xref: /openbmc/linux/drivers/net/ethernet/korina.c (revision e998fd413e5e7dac750dfe79c79cbf8f417d41b7)
1 /*
2  *  Driver for the IDT RC32434 (Korina) on-chip ethernet controller.
3  *
4  *  Copyright 2004 IDT Inc. (rischelp@idt.com)
5  *  Copyright 2006 Felix Fietkau <nbd@openwrt.org>
6  *  Copyright 2008 Florian Fainelli <florian@openwrt.org>
7  *
8  *  This program is free software; you can redistribute  it and/or modify it
9  *  under  the terms of  the GNU General  Public License as published by the
10  *  Free Software Foundation;  either version 2 of the  License, or (at your
11  *  option) any later version.
12  *
13  *  THIS  SOFTWARE  IS PROVIDED   ``AS  IS'' AND   ANY  EXPRESS OR IMPLIED
14  *  WARRANTIES,   INCLUDING, BUT NOT  LIMITED  TO, THE IMPLIED WARRANTIES OF
15  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  IN
16  *  NO  EVENT  SHALL   THE AUTHOR  BE    LIABLE FOR ANY   DIRECT, INDIRECT,
17  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
18  *  NOT LIMITED   TO, PROCUREMENT OF  SUBSTITUTE GOODS  OR SERVICES; LOSS OF
19  *  USE, DATA,  OR PROFITS; OR  BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20  *  ANY THEORY OF LIABILITY, WHETHER IN  CONTRACT, STRICT LIABILITY, OR TORT
21  *  (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
22  *  THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23  *
24  *  You should have received a copy of the  GNU General Public License along
25  *  with this program; if not, write  to the Free Software Foundation, Inc.,
26  *  675 Mass Ave, Cambridge, MA 02139, USA.
27  *
28  *  Writing to a DMA status register:
29  *
30  *  When writing to the status register, you should mask the bit you have
31  *  been testing the status register with. Both Tx and Rx DMA registers
32  *  should stick to this procedure.
33  */
34 
35 #include <linux/module.h>
36 #include <linux/kernel.h>
37 #include <linux/moduleparam.h>
38 #include <linux/sched.h>
39 #include <linux/ctype.h>
40 #include <linux/types.h>
41 #include <linux/interrupt.h>
42 #include <linux/init.h>
43 #include <linux/ioport.h>
44 #include <linux/in.h>
45 #include <linux/slab.h>
46 #include <linux/string.h>
47 #include <linux/delay.h>
48 #include <linux/netdevice.h>
49 #include <linux/etherdevice.h>
50 #include <linux/skbuff.h>
51 #include <linux/errno.h>
52 #include <linux/platform_device.h>
53 #include <linux/mii.h>
54 #include <linux/ethtool.h>
55 #include <linux/crc32.h>
56 
57 #include <asm/bootinfo.h>
58 #include <asm/bitops.h>
59 #include <asm/pgtable.h>
60 #include <asm/io.h>
61 #include <asm/dma.h>
62 
63 #include <asm/mach-rc32434/rb.h>
64 #include <asm/mach-rc32434/rc32434.h>
65 #include <asm/mach-rc32434/eth.h>
66 #include <asm/mach-rc32434/dma_v.h>
67 
68 #define DRV_NAME        "korina"
69 #define DRV_VERSION     "0.10"
70 #define DRV_RELDATE     "04Mar2008"
71 
72 #define STATION_ADDRESS_HIGH(dev) (((dev)->dev_addr[0] << 8) | \
73 				   ((dev)->dev_addr[1]))
74 #define STATION_ADDRESS_LOW(dev)  (((dev)->dev_addr[2] << 24) | \
75 				   ((dev)->dev_addr[3] << 16) | \
76 				   ((dev)->dev_addr[4] << 8)  | \
77 				   ((dev)->dev_addr[5]))
78 
79 #define MII_CLOCK 1250000 	/* no more than 2.5MHz */
80 
81 /* the following must be powers of two */
82 #define KORINA_NUM_RDS	64  /* number of receive descriptors */
83 #define KORINA_NUM_TDS	64  /* number of transmit descriptors */
84 
85 /* KORINA_RBSIZE is the hardware's default maximum receive
86  * frame size in bytes. Having this hardcoded means that there
87  * is no support for MTU sizes greater than 1500. */
88 #define KORINA_RBSIZE	1536 /* size of one resource buffer = Ether MTU */
89 #define KORINA_RDS_MASK	(KORINA_NUM_RDS - 1)
90 #define KORINA_TDS_MASK	(KORINA_NUM_TDS - 1)
91 #define RD_RING_SIZE 	(KORINA_NUM_RDS * sizeof(struct dma_desc))
92 #define TD_RING_SIZE	(KORINA_NUM_TDS * sizeof(struct dma_desc))
93 
94 #define TX_TIMEOUT 	(6000 * HZ / 1000)
95 
96 enum chain_status { desc_filled, desc_empty };
97 #define IS_DMA_FINISHED(X)   (((X) & (DMA_DESC_FINI)) != 0)
98 #define IS_DMA_DONE(X)   (((X) & (DMA_DESC_DONE)) != 0)
99 #define RCVPKT_LENGTH(X)     (((X) & ETH_RX_LEN) >> ETH_RX_LEN_BIT)
100 
101 /* Information that need to be kept for each board. */
102 struct korina_private {
103 	struct eth_regs *eth_regs;
104 	struct dma_reg *rx_dma_regs;
105 	struct dma_reg *tx_dma_regs;
106 	struct dma_desc *td_ring; /* transmit descriptor ring */
107 	struct dma_desc *rd_ring; /* receive descriptor ring  */
108 
109 	struct sk_buff *tx_skb[KORINA_NUM_TDS];
110 	struct sk_buff *rx_skb[KORINA_NUM_RDS];
111 
112 	int rx_next_done;
113 	int rx_chain_head;
114 	int rx_chain_tail;
115 	enum chain_status rx_chain_status;
116 
117 	int tx_next_done;
118 	int tx_chain_head;
119 	int tx_chain_tail;
120 	enum chain_status tx_chain_status;
121 	int tx_count;
122 	int tx_full;
123 
124 	int rx_irq;
125 	int tx_irq;
126 	int ovr_irq;
127 	int und_irq;
128 
129 	spinlock_t lock;        /* NIC xmit lock */
130 
131 	int dma_halt_cnt;
132 	int dma_run_cnt;
