xref: /openbmc/linux/drivers/net/ethernet/intel/igb/igb_ptp.c (revision 496cc140279b4517a23f4534e468ec9c66283f4b)
1 // SPDX-License-Identifier: GPL-2.0+
2 /* Copyright (C) 2011 Richard Cochran <richardcochran@gmail.com> */
3 
4 #include <linux/module.h>
5 #include <linux/device.h>
6 #include <linux/pci.h>
7 #include <linux/ptp_classify.h>
8 
9 #include "igb.h"
10 
11 #define INCVALUE_MASK		0x7fffffff
12 #define ISGN			0x80000000
13 
14 /* The 82580 timesync updates the system timer every 8ns by 8ns,
15  * and this update value cannot be reprogrammed.
16  *
17  * Neither the 82576 nor the 82580 offer registers wide enough to hold
18  * nanoseconds time values for very long. For the 82580, SYSTIM always
19  * counts nanoseconds, but the upper 24 bits are not available. The
20  * frequency is adjusted by changing the 32 bit fractional nanoseconds
21  * register, TIMINCA.
22  *
23  * For the 82576, the SYSTIM register time unit is affect by the
24  * choice of the 24 bit TININCA:IV (incvalue) field. Five bits of this
25  * field are needed to provide the nominal 16 nanosecond period,
26  * leaving 19 bits for fractional nanoseconds.
27  *
28  * We scale the NIC clock cycle by a large factor so that relatively
29  * small clock corrections can be added or subtracted at each clock
30  * tick. The drawbacks of a large factor are a) that the clock
31  * register overflows more quickly (not such a big deal) and b) that
32  * the increment per tick has to fit into 24 bits.  As a result we
33  * need to use a shift of 19 so we can fit a value of 16 into the
34  * TIMINCA register.
35  *
36  *
37  *             SYSTIMH            SYSTIML
38  *        +--------------+   +---+---+------+
39  *  82576 |      32      |   | 8 | 5 |  19  |
40  *        +--------------+   +---+---+------+
41  *         \________ 45 bits _______/  fract
42  *
43  *        +----------+---+   +--------------+
44  *  82580 |    24    | 8 |   |      32      |
45  *        +----------+---+   +--------------+
46  *          reserved  \______ 40 bits _____/
47  *
48  *
49  * The 45 bit 82576 SYSTIM overflows every
50  *   2^45 * 10^-9 / 3600 = 9.77 hours.
51  *
52  * The 40 bit 82580 SYSTIM overflows every
53  *   2^40 * 10^-9 /  60  = 18.3 minutes.
54  *
55  * SYSTIM is converted to real time using a timecounter. As
56  * timecounter_cyc2time() allows old timestamps, the timecounter needs
57  * to be updated at least once per half of the SYSTIM interval.
58  * Scheduling of delayed work is not very accurate, and also the NIC
59  * clock can be adjusted to run up to 6% faster and the system clock
60  * up to 10% slower, so we aim for 6 minutes to be sure the actual
61  * interval in the NIC time is shorter than 9.16 minutes.
62  */
63 
64 #define IGB_SYSTIM_OVERFLOW_PERIOD	(HZ * 60 * 6)
65 #define IGB_PTP_TX_TIMEOUT		(HZ * 15)
66 #define INCPERIOD_82576			BIT(E1000_TIMINCA_16NS_SHIFT)
67 #define INCVALUE_82576_MASK		GENMASK(E1000_TIMINCA_16NS_SHIFT - 1, 0)
68 #define INCVALUE_82576			(16u << IGB_82576_TSYNC_SHIFT)
69 #define IGB_NBITS_82580			40
70 
71 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter);
72 static void igb_ptp_sdp_init(struct igb_adapter *adapter);
73 
74 /* SYSTIM read access for the 82576 */
75 static u64 igb_ptp_read_82576(const struct cyclecounter *cc)
76 {
77 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
78 	struct e1000_hw *hw = &igb->hw;
79 	u64 val;
80 	u32 lo, hi;
81 
82 	lo = rd32(E1000_SYSTIML);
83 	hi = rd32(E1000_SYSTIMH);
84 
85 	val = ((u64) hi) << 32;
86 	val |= lo;
87 
88 	return val;
89 }
90 
91 /* SYSTIM read access for the 82580 */
92 static u64 igb_ptp_read_82580(const struct cyclecounter *cc)
93 {
94 	struct igb_adapter *igb = container_of(cc, struct igb_adapter, cc);
95 	struct e1000_hw *hw = &igb->hw;
96 	u32 lo, hi;
97 	u64 val;
98 
99 	/* The timestamp latches on lowest register read. For the 82580
100 	 * the lowest register is SYSTIMR instead of SYSTIML.  However we only
101 	 * need to provide nanosecond resolution, so we just ignore it.
102 	 */
103 	rd32(E1000_SYSTIMR);
104 	lo = rd32(E1000_SYSTIML);
105 	hi = rd32(E1000_SYSTIMH);
106 
107 	val = ((u64) hi) << 32;
108 	val |= lo;
109 
110 	return val;
111 }
112 
113 /* SYSTIM read access for I210/I211 */
114 static void igb_ptp_read_i210(struct igb_adapter *adapter,
115 			      struct timespec64 *ts)
116 {
117 	struct e1000_hw *hw = &adapter->hw;
118 	u32 sec, nsec;
119 
120 	/* The timestamp latches on lowest register read. For I210/I211, the
121 	 * lowest register is SYSTIMR. Since we only need to provide nanosecond
122 	 * resolution, we can ignore it.
123 	 */
124 	rd32(E1000_SYSTIMR);
125 	nsec = rd32(E1000_SYSTIML);
126 	sec = rd32(E1000_SYSTIMH);
127 
128 	ts->tv_sec = sec;
129 	ts->tv_nsec = nsec;
130 }
131 
132 static void igb_ptp_write_i210(struct igb_adapter *adapter,
133 			       const struct timespec64 *ts)
134 {
135 	struct e1000_hw *hw = &adapter->hw;
136 
137 	/* Writing the SYSTIMR register is not necessary as it only provides
138 	 * sub-nanosecond resolution.
139 	 */
140 	wr32(E1000_SYSTIML, ts->tv_nsec);
141 	wr32(E1000_SYSTIMH, (u32)ts->tv_sec);
142 }
143 
144 /**
145  * igb_ptp_systim_to_hwtstamp - convert system time value to hw timestamp
146  * @adapter: board private structure
147  * @hwtstamps: timestamp structure to update
148  * @systim: unsigned 64bit system time value.
149  *
150  * We need to convert the system time value stored in the RX/TXSTMP registers
151  * into a hwtstamp which can be used by the upper level timestamping functions.
152  *
153  * The 'tmreg_lock' spinlock is used to protect the consistency of the
154  * system time value. This is needed because reading the 64 bit time
155  * value involves reading two (or three) 32 bit registers. The first
156  * read latches the value. Ditto for writing.
157  *
158  * In addition, here have extended the system time with an overflow
159  * counter in software.
