xref: /openbmc/linux/drivers/net/ethernet/intel/ice/ice_txrx.c (revision 6246ed09111fbb17168619006b4380103c6673c3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3 
4 /* The driver transmit and receive code */
5 
6 #include <linux/mm.h>
7 #include <linux/netdevice.h>
8 #include <linux/prefetch.h>
9 #include <linux/bpf_trace.h>
10 #include <net/dsfield.h>
11 #include <net/mpls.h>
12 #include <net/xdp.h>
13 #include "ice_txrx_lib.h"
14 #include "ice_lib.h"
15 #include "ice.h"
16 #include "ice_trace.h"
17 #include "ice_dcb_lib.h"
18 #include "ice_xsk.h"
19 #include "ice_eswitch.h"
20 
21 #define ICE_RX_HDR_SIZE		256
22 
23 #define FDIR_DESC_RXDID 0x40
24 #define ICE_FDIR_CLEAN_DELAY 10
25 
26 /**
27  * ice_prgm_fdir_fltr - Program a Flow Director filter
28  * @vsi: VSI to send dummy packet
29  * @fdir_desc: flow director descriptor
30  * @raw_packet: allocated buffer for flow director
31  */
32 int
33 ice_prgm_fdir_fltr(struct ice_vsi *vsi, struct ice_fltr_desc *fdir_desc,
34 		   u8 *raw_packet)
35 {
36 	struct ice_tx_buf *tx_buf, *first;
37 	struct ice_fltr_desc *f_desc;
38 	struct ice_tx_desc *tx_desc;
39 	struct ice_tx_ring *tx_ring;
40 	struct device *dev;
41 	dma_addr_t dma;
42 	u32 td_cmd;
43 	u16 i;
44 
45 	/* VSI and Tx ring */
46 	if (!vsi)
47 		return -ENOENT;
48 	tx_ring = vsi->tx_rings[0];
49 	if (!tx_ring || !tx_ring->desc)
50 		return -ENOENT;
51 	dev = tx_ring->dev;
52 
53 	/* we are using two descriptors to add/del a filter and we can wait */
54 	for (i = ICE_FDIR_CLEAN_DELAY; ICE_DESC_UNUSED(tx_ring) < 2; i--) {
55 		if (!i)
56 			return -EAGAIN;
57 		msleep_interruptible(1);
58 	}
59 
60 	dma = dma_map_single(dev, raw_packet, ICE_FDIR_MAX_RAW_PKT_SIZE,
61 			     DMA_TO_DEVICE);
62 
63 	if (dma_mapping_error(dev, dma))
64 		return -EINVAL;
65 
66 	/* grab the next descriptor */
67 	i = tx_ring->next_to_use;
68 	first = &tx_ring->tx_buf[i];
69 	f_desc = ICE_TX_FDIRDESC(tx_ring, i);
70 	memcpy(f_desc, fdir_desc, sizeof(*f_desc));
71 
72 	i++;
73 	i = (i < tx_ring->count) ? i : 0;
74 	tx_desc = ICE_TX_DESC(tx_ring, i);
75 	tx_buf = &tx_ring->tx_buf[i];
76 
77 	i++;
78 	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
79 
80 	memset(tx_buf, 0, sizeof(*tx_buf));
81 	dma_unmap_len_set(tx_buf, len, ICE_FDIR_MAX_RAW_PKT_SIZE);
82 	dma_unmap_addr_set(tx_buf, dma, dma);
83 
84 	tx_desc->buf_addr = cpu_to_le64(dma);
85 	td_cmd = ICE_TXD_LAST_DESC_CMD | ICE_TX_DESC_CMD_DUMMY |
86 		 ICE_TX_DESC_CMD_RE;
87 
88 	tx_buf->tx_flags = ICE_TX_FLAGS_DUMMY_PKT;
89 	tx_buf->raw_buf = raw_packet;
90 
91 	tx_desc->cmd_type_offset_bsz =
92 		ice_build_ctob(td_cmd, 0, ICE_FDIR_MAX_RAW_PKT_SIZE, 0);
93 
94 	/* Force memory write to complete before letting h/w know
95 	 * there are new descriptors to fetch.