133 	struct napi_struct napi;
134 	struct timer_list media_check_timer;
135 	struct mii_if_info mii_if;
136 	struct work_struct restart_task;
137 	struct net_device *dev;
138 	int phy_addr;
139 };
140 
141 extern unsigned int idt_cpu_freq;
142 
143 static inline void korina_start_dma(struct dma_reg *ch, u32 dma_addr)
144 {
145 	writel(0, &ch->dmandptr);
146 	writel(dma_addr, &ch->dmadptr);
147 }
148 
149 static inline void korina_abort_dma(struct net_device *dev,
150 					struct dma_reg *ch)
151 {
152        if (readl(&ch->dmac) & DMA_CHAN_RUN_BIT) {
153 	       writel(0x10, &ch->dmac);
154 
155 	       while (!(readl(&ch->dmas) & DMA_STAT_HALT))
156 		       dev->trans_start = jiffies;
157 
158 	       writel(0, &ch->dmas);
159        }
160 
161        writel(0, &ch->dmadptr);
162        writel(0, &ch->dmandptr);
163 }
164 
165 static inline void korina_chain_dma(struct dma_reg *ch, u32 dma_addr)
166 {
167 	writel(dma_addr, &ch->dmandptr);
168 }
169 
170 static void korina_abort_tx(struct net_device *dev)
171 {
172 	struct korina_private *lp = netdev_priv(dev);
173 
174 	korina_abort_dma(dev, lp->tx_dma_regs);
175 }
176 
177 static void korina_abort_rx(struct net_device *dev)
178 {
179 	struct korina_private *lp = netdev_priv(dev);
180 
181 	korina_abort_dma(dev, lp->rx_dma_regs);
182 }
183 
184 static void korina_start_rx(struct korina_private *lp,
185 					struct dma_desc *rd)
186 {
187 	korina_start_dma(lp->rx_dma_regs, CPHYSADDR(rd));
188 }
189 
190 static void korina_chain_rx(struct korina_private *lp,
191 					struct dma_desc *rd)
192 {
193 	korina_chain_dma(lp->rx_dma_regs, CPHYSADDR(rd));
194 }
195 
196 /* transmit packet */
197 static int korina_send_packet(struct sk_buff *skb, struct net_device *dev)
198 {
199 	struct korina_private *lp = netdev_priv(dev);
200 	unsigned long flags;
201 	u32 length;
202 	u32 chain_prev, chain_next;
203 	struct dma_desc *td;
204 
205 	spin_lock_irqsave(&lp->lock, flags);
206 
207 	td = &lp->td_ring[lp->tx_chain_tail];
208 
209 	/* stop queue when full, drop pkts if queue already full */
210 	if (lp->tx_count >= (KORINA_NUM_TDS - 2)) {
211 		lp->tx_full = 1;
212 
213 		if (lp->tx_count == (KORINA_NUM_TDS - 2))
214 			netif_stop_queue(dev);
215 		else {
216 			dev->stats.tx_dropped++;
217 			dev_kfree_skb_any(skb);
218 			spin_unlock_irqrestore(&lp->lock, flags);
219 
220 			return NETDEV_TX_BUSY;
221 		}
222 	}
223 
224 	lp->tx_count++;
225 
226 	lp->tx_skb[lp->tx_chain_tail] = skb;
227 
228 	length = skb->len;
229 	dma_cache_wback((u32)skb->data, skb->len);
230 
231 	/* Setup the transmit descriptor. */
232 	dma_cache_inv((u32) td, sizeof(*td));
233 	td->ca = CPHYSADDR(skb->data);
234 	chain_prev = (lp->tx_chain_tail - 1) & KORINA_TDS_MASK;
235 	chain_next = (lp->tx_chain_tail + 1) & KORINA_TDS_MASK;
236 
237 	if (readl(&(lp->tx_dma_regs->dmandptr)) == 0) {
238 		if (lp->tx_chain_status == desc_empty) {
239 			/* Update tail */
240 			td->control = DMA_COUNT(length) |
241 					DMA_DESC_COF | DMA_DESC_IOF;
242 			/* Move tail */
243 			lp->tx_chain_tail = chain_next;
244 			/* Write to NDPTR */
245 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
246 					&lp->tx_dma_regs->dmandptr);
247 			/* Move head to tail */
248 			lp->tx_chain_head = lp->tx_chain_tail;
249 		} else {
250 			/* Update tail */
251 			td->control = DMA_COUNT(length) |
252 					DMA_DESC_COF | DMA_DESC_IOF;
253 			/* Link to prev */
254 			lp->td_ring[chain_prev].control &=
255 					~DMA_DESC_COF;
256 			/* Link to prev */
257 			lp->td_ring[chain_prev].link =  CPHYSADDR(td);
258 			/* Move tail */
259 			lp->tx_chain_tail = chain_next;
260 			/* Write to NDPTR */
261 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
262 					&(lp->tx_dma_regs->dmandptr));
263 			/* Move head to tail */
264 			lp->tx_chain_head = lp->tx_chain_tail;
265 			lp->tx_chain_status = desc_empty;
266 		}
267 	} else {
268 		if (lp->tx_chain_status == desc_empty) {
269 			/* Update tail */
270 			td->control = DMA_COUNT(length) |
271 					DMA_DESC_COF | DMA_DESC_IOF;
272 			/* Move tail */
273 			lp->tx_chain_tail = chain_next;
274 			lp->tx_chain_status = desc_filled;
275 		} else {
276 			/* Update tail */
277 			td->control = DMA_COUNT(length) |
278 					DMA_DESC_COF | DMA_DESC_IOF;
279 			lp->td_ring[chain_prev].control &=
280 					~DMA_DESC_COF;
281 			lp->td_ring[chain_prev].link =  CPHYSADDR(td);
282 			lp->tx_chain_tail = chain_next;
283 		}
284 	}
285 	dma_cache_wback((u32) td, sizeof(*td));
286 
287 	dev->trans_start = jiffies;
288 	spin_unlock_irqrestore(&lp->lock, flags);
289 
290 	return NETDEV_TX_OK;
291 }
292 
293 static int mdio_read(struct net_device *dev, int mii_id, int reg)
294 {
295 	struct korina_private *lp = netdev_priv(dev);
296 	int ret;
297 
298 	mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
299 
300 	writel(0, &lp->eth_regs->miimcfg);
301 	writel(0, &lp->eth_regs->miimcmd);
302 	writel(mii_id | reg, &lp->eth_regs->miimaddr);
303 	writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
304 
