;
756 	max_ies = (reg >> 16) & 0xffff;
757 	max_aes = (reg >> 32) & 0xffff;
758 
759 	/* Get AE status */
760 	e_min = max_ses + max_ies;
761 	e_max = max_ses + max_ies + max_aes;
762 	cpt_get_eng_sts(e_min, e_max, rsp, ae);
763 	/* Get SE status */
764 	e_min = 0;
765 	e_max = max_ses;
766 	cpt_get_eng_sts(e_min, e_max, rsp, se);
767 	/* Get IE status */
768 	e_min = max_ses;
769 	e_max = max_ses + max_ies;
770 	cpt_get_eng_sts(e_min, e_max, rsp, ie);
771 }
772 
773 int rvu_mbox_handler_cpt_sts(struct rvu *rvu, struct cpt_sts_req *req,
774 			     struct cpt_sts_rsp *rsp)
775 {
776 	int blkaddr;
777 
778 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
779 	if (blkaddr < 0)
780 		return blkaddr;
781 
782 	/* This message is accepted only if sent from CPT PF/VF */
783 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
784 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
785 		return CPT_AF_ERR_ACCESS_DENIED;
786 
787 	get_ctx_pc(rvu, rsp, blkaddr);
788 
789 	/* Get CPT engines status */
790 	get_eng_sts(rvu, rsp, blkaddr);
791 
792 	/* Read CPT instruction PC registers */
793 	rsp->inst_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_REQ_PC);
794 	rsp->inst_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_INST_LATENCY_PC);
795 	rsp->rd_req_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_REQ_PC);
796 	rsp->rd_lat_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_LATENCY_PC);
797 	rsp->rd_uc_pc = rvu_read64(rvu, blkaddr, CPT_AF_RD_UC_PC);
798 	rsp->active_cycles_pc = rvu_read64(rvu, blkaddr,
799 					   CPT_AF_ACTIVE_CYCLES_PC);
800 	rsp->exe_err_info = rvu_read64(rvu, blkaddr, CPT_AF_EXE_ERR_INFO);
801 	rsp->cptclk_cnt = rvu_read64(rvu, blkaddr, CPT_AF_CPTCLK_CNT);
802 	rsp->diag = rvu_read64(rvu, blkaddr, CPT_AF_DIAG);
803 
804 	return 0;
805 }
806 
807 #define RXC_ZOMBIE_THRES  GENMASK_ULL(59, 48)
808 #define RXC_ZOMBIE_LIMIT  GENMASK_ULL(43, 32)
809 #define RXC_ACTIVE_THRES  GENMASK_ULL(27, 16)
810 #define RXC_ACTIVE_LIMIT  GENMASK_ULL(11, 0)
811 #define RXC_ACTIVE_COUNT  GENMASK_ULL(60, 48)
812 #define RXC_ZOMBIE_COUNT  GENMASK_ULL(60, 48)
813 
814 static void cpt_rxc_time_cfg(struct rvu *rvu, struct cpt_rxc_time_cfg_req *req,
815 			     int blkaddr)
816 {
817 	u64 dfrg_reg;
818 
819 	dfrg_reg = FIELD_PREP(RXC_ZOMBIE_THRES, req->zombie_thres);
820 	dfrg_reg |= FIELD_PREP(RXC_ZOMBIE_LIMIT, req->zombie_limit);
821 	dfrg_reg |= FIELD_PREP(RXC_ACTIVE_THRES, req->active_thres);
822 	dfrg_reg |= FIELD_PREP(RXC_ACTIVE_LIMIT, req->active_limit);
823 
824 	rvu_write64(rvu, blkaddr, CPT_AF_RXC_TIME_CFG, req->step);
825 	rvu_write64(rvu, blkaddr, CPT_AF_RXC_DFRG, dfrg_reg);
826 }
827 
828 int rvu_mbox_handler_cpt_rxc_time_cfg(struct rvu *rvu,
829 				      struct cpt_rxc_time_cfg_req *req,
830 				      struct msg_rsp *rsp)
831 {
832 	int blkaddr;
833 
834 	blkaddr = validate_and_get_cpt_blkaddr(req->blkaddr);
835 	if (blkaddr < 0)
836 		return blkaddr;
837 
838 	/* This message is accepted only if sent from CPT PF/VF */
839 	if (!is_cpt_pf(rvu, req->hdr.pcifunc) &&
840 	    !is_cpt_vf(rvu, req->hdr.pcifunc))
841 		return CPT_AF_ERR_ACCESS_DENIED;
842 
843 	cpt_rxc_time_cfg(rvu, req, blkaddr);
844 
845 	return 0;
846 }
847 
848 int rvu_mbox_handler_cpt_ctx_cache_sync(struct rvu *rvu, struct msg_req *req,
849 					struct msg_rsp *rsp)
