xref: /openbmc/linux/drivers/net/ethernet/intel/igb/e1000_phy.c (revision ca55b2fef3a9373fcfc30f82fd26bc7fccbda732)
1 /* Intel(R) Gigabit Ethernet Linux driver
2  * Copyright(c) 2007-2015 Intel Corporation.
3  *
4  * This program is free software; you can redistribute it and/or modify it
5  * under the terms and conditions of the GNU General Public License,
6  * version 2, as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope it will be useful, but WITHOUT
9  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
11  * more details.
12  *
13  * You should have received a copy of the GNU General Public License along with
14  * this program; if not, see <http://www.gnu.org/licenses/>.
15  *
16  * The full GNU General Public License is included in this distribution in
17  * the file called "COPYING".
18  *
19  * Contact Information:
20  * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
21  * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
22  */
23 
24 #include <linux/if_ether.h>
25 #include <linux/delay.h>
26 
27 #include "e1000_mac.h"
28 #include "e1000_phy.h"
29 
30 static s32  igb_phy_setup_autoneg(struct e1000_hw *hw);
31 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
32 					     u16 *phy_ctrl);
33 static s32  igb_wait_autoneg(struct e1000_hw *hw);
34 static s32  igb_set_master_slave_mode(struct e1000_hw *hw);
35 
36 /* Cable length tables */
37 static const u16 e1000_m88_cable_length_table[] = {
38 	0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED };
39 
40 static const u16 e1000_igp_2_cable_length_table[] = {
41 	0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
42 	0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
43 	6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
44 	21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
45 	40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
46 	60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
47 	83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
48 	104, 109, 114, 118, 121, 124};
49 
50 /**
51  *  igb_check_reset_block - Check if PHY reset is blocked
52  *  @hw: pointer to the HW structure
53  *
54  *  Read the PHY management control register and check whether a PHY reset
55  *  is blocked.  If a reset is not blocked return 0, otherwise
56  *  return E1000_BLK_PHY_RESET (12).
57  **/
58 s32 igb_check_reset_block(struct e1000_hw *hw)
59 {
60 	u32 manc;
61 
62 	manc = rd32(E1000_MANC);
63 
64 	return (manc & E1000_MANC_BLK_PHY_RST_ON_IDE) ? E1000_BLK_PHY_RESET : 0;
65 }
66 
67 /**
68  *  igb_get_phy_id - Retrieve the PHY ID and revision
69  *  @hw: pointer to the HW structure
70  *
71  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
72  *  revision in the hardware structure.
73  **/
74 s32 igb_get_phy_id(struct e1000_hw *hw)
75 {
76 	struct e1000_phy_info *phy = &hw->phy;
77 	s32 ret_val = 0;
78 	u16 phy_id;
79 
80 	ret_val = phy->ops.read_reg(hw, PHY_ID1, &phy_id);
81 	if (ret_val)
82 		goto out;
83 
84 	phy->id = (u32)(phy_id << 16);
85 	udelay(20);
86 	ret_val = phy->ops.read_reg(hw, PHY_ID2, &phy_id);
87 	if (ret_val)
88 		goto out;
89 
90 	phy->id |= (u32)(phy_id & PHY_REVISION_MASK);
91 	phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
92 
93 out:
94 	return ret_val;
95 }
96 
97 /**
98  *  igb_phy_reset_dsp - Reset PHY DSP
99  *  @hw: pointer to the HW structure
100  *
101  *  Reset the digital signal processor.
102  **/
103 static s32 igb_phy_reset_dsp(struct e1000_hw *hw)
104 {
105 	s32 ret_val = 0;
106 
107 	if (!(hw->phy.ops.write_reg))
108 		goto out;
109 
110 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0xC1);
111 	if (ret_val)
112 		goto out;
113 
114 	ret_val = hw->phy.ops.write_reg(hw, M88E1000_PHY_GEN_CONTROL, 0);
115 
116 out:
117 	return ret_val;
118 }
119 
120 /**
121  *  igb_read_phy_reg_mdic - Read MDI control register
122  *  @hw: pointer to the HW structure
123  *  @offset: register offset to be read
124  *  @data: pointer to the read data
125  *
126  *  Reads the MDI control regsiter in the PHY at offset and stores the
127  *  information read to data.
128  **/
129 s32 igb_read_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 *data)
130 {
131 	struct e1000_phy_info *phy = &hw->phy;
132 	u32 i, mdic = 0;
133 	s32 ret_val = 0;
134 
135 	if (offset > MAX_PHY_REG_ADDRESS) {
136 		hw_dbg("PHY Address %d is out of range\n", offset);
137 		ret_val = -E1000_ERR_PARAM;
138 		goto out;
139 	}
140 
141 	/* Set up Op-code, Phy Address, and register offset in the MDI
142 	 * Control register.  The MAC will take care of interfacing with the
143 	 * PHY to retrieve the desired data.
144 	 */
145 	mdic = ((offset << E1000_MDIC_REG_SHIFT) |
146 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
147 		(E1000_MDIC_OP_READ));
148 
149 	wr32(E1000_MDIC, mdic);
150 
151 	/* Poll the ready bit to see if the MDI read completed
152 	 * Increasing the time out as testing showed failures with
153 	 * the lower time out
154 	 */
155 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
156 		udelay(50);
157 		mdic = rd32(E1000_MDIC);
158 		if (mdic & E1000_MDIC_READY)
159 			break;
160 	}
161 	if (!(mdic & E1000_MDIC_READY)) {
162 		hw_dbg("MDI Read did not complete\n");
163 		ret_val = -E1000_ERR_PHY;
164 		goto out;
165 	}
166 	if (mdic & E1000_MDIC_ERROR) {
167 		hw_dbg("MDI Error\n");
168 		ret_val = -E1000_ERR_PHY;
169 		goto out;
170 	}
171 	*data = (u16) mdic;
172 
173 out:
174 	return ret_val;
175 }
176 
177 /**
178  *  igb_write_phy_reg_mdic - Write MDI control register
179  *  @hw: pointer to the HW structure
180  *  @offset: register offset to write to
181  *  @data: data to write to register at offset
182  *
183  *  Writes data to MDI control register in the PHY at offset.
184  **/
185 s32 igb_write_phy_reg_mdic(struct e1000_hw *hw, u32 offset, u16 data)
186 {
187 	struct e1000_phy_info *phy = &hw->phy;
188 	u32 i, mdic = 0;
189 	s32 ret_val = 0;
190 
191 	if (offset > MAX_PHY_REG_ADDRESS) {
192 		hw_dbg("PHY Address %d is out of range\n", offset);
193 		ret_val = -E1000_ERR_PARAM;
194 		goto out;
195 	}
196 
197 	/* Set up Op-code, Phy Address, and register offset in the MDI
198 	 * Control register.  The MAC will take care of interfacing with the
199 	 * PHY to retrieve the desired data.
200 	 */
201 	mdic = (((u32)data) |
202 		(offset << E1000_MDIC_REG_SHIFT) |
203 		(phy->addr << E1000_MDIC_PHY_SHIFT) |
204 		(E1000_MDIC_OP_WRITE));
205 
206 	wr32(E1000_MDIC, mdic);
207 
208 	/* Poll the ready bit to see if the MDI read completed
209 	 * Increasing the time out as testing showed failures with
210 	 * the lower time out
211 	 */
212 	for (i = 0; i < (E1000_GEN_POLL_TIMEOUT * 3); i++) {
213 		udelay(50);
214 		mdic = rd32(E1000_MDIC);
215 		if (mdic & E1000_MDIC_READY)
216 			break;
217 	}
218 	if (!(mdic & E1000_MDIC_READY)) {
219 		hw_dbg("MDI Write did not complete\n");
220 		ret_val = -E1000_ERR_PHY;
221 		goto out;
222 	}
223 	if (mdic & E1000_MDIC_ERROR) {
224 		hw_dbg("MDI Error\n");
225 		ret_val = -E1000_ERR_PHY;
226 		goto out;
227 	}
228 
229 out:
230 	return ret_val;
231 }
232 
233 /**
234  *  igb_read_phy_reg_i2c - Read PHY register using i2c
235  *  @hw: pointer to the HW structure
236  *  @offset: register offset to be read
237  *  @data: pointer to the read data
238  *
239  *  Reads the PHY register at offset using the i2c interface and stores the
240  *  retrieved information in data.
241  **/
242 s32 igb_read_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 *data)
243 {
244 	struct e1000_phy_info *phy = &hw->phy;
245 	u32 i, i2ccmd = 0;
246 
247 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
248 	 * register.  The MAC will take care of interfacing with the
249 	 * PHY to retrieve the desired data.
250 	 */
251 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
252 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
253 		  (E1000_I2CCMD_OPCODE_READ));
254 
255 	wr32(E1000_I2CCMD, i2ccmd);
256 
257 	/* Poll the ready bit to see if the I2C read completed */
258 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
259 		udelay(50);
260 		i2ccmd = rd32(E1000_I2CCMD);
261 		if (i2ccmd & E1000_I2CCMD_READY)
262 			break;
263 	}
264 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
265 		hw_dbg("I2CCMD Read did not complete\n");
266 		return -E1000_ERR_PHY;
267 	}
268 	if (i2ccmd & E1000_I2CCMD_ERROR) {
269 		hw_dbg("I2CCMD Error bit set\n");
270 		return -E1000_ERR_PHY;
271 	}
272 
273 	/* Need to byte-swap the 16-bit value. */
274 	*data = ((i2ccmd >> 8) & 0x00FF) | ((i2ccmd << 8) & 0xFF00);
275 
276 	return 0;
277 }
278 
279 /**
280  *  igb_write_phy_reg_i2c - Write PHY register using i2c
281  *  @hw: pointer to the HW structure
282  *  @offset: register offset to write to
283  *  @data: data to write at register offset
284  *
285  *  Writes the data to PHY register at the offset using the i2c interface.
286  **/
287 s32 igb_write_phy_reg_i2c(struct e1000_hw *hw, u32 offset, u16 data)
288 {
289 	struct e1000_phy_info *phy = &hw->phy;
290 	u32 i, i2ccmd = 0;
291 	u16 phy_data_swapped;
292 
293 	/* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
294 	if ((hw->phy.addr == 0) || (hw->phy.addr > 7)) {
295 		hw_dbg("PHY I2C Address %d is out of range.\n",
296 			  hw->phy.addr);
297 		return -E1000_ERR_CONFIG;
298 	}
299 
300 	/* Swap the data bytes for the I2C interface */
301 	phy_data_swapped = ((data >> 8) & 0x00FF) | ((data << 8) & 0xFF00);
302 
303 	/* Set up Op-code, Phy Address, and register address in the I2CCMD
304 	 * register.  The MAC will take care of interfacing with the
305 	 * PHY to retrieve the desired data.
306 	 */
307 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
308 		  (phy->addr << E1000_I2CCMD_PHY_ADDR_SHIFT) |
309 		  E1000_I2CCMD_OPCODE_WRITE |
310 		  phy_data_swapped);
311 
312 	wr32(E1000_I2CCMD, i2ccmd);
313 
314 	/* Poll the ready bit to see if the I2C read completed */
315 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
316 		udelay(50);
317 		i2ccmd = rd32(E1000_I2CCMD);
318 		if (i2ccmd & E1000_I2CCMD_READY)
319 			break;
320 	}
321 	if (!(i2ccmd & E1000_I2CCMD_READY)) {
322 		hw_dbg("I2CCMD Write did not complete\n");
323 		return -E1000_ERR_PHY;
324 	}
325 	if (i2ccmd & E1000_I2CCMD_ERROR) {
326 		hw_dbg("I2CCMD Error bit set\n");
327 		return -E1000_ERR_PHY;
328 	}
329 
330 	return 0;
331 }
332 
333 /**
334  *  igb_read_sfp_data_byte - Reads SFP module data.
335  *  @hw: pointer to the HW structure
336  *  @offset: byte location offset to be read
337  *  @data: read data buffer pointer
338  *
339  *  Reads one byte from SFP module data stored
340  *  in SFP resided EEPROM memory or SFP diagnostic area.