305 	ret = (int)(readl(&lp->eth_regs->miimrdd));
306 	return ret;
307 }
308 
309 static void mdio_write(struct net_device *dev, int mii_id, int reg, int val)
310 {
311 	struct korina_private *lp = netdev_priv(dev);
312 
313 	mii_id = ((lp->rx_irq == 0x2c ? 1 : 0) << 8);
314 
315 	writel(0, &lp->eth_regs->miimcfg);
316 	writel(1, &lp->eth_regs->miimcmd);
317 	writel(mii_id | reg, &lp->eth_regs->miimaddr);
318 	writel(ETH_MII_CMD_SCN, &lp->eth_regs->miimcmd);
319 	writel(val, &lp->eth_regs->miimwtd);
320 }
321 
322 /* Ethernet Rx DMA interrupt */
323 static irqreturn_t korina_rx_dma_interrupt(int irq, void *dev_id)
324 {
325 	struct net_device *dev = dev_id;
326 	struct korina_private *lp = netdev_priv(dev);
327 	u32 dmas, dmasm;
328 	irqreturn_t retval;
329 
330 	dmas = readl(&lp->rx_dma_regs->dmas);
331 	if (dmas & (DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR)) {
332 		dmasm = readl(&lp->rx_dma_regs->dmasm);
333 		writel(dmasm | (DMA_STAT_DONE |
334 				DMA_STAT_HALT | DMA_STAT_ERR),
335 				&lp->rx_dma_regs->dmasm);
336 
337 		napi_schedule(&lp->napi);
338 
339 		if (dmas & DMA_STAT_ERR)
340 			printk(KERN_ERR "%s: DMA error\n", dev->name);
341 
342 		retval = IRQ_HANDLED;
343 	} else
344 		retval = IRQ_NONE;
345 
346 	return retval;
347 }
348 
349 static int korina_rx(struct net_device *dev, int limit)
350 {
351 	struct korina_private *lp = netdev_priv(dev);
352 	struct dma_desc *rd = &lp->rd_ring[lp->rx_next_done];
353 	struct sk_buff *skb, *skb_new;
354 	u8 *pkt_buf;
355 	u32 devcs, pkt_len, dmas;
356 	int count;
357 
358 	dma_cache_inv((u32)rd, sizeof(*rd));
359 
360 	for (count = 0; count < limit; count++) {
361 		skb = lp->rx_skb[lp->rx_next_done];
362 		skb_new = NULL;
363 
364 		devcs = rd->devcs;
365 
366 		if ((KORINA_RBSIZE - (u32)DMA_COUNT(rd->control)) == 0)
367 			break;
368 
369 		/* Update statistics counters */
370 		if (devcs & ETH_RX_CRC)
371 			dev->stats.rx_crc_errors++;
372 		if (devcs & ETH_RX_LOR)
373 			dev->stats.rx_length_errors++;
374 		if (devcs & ETH_RX_LE)
375 			dev->stats.rx_length_errors++;
376 		if (devcs & ETH_RX_OVR)
377 			dev->stats.rx_fifo_errors++;
378 		if (devcs & ETH_RX_CV)
379 			dev->stats.rx_frame_errors++;
380 		if (devcs & ETH_RX_CES)
381 			dev->stats.rx_length_errors++;
382 		if (devcs & ETH_RX_MP)
383 			dev->stats.multicast++;
384 
385 		if ((devcs & ETH_RX_LD) != ETH_RX_LD) {
386 			/* check that this is a whole packet
387 			 * WARNING: DMA_FD bit incorrectly set
388 			 * in Rc32434 (errata ref #077) */
389 			dev->stats.rx_errors++;
390 			dev->stats.rx_dropped++;
391 		} else if ((devcs & ETH_RX_ROK)) {
392 			pkt_len = RCVPKT_LENGTH(devcs);
393 
394 			/* must be the (first and) last
395 			 * descriptor then */
396 			pkt_buf = (u8 *)lp->rx_skb[lp->rx_next_done]->data;
397 
398 			/* invalidate the cache */
399 			dma_cache_inv((unsigned long)pkt_buf, pkt_len - 4);
400 
401 			/* Malloc up new buffer. */
402 			skb_new = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
403 
404 			if (!skb_new)
405 				break;
406 			/* Do not count the CRC */
407 			skb_put(skb, pkt_len - 4);
408 			skb->protocol = eth_type_trans(skb, dev);
409 
410 			/* Pass the packet to upper layers */
411 			netif_receive_skb(skb);
412 			dev->stats.rx_packets++;
413 			dev->stats.rx_bytes += pkt_len;
414 
415 			/* Update the mcast stats */
416 			if (devcs & ETH_RX_MP)
417 				dev->stats.multicast++;
418 
419 			lp->rx_skb[lp->rx_next_done] = skb_new;
420 		}
421 
422 		rd->devcs = 0;
423 
424 		/* Restore descriptor's curr_addr */
425 		if (skb_new)
426 			rd->ca = CPHYSADDR(skb_new->data);
427 		else
428 			rd->ca = CPHYSADDR(skb->data);
429 
430 		rd->control = DMA_COUNT(KORINA_RBSIZE) |
431 			DMA_DESC_COD | DMA_DESC_IOD;
432 		lp->rd_ring[(lp->rx_next_done - 1) &
433 			KORINA_RDS_MASK].control &=
434 			~DMA_DESC_COD;
435 
436 		lp->rx_next_done = (lp->rx_next_done + 1) & KORINA_RDS_MASK;
437 		dma_cache_wback((u32)rd, sizeof(*rd));
438 		rd = &lp->rd_ring[lp->rx_next_done];
439 		writel(~DMA_STAT_DONE, &lp->rx_dma_regs->dmas);
440 	}
441 
442 	dmas = readl(&lp->rx_dma_regs->dmas);
443 
444 	if (dmas & DMA_STAT_HALT) {
445 		writel(~(DMA_STAT_HALT | DMA_STAT_ERR),
446 				&lp->rx_dma_regs->dmas);
447 
448 		lp->dma_halt_cnt++;
449 		rd->devcs = 0;
450 		skb = lp->rx_skb[lp->rx_next_done];
451 		rd->ca = CPHYSADDR(skb->data);
452 		dma_cache_wback((u32)rd, sizeof(*rd));
453 		korina_chain_rx(lp, rd);
454 	}
455 
456 	return count;
457 }
458 
459 static int korina_poll(struct napi_struct *napi, int budget)
460 {
461 	struct korina_private *lp =
462 		container_of(napi, struct korina_private, napi);
463 	struct net_device *dev = lp->dev;
464 	int work_done;
465 
466 	work_done = korina_rx(dev, budget);
467 	if (work_done < budget) {
468 		napi_complete(napi);
469 
470 		writel(readl(&lp->rx_dma_regs->dmasm) &
471 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
472 			&lp->rx_dma_regs->dmasm);
473 	}
474 	return work_done;
475 }
476 
477 /*
478  * Set or clear the multicast filter for this adaptor.