160  **/
161 static void igb_ptp_systim_to_hwtstamp(struct igb_adapter *adapter,
162 				       struct skb_shared_hwtstamps *hwtstamps,
163 				       u64 systim)
164 {
165 	unsigned long flags;
166 	u64 ns;
167 
168 	switch (adapter->hw.mac.type) {
169 	case e1000_82576:
170 	case e1000_82580:
171 	case e1000_i354:
172 	case e1000_i350:
173 		spin_lock_irqsave(&adapter->tmreg_lock, flags);
174 
175 		ns = timecounter_cyc2time(&adapter->tc, systim);
176 
177 		spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
178 
179 		memset(hwtstamps, 0, sizeof(*hwtstamps));
180 		hwtstamps->hwtstamp = ns_to_ktime(ns);
181 		break;
182 	case e1000_i210:
183 	case e1000_i211:
184 		memset(hwtstamps, 0, sizeof(*hwtstamps));
185 		/* Upper 32 bits contain s, lower 32 bits contain ns. */
186 		hwtstamps->hwtstamp = ktime_set(systim >> 32,
187 						systim & 0xFFFFFFFF);
188 		break;
189 	default:
190 		break;
191 	}
192 }
193 
194 /* PTP clock operations */
195 static int igb_ptp_adjfreq_82576(struct ptp_clock_info *ptp, s32 ppb)
196 {
197 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
198 					       ptp_caps);
199 	struct e1000_hw *hw = &igb->hw;
200 	int neg_adj = 0;
201 	u64 rate;
202 	u32 incvalue;
203 
204 	if (ppb < 0) {
205 		neg_adj = 1;
206 		ppb = -ppb;
207 	}
208 	rate = ppb;
209 	rate <<= 14;
210 	rate = div_u64(rate, 1953125);
211 
212 	incvalue = 16 << IGB_82576_TSYNC_SHIFT;
213 
214 	if (neg_adj)
215 		incvalue -= rate;
216 	else
217 		incvalue += rate;
218 
219 	wr32(E1000_TIMINCA, INCPERIOD_82576 | (incvalue & INCVALUE_82576_MASK));
220 
221 	return 0;
222 }
223 
224 static int igb_ptp_adjfine_82580(struct ptp_clock_info *ptp, long scaled_ppm)
225 {
226 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
227 					       ptp_caps);
228 	struct e1000_hw *hw = &igb->hw;
229 	int neg_adj = 0;
230 	u64 rate;
231 	u32 inca;
232 
233 	if (scaled_ppm < 0) {
234 		neg_adj = 1;
235 		scaled_ppm = -scaled_ppm;
236 	}
237 	rate = scaled_ppm;
238 	rate <<= 13;
239 	rate = div_u64(rate, 15625);
240 
241 	inca = rate & INCVALUE_MASK;
242 	if (neg_adj)
243 		inca |= ISGN;
244 
245 	wr32(E1000_TIMINCA, inca);
246 
247 	return 0;
248 }
249 
250 static int igb_ptp_adjtime_82576(struct ptp_clock_info *ptp, s64 delta)
251 {
252 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
253 					       ptp_caps);
254 	unsigned long flags;
255 
256 	spin_lock_irqsave(&igb->tmreg_lock, flags);
257 	timecounter_adjtime(&igb->tc, delta);
258 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
259 
260 	return 0;
261 }
262 
263 static int igb_ptp_adjtime_i210(struct ptp_clock_info *ptp, s64 delta)
264 {
265 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
266 					       ptp_caps);
267 	unsigned long flags;
268 	struct timespec64 now, then = ns_to_timespec64(delta);
269 
270 	spin_lock_irqsave(&igb->tmreg_lock, flags);
271 
272 	igb_ptp_read_i210(igb, &now);
273 	now = timespec64_add(now, then);
274 	igb_ptp_write_i210(igb, (const struct timespec64 *)&now);
275 
276 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
277 
278 	return 0;
279 }
280 
281 static int igb_ptp_gettimex_82576(struct ptp_clock_info *ptp,
282 				  struct timespec64 *ts,
283 				  struct ptp_system_timestamp *sts)
284 {
285 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
286 					       ptp_caps);
287 	struct e1000_hw *hw = &igb->hw;
288 	unsigned long flags;
289 	u32 lo, hi;
290 	u64 ns;
291 
292 	spin_lock_irqsave(&igb->tmreg_lock, flags);
293 
294 	ptp_read_system_prets(sts);
295 	lo = rd32(E1000_SYSTIML);
296 	ptp_read_system_postts(sts);
297 	hi = rd32(E1000_SYSTIMH);
298 
299 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
300 
301 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
302 
303 	*ts = ns_to_timespec64(ns);
304 
305 	return 0;
306 }
307 
308 static int igb_ptp_gettimex_82580(struct ptp_clock_info *ptp,
309 				  struct timespec64 *ts,
310 				  struct ptp_system_timestamp *sts)
311 {
312 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
313 					       ptp_caps);
314 	struct e1000_hw *hw = &igb->hw;
315 	unsigned long flags;
316 	u32 lo, hi;
317 	u64 ns;
318 
319 	spin_lock_irqsave(&igb->tmreg_lock, flags);
320 
321 	ptp_read_system_prets(sts);
322 	rd32(E1000_SYSTIMR);
323 	ptp_read_system_postts(sts);
324 	lo = rd32(E1000_SYSTIML);
325 	hi = rd32(E1000_SYSTIMH);
326 
327 	ns = timecounter_cyc2time(&igb->tc, ((u64)hi << 32) | lo);
328 
329 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
330 
331 	*ts = ns_to_timespec64(ns);
332 
333 	return 0;
334 }
335 
336 static int igb_ptp_gettimex_i210(struct ptp_clock_info *ptp,
337 				 struct timespec64 *ts,
338 				 struct ptp_system_timestamp *sts)
339 {
340 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
341 					       ptp_caps);
342 	struct e1000_hw *hw = &igb->hw;
343 	unsigned long flags;
344 
345 	spin_lock_irqsave(&igb->tmreg_lock, flags);
346 
347 	ptp_read_system_prets(sts);
348 	rd32(E1000_SYSTIMR);
349 	ptp_read_system_postts(sts);
350 	ts->tv_nsec = rd32(E1000_SYSTIML);
351 	ts->tv_sec = rd32(E1000_SYSTIMH);
352 
353 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
354 
355 	return 0;
356 }
357 
358 static int igb_ptp_settime_82576(struct ptp_clock_info *ptp,
359 				 const struct timespec64 *ts)
360 {
361 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
362 					       ptp_caps);
363 	unsigned long flags;
364 	u64 ns;
365 
366 	ns = timespec64_to_ns(ts);
367 
368 	spin_lock_irqsave(&igb->tmreg_lock, flags);
369 
370 	timecounter_init(&igb->tc, &igb->cc, ns);
371 
372 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
373 
374 	return 0;
375 }
376 
377 static int igb_ptp_settime_i210(struct ptp_clock_info *ptp,
378 				const struct timespec64 *ts)
379 {
380 	struct igb_adapter *igb = container_of(ptp, struct igb_adapter,
381 					       ptp_caps);
382 	unsigned long flags;
383 
384 	spin_lock_irqsave(&igb->tmreg_lock, flags);
385 
386 	igb_ptp_write_i210(igb, ts);
387 
388 	spin_unlock_irqrestore(&igb->tmreg_lock, flags);
389 
390 	return 0;
391 }
392 
393 static void igb_pin_direction(int pin, int input, u32 *ctrl, u32 *ctrl_ext)
394 {
395 	u32 *ptr = pin < 2 ? ctrl : ctrl_ext;
396 	static const u32 mask[IGB_N_SDP] = {
397 		E1000_CTRL_SDP0_DIR,
398 		E1000_CTRL_SDP1_DIR,
399 		E1000_CTRL_EXT_SDP2_DIR,
400 		E1000_CTRL_EXT_SDP3_DIR,
401 	};
402 
403 	if (input)
404 		*ptr &= ~mask[pin];
405 	else
406 		*ptr |= mask[pin];
407 }
408 