96 	 */
97 	wmb();
98 
99 	/* mark the data descriptor to be watched */
100 	first->next_to_watch = tx_desc;
101 
102 	writel(tx_ring->next_to_use, tx_ring->tail);
103 
104 	return 0;
105 }
106 
107 /**
108  * ice_unmap_and_free_tx_buf - Release a Tx buffer
109  * @ring: the ring that owns the buffer
110  * @tx_buf: the buffer to free
111  */
112 static void
113 ice_unmap_and_free_tx_buf(struct ice_tx_ring *ring, struct ice_tx_buf *tx_buf)
114 {
115 	if (tx_buf->skb) {
116 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
117 			devm_kfree(ring->dev, tx_buf->raw_buf);
118 		else if (ice_ring_is_xdp(ring))
119 			page_frag_free(tx_buf->raw_buf);
120 		else
121 			dev_kfree_skb_any(tx_buf->skb);
122 		if (dma_unmap_len(tx_buf, len))
123 			dma_unmap_single(ring->dev,
124 					 dma_unmap_addr(tx_buf, dma),
125 					 dma_unmap_len(tx_buf, len),
126 					 DMA_TO_DEVICE);
127 	} else if (dma_unmap_len(tx_buf, len)) {
128 		dma_unmap_page(ring->dev,
129 			       dma_unmap_addr(tx_buf, dma),
130 			       dma_unmap_len(tx_buf, len),
131 			       DMA_TO_DEVICE);
132 	}
133 
134 	tx_buf->next_to_watch = NULL;
135 	tx_buf->skb = NULL;
136 	dma_unmap_len_set(tx_buf, len, 0);
137 	/* tx_buf must be completely set up in the transmit path */
138 }
139 
140 static struct netdev_queue *txring_txq(const struct ice_tx_ring *ring)
141 {
142 	return netdev_get_tx_queue(ring->netdev, ring->q_index);
143 }
144 
145 /**
146  * ice_clean_tx_ring - Free any empty Tx buffers
147  * @tx_ring: ring to be cleaned
148  */
149 void ice_clean_tx_ring(struct ice_tx_ring *tx_ring)
150 {
151 	u32 size;
152 	u16 i;
153 
154 	if (ice_ring_is_xdp(tx_ring) && tx_ring->xsk_pool) {
155 		ice_xsk_clean_xdp_ring(tx_ring);
156 		goto tx_skip_free;
157 	}
158 
159 	/* ring already cleared, nothing to do */
160 	if (!tx_ring->tx_buf)
161 		return;
162 
163 	/* Free all the Tx ring sk_buffs */
164 	for (i = 0; i < tx_ring->count; i++)
165 		ice_unmap_and_free_tx_buf(tx_ring, &tx_ring->tx_buf[i]);
166 
167 tx_skip_free:
168 	memset(tx_ring->tx_buf, 0, sizeof(*tx_ring->tx_buf) * tx_ring->count);
169 
170 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
171 		     PAGE_SIZE);
172 	/* Zero out the descriptor ring */
173 	memset(tx_ring->desc, 0, size);
174 
175 	tx_ring->next_to_use = 0;
176 	tx_ring->next_to_clean = 0;
177 	tx_ring->next_dd = ICE_RING_QUARTER(tx_ring) - 1;
178 	tx_ring->next_rs = ICE_RING_QUARTER(tx_ring) - 1;
179 
180 	if (!tx_ring->netdev)
181 		return;
182 
183 	/* cleanup Tx queue statistics */
184 	netdev_tx_reset_queue(txring_txq(tx_ring));
185 }
186 
187 /**
188  * ice_free_tx_ring - Free Tx resources per queue
189  * @tx_ring: Tx descriptor ring for a specific queue
190  *
191  * Free all transmit software resources
192  */
193 void ice_free_tx_ring(struct ice_tx_ring *tx_ring)
194 {
195 	u32 size;
196 
197 	ice_clean_tx_ring(tx_ring);
198 	devm_kfree(tx_ring->dev, tx_ring->tx_buf);
199 	tx_ring->tx_buf = NULL;
200 
201 	if (tx_ring->desc) {
202 		size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
203 			     PAGE_SIZE);
204 		dmam_free_coherent(tx_ring->dev, size,
205 				   tx_ring->desc, tx_ring->dma);
206 		tx_ring->desc = NULL;
207 	}
208 }
209 
210 /**
211  * ice_clean_tx_irq - Reclaim resources after transmit completes
212  * @tx_ring: Tx ring to clean
213  * @napi_budget: Used to determine if we are in netpoll
214  *