341  *  Function should be called with
342  *  E1000_I2CCMD_SFP_DATA_ADDR(<byte offset>) for SFP module database access
343  *  E1000_I2CCMD_SFP_DIAG_ADDR(<byte offset>) for SFP diagnostics parameters
344  *  access
345  **/
346 s32 igb_read_sfp_data_byte(struct e1000_hw *hw, u16 offset, u8 *data)
347 {
348 	u32 i = 0;
349 	u32 i2ccmd = 0;
350 	u32 data_local = 0;
351 
352 	if (offset > E1000_I2CCMD_SFP_DIAG_ADDR(255)) {
353 		hw_dbg("I2CCMD command address exceeds upper limit\n");
354 		return -E1000_ERR_PHY;
355 	}
356 
357 	/* Set up Op-code, EEPROM Address,in the I2CCMD
358 	 * register. The MAC will take care of interfacing with the
359 	 * EEPROM to retrieve the desired data.
360 	 */
361 	i2ccmd = ((offset << E1000_I2CCMD_REG_ADDR_SHIFT) |
362 		  E1000_I2CCMD_OPCODE_READ);
363 
364 	wr32(E1000_I2CCMD, i2ccmd);
365 
366 	/* Poll the ready bit to see if the I2C read completed */
367 	for (i = 0; i < E1000_I2CCMD_PHY_TIMEOUT; i++) {
368 		udelay(50);
369 		data_local = rd32(E1000_I2CCMD);
370 		if (data_local & E1000_I2CCMD_READY)
371 			break;
372 	}
373 	if (!(data_local & E1000_I2CCMD_READY)) {
374 		hw_dbg("I2CCMD Read did not complete\n");
375 		return -E1000_ERR_PHY;
376 	}
377 	if (data_local & E1000_I2CCMD_ERROR) {
378 		hw_dbg("I2CCMD Error bit set\n");
379 		return -E1000_ERR_PHY;
380 	}
381 	*data = (u8) data_local & 0xFF;
382 
383 	return 0;
384 }
385 
386 /**
387  *  igb_read_phy_reg_igp - Read igp PHY register
388  *  @hw: pointer to the HW structure
389  *  @offset: register offset to be read
390  *  @data: pointer to the read data
391  *
392  *  Acquires semaphore, if necessary, then reads the PHY register at offset
393  *  and storing the retrieved information in data.  Release any acquired
394  *  semaphores before exiting.
395  **/
396 s32 igb_read_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 *data)
397 {
398 	s32 ret_val = 0;
399 
400 	if (!(hw->phy.ops.acquire))
401 		goto out;
402 
403 	ret_val = hw->phy.ops.acquire(hw);
404 	if (ret_val)
405 		goto out;
406 
407 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
408 		ret_val = igb_write_phy_reg_mdic(hw,
409 						 IGP01E1000_PHY_PAGE_SELECT,
410 						 (u16)offset);
411 		if (ret_val) {
412 			hw->phy.ops.release(hw);
413 			goto out;
414 		}
415 	}
416 
417 	ret_val = igb_read_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
418 					data);
419 
420 	hw->phy.ops.release(hw);
421 
422 out:
423 	return ret_val;
424 }
425 
426 /**
427  *  igb_write_phy_reg_igp - Write igp PHY register
428  *  @hw: pointer to the HW structure
429  *  @offset: register offset to write to
430  *  @data: data to write at register offset
431  *
432  *  Acquires semaphore, if necessary, then writes the data to PHY register
433  *  at the offset.  Release any acquired semaphores before exiting.
434  **/
435 s32 igb_write_phy_reg_igp(struct e1000_hw *hw, u32 offset, u16 data)
436 {
437 	s32 ret_val = 0;
438 
439 	if (!(hw->phy.ops.acquire))
440 		goto out;
441 
442 	ret_val = hw->phy.ops.acquire(hw);
443 	if (ret_val)
444 		goto out;
445 
446 	if (offset > MAX_PHY_MULTI_PAGE_REG) {
447 		ret_val = igb_write_phy_reg_mdic(hw,
448 						 IGP01E1000_PHY_PAGE_SELECT,
449 						 (u16)offset);
450 		if (ret_val) {
451 			hw->phy.ops.release(hw);
452 			goto out;
453 		}
454 	}
455 
456 	ret_val = igb_write_phy_reg_mdic(hw, MAX_PHY_REG_ADDRESS & offset,
457 					 data);
458 
459 	hw->phy.ops.release(hw);
460 
461 out:
462 	return ret_val;
463 }
464 
465 /**
466  *  igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
467  *  @hw: pointer to the HW structure
468  *
469  *  Sets up Carrier-sense on Transmit and downshift values.
470  **/
471 s32 igb_copper_link_setup_82580(struct e1000_hw *hw)
472 {
473 	struct e1000_phy_info *phy = &hw->phy;
474 	s32 ret_val;
475 	u16 phy_data;
476 
477 	if (phy->reset_disable) {
478 		ret_val = 0;
479 		goto out;
480 	}
481 
482 	if (phy->type == e1000_phy_82580) {
483 		ret_val = hw->phy.ops.reset(hw);
484 		if (ret_val) {
485 			hw_dbg("Error resetting the PHY.\n");
486 			goto out;
487 		}
488 	}
489 
490 	/* Enable CRS on TX. This must be set for half-duplex operation. */
491 	ret_val = phy->ops.read_reg(hw, I82580_CFG_REG, &phy_data);
492 	if (ret_val)
493 		goto out;
494 
495 	phy_data |= I82580_CFG_ASSERT_CRS_ON_TX;
496 
497 	/* Enable downshift */
498 	phy_data |= I82580_CFG_ENABLE_DOWNSHIFT;
499 
500 	ret_val = phy->ops.write_reg(hw, I82580_CFG_REG, phy_data);
501 	if (ret_val)
502 		goto out;
503 
504 	/* Set MDI/MDIX mode */
505 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
506 	if (ret_val)
507 		goto out;
508 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
509 	/* Options:
510 	 *   0 - Auto (default)
511 	 *   1 - MDI mode
512 	 *   2 - MDI-X mode
513 	 */
514 	switch (hw->phy.mdix) {
515 	case 1:
516 		break;
517 	case 2:
518 		phy_data |= I82580_PHY_CTRL2_MANUAL_MDIX;
519 		break;
520 	case 0:
521 	default:
522 		phy_data |= I82580_PHY_CTRL2_AUTO_MDI_MDIX;
523 		break;
524 	}
525 	ret_val = hw->phy.ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
526 
527 out:
528 	return ret_val;
529 }
530 
531 /**
532  *  igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
533  *  @hw: pointer to the HW structure
534  *
535  *  Sets up MDI/MDI-X and polarity for m88 PHY's.  If necessary, transmit clock
536  *  and downshift values are set also.
537  **/
538 s32 igb_copper_link_setup_m88(struct e1000_hw *hw)
539 {
540 	struct e1000_phy_info *phy = &hw->phy;
541 	s32 ret_val;
542 	u16 phy_data;
543 
544 	if (phy->reset_disable) {
545 		ret_val = 0;
546 		goto out;
547 	}
548 
549 	/* Enable CRS on TX. This must be set for half-duplex operation. */
550 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
551 	if (ret_val)
552 		goto out;
553 
554 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
555 
556 	/* Options:
557 	 *   MDI/MDI-X = 0 (default)
558 	 *   0 - Auto for all speeds
559 	 *   1 - MDI mode
560 	 *   2 - MDI-X mode
561 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
562 	 */
563 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
564 
565 	switch (phy->mdix) {
566 	case 1:
567 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
568 		break;
569 	case 2:
570 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
571 		break;
572 	case 3:
573 		phy_data |= M88E1000_PSCR_AUTO_X_1000T;
574 		break;
575 	case 0:
576 	default:
577 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
578 		break;
579 	}
580 
581 	/* Options:
582 	 *   disable_polarity_correction = 0 (default)
583 	 *       Automatic Correction for Reversed Cable Polarity
584 	 *   0 - Disabled
585 	 *   1 - Enabled
586 	 */
587 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
588 	if (phy->disable_polarity_correction == 1)
589 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
590 
591 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
592 	if (ret_val)
593 		goto out;
594 
595 	if (phy->revision < E1000_REVISION_4) {
596 		/* Force TX_CLK in the Extended PHY Specific Control Register
597 		 * to 25MHz clock.
598 		 */
599 		ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
600 					    &phy_data);
601 		if (ret_val)
602 			goto out;
603 
604 		phy_data |= M88E1000_EPSCR_TX_CLK_25;
605 
606 		if ((phy->revision == E1000_REVISION_2) &&
607 		    (phy->id == M88E1111_I_PHY_ID)) {
608 			/* 82573L PHY - set the downshift counter to 5x. */
609 			phy_data &= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK;
610 			phy_data |= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X;
611 		} else {
612 			/* Configure Master and Slave downshift values */
613 			phy_data &= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK |
614 				      M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK);
615 			phy_data |= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X |
616 				     M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X);
617 		}
618 		ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL,
619 					     phy_data);
620 		if (ret_val)
621 			goto out;
622 	}
623 
624 	/* Commit the changes. */
625 	ret_val = igb_phy_sw_reset(hw);
626 	if (ret_val) {
627 		hw_dbg("Error committing the PHY changes\n");
628 		goto out;
629 	}
630 
631 out:
632 	return ret_val;
633 }
634 
635 /**
636  *  igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
637  *  @hw: pointer to the HW structure
638  *
639  *  Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
640  *  Also enables and sets the downshift parameters.
641  **/
642 s32 igb_copper_link_setup_m88_gen2(struct e1000_hw *hw)
643 {
644 	struct e1000_phy_info *phy = &hw->phy;
645 	s32 ret_val;
646 	u16 phy_data;
647 
648 	if (phy->reset_disable)
649 		return 0;
650 
651 	/* Enable CRS on Tx. This must be set for half-duplex operation. */
652 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
653 	if (ret_val)
654 		return ret_val;
655 
656 	/* Options:
657 	 *   MDI/MDI-X = 0 (default)
658 	 *   0 - Auto for all speeds
659 	 *   1 - MDI mode
660 	 *   2 - MDI-X mode
661 	 *   3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
662 	 */
663 	phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
664 
665 	switch (phy->mdix) {
666 	case 1:
667 		phy_data |= M88E1000_PSCR_MDI_MANUAL_MODE;
668 		break;
669 	case 2:
670 		phy_data |= M88E1000_PSCR_MDIX_MANUAL_MODE;
671 		break;
672 	case 3:
673 		/* M88E1112 does not support this mode) */
674 		if (phy->id != M88E1112_E_PHY_ID) {
675 			phy_data |= M88E1000_PSCR_AUTO_X_1000T;
676 			break;
677 		}
678 	case 0:
679 	default:
680 		phy_data |= M88E1000_PSCR_AUTO_X_MODE;
681 		break;
682 	}
683 
684 	/* Options:
685 	 *   disable_polarity_correction = 0 (default)
686 	 *       Automatic Correction for Reversed Cable Polarity
687 	 *   0 - Disabled
688 	 *   1 - Enabled
689 	 */
690 	phy_data &= ~M88E1000_PSCR_POLARITY_REVERSAL;
691 	if (phy->disable_polarity_correction == 1)
692 		phy_data |= M88E1000_PSCR_POLARITY_REVERSAL;
693 
694 	/* Enable downshift and setting it to X6 */
695 	if (phy->id == M88E1543_E_PHY_ID) {
696 		phy_data &= ~I347AT4_PSCR_DOWNSHIFT_ENABLE;
697 		ret_val =
698 		    phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
699 		if (ret_val)
700 			return ret_val;
701 
702 		ret_val = igb_phy_sw_reset(hw);
703 		if (ret_val) {
704 			hw_dbg("Error committing the PHY changes\n");
705 			return ret_val;
706 		}
707 	}
708 
709 	phy_data &= ~I347AT4_PSCR_DOWNSHIFT_MASK;
710 	phy_data |= I347AT4_PSCR_DOWNSHIFT_6X;
711 	phy_data |= I347AT4_PSCR_DOWNSHIFT_ENABLE;
712 
713 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
714 	if (ret_val)
715 		return ret_val;
716 
717 	/* Commit the changes. */
718 	ret_val = igb_phy_sw_reset(hw);
719 	if (ret_val) {
720 		hw_dbg("Error committing the PHY changes\n");
721 		return ret_val;
722 	}
723 	ret_val = igb_set_master_slave_mode(hw);
724 	if (ret_val)
725 		return ret_val;
726 
727 	return 0;
728 }
729 
730 /**
731  *  igb_copper_link_setup_igp - Setup igp PHY's for copper link
732  *  @hw: pointer to the HW structure
733  *
734  *  Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
735  *  igp PHY's.