409 static void igb_pin_extts(struct igb_adapter *igb, int chan, int pin)
410 {
411 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
412 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
413 	};
414 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
415 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
416 	};
417 	static const u32 ts_sdp_en[IGB_N_SDP] = {
418 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
419 	};
420 	struct e1000_hw *hw = &igb->hw;
421 	u32 ctrl, ctrl_ext, tssdp = 0;
422 
423 	ctrl = rd32(E1000_CTRL);
424 	ctrl_ext = rd32(E1000_CTRL_EXT);
425 	tssdp = rd32(E1000_TSSDP);
426 
427 	igb_pin_direction(pin, 1, &ctrl, &ctrl_ext);
428 
429 	/* Make sure this pin is not enabled as an output. */
430 	tssdp &= ~ts_sdp_en[pin];
431 
432 	if (chan == 1) {
433 		tssdp &= ~AUX1_SEL_SDP3;
434 		tssdp |= aux1_sel_sdp[pin] | AUX1_TS_SDP_EN;
435 	} else {
436 		tssdp &= ~AUX0_SEL_SDP3;
437 		tssdp |= aux0_sel_sdp[pin] | AUX0_TS_SDP_EN;
438 	}
439 
440 	wr32(E1000_TSSDP, tssdp);
441 	wr32(E1000_CTRL, ctrl);
442 	wr32(E1000_CTRL_EXT, ctrl_ext);
443 }
444 
445 static void igb_pin_perout(struct igb_adapter *igb, int chan, int pin, int freq)
446 {
447 	static const u32 aux0_sel_sdp[IGB_N_SDP] = {
448 		AUX0_SEL_SDP0, AUX0_SEL_SDP1, AUX0_SEL_SDP2, AUX0_SEL_SDP3,
449 	};
450 	static const u32 aux1_sel_sdp[IGB_N_SDP] = {
451 		AUX1_SEL_SDP0, AUX1_SEL_SDP1, AUX1_SEL_SDP2, AUX1_SEL_SDP3,
452 	};
453 	static const u32 ts_sdp_en[IGB_N_SDP] = {
454 		TS_SDP0_EN, TS_SDP1_EN, TS_SDP2_EN, TS_SDP3_EN,
455 	};
456 	static const u32 ts_sdp_sel_tt0[IGB_N_SDP] = {
457 		TS_SDP0_SEL_TT0, TS_SDP1_SEL_TT0,
458 		TS_SDP2_SEL_TT0, TS_SDP3_SEL_TT0,
459 	};
460 	static const u32 ts_sdp_sel_tt1[IGB_N_SDP] = {
461 		TS_SDP0_SEL_TT1, TS_SDP1_SEL_TT1,
462 		TS_SDP2_SEL_TT1, TS_SDP3_SEL_TT1,
463 	};
464 	static const u32 ts_sdp_sel_fc0[IGB_N_SDP] = {
465 		TS_SDP0_SEL_FC0, TS_SDP1_SEL_FC0,
466 		TS_SDP2_SEL_FC0, TS_SDP3_SEL_FC0,
467 	};
468 	static const u32 ts_sdp_sel_fc1[IGB_N_SDP] = {
469 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
470 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
471 	};
472 	static const u32 ts_sdp_sel_clr[IGB_N_SDP] = {
473 		TS_SDP0_SEL_FC1, TS_SDP1_SEL_FC1,
474 		TS_SDP2_SEL_FC1, TS_SDP3_SEL_FC1,
475 	};
476 	struct e1000_hw *hw = &igb->hw;
477 	u32 ctrl, ctrl_ext, tssdp = 0;
478 
479 	ctrl = rd32(E1000_CTRL);
480 	ctrl_ext = rd32(E1000_CTRL_EXT);
481 	tssdp = rd32(E1000_TSSDP);
482 
483 	igb_pin_direction(pin, 0, &ctrl, &ctrl_ext);
484 
485 	/* Make sure this pin is not enabled as an input. */
486 	if ((tssdp & AUX0_SEL_SDP3) == aux0_sel_sdp[pin])
487 		tssdp &= ~AUX0_TS_SDP_EN;
488 
489 	if ((tssdp & AUX1_SEL_SDP3) == aux1_sel_sdp[pin])
490 		tssdp &= ~AUX1_TS_SDP_EN;
491 
492 	tssdp &= ~ts_sdp_sel_clr[pin];
493 	if (freq) {
494 		if (chan == 1)
495 			tssdp |= ts_sdp_sel_fc1[pin];
496 		else
497 			tssdp |= ts_sdp_sel_fc0[pin];
498 	} else {
499 		if (chan == 1)
500 			tssdp |= ts_sdp_sel_tt1[pin];
501 		else
502 			tssdp |= ts_sdp_sel_tt0[pin];
503 	}
504 	tssdp |= ts_sdp_en[pin];
505 
506 	wr32(E1000_TSSDP, tssdp);
507 	wr32(E1000_CTRL, ctrl);
508 	wr32(E1000_CTRL_EXT, ctrl_ext);
509 }
510 
511 static int igb_ptp_feature_enable_82580(struct ptp_clock_info *ptp,
512 					struct ptp_clock_request *rq, int on)
513 {
514 	struct igb_adapter *igb =
515 		container_of(ptp, struct igb_adapter, ptp_caps);
516 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, systiml,
517 		systimh, level_mask, level, rem;
518 	struct e1000_hw *hw = &igb->hw;
519 	struct timespec64 ts, start;
520 	unsigned long flags;
521 	u64 systim, now;
522 	int pin = -1;
523 	s64 ns;
524 
525 	switch (rq->type) {
526 	case PTP_CLK_REQ_EXTTS:
527 		/* Reject requests with unsupported flags */
528 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
529 					PTP_RISING_EDGE |
530 					PTP_FALLING_EDGE |
531 					PTP_STRICT_FLAGS))
532 			return -EOPNOTSUPP;
533 
534 		if (on) {
535 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
536 					   rq->extts.index);
537 			if (pin < 0)
538 				return -EBUSY;
539 		}
540 		if (rq->extts.index == 1) {
541 			tsauxc_mask = TSAUXC_EN_TS1;
542 			tsim_mask = TSINTR_AUTT1;
543 		} else {
544 			tsauxc_mask = TSAUXC_EN_TS0;
545 			tsim_mask = TSINTR_AUTT0;
546 		}
547 		spin_lock_irqsave(&igb->tmreg_lock, flags);
548 		tsauxc = rd32(E1000_TSAUXC);
549 		tsim = rd32(E1000_TSIM);
550 		if (on) {
551 			igb_pin_extts(igb, rq->extts.index, pin);
552 			tsauxc |= tsauxc_mask;
553 			tsim |= tsim_mask;
554 		} else {
555 			tsauxc &= ~tsauxc_mask;
556 			tsim &= ~tsim_mask;
557 		}
558 		wr32(E1000_TSAUXC, tsauxc);
559 		wr32(E1000_TSIM, tsim);
560 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
561 		return 0;
562 
563 	case PTP_CLK_REQ_PEROUT:
564 		/* Reject requests with unsupported flags */
565 		if (rq->perout.flags)
566 			return -EOPNOTSUPP;
567 
568 		if (on) {
569 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
570 					   rq->perout.index);
571 			if (pin < 0)
572 				return -EBUSY;
573 		}
574 		ts.tv_sec = rq->perout.period.sec;
575 		ts.tv_nsec = rq->perout.period.nsec;
576 		ns = timespec64_to_ns(&ts);
577 		ns = ns >> 1;
578 		if (on && ns < 8LL)
579 			return -EINVAL;
580 		ts = ns_to_timespec64(ns);
581 		if (rq->perout.index == 1) {
582 			tsauxc_mask = TSAUXC_EN_TT1;
583 			tsim_mask = TSINTR_TT1;
584 			trgttiml = E1000_TRGTTIML1;
585 			trgttimh = E1000_TRGTTIMH1;
586 		} else {
587 			tsauxc_mask = TSAUXC_EN_TT0;
588 			tsim_mask = TSINTR_TT0;
589 			trgttiml = E1000_TRGTTIML0;
590 			trgttimh = E1000_TRGTTIMH0;
591 		}
592 		spin_lock_irqsave(&igb->tmreg_lock, flags);
593 		tsauxc = rd32(E1000_TSAUXC);
594 		tsim = rd32(E1000_TSIM);
595 		if (rq->perout.index == 1) {
596 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
597 			tsim &= ~TSINTR_TT1;
598 		} else {
599 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
600 			tsim &= ~TSINTR_TT0;
601 		}
602 		if (on) {
603 			int i = rq->perout.index;
604 
605 			/* read systim registers in sequence */
606 			rd32(E1000_SYSTIMR);
607 			systiml = rd32(E1000_SYSTIML);
608 			systimh = rd32(E1000_SYSTIMH);
609 			systim = (((u64)(systimh & 0xFF)) << 32) | ((u64)systiml);
610 			now = timecounter_cyc2time(&igb->tc, systim);
611 
612 			if (pin < 2) {
613 				level_mask = (i == 1) ? 0x80000 : 0x40000;
614 				level = (rd32(E1000_CTRL) & level_mask) ? 1 : 0;
615 			} else {
616 				level_mask = (i == 1) ? 0x80 : 0x40;
617 				level = (rd32(E1000_CTRL_EXT) & level_mask) ? 1 : 0;