215  * Returns true if there's any budget left (e.g. the clean is finished)
216  */
217 static bool ice_clean_tx_irq(struct ice_tx_ring *tx_ring, int napi_budget)
218 {
219 	unsigned int total_bytes = 0, total_pkts = 0;
220 	unsigned int budget = ICE_DFLT_IRQ_WORK;
221 	struct ice_vsi *vsi = tx_ring->vsi;
222 	s16 i = tx_ring->next_to_clean;
223 	struct ice_tx_desc *tx_desc;
224 	struct ice_tx_buf *tx_buf;
225 
226 	/* get the bql data ready */
227 	netdev_txq_bql_complete_prefetchw(txring_txq(tx_ring));
228 
229 	tx_buf = &tx_ring->tx_buf[i];
230 	tx_desc = ICE_TX_DESC(tx_ring, i);
231 	i -= tx_ring->count;
232 
233 	prefetch(&vsi->state);
234 
235 	do {
236 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
237 
238 		/* if next_to_watch is not set then there is no work pending */
239 		if (!eop_desc)
240 			break;
241 
242 		/* follow the guidelines of other drivers */
243 		prefetchw(&tx_buf->skb->users);
244 
245 		smp_rmb();	/* prevent any other reads prior to eop_desc */
246 
247 		ice_trace(clean_tx_irq, tx_ring, tx_desc, tx_buf);
248 		/* if the descriptor isn't done, no work yet to do */
249 		if (!(eop_desc->cmd_type_offset_bsz &
250 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
251 			break;
252 
253 		/* clear next_to_watch to prevent false hangs */
254 		tx_buf->next_to_watch = NULL;
255 
256 		/* update the statistics for this packet */
257 		total_bytes += tx_buf->bytecount;
258 		total_pkts += tx_buf->gso_segs;
259 
260 		/* free the skb */
261 		napi_consume_skb(tx_buf->skb, napi_budget);
262 
263 		/* unmap skb header data */
264 		dma_unmap_single(tx_ring->dev,
265 				 dma_unmap_addr(tx_buf, dma),
266 				 dma_unmap_len(tx_buf, len),
267 				 DMA_TO_DEVICE);
268 
269 		/* clear tx_buf data */
270 		tx_buf->skb = NULL;
271 		dma_unmap_len_set(tx_buf, len, 0);
272 
273 		/* unmap remaining buffers */
274 		while (tx_desc != eop_desc) {
275 			ice_trace(clean_tx_irq_unmap, tx_ring, tx_desc, tx_buf);
276 			tx_buf++;
277 			tx_desc++;
278 			i++;
279 			if (unlikely(!i)) {
280 				i -= tx_ring->count;
281 				tx_buf = tx_ring->tx_buf;
282 				tx_desc = ICE_TX_DESC(tx_ring, 0);
283 			}
284 
285 			/* unmap any remaining paged data */
286 			if (dma_unmap_len(tx_buf, len)) {
287 				dma_unmap_page(tx_ring->dev,
288 					       dma_unmap_addr(tx_buf, dma),
289 					       dma_unmap_len(tx_buf, len),
290 					       DMA_TO_DEVICE);
291 				dma_unmap_len_set(tx_buf, len, 0);
292 			}
293 		}
294 		ice_trace(clean_tx_irq_unmap_eop, tx_ring, tx_desc, tx_buf);
295 
296 		/* move us one more past the eop_desc for start of next pkt */
297 		tx_buf++;
298 		tx_desc++;
299 		i++;
300 		if (unlikely(!i)) {
301 			i -= tx_ring->count;
302 			tx_buf = tx_ring->tx_buf;
303 			tx_desc = ICE_TX_DESC(tx_ring, 0);
304 		}
305 
306 		prefetch(tx_desc);
307 
308 		/* update budget accounting */
309 		budget--;
310 	} while (likely(budget));
311 
312 	i += tx_ring->count;
313 	tx_ring->next_to_clean = i;
314 
315 	ice_update_tx_ring_stats(tx_ring, total_pkts, total_bytes);
316 	netdev_tx_completed_queue(txring_txq(tx_ring), total_pkts, total_bytes);
317 
318 #define TX_WAKE_THRESHOLD ((s16)(DESC_NEEDED * 2))
319 	if (unlikely(total_pkts && netif_carrier_ok(tx_ring->netdev) &&
320 		     (ICE_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD))) {
321 		/* Make sure that anybody stopping the queue after this
322 		 * sees the new next_to_clean.