736  **/
737 s32 igb_copper_link_setup_igp(struct e1000_hw *hw)
738 {
739 	struct e1000_phy_info *phy = &hw->phy;
740 	s32 ret_val;
741 	u16 data;
742 
743 	if (phy->reset_disable) {
744 		ret_val = 0;
745 		goto out;
746 	}
747 
748 	ret_val = phy->ops.reset(hw);
749 	if (ret_val) {
750 		hw_dbg("Error resetting the PHY.\n");
751 		goto out;
752 	}
753 
754 	/* Wait 100ms for MAC to configure PHY from NVM settings, to avoid
755 	 * timeout issues when LFS is enabled.
756 	 */
757 	msleep(100);
758 
759 	/* The NVM settings will configure LPLU in D3 for
760 	 * non-IGP1 PHYs.
761 	 */
762 	if (phy->type == e1000_phy_igp) {
763 		/* disable lplu d3 during driver init */
764 		if (phy->ops.set_d3_lplu_state)
765 			ret_val = phy->ops.set_d3_lplu_state(hw, false);
766 		if (ret_val) {
767 			hw_dbg("Error Disabling LPLU D3\n");
768 			goto out;
769 		}
770 	}
771 
772 	/* disable lplu d0 during driver init */
773 	ret_val = phy->ops.set_d0_lplu_state(hw, false);
774 	if (ret_val) {
775 		hw_dbg("Error Disabling LPLU D0\n");
776 		goto out;
777 	}
778 	/* Configure mdi-mdix settings */
779 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &data);
780 	if (ret_val)
781 		goto out;
782 
783 	data &= ~IGP01E1000_PSCR_AUTO_MDIX;
784 
785 	switch (phy->mdix) {
786 	case 1:
787 		data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
788 		break;
789 	case 2:
790 		data |= IGP01E1000_PSCR_FORCE_MDI_MDIX;
791 		break;
792 	case 0:
793 	default:
794 		data |= IGP01E1000_PSCR_AUTO_MDIX;
795 		break;
796 	}
797 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, data);
798 	if (ret_val)
799 		goto out;
800 
801 	/* set auto-master slave resolution settings */
802 	if (hw->mac.autoneg) {
803 		/* when autonegotiation advertisement is only 1000Mbps then we
804 		 * should disable SmartSpeed and enable Auto MasterSlave
805 		 * resolution as hardware default.
806 		 */
807 		if (phy->autoneg_advertised == ADVERTISE_1000_FULL) {
808 			/* Disable SmartSpeed */
809 			ret_val = phy->ops.read_reg(hw,
810 						    IGP01E1000_PHY_PORT_CONFIG,
811 						    &data);
812 			if (ret_val)
813 				goto out;
814 
815 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
816 			ret_val = phy->ops.write_reg(hw,
817 						     IGP01E1000_PHY_PORT_CONFIG,
818 						     data);
819 			if (ret_val)
820 				goto out;
821 
822 			/* Set auto Master/Slave resolution process */
823 			ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
824 			if (ret_val)
825 				goto out;
826 
827 			data &= ~CR_1000T_MS_ENABLE;
828 			ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
829 			if (ret_val)
830 				goto out;
831 		}
832 
833 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL, &data);
834 		if (ret_val)
835 			goto out;
836 
837 		/* load defaults for future use */
838 		phy->original_ms_type = (data & CR_1000T_MS_ENABLE) ?
839 			((data & CR_1000T_MS_VALUE) ?
840 			e1000_ms_force_master :
841 			e1000_ms_force_slave) :
842 			e1000_ms_auto;
843 
844 		switch (phy->ms_type) {
845 		case e1000_ms_force_master:
846 			data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
847 			break;
848 		case e1000_ms_force_slave:
849 			data |= CR_1000T_MS_ENABLE;
850 			data &= ~(CR_1000T_MS_VALUE);
851 			break;
852 		case e1000_ms_auto:
853 			data &= ~CR_1000T_MS_ENABLE;
854 		default:
855 			break;
856 		}
857 		ret_val = phy->ops.write_reg(hw, PHY_1000T_CTRL, data);
858 		if (ret_val)
859 			goto out;
860 	}
861 
862 out:
863 	return ret_val;
864 }
865 
866 /**
867  *  igb_copper_link_autoneg - Setup/Enable autoneg for copper link
868  *  @hw: pointer to the HW structure
869  *
870  *  Performs initial bounds checking on autoneg advertisement parameter, then
871  *  configure to advertise the full capability.  Setup the PHY to autoneg
872  *  and restart the negotiation process between the link partner.  If
873  *  autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
874  **/
875 static s32 igb_copper_link_autoneg(struct e1000_hw *hw)
876 {
877 	struct e1000_phy_info *phy = &hw->phy;
878 	s32 ret_val;
879 	u16 phy_ctrl;
880 
881 	/* Perform some bounds checking on the autoneg advertisement
882 	 * parameter.
883 	 */
884 	phy->autoneg_advertised &= phy->autoneg_mask;
885 
886 	/* If autoneg_advertised is zero, we assume it was not defaulted
887 	 * by the calling code so we set to advertise full capability.
888 	 */
889 	if (phy->autoneg_advertised == 0)
890 		phy->autoneg_advertised = phy->autoneg_mask;
891 
892 	hw_dbg("Reconfiguring auto-neg advertisement params\n");
893 	ret_val = igb_phy_setup_autoneg(hw);
894 	if (ret_val) {
895 		hw_dbg("Error Setting up Auto-Negotiation\n");
896 		goto out;
897 	}
898 	hw_dbg("Restarting Auto-Neg\n");
899 
900 	/* Restart auto-negotiation by setting the Auto Neg Enable bit and
901 	 * the Auto Neg Restart bit in the PHY control register.
902 	 */
903 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
904 	if (ret_val)
905 		goto out;
906 
907 	phy_ctrl |= (MII_CR_AUTO_NEG_EN | MII_CR_RESTART_AUTO_NEG);
908 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
909 	if (ret_val)
910 		goto out;
911 
912 	/* Does the user want to wait for Auto-Neg to complete here, or
913 	 * check at a later time (for example, callback routine).
914 	 */
915 	if (phy->autoneg_wait_to_complete) {
916 		ret_val = igb_wait_autoneg(hw);
917 		if (ret_val) {
918 			hw_dbg("Error while waiting for autoneg to complete\n");
919 			goto out;
920 		}
921 	}
922 
923 	hw->mac.get_link_status = true;
924 
925 out:
926 	return ret_val;
927 }
928 
929 /**
930  *  igb_phy_setup_autoneg - Configure PHY for auto-negotiation
931  *  @hw: pointer to the HW structure
932  *
933  *  Reads the MII auto-neg advertisement register and/or the 1000T control
934  *  register and if the PHY is already setup for auto-negotiation, then
935  *  return successful.  Otherwise, setup advertisement and flow control to
936  *  the appropriate values for the wanted auto-negotiation.
937  **/
938 static s32 igb_phy_setup_autoneg(struct e1000_hw *hw)
939 {
940 	struct e1000_phy_info *phy = &hw->phy;
941 	s32 ret_val;
942 	u16 mii_autoneg_adv_reg;
943 	u16 mii_1000t_ctrl_reg = 0;
944 
945 	phy->autoneg_advertised &= phy->autoneg_mask;
946 
947 	/* Read the MII Auto-Neg Advertisement Register (Address 4). */
948 	ret_val = phy->ops.read_reg(hw, PHY_AUTONEG_ADV, &mii_autoneg_adv_reg);
949 	if (ret_val)
950 		goto out;
951 
952 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
953 		/* Read the MII 1000Base-T Control Register (Address 9). */
954 		ret_val = phy->ops.read_reg(hw, PHY_1000T_CTRL,
955 					    &mii_1000t_ctrl_reg);
956 		if (ret_val)
957 			goto out;
958 	}
959 
960 	/* Need to parse both autoneg_advertised and fc and set up
961 	 * the appropriate PHY registers.  First we will parse for
962 	 * autoneg_advertised software override.  Since we can advertise
963 	 * a plethora of combinations, we need to check each bit
964 	 * individually.
965 	 */
966 
967 	/* First we clear all the 10/100 mb speed bits in the Auto-Neg
968 	 * Advertisement Register (Address 4) and the 1000 mb speed bits in
969 	 * the  1000Base-T Control Register (Address 9).
970 	 */
971 	mii_autoneg_adv_reg &= ~(NWAY_AR_100TX_FD_CAPS |
972 				 NWAY_AR_100TX_HD_CAPS |
973 				 NWAY_AR_10T_FD_CAPS   |
974 				 NWAY_AR_10T_HD_CAPS);
975 	mii_1000t_ctrl_reg &= ~(CR_1000T_HD_CAPS | CR_1000T_FD_CAPS);
976 
977 	hw_dbg("autoneg_advertised %x\n", phy->autoneg_advertised);
978 
979 	/* Do we want to advertise 10 Mb Half Duplex? */
980 	if (phy->autoneg_advertised & ADVERTISE_10_HALF) {
981 		hw_dbg("Advertise 10mb Half duplex\n");
982 		mii_autoneg_adv_reg |= NWAY_AR_10T_HD_CAPS;
983 	}
984 
985 	/* Do we want to advertise 10 Mb Full Duplex? */
986 	if (phy->autoneg_advertised & ADVERTISE_10_FULL) {
987 		hw_dbg("Advertise 10mb Full duplex\n");
988 		mii_autoneg_adv_reg |= NWAY_AR_10T_FD_CAPS;
989 	}
990 
991 	/* Do we want to advertise 100 Mb Half Duplex? */
992 	if (phy->autoneg_advertised & ADVERTISE_100_HALF) {
993 		hw_dbg("Advertise 100mb Half duplex\n");
994 		mii_autoneg_adv_reg |= NWAY_AR_100TX_HD_CAPS;
995 	}
996 
997 	/* Do we want to advertise 100 Mb Full Duplex? */
998 	if (phy->autoneg_advertised & ADVERTISE_100_FULL) {
999 		hw_dbg("Advertise 100mb Full duplex\n");
1000 		mii_autoneg_adv_reg |= NWAY_AR_100TX_FD_CAPS;
1001 	}
1002 
1003 	/* We do not allow the Phy to advertise 1000 Mb Half Duplex */
1004 	if (phy->autoneg_advertised & ADVERTISE_1000_HALF)
1005 		hw_dbg("Advertise 1000mb Half duplex request denied!\n");
1006 
1007 	/* Do we want to advertise 1000 Mb Full Duplex? */
1008 	if (phy->autoneg_advertised & ADVERTISE_1000_FULL) {
1009 		hw_dbg("Advertise 1000mb Full duplex\n");
1010 		mii_1000t_ctrl_reg |= CR_1000T_FD_CAPS;
1011 	}
1012 
1013 	/* Check for a software override of the flow control settings, and
1014 	 * setup the PHY advertisement registers accordingly.  If
1015 	 * auto-negotiation is enabled, then software will have to set the
1016 	 * "PAUSE" bits to the correct value in the Auto-Negotiation
1017 	 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
1018 	 * negotiation.
1019 	 *
1020 	 * The possible values of the "fc" parameter are:
1021 	 *      0:  Flow control is completely disabled
1022 	 *      1:  Rx flow control is enabled (we can receive pause frames
1023 	 *          but not send pause frames).