479  */
480 static void korina_multicast_list(struct net_device *dev)
481 {
482 	struct korina_private *lp = netdev_priv(dev);
483 	unsigned long flags;
484 	struct netdev_hw_addr *ha;
485 	u32 recognise = ETH_ARC_AB;	/* always accept broadcasts */
486 	int i;
487 
488 	/* Set promiscuous mode */
489 	if (dev->flags & IFF_PROMISC)
490 		recognise |= ETH_ARC_PRO;
491 
492 	else if ((dev->flags & IFF_ALLMULTI) || (netdev_mc_count(dev) > 4))
493 		/* All multicast and broadcast */
494 		recognise |= ETH_ARC_AM;
495 
496 	/* Build the hash table */
497 	if (netdev_mc_count(dev) > 4) {
498 		u16 hash_table[4] = { 0 };
499 		u32 crc;
500 
501 		netdev_for_each_mc_addr(ha, dev) {
502 			crc = ether_crc_le(6, ha->addr);
503 			crc >>= 26;
504 			hash_table[crc >> 4] |= 1 << (15 - (crc & 0xf));
505 		}
506 		/* Accept filtered multicast */
507 		recognise |= ETH_ARC_AFM;
508 
509 		/* Fill the MAC hash tables with their values */
510 		writel((u32)(hash_table[1] << 16 | hash_table[0]),
511 					&lp->eth_regs->ethhash0);
512 		writel((u32)(hash_table[3] << 16 | hash_table[2]),
513 					&lp->eth_regs->ethhash1);
514 	}
515 
516 	spin_lock_irqsave(&lp->lock, flags);
517 	writel(recognise, &lp->eth_regs->etharc);
518 	spin_unlock_irqrestore(&lp->lock, flags);
519 }
520 
521 static void korina_tx(struct net_device *dev)
522 {
523 	struct korina_private *lp = netdev_priv(dev);
524 	struct dma_desc *td = &lp->td_ring[lp->tx_next_done];
525 	u32 devcs;
526 	u32 dmas;
527 
528 	spin_lock(&lp->lock);
529 
530 	/* Process all desc that are done */
531 	while (IS_DMA_FINISHED(td->control)) {
532 		if (lp->tx_full == 1) {
533 			netif_wake_queue(dev);
534 			lp->tx_full = 0;
535 		}
536 
537 		devcs = lp->td_ring[lp->tx_next_done].devcs;
538 		if ((devcs & (ETH_TX_FD | ETH_TX_LD)) !=
539 				(ETH_TX_FD | ETH_TX_LD)) {
540 			dev->stats.tx_errors++;
541 			dev->stats.tx_dropped++;
542 
543 			/* Should never happen */
544 			printk(KERN_ERR "%s: split tx ignored\n",
545 							dev->name);
546 		} else if (devcs & ETH_TX_TOK) {
547 			dev->stats.tx_packets++;
548 			dev->stats.tx_bytes +=
549 					lp->tx_skb[lp->tx_next_done]->len;
550 		} else {
551 			dev->stats.tx_errors++;
552 			dev->stats.tx_dropped++;
553 
554 			/* Underflow */
555 			if (devcs & ETH_TX_UND)
556 				dev->stats.tx_fifo_errors++;
557 
558 			/* Oversized frame */
559 			if (devcs & ETH_TX_OF)
560 				dev->stats.tx_aborted_errors++;
561 
562 			/* Excessive deferrals */
563 			if (devcs & ETH_TX_ED)
564 				dev->stats.tx_carrier_errors++;
565 
566 			/* Collisions: medium busy */
567 			if (devcs & ETH_TX_EC)
568 				dev->stats.collisions++;
569 
570 			/* Late collision */
571 			if (devcs & ETH_TX_LC)
572 				dev->stats.tx_window_errors++;
573 		}
574 
575 		/* We must always free the original skb */
576 		if (lp->tx_skb[lp->tx_next_done]) {
577 			dev_kfree_skb_any(lp->tx_skb[lp->tx_next_done]);
578 			lp->tx_skb[lp->tx_next_done] = NULL;
579 		}
580 
581 		lp->td_ring[lp->tx_next_done].control = DMA_DESC_IOF;
582 		lp->td_ring[lp->tx_next_done].devcs = ETH_TX_FD | ETH_TX_LD;
583 		lp->td_ring[lp->tx_next_done].link = 0;
584 		lp->td_ring[lp->tx_next_done].ca = 0;
585 		lp->tx_count--;
586 
587 		/* Go on to next transmission */
588 		lp->tx_next_done = (lp->tx_next_done + 1) & KORINA_TDS_MASK;
589 		td = &lp->td_ring[lp->tx_next_done];
590 
591 	}
592 
593 	/* Clear the DMA status register */
594 	dmas = readl(&lp->tx_dma_regs->dmas);
595 	writel(~dmas, &lp->tx_dma_regs->dmas);
596 
597 	writel(readl(&lp->tx_dma_regs->dmasm) &
598 			~(DMA_STAT_FINI | DMA_STAT_ERR),
599 			&lp->tx_dma_regs->dmasm);
600 
601 	spin_unlock(&lp->lock);
602 }
603 
604 static irqreturn_t
605 korina_tx_dma_interrupt(int irq, void *dev_id)
606 {
607 	struct net_device *dev = dev_id;
608 	struct korina_private *lp = netdev_priv(dev);
609 	u32 dmas, dmasm;
610 	irqreturn_t retval;
611 
612 	dmas = readl(&lp->tx_dma_regs->dmas);
613 
614 	if (dmas & (DMA_STAT_FINI | DMA_STAT_ERR)) {
615 		dmasm = readl(&lp->tx_dma_regs->dmasm);
616 		writel(dmasm | (DMA_STAT_FINI | DMA_STAT_ERR),
617 				&lp->tx_dma_regs->dmasm);
618 
619 		korina_tx(dev);
620 
621 		if (lp->tx_chain_status == desc_filled &&
622 			(readl(&(lp->tx_dma_regs->dmandptr)) == 0)) {
623 			writel(CPHYSADDR(&lp->td_ring[lp->tx_chain_head]),
624 				&(lp->tx_dma_regs->dmandptr));
625 			lp->tx_chain_status = desc_empty;
626 			lp->tx_chain_head = lp->tx_chain_tail;
627 			dev->trans_start = jiffies;
628 		}
629 		if (dmas & DMA_STAT_ERR)
630 			printk(KERN_ERR "%s: DMA error\n", dev->name);
631 
632 		retval = IRQ_HANDLED;
633 	} else
634 		retval = IRQ_NONE;
635 
636 	return retval;
637 }
638 
639 
640 static void korina_check_media(struct net_device *dev, unsigned int init_media)
641 {