323 		 */
324 		smp_mb();
325 		if (netif_tx_queue_stopped(txring_txq(tx_ring)) &&
326 		    !test_bit(ICE_VSI_DOWN, vsi->state)) {
327 			netif_tx_wake_queue(txring_txq(tx_ring));
328 			++tx_ring->tx_stats.restart_q;
329 		}
330 	}
331 
332 	return !!budget;
333 }
334 
335 /**
336  * ice_setup_tx_ring - Allocate the Tx descriptors
337  * @tx_ring: the Tx ring to set up
338  *
339  * Return 0 on success, negative on error
340  */
341 int ice_setup_tx_ring(struct ice_tx_ring *tx_ring)
342 {
343 	struct device *dev = tx_ring->dev;
344 	u32 size;
345 
346 	if (!dev)
347 		return -ENOMEM;
348 
349 	/* warn if we are about to overwrite the pointer */
350 	WARN_ON(tx_ring->tx_buf);
351 	tx_ring->tx_buf =
352 		devm_kcalloc(dev, sizeof(*tx_ring->tx_buf), tx_ring->count,
353 			     GFP_KERNEL);
354 	if (!tx_ring->tx_buf)
355 		return -ENOMEM;
356 
357 	/* round up to nearest page */
358 	size = ALIGN(tx_ring->count * sizeof(struct ice_tx_desc),
359 		     PAGE_SIZE);
360 	tx_ring->desc = dmam_alloc_coherent(dev, size, &tx_ring->dma,
361 					    GFP_KERNEL);
362 	if (!tx_ring->desc) {
363 		dev_err(dev, "Unable to allocate memory for the Tx descriptor ring, size=%d\n",
364 			size);
365 		goto err;
366 	}
367 
368 	tx_ring->next_to_use = 0;
369 	tx_ring->next_to_clean = 0;
370 	tx_ring->tx_stats.prev_pkt = -1;
371 	return 0;
372 
373 err:
374 	devm_kfree(dev, tx_ring->tx_buf);
375 	tx_ring->tx_buf = NULL;
376 	return -ENOMEM;
377 }
378 
379 /**
380  * ice_clean_rx_ring - Free Rx buffers
381  * @rx_ring: ring to be cleaned
382  */
383 void ice_clean_rx_ring(struct ice_rx_ring *rx_ring)
384 {
385 	struct device *dev = rx_ring->dev;
386 	u32 size;
387 	u16 i;
388 
389 	/* ring already cleared, nothing to do */
390 	if (!rx_ring->rx_buf)
391 		return;
392 
393 	if (rx_ring->skb) {
394 		dev_kfree_skb(rx_ring->skb);
395 		rx_ring->skb = NULL;
396 	}
397 
398 	if (rx_ring->xsk_pool) {
399 		ice_xsk_clean_rx_ring(rx_ring);
400 		goto rx_skip_free;
401 	}
402 
403 	/* Free all the Rx ring sk_buffs */
404 	for (i = 0; i < rx_ring->count; i++) {
405 		struct ice_rx_buf *rx_buf = &rx_ring->rx_buf[i];
406 
407 		if (!rx_buf->page)
408 			continue;
409 
410 		/* Invalidate cache lines that may have been written to by
411 		 * device so that we avoid corrupting memory.
412 		 */
413 		dma_sync_single_range_for_cpu(dev, rx_buf->dma,
414 					      rx_buf->page_offset,
415 					      rx_ring->rx_buf_len,
416 					      DMA_FROM_DEVICE);
417 
418 		/* free resources associated with mapping */
419 		dma_unmap_page_attrs(dev, rx_buf->dma, ice_rx_pg_size(rx_ring),
420 				     DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
421 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
422 
423 		rx_buf->page = NULL;
424 		rx_buf->page_offset = 0;
425 	}
426 
427 rx_skip_free:
428 	if (rx_ring->xsk_pool)
429 		memset(rx_ring->xdp_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->xdp_buf)));
430 	else
431 		memset(rx_ring->rx_buf, 0, array_size(rx_ring->count, sizeof(*rx_ring->rx_buf)));
432 
433 	/* Zero out the descriptor ring */
434 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
435 		     PAGE_SIZE);
436 	memset(rx_ring->desc, 0, size);
437 
438 	rx_ring->next_to_alloc = 0;
439 	rx_ring->next_to_clean = 0;
440 	rx_ring->next_to_use = 0;
441 }
442 
443 /**
444  * ice_free_rx_ring - Free Rx resources
445  * @rx_ring: ring to clean the resources from
446  *
447  * Free all receive software resources
448  */
449 void ice_free_rx_ring(struct ice_rx_ring *rx_ring)
450 {
451 	u32 size;
452 
453 	ice_clean_rx_ring(rx_ring);
454 	if (rx_ring->vsi->type == ICE_VSI_PF)
455 		if (xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
456 			xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
457 	rx_ring->xdp_prog = NULL;
458 	if (rx_ring->xsk_pool) {
459 		kfree(rx_ring->xdp_buf);
460 		rx_ring->xdp_buf = NULL;
461 	} else {
462 		kfree(rx_ring->rx_buf);
463 		rx_ring->rx_buf = NULL;
464 	}
465 
466 	if (rx_ring->desc) {
467 		size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