1024 	 *      2:  Tx flow control is enabled (we can send pause frames
1025 	 *          but we do not support receiving pause frames).
1026 	 *      3:  Both Rx and TX flow control (symmetric) are enabled.
1027 	 *  other:  No software override.  The flow control configuration
1028 	 *          in the EEPROM is used.
1029 	 */
1030 	switch (hw->fc.current_mode) {
1031 	case e1000_fc_none:
1032 		/* Flow control (RX & TX) is completely disabled by a
1033 		 * software over-ride.
1034 		 */
1035 		mii_autoneg_adv_reg &= ~(NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1036 		break;
1037 	case e1000_fc_rx_pause:
1038 		/* RX Flow control is enabled, and TX Flow control is
1039 		 * disabled, by a software over-ride.
1040 		 *
1041 		 * Since there really isn't a way to advertise that we are
1042 		 * capable of RX Pause ONLY, we will advertise that we
1043 		 * support both symmetric and asymmetric RX PAUSE.  Later
1044 		 * (in e1000_config_fc_after_link_up) we will disable the
1045 		 * hw's ability to send PAUSE frames.
1046 		 */
1047 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1048 		break;
1049 	case e1000_fc_tx_pause:
1050 		/* TX Flow control is enabled, and RX Flow control is
1051 		 * disabled, by a software over-ride.
1052 		 */
1053 		mii_autoneg_adv_reg |= NWAY_AR_ASM_DIR;
1054 		mii_autoneg_adv_reg &= ~NWAY_AR_PAUSE;
1055 		break;
1056 	case e1000_fc_full:
1057 		/* Flow control (both RX and TX) is enabled by a software
1058 		 * over-ride.
1059 		 */
1060 		mii_autoneg_adv_reg |= (NWAY_AR_ASM_DIR | NWAY_AR_PAUSE);
1061 		break;
1062 	default:
1063 		hw_dbg("Flow control param set incorrectly\n");
1064 		ret_val = -E1000_ERR_CONFIG;
1065 		goto out;
1066 	}
1067 
1068 	ret_val = phy->ops.write_reg(hw, PHY_AUTONEG_ADV, mii_autoneg_adv_reg);
1069 	if (ret_val)
1070 		goto out;
1071 
1072 	hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg);
1073 
1074 	if (phy->autoneg_mask & ADVERTISE_1000_FULL) {
1075 		ret_val = phy->ops.write_reg(hw,
1076 					     PHY_1000T_CTRL,
1077 					     mii_1000t_ctrl_reg);
1078 		if (ret_val)
1079 			goto out;
1080 	}
1081 
1082 out:
1083 	return ret_val;
1084 }
1085 
1086 /**
1087  *  igb_setup_copper_link - Configure copper link settings
1088  *  @hw: pointer to the HW structure
1089  *
1090  *  Calls the appropriate function to configure the link for auto-neg or forced
1091  *  speed and duplex.  Then we check for link, once link is established calls
1092  *  to configure collision distance and flow control are called.  If link is
1093  *  not established, we return -E1000_ERR_PHY (-2).
1094  **/
1095 s32 igb_setup_copper_link(struct e1000_hw *hw)
1096 {
1097 	s32 ret_val;
1098 	bool link;
1099 
1100 	if (hw->mac.autoneg) {
1101 		/* Setup autoneg and flow control advertisement and perform
1102 		 * autonegotiation.
1103 		 */
1104 		ret_val = igb_copper_link_autoneg(hw);
1105 		if (ret_val)
1106 			goto out;
1107 	} else {
1108 		/* PHY will be set to 10H, 10F, 100H or 100F
1109 		 * depending on user settings.
1110 		 */
1111 		hw_dbg("Forcing Speed and Duplex\n");
1112 		ret_val = hw->phy.ops.force_speed_duplex(hw);
1113 		if (ret_val) {
1114 			hw_dbg("Error Forcing Speed and Duplex\n");
1115 			goto out;
1116 		}
1117 	}
1118 
1119 	/* Check link status. Wait up to 100 microseconds for link to become
1120 	 * valid.
1121 	 */
1122 	ret_val = igb_phy_has_link(hw, COPPER_LINK_UP_LIMIT, 10, &link);
1123 	if (ret_val)
1124 		goto out;
1125 
1126 	if (link) {
1127 		hw_dbg("Valid link established!!!\n");
1128 		igb_config_collision_dist(hw);
1129 		ret_val = igb_config_fc_after_link_up(hw);
1130 	} else {
1131 		hw_dbg("Unable to establish link!!!\n");
1132 	}
1133 
1134 out:
1135 	return ret_val;
1136 }
1137 
1138 /**
1139  *  igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1140  *  @hw: pointer to the HW structure
1141  *
1142  *  Calls the PHY setup function to force speed and duplex.  Clears the
1143  *  auto-crossover to force MDI manually.  Waits for link and returns
1144  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
1145  **/
1146 s32 igb_phy_force_speed_duplex_igp(struct e1000_hw *hw)
1147 {
1148 	struct e1000_phy_info *phy = &hw->phy;
1149 	s32 ret_val;
1150 	u16 phy_data;
1151 	bool link;
1152 
1153 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1154 	if (ret_val)
1155 		goto out;
1156 
1157 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1158 
1159 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1160 	if (ret_val)
1161 		goto out;
1162 
1163 	/* Clear Auto-Crossover to force MDI manually.  IGP requires MDI
1164 	 * forced whenever speed and duplex are forced.
1165 	 */
1166 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CTRL, &phy_data);
1167 	if (ret_val)
1168 		goto out;
1169 
1170 	phy_data &= ~IGP01E1000_PSCR_AUTO_MDIX;
1171 	phy_data &= ~IGP01E1000_PSCR_FORCE_MDI_MDIX;
1172 
1173 	ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CTRL, phy_data);
1174 	if (ret_val)
1175 		goto out;
1176 
1177 	hw_dbg("IGP PSCR: %X\n", phy_data);
1178 
1179 	udelay(1);
1180 
1181 	if (phy->autoneg_wait_to_complete) {
1182 		hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1183 
1184 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1185 		if (ret_val)
1186 			goto out;
1187 
1188 		if (!link)
1189 			hw_dbg("Link taking longer than expected.\n");
1190 
1191 		/* Try once more */
1192 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 10000, &link);
1193 		if (ret_val)
1194 			goto out;
1195 	}
1196 
1197 out:
1198 	return ret_val;
1199 }
1200 
1201 /**
1202  *  igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1203  *  @hw: pointer to the HW structure
1204  *
1205  *  Calls the PHY setup function to force speed and duplex.  Clears the
1206  *  auto-crossover to force MDI manually.  Resets the PHY to commit the
1207  *  changes.  If time expires while waiting for link up, we reset the DSP.
1208  *  After reset, TX_CLK and CRS on TX must be set.  Return successful upon
1209  *  successful completion, else return corresponding error code.
1210  **/
1211 s32 igb_phy_force_speed_duplex_m88(struct e1000_hw *hw)
1212 {
1213 	struct e1000_phy_info *phy = &hw->phy;
1214 	s32 ret_val;
1215 	u16 phy_data;
1216 	bool link;
1217 
1218 	/* I210 and I211 devices support Auto-Crossover in forced operation. */
1219 	if (phy->type != e1000_phy_i210) {
1220 		/* Clear Auto-Crossover to force MDI manually.  M88E1000
1221 		 * requires MDI forced whenever speed and duplex are forced.
1222 		 */
1223 		ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL,
1224 					    &phy_data);
1225 		if (ret_val)
1226 			goto out;
1227 
1228 		phy_data &= ~M88E1000_PSCR_AUTO_X_MODE;
1229 		ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL,
1230 					     phy_data);
1231 		if (ret_val)
1232 			goto out;
1233 
1234 		hw_dbg("M88E1000 PSCR: %X\n", phy_data);
1235 	}
1236 
1237 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
1238 	if (ret_val)
1239 		goto out;
1240 
1241 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
1242 
1243 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
1244 	if (ret_val)
1245 		goto out;
1246 
1247 	/* Reset the phy to commit changes. */
1248 	ret_val = igb_phy_sw_reset(hw);
1249 	if (ret_val)
1250 		goto out;
1251 
1252 	if (phy->autoneg_wait_to_complete) {
1253 		hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1254 
1255 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
1256 		if (ret_val)
1257 			goto out;
1258 
1259 		if (!link) {
1260 			bool reset_dsp = true;
1261 
1262 			switch (hw->phy.id) {
1263 			case I347AT4_E_PHY_ID:
1264 			case M88E1112_E_PHY_ID:
1265 			case M88E1543_E_PHY_ID:
1266 			case M88E1512_E_PHY_ID:
1267 			case I210_I_PHY_ID:
1268 				reset_dsp = false;
1269 				break;
1270 			default:
1271 				if (hw->phy.type != e1000_phy_m88)
1272 					reset_dsp = false;
1273 				break;
1274 			}
1275 			if (!reset_dsp) {
1276 				hw_dbg("Link taking longer than expected.\n");
1277 			} else {
1278 				/* We didn't get link.
1279 				 * Reset the DSP and cross our fingers.
1280 				 */
1281 				ret_val = phy->ops.write_reg(hw,
1282 						M88E1000_PHY_PAGE_SELECT,
1283 						0x001d);
1284 				if (ret_val)
1285 					goto out;
1286 				ret_val = igb_phy_reset_dsp(hw);
1287 				if (ret_val)
1288 					goto out;
1289 			}
1290 		}
1291 
1292 		/* Try once more */
1293 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT,
1294 					   100000, &link);
1295 		if (ret_val)
1296 			goto out;
1297 	}
1298 
1299 	if (hw->phy.type != e1000_phy_m88 ||
1300 	    hw->phy.id == I347AT4_E_PHY_ID ||
1301 	    hw->phy.id == M88E1112_E_PHY_ID ||
1302 	    hw->phy.id == M88E1543_E_PHY_ID ||
1303 	    hw->phy.id == M88E1512_E_PHY_ID ||
1304 	    hw->phy.id == I210_I_PHY_ID)
1305 		goto out;
1306 
1307 	ret_val = phy->ops.read_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_data);
1308 	if (ret_val)
1309 		goto out;
1310 
1311 	/* Resetting the phy means we need to re-force TX_CLK in the
1312 	 * Extended PHY Specific Control Register to 25MHz clock from
1313 	 * the reset value of 2.5MHz.
1314 	 */
1315 	phy_data |= M88E1000_EPSCR_TX_CLK_25;
1316 	ret_val = phy->ops.write_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, phy_data);
1317 	if (ret_val)
1318 		goto out;
1319 
1320 	/* In addition, we must re-enable CRS on Tx for both half and full
1321 	 * duplex.
1322 	 */
1323 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1324 	if (ret_val)
1325 		goto out;
1326 
1327 	phy_data |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1328 	ret_val = phy->ops.write_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_data);
1329 
1330 out:
1331 	return ret_val;
1332 }
1333 
1334 /**
1335  *  igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1336  *  @hw: pointer to the HW structure
1337  *  @phy_ctrl: pointer to current value of PHY_CONTROL
1338  *
1339  *  Forces speed and duplex on the PHY by doing the following: disable flow
1340  *  control, force speed/duplex on the MAC, disable auto speed detection,
1341  *  disable auto-negotiation, configure duplex, configure speed, configure
1342  *  the collision distance, write configuration to CTRL register.  The
1343  *  caller must write to the PHY_CONTROL register for these settings to
1344  *  take affect.