642 	struct korina_private *lp = netdev_priv(dev);
643 
644 	mii_check_media(&lp->mii_if, 0, init_media);
645 
646 	if (lp->mii_if.full_duplex)
647 		writel(readl(&lp->eth_regs->ethmac2) | ETH_MAC2_FD,
648 						&lp->eth_regs->ethmac2);
649 	else
650 		writel(readl(&lp->eth_regs->ethmac2) & ~ETH_MAC2_FD,
651 						&lp->eth_regs->ethmac2);
652 }
653 
654 static void korina_poll_media(unsigned long data)
655 {
656 	struct net_device *dev = (struct net_device *) data;
657 	struct korina_private *lp = netdev_priv(dev);
658 
659 	korina_check_media(dev, 0);
660 	mod_timer(&lp->media_check_timer, jiffies + HZ);
661 }
662 
663 static void korina_set_carrier(struct mii_if_info *mii)
664 {
665 	if (mii->force_media) {
666 		/* autoneg is off: Link is always assumed to be up */
667 		if (!netif_carrier_ok(mii->dev))
668 			netif_carrier_on(mii->dev);
669 	} else  /* Let MMI library update carrier status */
670 		korina_check_media(mii->dev, 0);
671 }
672 
673 static int korina_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
674 {
675 	struct korina_private *lp = netdev_priv(dev);
676 	struct mii_ioctl_data *data = if_mii(rq);
677 	int rc;
678 
679 	if (!netif_running(dev))
680 		return -EINVAL;
681 	spin_lock_irq(&lp->lock);
682 	rc = generic_mii_ioctl(&lp->mii_if, data, cmd, NULL);
683 	spin_unlock_irq(&lp->lock);
684 	korina_set_carrier(&lp->mii_if);
685 
686 	return rc;
687 }
688 
689 /* ethtool helpers */
690 static void netdev_get_drvinfo(struct net_device *dev,
691 			struct ethtool_drvinfo *info)
692 {
693 	struct korina_private *lp = netdev_priv(dev);
694 
695 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
696 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
697 	strlcpy(info->bus_info, lp->dev->name, sizeof(info->bus_info));
698 }
699 
700 static int netdev_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
701 {
702 	struct korina_private *lp = netdev_priv(dev);
703 	int rc;
704 
705 	spin_lock_irq(&lp->lock);
706 	rc = mii_ethtool_gset(&lp->mii_if, cmd);
707 	spin_unlock_irq(&lp->lock);
708 
709 	return rc;
710 }
711 
712 static int netdev_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
713 {
714 	struct korina_private *lp = netdev_priv(dev);
715 	int rc;
716 
717 	spin_lock_irq(&lp->lock);
718 	rc = mii_ethtool_sset(&lp->mii_if, cmd);
719 	spin_unlock_irq(&lp->lock);
720 	korina_set_carrier(&lp->mii_if);
721 
722 	return rc;
723 }
724 
725 static u32 netdev_get_link(struct net_device *dev)
726 {
727 	struct korina_private *lp = netdev_priv(dev);
728 
729 	return mii_link_ok(&lp->mii_if);
730 }
731 
732 static const struct ethtool_ops netdev_ethtool_ops = {
733 	.get_drvinfo            = netdev_get_drvinfo,
734 	.get_settings           = netdev_get_settings,
735 	.set_settings           = netdev_set_settings,
736 	.get_link               = netdev_get_link,
737 };
738 
739 static int korina_alloc_ring(struct net_device *dev)
740 {
741 	struct korina_private *lp = netdev_priv(dev);
742 	struct sk_buff *skb;
743 	int i;
744 
745 	/* Initialize the transmit descriptors */
746 	for (i = 0; i < KORINA_NUM_TDS; i++) {
747 		lp->td_ring[i].control = DMA_DESC_IOF;
748 		lp->td_ring[i].devcs = ETH_TX_FD | ETH_TX_LD;
749 		lp->td_ring[i].ca = 0;
750 		lp->td_ring[i].link = 0;
751 	}
752 	lp->tx_next_done = lp->tx_chain_head = lp->tx_chain_tail =
753 			lp->tx_full = lp->tx_count = 0;
754 	lp->tx_chain_status = desc_empty;
755 
756 	/* Initialize the receive descriptors */
757 	for (i = 0; i < KORINA_NUM_RDS; i++) {
758 		skb = netdev_alloc_skb_ip_align(dev, KORINA_RBSIZE);
759 		if (!skb)
760 			return -ENOMEM;
761 		lp->rx_skb[i] = skb;
762 		lp->rd_ring[i].control = DMA_DESC_IOD |
763 				DMA_COUNT(KORINA_RBSIZE);
764 		lp->rd_ring[i].devcs = 0;
765 		lp->rd_ring[i].ca = CPHYSADDR(skb->data);
766 		lp->rd_ring[i].link = CPHYSADDR(&lp->rd_ring[i+1]);
767 	}
768 
769 	/* loop back receive descriptors, so the last
770 	 * descriptor points to the first one */
771 	lp->rd_ring[i - 1].link = CPHYSADDR(&lp->rd_ring[0]);
772 	lp->rd_ring[i - 1].control |= DMA_DESC_COD;
773 
774 	lp->rx_next_done  = 0;
775 	lp->rx_chain_head = 0;
776 	lp->rx_chain_tail = 0;
777 	lp->rx_chain_status = desc_empty;
778 
779 	return 0;
780 }
781 
782 static void korina_free_ring(struct net_device *dev)
783 {
784 	struct korina_private *lp = netdev_priv(dev);
785 	int i;
786 
787 	for (i = 0; i < KORINA_NUM_RDS; i++) {
788 		lp->rd_ring[i].control = 0;
789 		if (lp->rx_skb[i])
790 			dev_kfree_skb_any(lp->rx_skb[i]);
791 		lp->rx_skb[i] = NULL;
792 	}
793 
794 	for (i = 0; i < KORINA_NUM_TDS; i++) {
795 		lp->td_ring[i].control = 0;
796 		if (lp->tx_skb[i])
797 			dev_kfree_skb_any(lp->tx_skb[i]);
798 		lp->tx_skb[i] = NULL;
799 	}
800 }
801 
802 /*
803  * Initialize the RC32434 ethernet controller.