618 			}
619 
620 			div_u64_rem(now, ns, &rem);
621 			systim = systim + (ns - rem);
622 
623 			/* synchronize pin level with rising/falling edges */
624 			div_u64_rem(now, ns << 1, &rem);
625 			if (rem < ns) {
626 				/* first half of period */
627 				if (level == 0) {
628 					/* output is already low, skip this period */
629 					systim += ns;
630 				}
631 			} else {
632 				/* second half of period */
633 				if (level == 1) {
634 					/* output is already high, skip this period */
635 					systim += ns;
636 				}
637 			}
638 
639 			start = ns_to_timespec64(systim + (ns - rem));
640 			igb_pin_perout(igb, i, pin, 0);
641 			igb->perout[i].start.tv_sec = start.tv_sec;
642 			igb->perout[i].start.tv_nsec = start.tv_nsec;
643 			igb->perout[i].period.tv_sec = ts.tv_sec;
644 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
645 
646 			wr32(trgttiml, (u32)systim);
647 			wr32(trgttimh, ((u32)(systim >> 32)) & 0xFF);
648 			tsauxc |= tsauxc_mask;
649 			tsim |= tsim_mask;
650 		}
651 		wr32(E1000_TSAUXC, tsauxc);
652 		wr32(E1000_TSIM, tsim);
653 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
654 		return 0;
655 
656 	case PTP_CLK_REQ_PPS:
657 		return -EOPNOTSUPP;
658 	}
659 
660 	return -EOPNOTSUPP;
661 }
662 
663 static int igb_ptp_feature_enable_i210(struct ptp_clock_info *ptp,
664 				       struct ptp_clock_request *rq, int on)
665 {
666 	struct igb_adapter *igb =
667 		container_of(ptp, struct igb_adapter, ptp_caps);
668 	struct e1000_hw *hw = &igb->hw;
669 	u32 tsauxc, tsim, tsauxc_mask, tsim_mask, trgttiml, trgttimh, freqout;
670 	unsigned long flags;
671 	struct timespec64 ts;
672 	int use_freq = 0, pin = -1;
673 	s64 ns;
674 
675 	switch (rq->type) {
676 	case PTP_CLK_REQ_EXTTS:
677 		/* Reject requests with unsupported flags */
678 		if (rq->extts.flags & ~(PTP_ENABLE_FEATURE |
679 					PTP_RISING_EDGE |
680 					PTP_FALLING_EDGE |
681 					PTP_STRICT_FLAGS))
682 			return -EOPNOTSUPP;
683 
684 		/* Reject requests failing to enable both edges. */
685 		if ((rq->extts.flags & PTP_STRICT_FLAGS) &&
686 		    (rq->extts.flags & PTP_ENABLE_FEATURE) &&
687 		    (rq->extts.flags & PTP_EXTTS_EDGES) != PTP_EXTTS_EDGES)
688 			return -EOPNOTSUPP;
689 
690 		if (on) {
691 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_EXTTS,
692 					   rq->extts.index);
693 			if (pin < 0)
694 				return -EBUSY;
695 		}
696 		if (rq->extts.index == 1) {
697 			tsauxc_mask = TSAUXC_EN_TS1;
698 			tsim_mask = TSINTR_AUTT1;
699 		} else {
700 			tsauxc_mask = TSAUXC_EN_TS0;
701 			tsim_mask = TSINTR_AUTT0;
702 		}
703 		spin_lock_irqsave(&igb->tmreg_lock, flags);
704 		tsauxc = rd32(E1000_TSAUXC);
705 		tsim = rd32(E1000_TSIM);
706 		if (on) {
707 			igb_pin_extts(igb, rq->extts.index, pin);
708 			tsauxc |= tsauxc_mask;
709 			tsim |= tsim_mask;
710 		} else {
711 			tsauxc &= ~tsauxc_mask;
712 			tsim &= ~tsim_mask;
713 		}
714 		wr32(E1000_TSAUXC, tsauxc);
715 		wr32(E1000_TSIM, tsim);
716 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
717 		return 0;
718 
719 	case PTP_CLK_REQ_PEROUT:
720 		/* Reject requests with unsupported flags */
721 		if (rq->perout.flags)
722 			return -EOPNOTSUPP;
723 
724 		if (on) {
725 			pin = ptp_find_pin(igb->ptp_clock, PTP_PF_PEROUT,
726 					   rq->perout.index);
727 			if (pin < 0)
728 				return -EBUSY;
729 		}
730 		ts.tv_sec = rq->perout.period.sec;
731 		ts.tv_nsec = rq->perout.period.nsec;
732 		ns = timespec64_to_ns(&ts);
733 		ns = ns >> 1;
734 		if (on && ((ns <= 70000000LL) || (ns == 125000000LL) ||
735 			   (ns == 250000000LL) || (ns == 500000000LL))) {
736 			if (ns < 8LL)
737 				return -EINVAL;
738 			use_freq = 1;
739 		}
740 		ts = ns_to_timespec64(ns);
741 		if (rq->perout.index == 1) {
742 			if (use_freq) {
743 				tsauxc_mask = TSAUXC_EN_CLK1 | TSAUXC_ST1;
744 				tsim_mask = 0;
745 			} else {
746 				tsauxc_mask = TSAUXC_EN_TT1;
747 				tsim_mask = TSINTR_TT1;
748 			}
749 			trgttiml = E1000_TRGTTIML1;
750 			trgttimh = E1000_TRGTTIMH1;
751 			freqout = E1000_FREQOUT1;
752 		} else {
753 			if (use_freq) {
754 				tsauxc_mask = TSAUXC_EN_CLK0 | TSAUXC_ST0;
755 				tsim_mask = 0;
756 			} else {
757 				tsauxc_mask = TSAUXC_EN_TT0;
758 				tsim_mask = TSINTR_TT0;
759 			}
760 			trgttiml = E1000_TRGTTIML0;
761 			trgttimh = E1000_TRGTTIMH0;
762 			freqout = E1000_FREQOUT0;
763 		}
764 		spin_lock_irqsave(&igb->tmreg_lock, flags);
765 		tsauxc = rd32(E1000_TSAUXC);
766 		tsim = rd32(E1000_TSIM);
767 		if (rq->perout.index == 1) {
768 			tsauxc &= ~(TSAUXC_EN_TT1 | TSAUXC_EN_CLK1 | TSAUXC_ST1);
769 			tsim &= ~TSINTR_TT1;
770 		} else {
771 			tsauxc &= ~(TSAUXC_EN_TT0 | TSAUXC_EN_CLK0 | TSAUXC_ST0);
772 			tsim &= ~TSINTR_TT0;
773 		}
774 		if (on) {
775 			int i = rq->perout.index;
776 			igb_pin_perout(igb, i, pin, use_freq);
777 			igb->perout[i].start.tv_sec = rq->perout.start.sec;
778 			igb->perout[i].start.tv_nsec = rq->perout.start.nsec;
779 			igb->perout[i].period.tv_sec = ts.tv_sec;
780 			igb->perout[i].period.tv_nsec = ts.tv_nsec;
781 			wr32(trgttimh, rq->perout.start.sec);
782 			wr32(trgttiml, rq->perout.start.nsec);
783 			if (use_freq)
784 				wr32(freqout, ns);
785 			tsauxc |= tsauxc_mask;
786 			tsim |= tsim_mask;
787 		}
788 		wr32(E1000_TSAUXC, tsauxc);
789 		wr32(E1000_TSIM, tsim);
790 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
791 		return 0;
792 
793 	case PTP_CLK_REQ_PPS:
794 		spin_lock_irqsave(&igb->tmreg_lock, flags);
795 		tsim = rd32(E1000_TSIM);
796 		if (on)
797 			tsim |= TSINTR_SYS_WRAP;
798 		else
799 			tsim &= ~TSINTR_SYS_WRAP;
800 		igb->pps_sys_wrap_on = !!on;
801 		wr32(E1000_TSIM, tsim);
802 		spin_unlock_irqrestore(&igb->tmreg_lock, flags);
803 		return 0;
804 	}
805 
806 	return -EOPNOTSUPP;
807 }
808 
809 static int igb_ptp_feature_enable(struct ptp_clock_info *ptp,
810 				  struct ptp_clock_request *rq, int on)
811 {
812 	return -EOPNOTSUPP;
813 }
814 
815 static int igb_ptp_verify_pin(struct ptp_clock_info *ptp, unsigned int pin,
816 			      enum ptp_pin_function func, unsigned int chan)
817 {
818 	switch (func) {
819 	case PTP_PF_NONE:
820 	case PTP_PF_EXTTS:
821 	case PTP_PF_PEROUT:
822 		break;
823 	case PTP_PF_PHYSYNC:
824 		return -1;
825 	}
826 	return 0;
827 }
828 
829 /**
830  * igb_ptp_tx_work
831  * @work: pointer to work struct
832  *
833  * This work function polls the TSYNCTXCTL valid bit to determine when a
834  * timestamp has been taken for the current stored skb.