1345  **/
1346 static void igb_phy_force_speed_duplex_setup(struct e1000_hw *hw,
1347 					     u16 *phy_ctrl)
1348 {
1349 	struct e1000_mac_info *mac = &hw->mac;
1350 	u32 ctrl;
1351 
1352 	/* Turn off flow control when forcing speed/duplex */
1353 	hw->fc.current_mode = e1000_fc_none;
1354 
1355 	/* Force speed/duplex on the mac */
1356 	ctrl = rd32(E1000_CTRL);
1357 	ctrl |= (E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1358 	ctrl &= ~E1000_CTRL_SPD_SEL;
1359 
1360 	/* Disable Auto Speed Detection */
1361 	ctrl &= ~E1000_CTRL_ASDE;
1362 
1363 	/* Disable autoneg on the phy */
1364 	*phy_ctrl &= ~MII_CR_AUTO_NEG_EN;
1365 
1366 	/* Forcing Full or Half Duplex? */
1367 	if (mac->forced_speed_duplex & E1000_ALL_HALF_DUPLEX) {
1368 		ctrl &= ~E1000_CTRL_FD;
1369 		*phy_ctrl &= ~MII_CR_FULL_DUPLEX;
1370 		hw_dbg("Half Duplex\n");
1371 	} else {
1372 		ctrl |= E1000_CTRL_FD;
1373 		*phy_ctrl |= MII_CR_FULL_DUPLEX;
1374 		hw_dbg("Full Duplex\n");
1375 	}
1376 
1377 	/* Forcing 10mb or 100mb? */
1378 	if (mac->forced_speed_duplex & E1000_ALL_100_SPEED) {
1379 		ctrl |= E1000_CTRL_SPD_100;
1380 		*phy_ctrl |= MII_CR_SPEED_100;
1381 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_10);
1382 		hw_dbg("Forcing 100mb\n");
1383 	} else {
1384 		ctrl &= ~(E1000_CTRL_SPD_1000 | E1000_CTRL_SPD_100);
1385 		*phy_ctrl |= MII_CR_SPEED_10;
1386 		*phy_ctrl &= ~(MII_CR_SPEED_1000 | MII_CR_SPEED_100);
1387 		hw_dbg("Forcing 10mb\n");
1388 	}
1389 
1390 	igb_config_collision_dist(hw);
1391 
1392 	wr32(E1000_CTRL, ctrl);
1393 }
1394 
1395 /**
1396  *  igb_set_d3_lplu_state - Sets low power link up state for D3
1397  *  @hw: pointer to the HW structure
1398  *  @active: boolean used to enable/disable lplu
1399  *
1400  *  Success returns 0, Failure returns 1
1401  *
1402  *  The low power link up (lplu) state is set to the power management level D3
1403  *  and SmartSpeed is disabled when active is true, else clear lplu for D3
1404  *  and enable Smartspeed.  LPLU and Smartspeed are mutually exclusive.  LPLU
1405  *  is used during Dx states where the power conservation is most important.
1406  *  During driver activity, SmartSpeed should be enabled so performance is
1407  *  maintained.
1408  **/
1409 s32 igb_set_d3_lplu_state(struct e1000_hw *hw, bool active)
1410 {
1411 	struct e1000_phy_info *phy = &hw->phy;
1412 	s32 ret_val = 0;
1413 	u16 data;
1414 
1415 	if (!(hw->phy.ops.read_reg))
1416 		goto out;
1417 
1418 	ret_val = phy->ops.read_reg(hw, IGP02E1000_PHY_POWER_MGMT, &data);
1419 	if (ret_val)
1420 		goto out;
1421 
1422 	if (!active) {
1423 		data &= ~IGP02E1000_PM_D3_LPLU;
1424 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1425 					     data);
1426 		if (ret_val)
1427 			goto out;
1428 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
1429 		 * during Dx states where the power conservation is most
1430 		 * important.  During driver activity we should enable
1431 		 * SmartSpeed, so performance is maintained.
1432 		 */
1433 		if (phy->smart_speed == e1000_smart_speed_on) {
1434 			ret_val = phy->ops.read_reg(hw,
1435 						    IGP01E1000_PHY_PORT_CONFIG,
1436 						    &data);
1437 			if (ret_val)
1438 				goto out;
1439 
1440 			data |= IGP01E1000_PSCFR_SMART_SPEED;
1441 			ret_val = phy->ops.write_reg(hw,
1442 						     IGP01E1000_PHY_PORT_CONFIG,
1443 						     data);
1444 			if (ret_val)
1445 				goto out;
1446 		} else if (phy->smart_speed == e1000_smart_speed_off) {
1447 			ret_val = phy->ops.read_reg(hw,
1448 						     IGP01E1000_PHY_PORT_CONFIG,
1449 						     &data);
1450 			if (ret_val)
1451 				goto out;
1452 
1453 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1454 			ret_val = phy->ops.write_reg(hw,
1455 						     IGP01E1000_PHY_PORT_CONFIG,
1456 						     data);
1457 			if (ret_val)
1458 				goto out;
1459 		}
1460 	} else if ((phy->autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
1461 		   (phy->autoneg_advertised == E1000_ALL_NOT_GIG) ||
1462 		   (phy->autoneg_advertised == E1000_ALL_10_SPEED)) {
1463 		data |= IGP02E1000_PM_D3_LPLU;
1464 		ret_val = phy->ops.write_reg(hw, IGP02E1000_PHY_POWER_MGMT,
1465 					      data);
1466 		if (ret_val)
1467 			goto out;
1468 
1469 		/* When LPLU is enabled, we should disable SmartSpeed */
1470 		ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1471 					    &data);
1472 		if (ret_val)
1473 			goto out;
1474 
1475 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
1476 		ret_val = phy->ops.write_reg(hw, IGP01E1000_PHY_PORT_CONFIG,
1477 					     data);
1478 	}
1479 
1480 out:
1481 	return ret_val;
1482 }
1483 
1484 /**
1485  *  igb_check_downshift - Checks whether a downshift in speed occurred
1486  *  @hw: pointer to the HW structure
1487  *
1488  *  Success returns 0, Failure returns 1
1489  *
1490  *  A downshift is detected by querying the PHY link health.
1491  **/
1492 s32 igb_check_downshift(struct e1000_hw *hw)
1493 {
1494 	struct e1000_phy_info *phy = &hw->phy;
1495 	s32 ret_val;
1496 	u16 phy_data, offset, mask;
1497 
1498 	switch (phy->type) {
1499 	case e1000_phy_i210:
1500 	case e1000_phy_m88:
1501 	case e1000_phy_gg82563:
1502 		offset	= M88E1000_PHY_SPEC_STATUS;
1503 		mask	= M88E1000_PSSR_DOWNSHIFT;
1504 		break;
1505 	case e1000_phy_igp_2:
1506 	case e1000_phy_igp:
1507 	case e1000_phy_igp_3:
1508 		offset	= IGP01E1000_PHY_LINK_HEALTH;
1509 		mask	= IGP01E1000_PLHR_SS_DOWNGRADE;
1510 		break;
1511 	default:
1512 		/* speed downshift not supported */
1513 		phy->speed_downgraded = false;
1514 		ret_val = 0;
1515 		goto out;
1516 	}
1517 
1518 	ret_val = phy->ops.read_reg(hw, offset, &phy_data);
1519 
1520 	if (!ret_val)
1521 		phy->speed_downgraded = (phy_data & mask) ? true : false;
1522 
1523 out:
1524 	return ret_val;
1525 }
1526 
1527 /**
1528  *  igb_check_polarity_m88 - Checks the polarity.
1529  *  @hw: pointer to the HW structure
1530  *
1531  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1532  *
1533  *  Polarity is determined based on the PHY specific status register.
1534  **/
1535 s32 igb_check_polarity_m88(struct e1000_hw *hw)
1536 {
1537 	struct e1000_phy_info *phy = &hw->phy;
1538 	s32 ret_val;
1539 	u16 data;
1540 
1541 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &data);
1542 
1543 	if (!ret_val)
1544 		phy->cable_polarity = (data & M88E1000_PSSR_REV_POLARITY)
1545 				      ? e1000_rev_polarity_reversed
1546 				      : e1000_rev_polarity_normal;
1547 
1548 	return ret_val;
1549 }
1550 
1551 /**
1552  *  igb_check_polarity_igp - Checks the polarity.
1553  *  @hw: pointer to the HW structure
1554  *
1555  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1556  *
1557  *  Polarity is determined based on the PHY port status register, and the
1558  *  current speed (since there is no polarity at 100Mbps).
1559  **/
1560 static s32 igb_check_polarity_igp(struct e1000_hw *hw)
1561 {
1562 	struct e1000_phy_info *phy = &hw->phy;
1563 	s32 ret_val;
1564 	u16 data, offset, mask;
1565 
1566 	/* Polarity is determined based on the speed of
1567 	 * our connection.
1568 	 */
1569 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
1570 	if (ret_val)
1571 		goto out;
1572 
1573 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
1574 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
1575 		offset	= IGP01E1000_PHY_PCS_INIT_REG;
1576 		mask	= IGP01E1000_PHY_POLARITY_MASK;
1577 	} else {
1578 		/* This really only applies to 10Mbps since
1579 		 * there is no polarity for 100Mbps (always 0).
1580 		 */
1581 		offset	= IGP01E1000_PHY_PORT_STATUS;
1582 		mask	= IGP01E1000_PSSR_POLARITY_REVERSED;
1583 	}
1584 
1585 	ret_val = phy->ops.read_reg(hw, offset, &data);
1586 
1587 	if (!ret_val)
1588 		phy->cable_polarity = (data & mask)
1589 				      ? e1000_rev_polarity_reversed
1590 				      : e1000_rev_polarity_normal;
1591 
1592 out:
1593 	return ret_val;
1594 }
1595 
1596 /**
1597  *  igb_wait_autoneg - Wait for auto-neg completion
1598  *  @hw: pointer to the HW structure
1599  *
1600  *  Waits for auto-negotiation to complete or for the auto-negotiation time
1601  *  limit to expire, which ever happens first.
1602  **/
1603 static s32 igb_wait_autoneg(struct e1000_hw *hw)
1604 {
1605 	s32 ret_val = 0;
1606 	u16 i, phy_status;
1607 
1608 	/* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1609 	for (i = PHY_AUTO_NEG_LIMIT; i > 0; i--) {
1610 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1611 		if (ret_val)
1612 			break;
1613 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1614 		if (ret_val)
1615 			break;
1616 		if (phy_status & MII_SR_AUTONEG_COMPLETE)
1617 			break;
1618 		msleep(100);
1619 	}
1620 
1621 	/* PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1622 	 * has completed.
1623 	 */
1624 	return ret_val;
1625 }
1626 
1627 /**
1628  *  igb_phy_has_link - Polls PHY for link
1629  *  @hw: pointer to the HW structure
1630  *  @iterations: number of times to poll for link
1631  *  @usec_interval: delay between polling attempts
1632  *  @success: pointer to whether polling was successful or not
1633  *
1634  *  Polls the PHY status register for link, 'iterations' number of times.
1635  **/
1636 s32 igb_phy_has_link(struct e1000_hw *hw, u32 iterations,
1637 		     u32 usec_interval, bool *success)
1638 {
1639 	s32 ret_val = 0;
1640 	u16 i, phy_status;
1641 
1642 	for (i = 0; i < iterations; i++) {
1643 		/* Some PHYs require the PHY_STATUS register to be read
1644 		 * twice due to the link bit being sticky.  No harm doing
1645 		 * it across the board.
1646 		 */
1647 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1648 		if (ret_val && usec_interval > 0) {
1649 			/* If the first read fails, another entity may have
1650 			 * ownership of the resources, wait and try again to
1651 			 * see if they have relinquished the resources yet.