804  */
805 static int korina_init(struct net_device *dev)
806 {
807 	struct korina_private *lp = netdev_priv(dev);
808 
809 	/* Disable DMA */
810 	korina_abort_tx(dev);
811 	korina_abort_rx(dev);
812 
813 	/* reset ethernet logic */
814 	writel(0, &lp->eth_regs->ethintfc);
815 	while ((readl(&lp->eth_regs->ethintfc) & ETH_INT_FC_RIP))
816 		dev->trans_start = jiffies;
817 
818 	/* Enable Ethernet Interface */
819 	writel(ETH_INT_FC_EN, &lp->eth_regs->ethintfc);
820 
821 	/* Allocate rings */
822 	if (korina_alloc_ring(dev)) {
823 		printk(KERN_ERR "%s: descriptor allocation failed\n", dev->name);
824 		korina_free_ring(dev);
825 		return -ENOMEM;
826 	}
827 
828 	writel(0, &lp->rx_dma_regs->dmas);
829 	/* Start Rx DMA */
830 	korina_start_rx(lp, &lp->rd_ring[0]);
831 
832 	writel(readl(&lp->tx_dma_regs->dmasm) &
833 			~(DMA_STAT_FINI | DMA_STAT_ERR),
834 			&lp->tx_dma_regs->dmasm);
835 	writel(readl(&lp->rx_dma_regs->dmasm) &
836 			~(DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR),
837 			&lp->rx_dma_regs->dmasm);
838 
839 	/* Accept only packets destined for this Ethernet device address */
840 	writel(ETH_ARC_AB, &lp->eth_regs->etharc);
841 
842 	/* Set all Ether station address registers to their initial values */
843 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal0);
844 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah0);
845 
846 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal1);
847 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah1);
848 
849 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal2);
850 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah2);
851 
852 	writel(STATION_ADDRESS_LOW(dev), &lp->eth_regs->ethsal3);
853 	writel(STATION_ADDRESS_HIGH(dev), &lp->eth_regs->ethsah3);
854 
855 
856 	/* Frame Length Checking, Pad Enable, CRC Enable, Full Duplex set */
857 	writel(ETH_MAC2_PE | ETH_MAC2_CEN | ETH_MAC2_FD,
858 			&lp->eth_regs->ethmac2);
859 
860 	/* Back to back inter-packet-gap */
861 	writel(0x15, &lp->eth_regs->ethipgt);
862 	/* Non - Back to back inter-packet-gap */
863 	writel(0x12, &lp->eth_regs->ethipgr);
864 
865 	/* Management Clock Prescaler Divisor
866 	 * Clock independent setting */
867 	writel(((idt_cpu_freq) / MII_CLOCK + 1) & ~1,
868 		       &lp->eth_regs->ethmcp);
869 
870 	/* don't transmit until fifo contains 48b */
871 	writel(48, &lp->eth_regs->ethfifott);
872 
873 	writel(ETH_MAC1_RE, &lp->eth_regs->ethmac1);
874 
875 	napi_enable(&lp->napi);
876 	netif_start_queue(dev);
877 
878 	return 0;
879 }
880 
881 /*
882  * Restart the RC32434 ethernet controller.
883  */
884 static void korina_restart_task(struct work_struct *work)
885 {
886 	struct korina_private *lp = container_of(work,
887 			struct korina_private, restart_task);
888 	struct net_device *dev = lp->dev;
889 
890 	/*
891 	 * Disable interrupts
892 	 */
893 	disable_irq(lp->rx_irq);
894 	disable_irq(lp->tx_irq);
895 	disable_irq(lp->ovr_irq);
896 	disable_irq(lp->und_irq);
897 
898 	writel(readl(&lp->tx_dma_regs->dmasm) |
899 				DMA_STAT_FINI | DMA_STAT_ERR,
900 				&lp->tx_dma_regs->dmasm);
901 	writel(readl(&lp->rx_dma_regs->dmasm) |
902 				DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR,
903 				&lp->rx_dma_regs->dmasm);
904 
905 	korina_free_ring(dev);
906 
907 	napi_disable(&lp->napi);
908 
909 	if (korina_init(dev) < 0) {
910 		printk(KERN_ERR "%s: cannot restart device\n", dev->name);
911 		return;
912 	}
913 	korina_multicast_list(dev);
914 
915 	enable_irq(lp->und_irq);
916 	enable_irq(lp->ovr_irq);
917 	enable_irq(lp->tx_irq);
918 	enable_irq(lp->rx_irq);
919 }
920 
921 static void korina_clear_and_restart(struct net_device *dev, u32 value)
922 {
923 	struct korina_private *lp = netdev_priv(dev);
924 
925 	netif_stop_queue(dev);
926 	writel(value, &lp->eth_regs->ethintfc);
927 	schedule_work(&lp->restart_task);
928 }
929 
930 /* Ethernet Tx Underflow interrupt */
931 static irqreturn_t korina_und_interrupt(int irq, void *dev_id)
932 {
933 	struct net_device *dev = dev_id;
934 	struct korina_private *lp = netdev_priv(dev);
935 	unsigned int und;
936 
937 	spin_lock(&lp->lock);
938 
939 	und = readl(&lp->eth_regs->ethintfc);
940 
941 	if (und & ETH_INT_FC_UND)
942 		korina_clear_and_restart(dev, und & ~ETH_INT_FC_UND);
943 
944 	spin_unlock(&lp->lock);
945 
946 	return IRQ_HANDLED;