850 {
851 	return rvu_cpt_ctx_flush(rvu, req->hdr.pcifunc);
852 }
853 
854 int rvu_mbox_handler_cpt_lf_reset(struct rvu *rvu, struct cpt_lf_rst_req *req,
855 				  struct msg_rsp *rsp)
856 {
857 	u16 pcifunc = req->hdr.pcifunc;
858 	struct rvu_block *block;
859 	int cptlf, blkaddr, ret;
860 	u16 actual_slot;
861 	u64 ctl, ctl2;
862 
863 	blkaddr = rvu_get_blkaddr_from_slot(rvu, BLKTYPE_CPT, pcifunc,
864 					    req->slot, &actual_slot);
865 	if (blkaddr < 0)
866 		return CPT_AF_ERR_LF_INVALID;
867 
868 	block = &rvu->hw->block[blkaddr];
869 
870 	cptlf = rvu_get_lf(rvu, block, pcifunc, actual_slot);
871 	if (cptlf < 0)
872 		return CPT_AF_ERR_LF_INVALID;
873 	ctl = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf));
874 	ctl2 = rvu_read64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf));
875 
876 	ret = rvu_lf_reset(rvu, block, cptlf);
877 	if (ret)
878 		dev_err(rvu->dev, "Failed to reset blkaddr %d LF%d\n",
879 			block->addr, cptlf);
880 
881 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL(cptlf), ctl);
882 	rvu_write64(rvu, blkaddr, CPT_AF_LFX_CTL2(cptlf), ctl2);
883 
884 	return 0;
885 }
886 
887 static void cpt_rxc_teardown(struct rvu *rvu, int blkaddr)
888 {
889 	struct cpt_rxc_time_cfg_req req;
890 	int timeout = 2000;
891 	u64 reg;
892 
893 	if (is_rvu_otx2(rvu))
894 		return;
895 
896 	/* Set time limit to minimum values, so that rxc entries will be
897 	 * flushed out quickly.
898 	 */
899 	req.step = 1;
900 	req.zombie_thres = 1;
901 	req.zombie_limit = 1;
902 	req.active_thres = 1;
903 	req.active_limit = 1;
904 
905 	cpt_rxc_time_cfg(rvu, &req, blkaddr);
906 
907 	do {
908 		reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ACTIVE_STS);
909 		udelay(1);
910 		if (FIELD_GET(RXC_ACTIVE_COUNT, reg))
911 			timeout--;
912 		else
913 			break;
914 	} while (timeout);
915 
916 	if (timeout == 0)
917 		dev_warn(rvu->dev, "Poll for RXC active count hits hard loop counter\n");
918 
919 	timeout = 2000;
920 	do {
921 		reg = rvu_read64(rvu, blkaddr, CPT_AF_RXC_ZOMBIE_STS);
922 		udelay(1);
923 		if (FIELD_GET(RXC_ZOMBIE_COUNT, reg))
924 			timeout--;
925 		else
926 			break;
927 	} while (timeout);
928 
929 	if (timeout == 0)
930 		dev_warn(rvu->dev, "Poll for RXC zombie count hits hard loop counter\n");
931 }
932 
933 #define INPROG_INFLIGHT(reg)    ((reg) & 0x1FF)
934 #define INPROG_GRB_PARTIAL(reg) ((reg) & BIT_ULL(31))
935 #define INPROG_GRB(reg)         (((reg) >> 32) & 0xFF)
936 #define INPROG_GWB(reg)         (((reg) >> 40) & 0xFF)
937 
938 static void cpt_lf_disable_iqueue(struct rvu *rvu, int blkaddr, int slot)
939 {
940 	int i = 0, hard_lp_ctr = 100000;
941 	u64 inprog, grp_ptr;
942 	u16 nq_ptr, dq_ptr;
943 
944 	/* Disable instructions enqueuing */
945 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTL), 0x0);
946 
947 	/* Disable executions in the LF's queue */
948 	inprog = rvu_read64(rvu, blkaddr,
949 			    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
950 	inprog &= ~BIT_ULL(16);
951 	rvu_write64(rvu, blkaddr,
952 		    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), inprog);
953 
954 	/* Wait for CPT queue to become execution-quiescent */
955 	do {
956 		inprog = rvu_read64(rvu, blkaddr,
957 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
958 		if (INPROG_GRB_PARTIAL(inprog)) {