1652 			 */
1653 			if (usec_interval >= 1000)
1654 				mdelay(usec_interval/1000);
1655 			else
1656 				udelay(usec_interval);
1657 		}
1658 		ret_val = hw->phy.ops.read_reg(hw, PHY_STATUS, &phy_status);
1659 		if (ret_val)
1660 			break;
1661 		if (phy_status & MII_SR_LINK_STATUS)
1662 			break;
1663 		if (usec_interval >= 1000)
1664 			mdelay(usec_interval/1000);
1665 		else
1666 			udelay(usec_interval);
1667 	}
1668 
1669 	*success = (i < iterations) ? true : false;
1670 
1671 	return ret_val;
1672 }
1673 
1674 /**
1675  *  igb_get_cable_length_m88 - Determine cable length for m88 PHY
1676  *  @hw: pointer to the HW structure
1677  *
1678  *  Reads the PHY specific status register to retrieve the cable length
1679  *  information.  The cable length is determined by averaging the minimum and
1680  *  maximum values to get the "average" cable length.  The m88 PHY has four
1681  *  possible cable length values, which are:
1682  *	Register Value		Cable Length
1683  *	0			< 50 meters
1684  *	1			50 - 80 meters
1685  *	2			80 - 110 meters
1686  *	3			110 - 140 meters
1687  *	4			> 140 meters
1688  **/
1689 s32 igb_get_cable_length_m88(struct e1000_hw *hw)
1690 {
1691 	struct e1000_phy_info *phy = &hw->phy;
1692 	s32 ret_val;
1693 	u16 phy_data, index;
1694 
1695 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1696 	if (ret_val)
1697 		goto out;
1698 
1699 	index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1700 		M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1701 	if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1702 		ret_val = -E1000_ERR_PHY;
1703 		goto out;
1704 	}
1705 
1706 	phy->min_cable_length = e1000_m88_cable_length_table[index];
1707 	phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1708 
1709 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1710 
1711 out:
1712 	return ret_val;
1713 }
1714 
1715 s32 igb_get_cable_length_m88_gen2(struct e1000_hw *hw)
1716 {
1717 	struct e1000_phy_info *phy = &hw->phy;
1718 	s32 ret_val;
1719 	u16 phy_data, phy_data2, index, default_page, is_cm;
1720 
1721 	switch (hw->phy.id) {
1722 	case I210_I_PHY_ID:
1723 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1724 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1725 					    (I347AT4_PCDL + phy->addr),
1726 					    &phy_data);
1727 		if (ret_val)
1728 			return ret_val;
1729 
1730 		/* Check if the unit of cable length is meters or cm */
1731 		ret_val = phy->ops.read_reg(hw, (0x7 << GS40G_PAGE_SHIFT) +
1732 					    I347AT4_PCDC, &phy_data2);
1733 		if (ret_val)
1734 			return ret_val;
1735 
1736 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1737 
1738 		/* Populate the phy structure with cable length in meters */
1739 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1740 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1741 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1742 		break;
1743 	case M88E1543_E_PHY_ID:
1744 	case M88E1512_E_PHY_ID:
1745 	case I347AT4_E_PHY_ID:
1746 		/* Remember the original page select and set it to 7 */
1747 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1748 					    &default_page);
1749 		if (ret_val)
1750 			goto out;
1751 
1752 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x07);
1753 		if (ret_val)
1754 			goto out;
1755 
1756 		/* Get cable length from PHY Cable Diagnostics Control Reg */
1757 		ret_val = phy->ops.read_reg(hw, (I347AT4_PCDL + phy->addr),
1758 					    &phy_data);
1759 		if (ret_val)
1760 			goto out;
1761 
1762 		/* Check if the unit of cable length is meters or cm */
1763 		ret_val = phy->ops.read_reg(hw, I347AT4_PCDC, &phy_data2);
1764 		if (ret_val)
1765 			goto out;
1766 
1767 		is_cm = !(phy_data2 & I347AT4_PCDC_CABLE_LENGTH_UNIT);
1768 
1769 		/* Populate the phy structure with cable length in meters */
1770 		phy->min_cable_length = phy_data / (is_cm ? 100 : 1);
1771 		phy->max_cable_length = phy_data / (is_cm ? 100 : 1);
1772 		phy->cable_length = phy_data / (is_cm ? 100 : 1);
1773 
1774 		/* Reset the page selec to its original value */
1775 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1776 					     default_page);
1777 		if (ret_val)
1778 			goto out;
1779 		break;
1780 	case M88E1112_E_PHY_ID:
1781 		/* Remember the original page select and set it to 5 */
1782 		ret_val = phy->ops.read_reg(hw, I347AT4_PAGE_SELECT,
1783 					    &default_page);
1784 		if (ret_val)
1785 			goto out;
1786 
1787 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT, 0x05);
1788 		if (ret_val)
1789 			goto out;
1790 
1791 		ret_val = phy->ops.read_reg(hw, M88E1112_VCT_DSP_DISTANCE,
1792 					    &phy_data);
1793 		if (ret_val)
1794 			goto out;
1795 
1796 		index = (phy_data & M88E1000_PSSR_CABLE_LENGTH) >>
1797 			M88E1000_PSSR_CABLE_LENGTH_SHIFT;
1798 		if (index >= ARRAY_SIZE(e1000_m88_cable_length_table) - 1) {
1799 			ret_val = -E1000_ERR_PHY;
1800 			goto out;
1801 		}
1802 
1803 		phy->min_cable_length = e1000_m88_cable_length_table[index];
1804 		phy->max_cable_length = e1000_m88_cable_length_table[index + 1];
1805 
1806 		phy->cable_length = (phy->min_cable_length +
1807 				     phy->max_cable_length) / 2;
1808 
1809 		/* Reset the page select to its original value */
1810 		ret_val = phy->ops.write_reg(hw, I347AT4_PAGE_SELECT,
1811 					     default_page);
1812 		if (ret_val)
1813 			goto out;
1814 
1815 		break;
1816 	default:
1817 		ret_val = -E1000_ERR_PHY;
1818 		goto out;
1819 	}
1820 
1821 out:
1822 	return ret_val;
1823 }
1824 
1825 /**
1826  *  igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1827  *  @hw: pointer to the HW structure
1828  *
1829  *  The automatic gain control (agc) normalizes the amplitude of the
1830  *  received signal, adjusting for the attenuation produced by the
1831  *  cable.  By reading the AGC registers, which represent the
1832  *  combination of coarse and fine gain value, the value can be put
1833  *  into a lookup table to obtain the approximate cable length
1834  *  for each channel.
1835  **/
1836 s32 igb_get_cable_length_igp_2(struct e1000_hw *hw)
1837 {
1838 	struct e1000_phy_info *phy = &hw->phy;
1839 	s32 ret_val = 0;
1840 	u16 phy_data, i, agc_value = 0;
1841 	u16 cur_agc_index, max_agc_index = 0;
1842 	u16 min_agc_index = ARRAY_SIZE(e1000_igp_2_cable_length_table) - 1;
1843 	static const u16 agc_reg_array[IGP02E1000_PHY_CHANNEL_NUM] = {
1844 		IGP02E1000_PHY_AGC_A,
1845 		IGP02E1000_PHY_AGC_B,
1846 		IGP02E1000_PHY_AGC_C,
1847 		IGP02E1000_PHY_AGC_D
1848 	};
1849 
1850 	/* Read the AGC registers for all channels */
1851 	for (i = 0; i < IGP02E1000_PHY_CHANNEL_NUM; i++) {
1852 		ret_val = phy->ops.read_reg(hw, agc_reg_array[i], &phy_data);
1853 		if (ret_val)
1854 			goto out;
1855 
1856 		/* Getting bits 15:9, which represent the combination of
1857 		 * coarse and fine gain values.  The result is a number
1858 		 * that can be put into the lookup table to obtain the
1859 		 * approximate cable length.
1860 		 */
1861 		cur_agc_index = (phy_data >> IGP02E1000_AGC_LENGTH_SHIFT) &
1862 				IGP02E1000_AGC_LENGTH_MASK;
1863 
1864 		/* Array index bound check. */
1865 		if ((cur_agc_index >= ARRAY_SIZE(e1000_igp_2_cable_length_table)) ||
1866 		    (cur_agc_index == 0)) {
1867 			ret_val = -E1000_ERR_PHY;
1868 			goto out;
1869 		}
1870 
1871 		/* Remove min & max AGC values from calculation. */
1872 		if (e1000_igp_2_cable_length_table[min_agc_index] >
1873 		    e1000_igp_2_cable_length_table[cur_agc_index])
1874 			min_agc_index = cur_agc_index;
1875 		if (e1000_igp_2_cable_length_table[max_agc_index] <
1876 		    e1000_igp_2_cable_length_table[cur_agc_index])
1877 			max_agc_index = cur_agc_index;
1878 
1879 		agc_value += e1000_igp_2_cable_length_table[cur_agc_index];
1880 	}
1881 
1882 	agc_value -= (e1000_igp_2_cable_length_table[min_agc_index] +
1883 		      e1000_igp_2_cable_length_table[max_agc_index]);
1884 	agc_value /= (IGP02E1000_PHY_CHANNEL_NUM - 2);
1885 
1886 	/* Calculate cable length with the error range of +/- 10 meters. */
1887 	phy->min_cable_length = ((agc_value - IGP02E1000_AGC_RANGE) > 0) ?
1888 				 (agc_value - IGP02E1000_AGC_RANGE) : 0;
1889 	phy->max_cable_length = agc_value + IGP02E1000_AGC_RANGE;
1890 
1891 	phy->cable_length = (phy->min_cable_length + phy->max_cable_length) / 2;
1892 
1893 out:
1894 	return ret_val;
1895 }
1896 
1897 /**
1898  *  igb_get_phy_info_m88 - Retrieve PHY information
1899  *  @hw: pointer to the HW structure
1900  *
1901  *  Valid for only copper links.  Read the PHY status register (sticky read)
1902  *  to verify that link is up.  Read the PHY special control register to
1903  *  determine the polarity and 10base-T extended distance.  Read the PHY
1904  *  special status register to determine MDI/MDIx and current speed.  If
1905  *  speed is 1000, then determine cable length, local and remote receiver.
1906  **/
1907 s32 igb_get_phy_info_m88(struct e1000_hw *hw)
1908 {
1909 	struct e1000_phy_info *phy = &hw->phy;
1910 	s32  ret_val;
1911 	u16 phy_data;
1912 	bool link;
1913 
1914 	if (phy->media_type != e1000_media_type_copper) {
1915 		hw_dbg("Phy info is only valid for copper media\n");
1916 		ret_val = -E1000_ERR_CONFIG;
1917 		goto out;
1918 	}
1919 
1920 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1921 	if (ret_val)
1922 		goto out;
1923 
1924 	if (!link) {
1925 		hw_dbg("Phy info is only valid if link is up\n");
1926 		ret_val = -E1000_ERR_CONFIG;
1927 		goto out;
1928 	}
1929 
1930 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
1931 	if (ret_val)
1932 		goto out;
1933 
1934 	phy->polarity_correction = (phy_data & M88E1000_PSCR_POLARITY_REVERSAL)
1935 				   ? true : false;
1936 
1937 	ret_val = igb_check_polarity_m88(hw);
1938 	if (ret_val)
1939 		goto out;
1940 
1941 	ret_val = phy->ops.read_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
1942 	if (ret_val)
1943 		goto out;
1944 
1945 	phy->is_mdix = (phy_data & M88E1000_PSSR_MDIX) ? true : false;
1946 
1947 	if ((phy_data & M88E1000_PSSR_SPEED) == M88E1000_PSSR_1000MBS) {
1948 		ret_val = phy->ops.get_cable_length(hw);
1949 		if (ret_val)
1950 			goto out;
1951 
1952 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &phy_data);
1953 		if (ret_val)
1954 			goto out;
1955 
1956 		phy->local_rx = (phy_data & SR_1000T_LOCAL_RX_STATUS)
1957 				? e1000_1000t_rx_status_ok
1958 				: e1000_1000t_rx_status_not_ok;
1959 
1960 		phy->remote_rx = (phy_data & SR_1000T_REMOTE_RX_STATUS)
1961 				 ? e1000_1000t_rx_status_ok
1962 				 : e1000_1000t_rx_status_not_ok;
1963 	} else {
1964 		/* Set values to "undefined" */
1965 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
1966 		phy->local_rx = e1000_1000t_rx_status_undefined;
1967 		phy->remote_rx = e1000_1000t_rx_status_undefined;
1968 	}
1969 
1970 out:
1971 	return ret_val;
1972 }
1973 
1974 /**
1975  *  igb_get_phy_info_igp - Retrieve igp PHY information
1976  *  @hw: pointer to the HW structure
1977  *
1978  *  Read PHY status to determine if link is up.  If link is up, then
1979  *  set/determine 10base-T extended distance and polarity correction.  Read
1980  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
1981  *  determine on the cable length, local and remote receiver.