468 			     PAGE_SIZE);
469 		dmam_free_coherent(rx_ring->dev, size,
470 				   rx_ring->desc, rx_ring->dma);
471 		rx_ring->desc = NULL;
472 	}
473 }
474 
475 /**
476  * ice_setup_rx_ring - Allocate the Rx descriptors
477  * @rx_ring: the Rx ring to set up
478  *
479  * Return 0 on success, negative on error
480  */
481 int ice_setup_rx_ring(struct ice_rx_ring *rx_ring)
482 {
483 	struct device *dev = rx_ring->dev;
484 	u32 size;
485 
486 	if (!dev)
487 		return -ENOMEM;
488 
489 	/* warn if we are about to overwrite the pointer */
490 	WARN_ON(rx_ring->rx_buf);
491 	rx_ring->rx_buf =
492 		kcalloc(rx_ring->count, sizeof(*rx_ring->rx_buf), GFP_KERNEL);
493 	if (!rx_ring->rx_buf)
494 		return -ENOMEM;
495 
496 	/* round up to nearest page */
497 	size = ALIGN(rx_ring->count * sizeof(union ice_32byte_rx_desc),
498 		     PAGE_SIZE);
499 	rx_ring->desc = dmam_alloc_coherent(dev, size, &rx_ring->dma,
500 					    GFP_KERNEL);
501 	if (!rx_ring->desc) {
502 		dev_err(dev, "Unable to allocate memory for the Rx descriptor ring, size=%d\n",
503 			size);
504 		goto err;
505 	}
506 
507 	rx_ring->next_to_use = 0;
508 	rx_ring->next_to_clean = 0;
509 
510 	if (ice_is_xdp_ena_vsi(rx_ring->vsi))
511 		WRITE_ONCE(rx_ring->xdp_prog, rx_ring->vsi->xdp_prog);
512 
513 	if (rx_ring->vsi->type == ICE_VSI_PF &&
514 	    !xdp_rxq_info_is_reg(&rx_ring->xdp_rxq))
515 		if (xdp_rxq_info_reg(&rx_ring->xdp_rxq, rx_ring->netdev,
516 				     rx_ring->q_index, rx_ring->q_vector->napi.napi_id))
517 			goto err;
518 	return 0;
519 
520 err:
521 	kfree(rx_ring->rx_buf);
522 	rx_ring->rx_buf = NULL;
523 	return -ENOMEM;
524 }
525 
526 static unsigned int
527 ice_rx_frame_truesize(struct ice_rx_ring *rx_ring, unsigned int __maybe_unused size)
528 {
529 	unsigned int truesize;
530 
531 #if (PAGE_SIZE < 8192)
532 	truesize = ice_rx_pg_size(rx_ring) / 2; /* Must be power-of-2 */
533 #else
534 	truesize = rx_ring->rx_offset ?
535 		SKB_DATA_ALIGN(rx_ring->rx_offset + size) +
536 		SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) :
537 		SKB_DATA_ALIGN(size);
538 #endif
539 	return truesize;
540 }
541 
542 /**
543  * ice_run_xdp - Executes an XDP program on initialized xdp_buff
544  * @rx_ring: Rx ring
545  * @xdp: xdp_buff used as input to the XDP program
546  * @xdp_prog: XDP program to run
547  * @xdp_ring: ring to be used for XDP_TX action
548  *
549  * Returns any of ICE_XDP_{PASS, CONSUMED, TX, REDIR}
550  */
551 static int
552 ice_run_xdp(struct ice_rx_ring *rx_ring, struct xdp_buff *xdp,
553 	    struct bpf_prog *xdp_prog, struct ice_tx_ring *xdp_ring)
554 {
555 	int err;
556 	u32 act;
557 
558 	act = bpf_prog_run_xdp(xdp_prog, xdp);
559 	switch (act) {
560 	case XDP_PASS:
561 		return ICE_XDP_PASS;
562 	case XDP_TX:
563 		if (static_branch_unlikely(&ice_xdp_locking_key))
564 			spin_lock(&xdp_ring->tx_lock);
565 		err = ice_xmit_xdp_ring(xdp->data, xdp->data_end - xdp->data, xdp_ring);
566 		if (static_branch_unlikely(&ice_xdp_locking_key))
567 			spin_unlock(&xdp_ring->tx_lock);
568 		if (err == ICE_XDP_CONSUMED)
569 			goto out_failure;
570 		return err;
571 	case XDP_REDIRECT:
572 		err = xdp_do_redirect(rx_ring->netdev, xdp, xdp_prog);
573 		if (err)
574 			goto out_failure;
575 		return ICE_XDP_REDIR;
576 	default:
577 		bpf_warn_invalid_xdp_action(rx_ring->netdev, xdp_prog, act);
578 		fallthrough;
579 	case XDP_ABORTED:
580 out_failure:
581 		trace_xdp_exception(rx_ring->netdev, xdp_prog, act);
582 		fallthrough;
583 	case XDP_DROP:
584 		return ICE_XDP_CONSUMED;
585 	}
586 }
587 
588 /**
589  * ice_xdp_xmit - submit packets to XDP ring for transmission
590  * @dev: netdev
591  * @n: number of XDP frames to be transmitted
592  * @frames: XDP frames to be transmitted
593  * @flags: transmit flags
594  *
595  * Returns number of frames successfully sent. Failed frames
596  * will be free'ed by XDP core.
597  * For error cases, a negative errno code is returned and no-frames
598  * are transmitted (caller must handle freeing frames).