835  **/
836 static void igb_ptp_tx_work(struct work_struct *work)
837 {
838 	struct igb_adapter *adapter = container_of(work, struct igb_adapter,
839 						   ptp_tx_work);
840 	struct e1000_hw *hw = &adapter->hw;
841 	u32 tsynctxctl;
842 
843 	if (!adapter->ptp_tx_skb)
844 		return;
845 
846 	if (time_is_before_jiffies(adapter->ptp_tx_start +
847 				   IGB_PTP_TX_TIMEOUT)) {
848 		dev_kfree_skb_any(adapter->ptp_tx_skb);
849 		adapter->ptp_tx_skb = NULL;
850 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
851 		adapter->tx_hwtstamp_timeouts++;
852 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
853 		 * interrupt
854 		 */
855 		rd32(E1000_TXSTMPH);
856 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
857 		return;
858 	}
859 
860 	tsynctxctl = rd32(E1000_TSYNCTXCTL);
861 	if (tsynctxctl & E1000_TSYNCTXCTL_VALID)
862 		igb_ptp_tx_hwtstamp(adapter);
863 	else
864 		/* reschedule to check later */
865 		schedule_work(&adapter->ptp_tx_work);
866 }
867 
868 static void igb_ptp_overflow_check(struct work_struct *work)
869 {
870 	struct igb_adapter *igb =
871 		container_of(work, struct igb_adapter, ptp_overflow_work.work);
872 	struct timespec64 ts;
873 	u64 ns;
874 
875 	/* Update the timecounter */
876 	ns = timecounter_read(&igb->tc);
877 
878 	ts = ns_to_timespec64(ns);
879 	pr_debug("igb overflow check at %lld.%09lu\n",
880 		 (long long) ts.tv_sec, ts.tv_nsec);
881 
882 	schedule_delayed_work(&igb->ptp_overflow_work,
883 			      IGB_SYSTIM_OVERFLOW_PERIOD);
884 }
885 
886 /**
887  * igb_ptp_rx_hang - detect error case when Rx timestamp registers latched
888  * @adapter: private network adapter structure
889  *
890  * This watchdog task is scheduled to detect error case where hardware has
891  * dropped an Rx packet that was timestamped when the ring is full. The
892  * particular error is rare but leaves the device in a state unable to timestamp
893  * any future packets.
894  **/
895 void igb_ptp_rx_hang(struct igb_adapter *adapter)
896 {
897 	struct e1000_hw *hw = &adapter->hw;
898 	u32 tsyncrxctl = rd32(E1000_TSYNCRXCTL);
899 	unsigned long rx_event;
900 
901 	/* Other hardware uses per-packet timestamps */
902 	if (hw->mac.type != e1000_82576)
903 		return;
904 
905 	/* If we don't have a valid timestamp in the registers, just update the
906 	 * timeout counter and exit
907 	 */
908 	if (!(tsyncrxctl & E1000_TSYNCRXCTL_VALID)) {
909 		adapter->last_rx_ptp_check = jiffies;
910 		return;
911 	}
912 
913 	/* Determine the most recent watchdog or rx_timestamp event */
914 	rx_event = adapter->last_rx_ptp_check;
915 	if (time_after(adapter->last_rx_timestamp, rx_event))
916 		rx_event = adapter->last_rx_timestamp;
917 
918 	/* Only need to read the high RXSTMP register to clear the lock */
919 	if (time_is_before_jiffies(rx_event + 5 * HZ)) {
920 		rd32(E1000_RXSTMPH);
921 		adapter->last_rx_ptp_check = jiffies;
922 		adapter->rx_hwtstamp_cleared++;
923 		dev_warn(&adapter->pdev->dev, "clearing Rx timestamp hang\n");
924 	}
925 }
926 
927 /**
928  * igb_ptp_tx_hang - detect error case where Tx timestamp never finishes
929  * @adapter: private network adapter structure
930  */
931 void igb_ptp_tx_hang(struct igb_adapter *adapter)
932 {
933 	struct e1000_hw *hw = &adapter->hw;
934 	bool timeout = time_is_before_jiffies(adapter->ptp_tx_start +
935 					      IGB_PTP_TX_TIMEOUT);
936 
937 	if (!adapter->ptp_tx_skb)
938 		return;
939 
940 	if (!test_bit(__IGB_PTP_TX_IN_PROGRESS, &adapter->state))
941 		return;
942 
943 	/* If we haven't received a timestamp within the timeout, it is
944 	 * reasonable to assume that it will never occur, so we can unlock the
945 	 * timestamp bit when this occurs.
946 	 */
947 	if (timeout) {
948 		cancel_work_sync(&adapter->ptp_tx_work);
949 		dev_kfree_skb_any(adapter->ptp_tx_skb);
950 		adapter->ptp_tx_skb = NULL;
951 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
952 		adapter->tx_hwtstamp_timeouts++;
953 		/* Clear the tx valid bit in TSYNCTXCTL register to enable
954 		 * interrupt
955 		 */
956 		rd32(E1000_TXSTMPH);
957 		dev_warn(&adapter->pdev->dev, "clearing Tx timestamp hang\n");
958 	}
959 }
960 
961 /**
962  * igb_ptp_tx_hwtstamp - utility function which checks for TX time stamp
963  * @adapter: Board private structure.
964  *
965  * If we were asked to do hardware stamping and such a time stamp is
966  * available, then it must have been for this skb here because we only
967  * allow only one such packet into the queue.
968  **/
969 static void igb_ptp_tx_hwtstamp(struct igb_adapter *adapter)
970 {
971 	struct sk_buff *skb = adapter->ptp_tx_skb;
972 	struct e1000_hw *hw = &adapter->hw;
973 	struct skb_shared_hwtstamps shhwtstamps;
974 	u64 regval;
975 	int adjust = 0;
976 
977 	regval = rd32(E1000_TXSTMPL);
978 	regval |= (u64)rd32(E1000_TXSTMPH) << 32;
979 
980 	igb_ptp_systim_to_hwtstamp(adapter, &shhwtstamps, regval);
981 	/* adjust timestamp for the TX latency based on link speed */
982 	if (adapter->hw.mac.type == e1000_i210) {
983 		switch (adapter->link_speed) {
984 		case SPEED_10:
985 			adjust = IGB_I210_TX_LATENCY_10;
986 			break;
987 		case SPEED_100:
988 			adjust = IGB_I210_TX_LATENCY_100;
989 			break;
990 		case SPEED_1000:
991 			adjust = IGB_I210_TX_LATENCY_1000;
992 			break;
993 		}
994 	}
995 
996 	shhwtstamps.hwtstamp =
997 		ktime_add_ns(shhwtstamps.hwtstamp, adjust);
998 
999 	/* Clear the lock early before calling skb_tstamp_tx so that
1000 	 * applications are not woken up before the lock bit is clear. We use
1001 	 * a copy of the skb pointer to ensure other threads can't change it
1002 	 * while we're notifying the stack.