947 }
948 
949 static void korina_tx_timeout(struct net_device *dev)
950 {
951 	struct korina_private *lp = netdev_priv(dev);
952 
953 	schedule_work(&lp->restart_task);
954 }
955 
956 /* Ethernet Rx Overflow interrupt */
957 static irqreturn_t
958 korina_ovr_interrupt(int irq, void *dev_id)
959 {
960 	struct net_device *dev = dev_id;
961 	struct korina_private *lp = netdev_priv(dev);
962 	unsigned int ovr;
963 
964 	spin_lock(&lp->lock);
965 	ovr = readl(&lp->eth_regs->ethintfc);
966 
967 	if (ovr & ETH_INT_FC_OVR)
968 		korina_clear_and_restart(dev, ovr & ~ETH_INT_FC_OVR);
969 
970 	spin_unlock(&lp->lock);
971 
972 	return IRQ_HANDLED;
973 }
974 
975 #ifdef CONFIG_NET_POLL_CONTROLLER
976 static void korina_poll_controller(struct net_device *dev)
977 {
978 	disable_irq(dev->irq);
979 	korina_tx_dma_interrupt(dev->irq, dev);
980 	enable_irq(dev->irq);
981 }
982 #endif
983 
984 static int korina_open(struct net_device *dev)
985 {
986 	struct korina_private *lp = netdev_priv(dev);
987 	int ret;
988 
989 	/* Initialize */
990 	ret = korina_init(dev);
991 	if (ret < 0) {
992 		printk(KERN_ERR "%s: cannot open device\n", dev->name);
993 		goto out;
994 	}
995 
996 	/* Install the interrupt handler
997 	 * that handles the Done Finished
998 	 * Ovr and Und Events */
999 	ret = request_irq(lp->rx_irq, korina_rx_dma_interrupt,
1000 			IRQF_DISABLED, "Korina ethernet Rx", dev);
1001 	if (ret < 0) {
1002 		printk(KERN_ERR "%s: unable to get Rx DMA IRQ %d\n",
1003 		    dev->name, lp->rx_irq);
1004 		goto err_release;
1005 	}
1006 	ret = request_irq(lp->tx_irq, korina_tx_dma_interrupt,
1007 			IRQF_DISABLED, "Korina ethernet Tx", dev);
1008 	if (ret < 0) {
1009 		printk(KERN_ERR "%s: unable to get Tx DMA IRQ %d\n",
1010 		    dev->name, lp->tx_irq);
1011 		goto err_free_rx_irq;
1012 	}
1013 
1014 	/* Install handler for overrun error. */
1015 	ret = request_irq(lp->ovr_irq, korina_ovr_interrupt,
1016 			IRQF_DISABLED, "Ethernet Overflow", dev);
1017 	if (ret < 0) {
1018 		printk(KERN_ERR "%s: unable to get OVR IRQ %d\n",
1019 		    dev->name, lp->ovr_irq);
1020 		goto err_free_tx_irq;
1021 	}
1022 
1023 	/* Install handler for underflow error. */
1024 	ret = request_irq(lp->und_irq, korina_und_interrupt,
1025 			IRQF_DISABLED, "Ethernet Underflow", dev);
1026 	if (ret < 0) {
1027 		printk(KERN_ERR "%s: unable to get UND IRQ %d\n",
1028 		    dev->name, lp->und_irq);
1029 		goto err_free_ovr_irq;
1030 	}
1031 	mod_timer(&lp->media_check_timer, jiffies + 1);
1032 out:
1033 	return ret;
1034 
1035 err_free_ovr_irq:
1036 	free_irq(lp->ovr_irq, dev);
1037 err_free_tx_irq:
1038 	free_irq(lp->tx_irq, dev);
1039 err_free_rx_irq:
1040 	free_irq(lp->rx_irq, dev);
1041 err_release:
1042 	korina_free_ring(dev);
1043 	goto out;
1044 }
1045 
1046 static int korina_close(struct net_device *dev)
1047 {
1048 	struct korina_private *lp = netdev_priv(dev);
1049 	u32 tmp;
1050 
1051 	del_timer(&lp->media_check_timer);
1052 
1053 	/* Disable interrupts */
1054 	disable_irq(lp->rx_irq);
1055 	disable_irq(lp->tx_irq);
1056 	disable_irq(lp->ovr_irq);
1057 	disable_irq(lp->und_irq);
1058 
1059 	korina_abort_tx(dev);
1060 	tmp = readl(&lp->tx_dma_regs->dmasm);
1061 	tmp = tmp | DMA_STAT_FINI | DMA_STAT_ERR;
1062 	writel(tmp, &lp->tx_dma_regs->dmasm);
1063 
1064 	korina_abort_rx(dev);
1065 	tmp = readl(&lp->rx_dma_regs->dmasm);
1066 	tmp = tmp | DMA_STAT_DONE | DMA_STAT_HALT | DMA_STAT_ERR;
1067 	writel(tmp, &lp->rx_dma_regs->dmasm);
1068 
1069 	korina_free_ring(dev);
1070 
1071 	napi_disable(&lp->napi);
1072 
1073 	cancel_work_sync(&lp->restart_task);
1074 
1075 	free_irq(lp->rx_irq, dev);
1076 	free_irq(lp->tx_irq, dev);
1077 	free_irq(lp->ovr_irq, dev);
1078 	free_irq(lp->und_irq, dev);
1079 
1080 	return 0;
1081 }
1082 
1083 static const struct net_device_ops korina_netdev_ops = {
1084 	.ndo_open		= korina_open,
1085 	.ndo_stop		= korina_close,
1086 	.ndo_start_xmit		= korina_send_packet,
1087 	.ndo_set_rx_mode	= korina_multicast_list,
1088 	.ndo_tx_timeout		= korina_tx_timeout,
1089 	.ndo_do_ioctl		= korina_ioctl,
1090 	.ndo_change_mtu		= eth_change_mtu,
1091 	.ndo_validate_addr	= eth_validate_addr,
1092 	.ndo_set_mac_address	= eth_mac_addr,
1093 #ifdef CONFIG_NET_POLL_CONTROLLER
1094 	.ndo_poll_controller	= korina_poll_controller,
1095 #endif
1096 };
1097 