599  */
600 int
601 ice_xdp_xmit(struct net_device *dev, int n, struct xdp_frame **frames,
602 	     u32 flags)
603 {
604 	struct ice_netdev_priv *np = netdev_priv(dev);
605 	unsigned int queue_index = smp_processor_id();
606 	struct ice_vsi *vsi = np->vsi;
607 	struct ice_tx_ring *xdp_ring;
608 	int nxmit = 0, i;
609 
610 	if (test_bit(ICE_VSI_DOWN, vsi->state))
611 		return -ENETDOWN;
612 
613 	if (!ice_is_xdp_ena_vsi(vsi))
614 		return -ENXIO;
615 
616 	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
617 		return -EINVAL;
618 
619 	if (static_branch_unlikely(&ice_xdp_locking_key)) {
620 		queue_index %= vsi->num_xdp_txq;
621 		xdp_ring = vsi->xdp_rings[queue_index];
622 		spin_lock(&xdp_ring->tx_lock);
623 	} else {
624 		/* Generally, should not happen */
625 		if (unlikely(queue_index >= vsi->num_xdp_txq))
626 			return -ENXIO;
627 		xdp_ring = vsi->xdp_rings[queue_index];
628 	}
629 
630 	for (i = 0; i < n; i++) {
631 		struct xdp_frame *xdpf = frames[i];
632 		int err;
633 
634 		err = ice_xmit_xdp_ring(xdpf->data, xdpf->len, xdp_ring);
635 		if (err != ICE_XDP_TX)
636 			break;
637 		nxmit++;
638 	}
639 
640 	if (unlikely(flags & XDP_XMIT_FLUSH))
641 		ice_xdp_ring_update_tail(xdp_ring);
642 
643 	if (static_branch_unlikely(&ice_xdp_locking_key))
644 		spin_unlock(&xdp_ring->tx_lock);
645 
646 	return nxmit;
647 }
648 
649 /**
650  * ice_alloc_mapped_page - recycle or make a new page
651  * @rx_ring: ring to use
652  * @bi: rx_buf struct to modify
653  *
654  * Returns true if the page was successfully allocated or
655  * reused.
656  */
657 static bool
658 ice_alloc_mapped_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *bi)
659 {
660 	struct page *page = bi->page;
661 	dma_addr_t dma;
662 
663 	/* since we are recycling buffers we should seldom need to alloc */
664 	if (likely(page))
665 		return true;
666 
667 	/* alloc new page for storage */
668 	page = dev_alloc_pages(ice_rx_pg_order(rx_ring));
669 	if (unlikely(!page)) {
670 		rx_ring->rx_stats.alloc_page_failed++;
671 		return false;
672 	}
673 
674 	/* map page for use */
675 	dma = dma_map_page_attrs(rx_ring->dev, page, 0, ice_rx_pg_size(rx_ring),
676 				 DMA_FROM_DEVICE, ICE_RX_DMA_ATTR);
677 
678 	/* if mapping failed free memory back to system since
679 	 * there isn't much point in holding memory we can't use
680 	 */
681 	if (dma_mapping_error(rx_ring->dev, dma)) {
682 		__free_pages(page, ice_rx_pg_order(rx_ring));
683 		rx_ring->rx_stats.alloc_page_failed++;
684 		return false;
685 	}
686 
687 	bi->dma = dma;
688 	bi->page = page;
689 	bi->page_offset = rx_ring->rx_offset;
690 	page_ref_add(page, USHRT_MAX - 1);
691 	bi->pagecnt_bias = USHRT_MAX;
692 
693 	return true;
694 }
695 
696 /**
697  * ice_alloc_rx_bufs - Replace used receive buffers
698  * @rx_ring: ring to place buffers on
699  * @cleaned_count: number of buffers to replace
700  *
701  * Returns false if all allocations were successful, true if any fail. Returning
702  * true signals to the caller that we didn't replace cleaned_count buffers and
703  * there is more work to do.
704  *
705  * First, try to clean "cleaned_count" Rx buffers. Then refill the cleaned Rx
706  * buffers. Then bump tail at most one time. Grouping like this lets us avoid
707  * multiple tail writes per call.
708  */
709 bool ice_alloc_rx_bufs(struct ice_rx_ring *rx_ring, u16 cleaned_count)
710 {
711 	union ice_32b_rx_flex_desc *rx_desc;
712 	u16 ntu = rx_ring->next_to_use;
713 	struct ice_rx_buf *bi;
714 
715 	/* do nothing if no valid netdev defined */
716 	if ((!rx_ring->netdev && rx_ring->vsi->type != ICE_VSI_CTRL) ||
717 	    !cleaned_count)
718 		return false;
719 
720 	/* get the Rx descriptor and buffer based on next_to_use */
721 	rx_desc = ICE_RX_DESC(rx_ring, ntu);
722 	bi = &rx_ring->rx_buf[ntu];
723 
724 	do {
725 		/* if we fail here, we have work remaining */
726 		if (!ice_alloc_mapped_page(rx_ring, bi))
727 			break;
728 
729 		/* sync the buffer for use by the device */
730 		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
731 						 bi->page_offset,
732 						 rx_ring->rx_buf_len,
733 						 DMA_FROM_DEVICE);
734 
735 		/* Refresh the desc even if buffer_addrs didn't change
736 		 * because each write-back erases this info.