1003 	 */
1004 	adapter->ptp_tx_skb = NULL;
1005 	clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1006 
1007 	/* Notify the stack and free the skb after we've unlocked */
1008 	skb_tstamp_tx(skb, &shhwtstamps);
1009 	dev_kfree_skb_any(skb);
1010 }
1011 
1012 /**
1013  * igb_ptp_rx_pktstamp - retrieve Rx per packet timestamp
1014  * @q_vector: Pointer to interrupt specific structure
1015  * @va: Pointer to address containing Rx buffer
1016  * @timestamp: Pointer where timestamp will be stored
1017  *
1018  * This function is meant to retrieve a timestamp from the first buffer of an
1019  * incoming frame.  The value is stored in little endian format starting on
1020  * byte 8
1021  *
1022  * Returns: The timestamp header length or 0 if not available
1023  **/
1024 int igb_ptp_rx_pktstamp(struct igb_q_vector *q_vector, void *va,
1025 			ktime_t *timestamp)
1026 {
1027 	struct igb_adapter *adapter = q_vector->adapter;
1028 	struct skb_shared_hwtstamps ts;
1029 	__le64 *regval = (__le64 *)va;
1030 	int adjust = 0;
1031 
1032 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1033 		return 0;
1034 
1035 	/* The timestamp is recorded in little endian format.
1036 	 * DWORD: 0        1        2        3
1037 	 * Field: Reserved Reserved SYSTIML  SYSTIMH
1038 	 */
1039 
1040 	/* check reserved dwords are zero, be/le doesn't matter for zero */
1041 	if (regval[0])
1042 		return 0;
1043 
1044 	igb_ptp_systim_to_hwtstamp(adapter, &ts, le64_to_cpu(regval[1]));
1045 
1046 	/* adjust timestamp for the RX latency based on link speed */
1047 	if (adapter->hw.mac.type == e1000_i210) {
1048 		switch (adapter->link_speed) {
1049 		case SPEED_10:
1050 			adjust = IGB_I210_RX_LATENCY_10;
1051 			break;
1052 		case SPEED_100:
1053 			adjust = IGB_I210_RX_LATENCY_100;
1054 			break;
1055 		case SPEED_1000:
1056 			adjust = IGB_I210_RX_LATENCY_1000;
1057 			break;
1058 		}
1059 	}
1060 
1061 	*timestamp = ktime_sub_ns(ts.hwtstamp, adjust);
1062 
1063 	return IGB_TS_HDR_LEN;
1064 }
1065 
1066 /**
1067  * igb_ptp_rx_rgtstamp - retrieve Rx timestamp stored in register
1068  * @q_vector: Pointer to interrupt specific structure
1069  * @skb: Buffer containing timestamp and packet
1070  *
1071  * This function is meant to retrieve a timestamp from the internal registers
1072  * of the adapter and store it in the skb.
1073  **/
1074 void igb_ptp_rx_rgtstamp(struct igb_q_vector *q_vector, struct sk_buff *skb)
1075 {
1076 	struct igb_adapter *adapter = q_vector->adapter;
1077 	struct e1000_hw *hw = &adapter->hw;
1078 	int adjust = 0;
1079 	u64 regval;
1080 
1081 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1082 		return;
1083 
1084 	/* If this bit is set, then the RX registers contain the time stamp. No
1085 	 * other packet will be time stamped until we read these registers, so
1086 	 * read the registers to make them available again. Because only one
1087 	 * packet can be time stamped at a time, we know that the register
1088 	 * values must belong to this one here and therefore we don't need to
1089 	 * compare any of the additional attributes stored for it.
1090 	 *
1091 	 * If nothing went wrong, then it should have a shared tx_flags that we
1092 	 * can turn into a skb_shared_hwtstamps.
1093 	 */
1094 	if (!(rd32(E1000_TSYNCRXCTL) & E1000_TSYNCRXCTL_VALID))
1095 		return;
1096 
1097 	regval = rd32(E1000_RXSTMPL);
1098 	regval |= (u64)rd32(E1000_RXSTMPH) << 32;
1099 
1100 	igb_ptp_systim_to_hwtstamp(adapter, skb_hwtstamps(skb), regval);
1101 
1102 	/* adjust timestamp for the RX latency based on link speed */
1103 	if (adapter->hw.mac.type == e1000_i210) {
1104 		switch (adapter->link_speed) {
1105 		case SPEED_10:
1106 			adjust = IGB_I210_RX_LATENCY_10;
1107 			break;
1108 		case SPEED_100:
1109 			adjust = IGB_I210_RX_LATENCY_100;
1110 			break;
1111 		case SPEED_1000:
1112 			adjust = IGB_I210_RX_LATENCY_1000;
1113 			break;
1114 		}
1115 	}
1116 	skb_hwtstamps(skb)->hwtstamp =
1117 		ktime_sub_ns(skb_hwtstamps(skb)->hwtstamp, adjust);
1118 
1119 	/* Update the last_rx_timestamp timer in order to enable watchdog check
1120 	 * for error case of latched timestamp on a dropped packet.
1121 	 */
1122 	adapter->last_rx_timestamp = jiffies;
1123 }
1124 
1125 /**
1126  * igb_ptp_get_ts_config - get hardware time stamping config
1127  * @netdev: netdev struct
1128  * @ifr: interface struct
1129  *
1130  * Get the hwtstamp_config settings to return to the user. Rather than attempt
1131  * to deconstruct the settings from the registers, just return a shadow copy
1132  * of the last known settings.
1133  **/
1134 int igb_ptp_get_ts_config(struct net_device *netdev, struct ifreq *ifr)
1135 {
1136 	struct igb_adapter *adapter = netdev_priv(netdev);
1137 	struct hwtstamp_config *config = &adapter->tstamp_config;
1138 
1139 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
1140 		-EFAULT : 0;
1141 }
1142 
1143 /**
1144  * igb_ptp_set_timestamp_mode - setup hardware for timestamping
1145  * @adapter: networking device structure
1146  * @config: hwtstamp configuration
1147  *
1148  * Outgoing time stamping can be enabled and disabled. Play nice and
1149  * disable it when requested, although it shouldn't case any overhead
1150  * when no packet needs it. At most one packet in the queue may be
1151  * marked for time stamping, otherwise it would be impossible to tell
1152  * for sure to which packet the hardware time stamp belongs.
1153  *
1154  * Incoming time stamping has to be configured via the hardware
1155  * filters. Not all combinations are supported, in particular event
1156  * type has to be specified. Matching the kind of event packet is
1157  * not supported, with the exception of "all V2 events regardless of
1158  * level 2 or 4".