1098 static int korina_probe(struct platform_device *pdev)
1099 {
1100 	struct korina_device *bif = platform_get_drvdata(pdev);
1101 	struct korina_private *lp;
1102 	struct net_device *dev;
1103 	struct resource *r;
1104 	int rc;
1105 
1106 	dev = alloc_etherdev(sizeof(struct korina_private));
1107 	if (!dev)
1108 		return -ENOMEM;
1109 
1110 	SET_NETDEV_DEV(dev, &pdev->dev);
1111 	lp = netdev_priv(dev);
1112 
1113 	bif->dev = dev;
1114 	memcpy(dev->dev_addr, bif->mac, 6);
1115 
1116 	lp->rx_irq = platform_get_irq_byname(pdev, "korina_rx");
1117 	lp->tx_irq = platform_get_irq_byname(pdev, "korina_tx");
1118 	lp->ovr_irq = platform_get_irq_byname(pdev, "korina_ovr");
1119 	lp->und_irq = platform_get_irq_byname(pdev, "korina_und");
1120 
1121 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_regs");
1122 	dev->base_addr = r->start;
1123 	lp->eth_regs = ioremap_nocache(r->start, resource_size(r));
1124 	if (!lp->eth_regs) {
1125 		printk(KERN_ERR DRV_NAME ": cannot remap registers\n");
1126 		rc = -ENXIO;
1127 		goto probe_err_out;
1128 	}
1129 
1130 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_rx");
1131 	lp->rx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1132 	if (!lp->rx_dma_regs) {
1133 		printk(KERN_ERR DRV_NAME ": cannot remap Rx DMA registers\n");
1134 		rc = -ENXIO;
1135 		goto probe_err_dma_rx;
1136 	}
1137 
1138 	r = platform_get_resource_byname(pdev, IORESOURCE_MEM, "korina_dma_tx");
1139 	lp->tx_dma_regs = ioremap_nocache(r->start, resource_size(r));
1140 	if (!lp->tx_dma_regs) {
1141 		printk(KERN_ERR DRV_NAME ": cannot remap Tx DMA registers\n");
1142 		rc = -ENXIO;
1143 		goto probe_err_dma_tx;
1144 	}
1145 
1146 	lp->td_ring = kmalloc(TD_RING_SIZE + RD_RING_SIZE, GFP_KERNEL);
1147 	if (!lp->td_ring) {
1148 		rc = -ENXIO;
1149 		goto probe_err_td_ring;
1150 	}
1151 
1152 	dma_cache_inv((unsigned long)(lp->td_ring),
1153 			TD_RING_SIZE + RD_RING_SIZE);
1154 
1155 	/* now convert TD_RING pointer to KSEG1 */
1156 	lp->td_ring = (struct dma_desc *)KSEG1ADDR(lp->td_ring);
1157 	lp->rd_ring = &lp->td_ring[KORINA_NUM_TDS];
1158 
1159 	spin_lock_init(&lp->lock);
1160 	/* just use the rx dma irq */
1161 	dev->irq = lp->rx_irq;
1162 	lp->dev = dev;
1163 
1164 	dev->netdev_ops = &korina_netdev_ops;
1165 	dev->ethtool_ops = &netdev_ethtool_ops;
1166 	dev->watchdog_timeo = TX_TIMEOUT;
1167 	netif_napi_add(dev, &lp->napi, korina_poll, 64);
1168 
1169 	lp->phy_addr = (((lp->rx_irq == 0x2c? 1:0) << 8) | 0x05);
1170 	lp->mii_if.dev = dev;
1171 	lp->mii_if.mdio_read = mdio_read;
1172 	lp->mii_if.mdio_write = mdio_write;
1173 	lp->mii_if.phy_id = lp->phy_addr;
1174 	lp->mii_if.phy_id_mask = 0x1f;
1175 	lp->mii_if.reg_num_mask = 0x1f;
1176 
1177 	rc = register_netdev(dev);
1178 	if (rc < 0) {
1179 		printk(KERN_ERR DRV_NAME
1180 			": cannot register net device: %d\n", rc);
1181 		goto probe_err_register;
1182 	}
1183 	setup_timer(&lp->media_check_timer, korina_poll_media, (unsigned long) dev);
1184 
1185 	INIT_WORK(&lp->restart_task, korina_restart_task);
1186 
1187 	printk(KERN_INFO "%s: " DRV_NAME "-" DRV_VERSION " " DRV_RELDATE "\n",
1188 			dev->name);
1189 out:
1190 	return rc;
1191 
1192 probe_err_register:
1193 	kfree(lp->td_ring);
1194 probe_err_td_ring:
1195 	iounmap(lp->tx_dma_regs);
1196 probe_err_dma_tx:
1197 	iounmap(lp->rx_dma_regs);
1198 probe_err_dma_rx:
1199 	iounmap(lp->eth_regs);
1200 probe_err_out:
1201 	free_netdev(dev);
1202 	goto out;
1203 }
1204 
1205 static int korina_remove(struct platform_device *pdev)
1206 {
1207 	struct korina_device *bif = platform_get_drvdata(pdev);
1208 	struct korina_private *lp = netdev_priv(bif->dev);
1209 
1210 	iounmap(lp->eth_regs);
1211 	iounmap(lp->rx_dma_regs);
1212 	iounmap(lp->tx_dma_regs);
1213 
1214 	platform_set_drvdata(pdev, NULL);
1215 	unregister_netdev(bif->dev);
1216 	free_netdev(bif->dev);
1217 
1218 	return 0;
1219 }
1220 
1221 static struct platform_driver korina_driver = {
1222 	.driver.name = "korina",
1223 	.probe = korina_probe,
1224 	.remove = korina_remove,
1225 };
1226 
1227 module_platform_driver(korina_driver);
1228 
1229 MODULE_AUTHOR("Philip Rischel <rischelp@idt.com>");
1230 MODULE_AUTHOR("Felix Fietkau <nbd@openwrt.org>");
1231 MODULE_AUTHOR("Florian Fainelli <florian@openwrt.org>");
1232 MODULE_DESCRIPTION("IDT RC32434 (Korina) Ethernet driver");
1233 MODULE_LICENSE("GPL");
1234