737 		 */
738 		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
739 
740 		rx_desc++;
741 		bi++;
742 		ntu++;
743 		if (unlikely(ntu == rx_ring->count)) {
744 			rx_desc = ICE_RX_DESC(rx_ring, 0);
745 			bi = rx_ring->rx_buf;
746 			ntu = 0;
747 		}
748 
749 		/* clear the status bits for the next_to_use descriptor */
750 		rx_desc->wb.status_error0 = 0;
751 
752 		cleaned_count--;
753 	} while (cleaned_count);
754 
755 	if (rx_ring->next_to_use != ntu)
756 		ice_release_rx_desc(rx_ring, ntu);
757 
758 	return !!cleaned_count;
759 }
760 
761 /**
762  * ice_rx_buf_adjust_pg_offset - Prepare Rx buffer for reuse
763  * @rx_buf: Rx buffer to adjust
764  * @size: Size of adjustment
765  *
766  * Update the offset within page so that Rx buf will be ready to be reused.
767  * For systems with PAGE_SIZE < 8192 this function will flip the page offset
768  * so the second half of page assigned to Rx buffer will be used, otherwise
769  * the offset is moved by "size" bytes
770  */
771 static void
772 ice_rx_buf_adjust_pg_offset(struct ice_rx_buf *rx_buf, unsigned int size)
773 {
774 #if (PAGE_SIZE < 8192)
775 	/* flip page offset to other buffer */
776 	rx_buf->page_offset ^= size;
777 #else
778 	/* move offset up to the next cache line */
779 	rx_buf->page_offset += size;
780 #endif
781 }
782 
783 /**
784  * ice_can_reuse_rx_page - Determine if page can be reused for another Rx
785  * @rx_buf: buffer containing the page
786  * @rx_buf_pgcnt: rx_buf page refcount pre xdp_do_redirect() call
787  *
788  * If page is reusable, we have a green light for calling ice_reuse_rx_page,
789  * which will assign the current buffer to the buffer that next_to_alloc is
790  * pointing to; otherwise, the DMA mapping needs to be destroyed and
791  * page freed
792  */
793 static bool
794 ice_can_reuse_rx_page(struct ice_rx_buf *rx_buf, int rx_buf_pgcnt)
795 {
796 	unsigned int pagecnt_bias = rx_buf->pagecnt_bias;
797 	struct page *page = rx_buf->page;
798 
799 	/* avoid re-using remote and pfmemalloc pages */
800 	if (!dev_page_is_reusable(page))
801 		return false;
802 
803 #if (PAGE_SIZE < 8192)
804 	/* if we are only owner of page we can reuse it */
805 	if (unlikely((rx_buf_pgcnt - pagecnt_bias) > 1))
806 		return false;
807 #else
808 #define ICE_LAST_OFFSET \
809 	(SKB_WITH_OVERHEAD(PAGE_SIZE) - ICE_RXBUF_2048)
810 	if (rx_buf->page_offset > ICE_LAST_OFFSET)
811 		return false;
812 #endif /* PAGE_SIZE < 8192) */
813 
814 	/* If we have drained the page fragment pool we need to update
815 	 * the pagecnt_bias and page count so that we fully restock the
816 	 * number of references the driver holds.
817 	 */
818 	if (unlikely(pagecnt_bias == 1)) {
819 		page_ref_add(page, USHRT_MAX - 1);
820 		rx_buf->pagecnt_bias = USHRT_MAX;
821 	}
822 
823 	return true;
824 }
825 
826 /**
827  * ice_add_rx_frag - Add contents of Rx buffer to sk_buff as a frag
828  * @rx_ring: Rx descriptor ring to transact packets on
829  * @rx_buf: buffer containing page to add
830  * @skb: sk_buff to place the data into
831  * @size: packet length from rx_desc
832  *
833  * This function will add the data contained in rx_buf->page to the skb.
834  * It will just attach the page as a frag to the skb.
835  * The function will then update the page offset.
836  */
837 static void
838 ice_add_rx_frag(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
839 		struct sk_buff *skb, unsigned int size)
840 {
841 #if (PAGE_SIZE >= 8192)
842 	unsigned int truesize = SKB_DATA_ALIGN(size + rx_ring->rx_offset);
843 #else
844 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
845 #endif
846 
847 	if (!size)
848 		return;
849 	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buf->page,
850 			rx_buf->page_offset, size, truesize);
851 
852 	/* page is being used so we must update the page offset */
853 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
854 }
855 
856 /**
857  * ice_reuse_rx_page - page flip buffer and store it back on the ring
858  * @rx_ring: Rx descriptor ring to store buffers on
859  * @old_buf: donor buffer to have page reused
860  *
861  * Synchronizes page for reuse by the adapter
862  */
863 static void
864 ice_reuse_rx_page(struct ice_rx_ring *rx_ring, struct ice_rx_buf *old_buf)
865 {
866 	u16 nta = rx_ring->next_to_alloc;
867 	struct ice_rx_buf *new_buf;
868 
869 	new_buf = &rx_ring->rx_buf[nta];
870 
871 	/* update, and store next to alloc */
872 	nta++;
873 	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
874 
875 	/* Transfer page from old buffer to new buffer.