1159  */
1160 static int igb_ptp_set_timestamp_mode(struct igb_adapter *adapter,
1161 				      struct hwtstamp_config *config)
1162 {
1163 	struct e1000_hw *hw = &adapter->hw;
1164 	u32 tsync_tx_ctl = E1000_TSYNCTXCTL_ENABLED;
1165 	u32 tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1166 	u32 tsync_rx_cfg = 0;
1167 	bool is_l4 = false;
1168 	bool is_l2 = false;
1169 	u32 regval;
1170 
1171 	switch (config->tx_type) {
1172 	case HWTSTAMP_TX_OFF:
1173 		tsync_tx_ctl = 0;
1174 		break;
1175 	case HWTSTAMP_TX_ON:
1176 		break;
1177 	default:
1178 		return -ERANGE;
1179 	}
1180 
1181 	switch (config->rx_filter) {
1182 	case HWTSTAMP_FILTER_NONE:
1183 		tsync_rx_ctl = 0;
1184 		break;
1185 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
1186 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1187 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_SYNC_MESSAGE;
1188 		is_l4 = true;
1189 		break;
1190 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
1191 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_L4_V1;
1192 		tsync_rx_cfg = E1000_TSYNCRXCFG_PTP_V1_DELAY_REQ_MESSAGE;
1193 		is_l4 = true;
1194 		break;
1195 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
1196 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
1197 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
1198 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
1199 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
1200 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
1201 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
1202 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
1203 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
1204 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_EVENT_V2;
1205 		config->rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
1206 		is_l2 = true;
1207 		is_l4 = true;
1208 		break;
1209 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
1210 	case HWTSTAMP_FILTER_NTP_ALL:
1211 	case HWTSTAMP_FILTER_ALL:
1212 		/* 82576 cannot timestamp all packets, which it needs to do to
1213 		 * support both V1 Sync and Delay_Req messages
1214 		 */
1215 		if (hw->mac.type != e1000_82576) {
1216 			tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1217 			config->rx_filter = HWTSTAMP_FILTER_ALL;
1218 			break;
1219 		}
1220 		fallthrough;
1221 	default:
1222 		config->rx_filter = HWTSTAMP_FILTER_NONE;
1223 		return -ERANGE;
1224 	}
1225 
1226 	if (hw->mac.type == e1000_82575) {
1227 		if (tsync_rx_ctl | tsync_tx_ctl)
1228 			return -EINVAL;
1229 		return 0;
1230 	}
1231 
1232 	/* Per-packet timestamping only works if all packets are
1233 	 * timestamped, so enable timestamping in all packets as
1234 	 * long as one Rx filter was configured.
1235 	 */
1236 	if ((hw->mac.type >= e1000_82580) && tsync_rx_ctl) {
1237 		tsync_rx_ctl = E1000_TSYNCRXCTL_ENABLED;
1238 		tsync_rx_ctl |= E1000_TSYNCRXCTL_TYPE_ALL;
1239 		config->rx_filter = HWTSTAMP_FILTER_ALL;
1240 		is_l2 = true;
1241 		is_l4 = true;
1242 
1243 		if ((hw->mac.type == e1000_i210) ||
1244 		    (hw->mac.type == e1000_i211)) {
1245 			regval = rd32(E1000_RXPBS);
1246 			regval |= E1000_RXPBS_CFG_TS_EN;
1247 			wr32(E1000_RXPBS, regval);
1248 		}
1249 	}
1250 
1251 	/* enable/disable TX */
1252 	regval = rd32(E1000_TSYNCTXCTL);
1253 	regval &= ~E1000_TSYNCTXCTL_ENABLED;
1254 	regval |= tsync_tx_ctl;
1255 	wr32(E1000_TSYNCTXCTL, regval);
1256 
1257 	/* enable/disable RX */
1258 	regval = rd32(E1000_TSYNCRXCTL);
1259 	regval &= ~(E1000_TSYNCRXCTL_ENABLED | E1000_TSYNCRXCTL_TYPE_MASK);
1260 	regval |= tsync_rx_ctl;
1261 	wr32(E1000_TSYNCRXCTL, regval);
1262 
1263 	/* define which PTP packets are time stamped */
1264 	wr32(E1000_TSYNCRXCFG, tsync_rx_cfg);
1265 
1266 	/* define ethertype filter for timestamped packets */
1267 	if (is_l2)
1268 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588),
1269 		     (E1000_ETQF_FILTER_ENABLE | /* enable filter */
1270 		      E1000_ETQF_1588 | /* enable timestamping */
1271 		      ETH_P_1588));     /* 1588 eth protocol type */
1272 	else
1273 		wr32(E1000_ETQF(IGB_ETQF_FILTER_1588), 0);
1274 
1275 	/* L4 Queue Filter[3]: filter by destination port and protocol */
1276 	if (is_l4) {
1277 		u32 ftqf = (IPPROTO_UDP /* UDP */
1278 			| E1000_FTQF_VF_BP /* VF not compared */
1279 			| E1000_FTQF_1588_TIME_STAMP /* Enable Timestamping */
1280 			| E1000_FTQF_MASK); /* mask all inputs */
1281 		ftqf &= ~E1000_FTQF_MASK_PROTO_BP; /* enable protocol check */
1282 
1283 		wr32(E1000_IMIR(3), (__force unsigned int)htons(PTP_EV_PORT));
1284 		wr32(E1000_IMIREXT(3),
1285 		     (E1000_IMIREXT_SIZE_BP | E1000_IMIREXT_CTRL_BP));
1286 		if (hw->mac.type == e1000_82576) {
1287 			/* enable source port check */
1288 			wr32(E1000_SPQF(3), (__force unsigned int)htons(PTP_EV_PORT));
1289 			ftqf &= ~E1000_FTQF_MASK_SOURCE_PORT_BP;
1290 		}
1291 		wr32(E1000_FTQF(3), ftqf);
1292 	} else {
1293 		wr32(E1000_FTQF(3), E1000_FTQF_MASK);
1294 	}
1295 	wrfl();
1296 
1297 	/* clear TX/RX time stamp registers, just to be sure */
1298 	regval = rd32(E1000_TXSTMPL);
1299 	regval = rd32(E1000_TXSTMPH);
1300 	regval = rd32(E1000_RXSTMPL);
1301 	regval = rd32(E1000_RXSTMPH);
1302 
1303 	return 0;
1304 }
1305 
1306 /**
1307  * igb_ptp_set_ts_config - set hardware time stamping config
1308  * @netdev: netdev struct
1309  * @ifr: interface struct
1310  *
1311  **/
1312 int igb_ptp_set_ts_config(struct net_device *netdev, struct ifreq *ifr)
1313 {
1314 	struct igb_adapter *adapter = netdev_priv(netdev);
1315 	struct hwtstamp_config config;
1316 	int err;
1317 
1318 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
1319 		return -EFAULT;
1320 
1321 	err = igb_ptp_set_timestamp_mode(adapter, &config);
1322 	if (err)
1323 		return err;
1324 
1325 	/* save these settings for future reference */
1326 	memcpy(&adapter->tstamp_config, &config,
1327 	       sizeof(adapter->tstamp_config));
1328 
1329 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
1330 		-EFAULT : 0;
1331 }
1332 
1333 /**
1334  * igb_ptp_init - Initialize PTP functionality
1335  * @adapter: Board private structure
1336  *
1337  * This function is called at device probe to initialize the PTP
1338  * functionality.