1982  **/
1983 s32 igb_get_phy_info_igp(struct e1000_hw *hw)
1984 {
1985 	struct e1000_phy_info *phy = &hw->phy;
1986 	s32 ret_val;
1987 	u16 data;
1988 	bool link;
1989 
1990 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
1991 	if (ret_val)
1992 		goto out;
1993 
1994 	if (!link) {
1995 		hw_dbg("Phy info is only valid if link is up\n");
1996 		ret_val = -E1000_ERR_CONFIG;
1997 		goto out;
1998 	}
1999 
2000 	phy->polarity_correction = true;
2001 
2002 	ret_val = igb_check_polarity_igp(hw);
2003 	if (ret_val)
2004 		goto out;
2005 
2006 	ret_val = phy->ops.read_reg(hw, IGP01E1000_PHY_PORT_STATUS, &data);
2007 	if (ret_val)
2008 		goto out;
2009 
2010 	phy->is_mdix = (data & IGP01E1000_PSSR_MDIX) ? true : false;
2011 
2012 	if ((data & IGP01E1000_PSSR_SPEED_MASK) ==
2013 	    IGP01E1000_PSSR_SPEED_1000MBPS) {
2014 		ret_val = phy->ops.get_cable_length(hw);
2015 		if (ret_val)
2016 			goto out;
2017 
2018 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2019 		if (ret_val)
2020 			goto out;
2021 
2022 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2023 				? e1000_1000t_rx_status_ok
2024 				: e1000_1000t_rx_status_not_ok;
2025 
2026 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2027 				 ? e1000_1000t_rx_status_ok
2028 				 : e1000_1000t_rx_status_not_ok;
2029 	} else {
2030 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2031 		phy->local_rx = e1000_1000t_rx_status_undefined;
2032 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2033 	}
2034 
2035 out:
2036 	return ret_val;
2037 }
2038 
2039 /**
2040  *  igb_phy_sw_reset - PHY software reset
2041  *  @hw: pointer to the HW structure
2042  *
2043  *  Does a software reset of the PHY by reading the PHY control register and
2044  *  setting/write the control register reset bit to the PHY.
2045  **/
2046 s32 igb_phy_sw_reset(struct e1000_hw *hw)
2047 {
2048 	s32 ret_val = 0;
2049 	u16 phy_ctrl;
2050 
2051 	if (!(hw->phy.ops.read_reg))
2052 		goto out;
2053 
2054 	ret_val = hw->phy.ops.read_reg(hw, PHY_CONTROL, &phy_ctrl);
2055 	if (ret_val)
2056 		goto out;
2057 
2058 	phy_ctrl |= MII_CR_RESET;
2059 	ret_val = hw->phy.ops.write_reg(hw, PHY_CONTROL, phy_ctrl);
2060 	if (ret_val)
2061 		goto out;
2062 
2063 	udelay(1);
2064 
2065 out:
2066 	return ret_val;
2067 }
2068 
2069 /**
2070  *  igb_phy_hw_reset - PHY hardware reset
2071  *  @hw: pointer to the HW structure
2072  *
2073  *  Verify the reset block is not blocking us from resetting.  Acquire
2074  *  semaphore (if necessary) and read/set/write the device control reset
2075  *  bit in the PHY.  Wait the appropriate delay time for the device to
2076  *  reset and release the semaphore (if necessary).
2077  **/
2078 s32 igb_phy_hw_reset(struct e1000_hw *hw)
2079 {
2080 	struct e1000_phy_info *phy = &hw->phy;
2081 	s32  ret_val;
2082 	u32 ctrl;
2083 
2084 	ret_val = igb_check_reset_block(hw);
2085 	if (ret_val) {
2086 		ret_val = 0;
2087 		goto out;
2088 	}
2089 
2090 	ret_val = phy->ops.acquire(hw);
2091 	if (ret_val)
2092 		goto out;
2093 
2094 	ctrl = rd32(E1000_CTRL);
2095 	wr32(E1000_CTRL, ctrl | E1000_CTRL_PHY_RST);
2096 	wrfl();
2097 
2098 	udelay(phy->reset_delay_us);
2099 
2100 	wr32(E1000_CTRL, ctrl);
2101 	wrfl();
2102 
2103 	udelay(150);
2104 
2105 	phy->ops.release(hw);
2106 
2107 	ret_val = phy->ops.get_cfg_done(hw);
2108 
2109 out:
2110 	return ret_val;
2111 }
2112 
2113 /**
2114  *  igb_phy_init_script_igp3 - Inits the IGP3 PHY
2115  *  @hw: pointer to the HW structure
2116  *
2117  *  Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2118  **/
2119 s32 igb_phy_init_script_igp3(struct e1000_hw *hw)
2120 {
2121 	hw_dbg("Running IGP 3 PHY init script\n");
2122 
2123 	/* PHY init IGP 3 */
2124 	/* Enable rise/fall, 10-mode work in class-A */
2125 	hw->phy.ops.write_reg(hw, 0x2F5B, 0x9018);
2126 	/* Remove all caps from Replica path filter */
2127 	hw->phy.ops.write_reg(hw, 0x2F52, 0x0000);
2128 	/* Bias trimming for ADC, AFE and Driver (Default) */
2129 	hw->phy.ops.write_reg(hw, 0x2FB1, 0x8B24);
2130 	/* Increase Hybrid poly bias */
2131 	hw->phy.ops.write_reg(hw, 0x2FB2, 0xF8F0);
2132 	/* Add 4% to TX amplitude in Giga mode */
2133 	hw->phy.ops.write_reg(hw, 0x2010, 0x10B0);
2134 	/* Disable trimming (TTT) */
2135 	hw->phy.ops.write_reg(hw, 0x2011, 0x0000);
2136 	/* Poly DC correction to 94.6% + 2% for all channels */
2137 	hw->phy.ops.write_reg(hw, 0x20DD, 0x249A);
2138 	/* ABS DC correction to 95.9% */
2139 	hw->phy.ops.write_reg(hw, 0x20DE, 0x00D3);
2140 	/* BG temp curve trim */
2141 	hw->phy.ops.write_reg(hw, 0x28B4, 0x04CE);
2142 	/* Increasing ADC OPAMP stage 1 currents to max */
2143 	hw->phy.ops.write_reg(hw, 0x2F70, 0x29E4);
2144 	/* Force 1000 ( required for enabling PHY regs configuration) */
2145 	hw->phy.ops.write_reg(hw, 0x0000, 0x0140);
2146 	/* Set upd_freq to 6 */
2147 	hw->phy.ops.write_reg(hw, 0x1F30, 0x1606);
2148 	/* Disable NPDFE */
2149 	hw->phy.ops.write_reg(hw, 0x1F31, 0xB814);
2150 	/* Disable adaptive fixed FFE (Default) */
2151 	hw->phy.ops.write_reg(hw, 0x1F35, 0x002A);
2152 	/* Enable FFE hysteresis */
2153 	hw->phy.ops.write_reg(hw, 0x1F3E, 0x0067);
2154 	/* Fixed FFE for short cable lengths */
2155 	hw->phy.ops.write_reg(hw, 0x1F54, 0x0065);
2156 	/* Fixed FFE for medium cable lengths */
2157 	hw->phy.ops.write_reg(hw, 0x1F55, 0x002A);
2158 	/* Fixed FFE for long cable lengths */
2159 	hw->phy.ops.write_reg(hw, 0x1F56, 0x002A);
2160 	/* Enable Adaptive Clip Threshold */
2161 	hw->phy.ops.write_reg(hw, 0x1F72, 0x3FB0);
2162 	/* AHT reset limit to 1 */
2163 	hw->phy.ops.write_reg(hw, 0x1F76, 0xC0FF);
2164 	/* Set AHT master delay to 127 msec */
2165 	hw->phy.ops.write_reg(hw, 0x1F77, 0x1DEC);
2166 	/* Set scan bits for AHT */
2167 	hw->phy.ops.write_reg(hw, 0x1F78, 0xF9EF);
2168 	/* Set AHT Preset bits */
2169 	hw->phy.ops.write_reg(hw, 0x1F79, 0x0210);
2170 	/* Change integ_factor of channel A to 3 */
2171 	hw->phy.ops.write_reg(hw, 0x1895, 0x0003);
2172 	/* Change prop_factor of channels BCD to 8 */
2173 	hw->phy.ops.write_reg(hw, 0x1796, 0x0008);
2174 	/* Change cg_icount + enable integbp for channels BCD */
2175 	hw->phy.ops.write_reg(hw, 0x1798, 0xD008);
2176 	/* Change cg_icount + enable integbp + change prop_factor_master
2177 	 * to 8 for channel A
2178 	 */
2179 	hw->phy.ops.write_reg(hw, 0x1898, 0xD918);
2180 	/* Disable AHT in Slave mode on channel A */
2181 	hw->phy.ops.write_reg(hw, 0x187A, 0x0800);
2182 	/* Enable LPLU and disable AN to 1000 in non-D0a states,
2183 	 * Enable SPD+B2B
2184 	 */
2185 	hw->phy.ops.write_reg(hw, 0x0019, 0x008D);
2186 	/* Enable restart AN on an1000_dis change */
2187 	hw->phy.ops.write_reg(hw, 0x001B, 0x2080);
2188 	/* Enable wh_fifo read clock in 10/100 modes */
2189 	hw->phy.ops.write_reg(hw, 0x0014, 0x0045);
2190 	/* Restart AN, Speed selection is 1000 */
2191 	hw->phy.ops.write_reg(hw, 0x0000, 0x1340);
2192 
2193 	return 0;
2194 }
2195 
2196 /**
2197  *  igb_initialize_M88E1512_phy - Initialize M88E1512 PHY
2198  *  @hw: pointer to the HW structure
2199  *
2200  *  Initialize Marvel 1512 to work correctly with Avoton.
2201  **/
2202 s32 igb_initialize_M88E1512_phy(struct e1000_hw *hw)
2203 {
2204 	struct e1000_phy_info *phy = &hw->phy;
2205 	s32 ret_val = 0;
2206 
2207 	/* Switch to PHY page 0xFF. */
2208 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FF);
2209 	if (ret_val)
2210 		goto out;
2211 
2212 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x214B);
2213 	if (ret_val)
2214 		goto out;
2215 
2216 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2144);
2217 	if (ret_val)
2218 		goto out;
2219 
2220 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0x0C28);
2221 	if (ret_val)
2222 		goto out;
2223 
2224 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2146);
2225 	if (ret_val)
2226 		goto out;
2227 
2228 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xB233);
2229 	if (ret_val)
2230 		goto out;
2231 
2232 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x214D);
2233 	if (ret_val)
2234 		goto out;
2235 
2236 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_2, 0xCC0C);
2237 	if (ret_val)
2238 		goto out;
2239 
2240 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_1, 0x2159);
2241 	if (ret_val)
2242 		goto out;
2243 
2244 	/* Switch to PHY page 0xFB. */
2245 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x00FB);
2246 	if (ret_val)
2247 		goto out;
2248 
2249 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_CFG_REG_3, 0x000D);
2250 	if (ret_val)
2251 		goto out;
2252 
2253 	/* Switch to PHY page 0x12. */
2254 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0x12);
2255 	if (ret_val)
2256 		goto out;
2257 
2258 	/* Change mode to SGMII-to-Copper */
2259 	ret_val = phy->ops.write_reg(hw, E1000_M88E1512_MODE, 0x8001);
2260 	if (ret_val)
2261 		goto out;
2262 
2263 	/* Return the PHY to page 0. */
2264 	ret_val = phy->ops.write_reg(hw, E1000_M88E1543_PAGE_ADDR, 0);
2265 	if (ret_val)
2266 		goto out;
2267 
2268 	ret_val = igb_phy_sw_reset(hw);
2269 	if (ret_val) {
2270 		hw_dbg("Error committing the PHY changes\n");
2271 		return ret_val;
2272 	}
2273 
2274 	/* msec_delay(1000); */
2275 	usleep_range(1000, 2000);
2276 out:
2277 	return ret_val;
2278 }
2279 
2280 /**
2281  * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2282  * @hw: pointer to the HW structure
2283  *
2284  * In the case of a PHY power down to save power, or to turn off link during a
2285  * driver unload, restore the link to previous settings.