959 			i = 0;
960 			hard_lp_ctr--;
961 		} else {
962 			i++;
963 		}
964 
965 		grp_ptr = rvu_read64(rvu, blkaddr,
966 				     CPT_AF_BAR2_ALIASX(slot,
967 							CPT_LF_Q_GRP_PTR));
968 		nq_ptr = (grp_ptr >> 32) & 0x7FFF;
969 		dq_ptr = grp_ptr & 0x7FFF;
970 
971 	} while (hard_lp_ctr && (i < 10) && (nq_ptr != dq_ptr));
972 
973 	if (hard_lp_ctr == 0)
974 		dev_warn(rvu->dev, "CPT FLR hits hard loop counter\n");
975 
976 	i = 0;
977 	hard_lp_ctr = 100000;
978 	do {
979 		inprog = rvu_read64(rvu, blkaddr,
980 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
981 
982 		if ((INPROG_INFLIGHT(inprog) == 0) &&
983 		    (INPROG_GWB(inprog) < 40) &&
984 		    ((INPROG_GRB(inprog) == 0) ||
985 		     (INPROG_GRB((inprog)) == 40))) {
986 			i++;
987 		} else {
988 			i = 0;
989 			hard_lp_ctr--;
990 		}
991 	} while (hard_lp_ctr && (i < 10));
992 
993 	if (hard_lp_ctr == 0)
994 		dev_warn(rvu->dev, "CPT FLR hits hard loop counter\n");
995 }
996 
997 int rvu_cpt_lf_teardown(struct rvu *rvu, u16 pcifunc, int blkaddr, int lf, int slot)
998 {
999 	u64 reg;
1000 
1001 	if (is_cpt_pf(rvu, pcifunc) || is_cpt_vf(rvu, pcifunc))
1002 		cpt_rxc_teardown(rvu, blkaddr);
1003 
1004 	/* Enable BAR2 ALIAS for this pcifunc. */
1005 	reg = BIT_ULL(16) | pcifunc;
1006 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
1007 
1008 	cpt_lf_disable_iqueue(rvu, blkaddr, slot);
1009 
1010 	/* Set group drop to help clear out hardware */
1011 	reg = rvu_read64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG));
1012 	reg |= BIT_ULL(17);
1013 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_ALIASX(slot, CPT_LF_INPROG), reg);
1014 
1015 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
1016 
1017 	return 0;
1018 }
1019 
1020 #define CPT_RES_LEN    16
1021 #define CPT_SE_IE_EGRP 1ULL
1022 
1023 static int cpt_inline_inb_lf_cmd_send(struct rvu *rvu, int blkaddr,
1024 				      int nix_blkaddr)
1025 {
1026 	int cpt_pf_num = get_cpt_pf_num(rvu);
1027 	struct cpt_inst_lmtst_req *req;
1028 	dma_addr_t res_daddr;
1029 	int timeout = 3000;
1030 	u8 cpt_idx;
1031 	u64 *inst;
1032 	u16 *res;
1033 	int rc;
1034 
1035 	res = kzalloc(CPT_RES_LEN, GFP_KERNEL);
1036 	if (!res)
1037 		return -ENOMEM;
1038 
1039 	res_daddr = dma_map_single(rvu->dev, res, CPT_RES_LEN,
1040 				   DMA_BIDIRECTIONAL);
1041 	if (dma_mapping_error(rvu->dev, res_daddr)) {
1042 		dev_err(rvu->dev, "DMA mapping failed for CPT result\n");
1043 		rc = -EFAULT;
1044 		goto res_free;
1045 	}
1046 	*res = 0xFFFF;
1047 
1048 	/* Send mbox message to CPT PF */
1049 	req = (struct cpt_inst_lmtst_req *)
1050 	       otx2_mbox_alloc_msg_rsp(&rvu->afpf_wq_info.mbox_up,
1051 				       cpt_pf_num, sizeof(*req),
1052 				       sizeof(struct msg_rsp));
1053 	if (!req) {
1054 		rc = -ENOMEM;
1055 		goto res_daddr_unmap;
1056 	}
1057 	req->hdr.sig = OTX2_MBOX_REQ_SIG;
1058 	req->hdr.id = MBOX_MSG_CPT_INST_LMTST;
1059 
1060 	inst = req->inst;
1061 	/* Prepare CPT_INST_S */
1062 	inst[0] = 0;
1063 	inst[1] = res_daddr;
1064 	/* AF PF FUNC */
1065 	inst[2] = 0;
1066 	/* Set QORD */
1067 	inst[3] = 1;
1068 	inst[4] = 0;
1069 	inst[5] = 0;
1070 	inst[6] = 0;
1071 	/* Set EGRP */
1072 	inst[7] = CPT_SE_IE_EGRP << 61;
1073 
1074 	/* Subtract 1 from the NIX-CPT credit count to preserve
1075 	 * credit counts.