1339  */
1340 void igb_ptp_init(struct igb_adapter *adapter)
1341 {
1342 	struct e1000_hw *hw = &adapter->hw;
1343 	struct net_device *netdev = adapter->netdev;
1344 
1345 	switch (hw->mac.type) {
1346 	case e1000_82576:
1347 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1348 		adapter->ptp_caps.owner = THIS_MODULE;
1349 		adapter->ptp_caps.max_adj = 999999881;
1350 		adapter->ptp_caps.n_ext_ts = 0;
1351 		adapter->ptp_caps.pps = 0;
1352 		adapter->ptp_caps.adjfreq = igb_ptp_adjfreq_82576;
1353 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1354 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82576;
1355 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1356 		adapter->ptp_caps.enable = igb_ptp_feature_enable;
1357 		adapter->cc.read = igb_ptp_read_82576;
1358 		adapter->cc.mask = CYCLECOUNTER_MASK(64);
1359 		adapter->cc.mult = 1;
1360 		adapter->cc.shift = IGB_82576_TSYNC_SHIFT;
1361 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1362 		break;
1363 	case e1000_82580:
1364 	case e1000_i354:
1365 	case e1000_i350:
1366 		igb_ptp_sdp_init(adapter);
1367 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1368 		adapter->ptp_caps.owner = THIS_MODULE;
1369 		adapter->ptp_caps.max_adj = 62499999;
1370 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1371 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1372 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1373 		adapter->ptp_caps.pps = 0;
1374 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1375 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1376 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_82576;
1377 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_82580;
1378 		adapter->ptp_caps.settime64 = igb_ptp_settime_82576;
1379 		adapter->ptp_caps.enable = igb_ptp_feature_enable_82580;
1380 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1381 		adapter->cc.read = igb_ptp_read_82580;
1382 		adapter->cc.mask = CYCLECOUNTER_MASK(IGB_NBITS_82580);
1383 		adapter->cc.mult = 1;
1384 		adapter->cc.shift = 0;
1385 		adapter->ptp_flags |= IGB_PTP_OVERFLOW_CHECK;
1386 		break;
1387 	case e1000_i210:
1388 	case e1000_i211:
1389 		igb_ptp_sdp_init(adapter);
1390 		snprintf(adapter->ptp_caps.name, 16, "%pm", netdev->dev_addr);
1391 		adapter->ptp_caps.owner = THIS_MODULE;
1392 		adapter->ptp_caps.max_adj = 62499999;
1393 		adapter->ptp_caps.n_ext_ts = IGB_N_EXTTS;
1394 		adapter->ptp_caps.n_per_out = IGB_N_PEROUT;
1395 		adapter->ptp_caps.n_pins = IGB_N_SDP;
1396 		adapter->ptp_caps.pps = 1;
1397 		adapter->ptp_caps.pin_config = adapter->sdp_config;
1398 		adapter->ptp_caps.adjfine = igb_ptp_adjfine_82580;
1399 		adapter->ptp_caps.adjtime = igb_ptp_adjtime_i210;
1400 		adapter->ptp_caps.gettimex64 = igb_ptp_gettimex_i210;
1401 		adapter->ptp_caps.settime64 = igb_ptp_settime_i210;
1402 		adapter->ptp_caps.enable = igb_ptp_feature_enable_i210;
1403 		adapter->ptp_caps.verify = igb_ptp_verify_pin;
1404 		break;
1405 	default:
1406 		adapter->ptp_clock = NULL;
1407 		return;
1408 	}
1409 
1410 	spin_lock_init(&adapter->tmreg_lock);
1411 	INIT_WORK(&adapter->ptp_tx_work, igb_ptp_tx_work);
1412 
1413 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1414 		INIT_DELAYED_WORK(&adapter->ptp_overflow_work,
1415 				  igb_ptp_overflow_check);
1416 
1417 	adapter->tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
1418 	adapter->tstamp_config.tx_type = HWTSTAMP_TX_OFF;
1419 
1420 	igb_ptp_reset(adapter);
1421 
1422 	adapter->ptp_clock = ptp_clock_register(&adapter->ptp_caps,
1423 						&adapter->pdev->dev);
1424 	if (IS_ERR(adapter->ptp_clock)) {
1425 		adapter->ptp_clock = NULL;
1426 		dev_err(&adapter->pdev->dev, "ptp_clock_register failed\n");
1427 	} else if (adapter->ptp_clock) {
1428 		dev_info(&adapter->pdev->dev, "added PHC on %s\n",
1429 			 adapter->netdev->name);
1430 		adapter->ptp_flags |= IGB_PTP_ENABLED;
1431 	}
1432 }
1433 
1434 /**
1435  * igb_ptp_sdp_init - utility function which inits the SDP config structs
1436  * @adapter: Board private structure.
1437  **/
1438 void igb_ptp_sdp_init(struct igb_adapter *adapter)
1439 {
1440 	int i;
1441 
1442 	for (i = 0; i < IGB_N_SDP; i++) {
1443 		struct ptp_pin_desc *ppd = &adapter->sdp_config[i];
1444 
1445 		snprintf(ppd->name, sizeof(ppd->name), "SDP%d", i);
1446 		ppd->index = i;
1447 		ppd->func = PTP_PF_NONE;
1448 	}
1449 }
1450 
1451 /**
1452  * igb_ptp_suspend - Disable PTP work items and prepare for suspend
1453  * @adapter: Board private structure
1454  *
1455  * This function stops the overflow check work and PTP Tx timestamp work, and
1456  * will prepare the device for OS suspend.
1457  */
1458 void igb_ptp_suspend(struct igb_adapter *adapter)
1459 {
1460 	if (!(adapter->ptp_flags & IGB_PTP_ENABLED))
1461 		return;
1462 
1463 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1464 		cancel_delayed_work_sync(&adapter->ptp_overflow_work);
1465 
1466 	cancel_work_sync(&adapter->ptp_tx_work);
1467 	if (adapter->ptp_tx_skb) {
1468 		dev_kfree_skb_any(adapter->ptp_tx_skb);
1469 		adapter->ptp_tx_skb = NULL;
1470 		clear_bit_unlock(__IGB_PTP_TX_IN_PROGRESS, &adapter->state);
1471 	}
1472 }
1473 
1474 /**
1475  * igb_ptp_stop - Disable PTP device and stop the overflow check.
1476  * @adapter: Board private structure.
1477  *
1478  * This function stops the PTP support and cancels the delayed work.
1479  **/
1480 void igb_ptp_stop(struct igb_adapter *adapter)
1481 {
1482 	igb_ptp_suspend(adapter);
1483 
1484 	if (adapter->ptp_clock) {
1485 		ptp_clock_unregister(adapter->ptp_clock);
1486 		dev_info(&adapter->pdev->dev, "removed PHC on %s\n",
1487 			 adapter->netdev->name);
1488 		adapter->ptp_flags &= ~IGB_PTP_ENABLED;
1489 	}
1490 }
1491 
1492 /**
1493  * igb_ptp_reset - Re-enable the adapter for PTP following a reset.
1494  * @adapter: Board private structure.
1495  *
1496  * This function handles the reset work required to re-enable the PTP device.
1497  **/
1498 void igb_ptp_reset(struct igb_adapter *adapter)
1499 {
1500 	struct e1000_hw *hw = &adapter->hw;
1501 	unsigned long flags;
1502 
1503 	/* reset the tstamp_config */
1504 	igb_ptp_set_timestamp_mode(adapter, &adapter->tstamp_config);
1505 
1506 	spin_lock_irqsave(&adapter->tmreg_lock, flags);
1507 
1508 	switch (adapter->hw.mac.type) {
1509 	case e1000_82576:
1510 		/* Dial the nominal frequency. */
1511 		wr32(E1000_TIMINCA, INCPERIOD_82576 | INCVALUE_82576);
1512 		break;
1513 	case e1000_82580:
1514 	case e1000_i354:
1515 	case e1000_i350:
1516 	case e1000_i210:
1517 	case e1000_i211:
1518 		wr32(E1000_TSAUXC, 0x0);
1519 		wr32(E1000_TSSDP, 0x0);
1520 		wr32(E1000_TSIM,
1521 		     TSYNC_INTERRUPTS |
1522 		     (adapter->pps_sys_wrap_on ? TSINTR_SYS_WRAP : 0));
1523 		wr32(E1000_IMS, E1000_IMS_TS);
1524 		break;
1525 	default:
1526 		/* No work to do. */
1527 		goto out;
1528 	}
1529 
1530 	/* Re-initialize the timer. */
1531 	if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211)) {
1532 		struct timespec64 ts = ktime_to_timespec64(ktime_get_real());
1533 
1534 		igb_ptp_write_i210(adapter, &ts);
1535 	} else {
1536 		timecounter_init(&adapter->tc, &adapter->cc,
1537 				 ktime_to_ns(ktime_get_real()));
1538 	}
1539 out:
1540 	spin_unlock_irqrestore(&adapter->tmreg_lock, flags);
1541 
1542 	wrfl();
1543 
1544 	if (adapter->ptp_flags & IGB_PTP_OVERFLOW_CHECK)
1545 		schedule_delayed_work(&adapter->ptp_overflow_work,
1546 				      IGB_SYSTIM_OVERFLOW_PERIOD);
1547 }
1548