2286  **/
2287 void igb_power_up_phy_copper(struct e1000_hw *hw)
2288 {
2289 	u16 mii_reg = 0;
2290 
2291 	/* The PHY will retain its settings across a power down/up cycle */
2292 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2293 	mii_reg &= ~MII_CR_POWER_DOWN;
2294 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2295 }
2296 
2297 /**
2298  * igb_power_down_phy_copper - Power down copper PHY
2299  * @hw: pointer to the HW structure
2300  *
2301  * Power down PHY to save power when interface is down and wake on lan
2302  * is not enabled.
2303  **/
2304 void igb_power_down_phy_copper(struct e1000_hw *hw)
2305 {
2306 	u16 mii_reg = 0;
2307 
2308 	/* The PHY will retain its settings across a power down/up cycle */
2309 	hw->phy.ops.read_reg(hw, PHY_CONTROL, &mii_reg);
2310 	mii_reg |= MII_CR_POWER_DOWN;
2311 	hw->phy.ops.write_reg(hw, PHY_CONTROL, mii_reg);
2312 	usleep_range(1000, 2000);
2313 }
2314 
2315 /**
2316  *  igb_check_polarity_82580 - Checks the polarity.
2317  *  @hw: pointer to the HW structure
2318  *
2319  *  Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2320  *
2321  *  Polarity is determined based on the PHY specific status register.
2322  **/
2323 static s32 igb_check_polarity_82580(struct e1000_hw *hw)
2324 {
2325 	struct e1000_phy_info *phy = &hw->phy;
2326 	s32 ret_val;
2327 	u16 data;
2328 
2329 
2330 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2331 
2332 	if (!ret_val)
2333 		phy->cable_polarity = (data & I82580_PHY_STATUS2_REV_POLARITY)
2334 				      ? e1000_rev_polarity_reversed
2335 				      : e1000_rev_polarity_normal;
2336 
2337 	return ret_val;
2338 }
2339 
2340 /**
2341  *  igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2342  *  @hw: pointer to the HW structure
2343  *
2344  *  Calls the PHY setup function to force speed and duplex.  Clears the
2345  *  auto-crossover to force MDI manually.  Waits for link and returns
2346  *  successful if link up is successful, else -E1000_ERR_PHY (-2).
2347  **/
2348 s32 igb_phy_force_speed_duplex_82580(struct e1000_hw *hw)
2349 {
2350 	struct e1000_phy_info *phy = &hw->phy;
2351 	s32 ret_val;
2352 	u16 phy_data;
2353 	bool link;
2354 
2355 	ret_val = phy->ops.read_reg(hw, PHY_CONTROL, &phy_data);
2356 	if (ret_val)
2357 		goto out;
2358 
2359 	igb_phy_force_speed_duplex_setup(hw, &phy_data);
2360 
2361 	ret_val = phy->ops.write_reg(hw, PHY_CONTROL, phy_data);
2362 	if (ret_val)
2363 		goto out;
2364 
2365 	/* Clear Auto-Crossover to force MDI manually.  82580 requires MDI
2366 	 * forced whenever speed and duplex are forced.
2367 	 */
2368 	ret_val = phy->ops.read_reg(hw, I82580_PHY_CTRL_2, &phy_data);
2369 	if (ret_val)
2370 		goto out;
2371 
2372 	phy_data &= ~I82580_PHY_CTRL2_MDIX_CFG_MASK;
2373 
2374 	ret_val = phy->ops.write_reg(hw, I82580_PHY_CTRL_2, phy_data);
2375 	if (ret_val)
2376 		goto out;
2377 
2378 	hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data);
2379 
2380 	udelay(1);
2381 
2382 	if (phy->autoneg_wait_to_complete) {
2383 		hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2384 
2385 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2386 		if (ret_val)
2387 			goto out;
2388 
2389 		if (!link)
2390 			hw_dbg("Link taking longer than expected.\n");
2391 
2392 		/* Try once more */
2393 		ret_val = igb_phy_has_link(hw, PHY_FORCE_LIMIT, 100000, &link);
2394 		if (ret_val)
2395 			goto out;
2396 	}
2397 
2398 out:
2399 	return ret_val;
2400 }
2401 
2402 /**
2403  *  igb_get_phy_info_82580 - Retrieve I82580 PHY information
2404  *  @hw: pointer to the HW structure
2405  *
2406  *  Read PHY status to determine if link is up.  If link is up, then
2407  *  set/determine 10base-T extended distance and polarity correction.  Read
2408  *  PHY port status to determine MDI/MDIx and speed.  Based on the speed,
2409  *  determine on the cable length, local and remote receiver.
2410  **/
2411 s32 igb_get_phy_info_82580(struct e1000_hw *hw)
2412 {
2413 	struct e1000_phy_info *phy = &hw->phy;
2414 	s32 ret_val;
2415 	u16 data;
2416 	bool link;
2417 
2418 	ret_val = igb_phy_has_link(hw, 1, 0, &link);
2419 	if (ret_val)
2420 		goto out;
2421 
2422 	if (!link) {
2423 		hw_dbg("Phy info is only valid if link is up\n");
2424 		ret_val = -E1000_ERR_CONFIG;
2425 		goto out;
2426 	}
2427 
2428 	phy->polarity_correction = true;
2429 
2430 	ret_val = igb_check_polarity_82580(hw);
2431 	if (ret_val)
2432 		goto out;
2433 
2434 	ret_val = phy->ops.read_reg(hw, I82580_PHY_STATUS_2, &data);
2435 	if (ret_val)
2436 		goto out;
2437 
2438 	phy->is_mdix = (data & I82580_PHY_STATUS2_MDIX) ? true : false;
2439 
2440 	if ((data & I82580_PHY_STATUS2_SPEED_MASK) ==
2441 	    I82580_PHY_STATUS2_SPEED_1000MBPS) {
2442 		ret_val = hw->phy.ops.get_cable_length(hw);
2443 		if (ret_val)
2444 			goto out;
2445 
2446 		ret_val = phy->ops.read_reg(hw, PHY_1000T_STATUS, &data);
2447 		if (ret_val)
2448 			goto out;
2449 
2450 		phy->local_rx = (data & SR_1000T_LOCAL_RX_STATUS)
2451 				? e1000_1000t_rx_status_ok
2452 				: e1000_1000t_rx_status_not_ok;
2453 
2454 		phy->remote_rx = (data & SR_1000T_REMOTE_RX_STATUS)
2455 				 ? e1000_1000t_rx_status_ok
2456 				 : e1000_1000t_rx_status_not_ok;
2457 	} else {
2458 		phy->cable_length = E1000_CABLE_LENGTH_UNDEFINED;
2459 		phy->local_rx = e1000_1000t_rx_status_undefined;
2460 		phy->remote_rx = e1000_1000t_rx_status_undefined;
2461 	}
2462 
2463 out:
2464 	return ret_val;
2465 }
2466 
2467 /**
2468  *  igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2469  *  @hw: pointer to the HW structure
2470  *
2471  * Reads the diagnostic status register and verifies result is valid before
2472  * placing it in the phy_cable_length field.
2473  **/
2474 s32 igb_get_cable_length_82580(struct e1000_hw *hw)
2475 {
2476 	struct e1000_phy_info *phy = &hw->phy;
2477 	s32 ret_val;
2478 	u16 phy_data, length;
2479 
2480 	ret_val = phy->ops.read_reg(hw, I82580_PHY_DIAG_STATUS, &phy_data);
2481 	if (ret_val)
2482 		goto out;
2483 
2484 	length = (phy_data & I82580_DSTATUS_CABLE_LENGTH) >>
2485 		 I82580_DSTATUS_CABLE_LENGTH_SHIFT;
2486 
2487 	if (length == E1000_CABLE_LENGTH_UNDEFINED)
2488 		ret_val = -E1000_ERR_PHY;
2489 
2490 	phy->cable_length = length;
2491 
2492 out:
2493 	return ret_val;
2494 }
2495 
2496 /**
2497  *  igb_write_phy_reg_gs40g - Write GS40G PHY register
2498  *  @hw: pointer to the HW structure
2499  *  @offset: lower half is register offset to write to
2500  *     upper half is page to use.
2501  *  @data: data to write at register offset
2502  *
2503  *  Acquires semaphore, if necessary, then writes the data to PHY register
2504  *  at the offset.  Release any acquired semaphores before exiting.
2505  **/
2506 s32 igb_write_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 data)
2507 {
2508 	s32 ret_val;
2509 	u16 page = offset >> GS40G_PAGE_SHIFT;
2510 
2511 	offset = offset & GS40G_OFFSET_MASK;
2512 	ret_val = hw->phy.ops.acquire(hw);
2513 	if (ret_val)
2514 		return ret_val;
2515 
2516 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2517 	if (ret_val)
2518 		goto release;
2519 	ret_val = igb_write_phy_reg_mdic(hw, offset, data);
2520 
2521 release:
2522 	hw->phy.ops.release(hw);
2523 	return ret_val;
2524 }
2525 
2526 /**
2527  *  igb_read_phy_reg_gs40g - Read GS40G  PHY register
2528  *  @hw: pointer to the HW structure
2529  *  @offset: lower half is register offset to read to
2530  *     upper half is page to use.
2531  *  @data: data to read at register offset
2532  *
2533  *  Acquires semaphore, if necessary, then reads the data in the PHY register
2534  *  at the offset.  Release any acquired semaphores before exiting.
2535  **/
2536 s32 igb_read_phy_reg_gs40g(struct e1000_hw *hw, u32 offset, u16 *data)
2537 {
2538 	s32 ret_val;
2539 	u16 page = offset >> GS40G_PAGE_SHIFT;
2540 
2541 	offset = offset & GS40G_OFFSET_MASK;
2542 	ret_val = hw->phy.ops.acquire(hw);
2543 	if (ret_val)
2544 		return ret_val;
2545 
2546 	ret_val = igb_write_phy_reg_mdic(hw, GS40G_PAGE_SELECT, page);
2547 	if (ret_val)
2548 		goto release;
2549 	ret_val = igb_read_phy_reg_mdic(hw, offset, data);
2550 
2551 release:
2552 	hw->phy.ops.release(hw);
2553 	return ret_val;
2554 }
2555 
2556 /**
2557  *  igb_set_master_slave_mode - Setup PHY for Master/slave mode
2558  *  @hw: pointer to the HW structure
2559  *
2560  *  Sets up Master/slave mode
2561  **/
2562 static s32 igb_set_master_slave_mode(struct e1000_hw *hw)
2563 {
2564 	s32 ret_val;
2565 	u16 phy_data;
2566 
2567 	/* Resolve Master/Slave mode */
2568 	ret_val = hw->phy.ops.read_reg(hw, PHY_1000T_CTRL, &phy_data);
2569 	if (ret_val)
2570 		return ret_val;
2571 
2572 	/* load defaults for future use */
2573 	hw->phy.original_ms_type = (phy_data & CR_1000T_MS_ENABLE) ?
2574 				   ((phy_data & CR_1000T_MS_VALUE) ?
2575 				    e1000_ms_force_master :
2576 				    e1000_ms_force_slave) : e1000_ms_auto;
2577 
2578 	switch (hw->phy.ms_type) {
2579 	case e1000_ms_force_master:
2580 		phy_data |= (CR_1000T_MS_ENABLE | CR_1000T_MS_VALUE);
2581 		break;
2582 	case e1000_ms_force_slave:
2583 		phy_data |= CR_1000T_MS_ENABLE;
2584 		phy_data &= ~(CR_1000T_MS_VALUE);
2585 		break;
2586 	case e1000_ms_auto:
2587 		phy_data &= ~CR_1000T_MS_ENABLE;
2588 		/* fall-through */
2589 	default:
2590 		break;
2591 	}
2592 
2593 	return hw->phy.ops.write_reg(hw, PHY_1000T_CTRL, phy_data);
2594 }
2595