1076 	 */
1077 	cpt_idx = (blkaddr == BLKADDR_CPT0) ? 0 : 1;
1078 	rvu_write64(rvu, nix_blkaddr, NIX_AF_RX_CPTX_CREDIT(cpt_idx),
1079 		    BIT_ULL(22) - 1);
1080 
1081 	otx2_mbox_msg_send(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
1082 	rc = otx2_mbox_wait_for_rsp(&rvu->afpf_wq_info.mbox_up, cpt_pf_num);
1083 	if (rc)
1084 		dev_warn(rvu->dev, "notification to pf %d failed\n",
1085 			 cpt_pf_num);
1086 	/* Wait for CPT instruction to be completed */
1087 	do {
1088 		mdelay(1);
1089 		if (*res == 0xFFFF)
1090 			timeout--;
1091 		else
1092 			break;
1093 	} while (timeout);
1094 
1095 	if (timeout == 0)
1096 		dev_warn(rvu->dev, "Poll for result hits hard loop counter\n");
1097 
1098 res_daddr_unmap:
1099 	dma_unmap_single(rvu->dev, res_daddr, CPT_RES_LEN, DMA_BIDIRECTIONAL);
1100 res_free:
1101 	kfree(res);
1102 
1103 	return 0;
1104 }
1105 
1106 #define CTX_CAM_PF_FUNC   GENMASK_ULL(61, 46)
1107 #define CTX_CAM_CPTR      GENMASK_ULL(45, 0)
1108 
1109 int rvu_cpt_ctx_flush(struct rvu *rvu, u16 pcifunc)
1110 {
1111 	int nix_blkaddr, blkaddr;
1112 	u16 max_ctx_entries, i;
1113 	int slot = 0, num_lfs;
1114 	u64 reg, cam_data;
1115 	int rc;
1116 
1117 	nix_blkaddr = rvu_get_blkaddr(rvu, BLKTYPE_NIX, pcifunc);
1118 	if (nix_blkaddr < 0)
1119 		return -EINVAL;
1120 
1121 	if (is_rvu_otx2(rvu))
1122 		return 0;
1123 
1124 	blkaddr = (nix_blkaddr == BLKADDR_NIX1) ? BLKADDR_CPT1 : BLKADDR_CPT0;
1125 
1126 	/* Submit CPT_INST_S to track when all packets have been
1127 	 * flushed through for the NIX PF FUNC in inline inbound case.
1128 	 */
1129 	rc = cpt_inline_inb_lf_cmd_send(rvu, blkaddr, nix_blkaddr);
1130 	if (rc)
1131 		return rc;
1132 
1133 	/* Wait for rxc entries to be flushed out */
1134 	cpt_rxc_teardown(rvu, blkaddr);
1135 
1136 	reg = rvu_read64(rvu, blkaddr, CPT_AF_CONSTANTS0);
1137 	max_ctx_entries = (reg >> 48) & 0xFFF;
1138 
1139 	mutex_lock(&rvu->rsrc_lock);
1140 
1141 	num_lfs = rvu_get_rsrc_mapcount(rvu_get_pfvf(rvu, pcifunc),
1142 					blkaddr);
1143 	if (num_lfs == 0) {
1144 		dev_warn(rvu->dev, "CPT LF is not configured\n");
1145 		goto unlock;
1146 	}
1147 
1148 	/* Enable BAR2 ALIAS for this pcifunc. */
1149 	reg = BIT_ULL(16) | pcifunc;
1150 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, reg);
1151 
1152 	for (i = 0; i < max_ctx_entries; i++) {
1153 		cam_data = rvu_read64(rvu, blkaddr, CPT_AF_CTX_CAM_DATA(i));
1154 
1155 		if ((FIELD_GET(CTX_CAM_PF_FUNC, cam_data) == pcifunc) &&
1156 		    FIELD_GET(CTX_CAM_CPTR, cam_data)) {
1157 			reg = BIT_ULL(46) | FIELD_GET(CTX_CAM_CPTR, cam_data);
1158 			rvu_write64(rvu, blkaddr,
1159 				    CPT_AF_BAR2_ALIASX(slot, CPT_LF_CTX_FLUSH),
1160 				    reg);
1161 		}
1162 	}
1163 	rvu_write64(rvu, blkaddr, CPT_AF_BAR2_SEL, 0);
1164 
1165 unlock:
1166 	mutex_unlock(&rvu->rsrc_lock);
1167 
1168 	return 0;
1169 }
1170