876 	 * Move each member individually to avoid possible store
877 	 * forwarding stalls and unnecessary copy of skb.
878 	 */
879 	new_buf->dma = old_buf->dma;
880 	new_buf->page = old_buf->page;
881 	new_buf->page_offset = old_buf->page_offset;
882 	new_buf->pagecnt_bias = old_buf->pagecnt_bias;
883 }
884 
885 /**
886  * ice_get_rx_buf - Fetch Rx buffer and synchronize data for use
887  * @rx_ring: Rx descriptor ring to transact packets on
888  * @size: size of buffer to add to skb
889  * @rx_buf_pgcnt: rx_buf page refcount
890  *
891  * This function will pull an Rx buffer from the ring and synchronize it
892  * for use by the CPU.
893  */
894 static struct ice_rx_buf *
895 ice_get_rx_buf(struct ice_rx_ring *rx_ring, const unsigned int size,
896 	       int *rx_buf_pgcnt)
897 {
898 	struct ice_rx_buf *rx_buf;
899 
900 	rx_buf = &rx_ring->rx_buf[rx_ring->next_to_clean];
901 	*rx_buf_pgcnt =
902 #if (PAGE_SIZE < 8192)
903 		page_count(rx_buf->page);
904 #else
905 		0;
906 #endif
907 	prefetchw(rx_buf->page);
908 
909 	if (!size)
910 		return rx_buf;
911 	/* we are reusing so sync this buffer for CPU use */
912 	dma_sync_single_range_for_cpu(rx_ring->dev, rx_buf->dma,
913 				      rx_buf->page_offset, size,
914 				      DMA_FROM_DEVICE);
915 
916 	/* We have pulled a buffer for use, so decrement pagecnt_bias */
917 	rx_buf->pagecnt_bias--;
918 
919 	return rx_buf;
920 }
921 
922 /**
923  * ice_build_skb - Build skb around an existing buffer
924  * @rx_ring: Rx descriptor ring to transact packets on
925  * @rx_buf: Rx buffer to pull data from
926  * @xdp: xdp_buff pointing to the data
927  *
928  * This function builds an skb around an existing Rx buffer, taking care
929  * to set up the skb correctly and avoid any memcpy overhead.
930  */
931 static struct sk_buff *
932 ice_build_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
933 	      struct xdp_buff *xdp)
934 {
935 	u8 metasize = xdp->data - xdp->data_meta;
936 #if (PAGE_SIZE < 8192)
937 	unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
938 #else
939 	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
940 				SKB_DATA_ALIGN(xdp->data_end -
941 					       xdp->data_hard_start);
942 #endif
943 	struct sk_buff *skb;
944 
945 	/* Prefetch first cache line of first page. If xdp->data_meta
946 	 * is unused, this points exactly as xdp->data, otherwise we
947 	 * likely have a consumer accessing first few bytes of meta
948 	 * data, and then actual data.
949 	 */
950 	net_prefetch(xdp->data_meta);
951 	/* build an skb around the page buffer */
952 	skb = napi_build_skb(xdp->data_hard_start, truesize);
953 	if (unlikely(!skb))
954 		return NULL;
955 
956 	/* must to record Rx queue, otherwise OS features such as
957 	 * symmetric queue won't work
958 	 */
959 	skb_record_rx_queue(skb, rx_ring->q_index);
960 
961 	/* update pointers within the skb to store the data */
962 	skb_reserve(skb, xdp->data - xdp->data_hard_start);
963 	__skb_put(skb, xdp->data_end - xdp->data);
964 	if (metasize)
965 		skb_metadata_set(skb, metasize);
966 
967 	/* buffer is used by skb, update page_offset */
968 	ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
969 
970 	return skb;
971 }
972 
973 /**
974  * ice_construct_skb - Allocate skb and populate it
975  * @rx_ring: Rx descriptor ring to transact packets on
976  * @rx_buf: Rx buffer to pull data from
977  * @xdp: xdp_buff pointing to the data
978  *
979  * This function allocates an skb. It then populates it with the page
980  * data from the current receive descriptor, taking care to set up the
981  * skb correctly.
982  */
983 static struct sk_buff *
984 ice_construct_skb(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
985 		  struct xdp_buff *xdp)
986 {
987 	unsigned int metasize = xdp->data - xdp->data_meta;
988 	unsigned int size = xdp->data_end - xdp->data;
989 	unsigned int headlen;
990 	struct sk_buff *skb;
991 
992 	/* prefetch first cache line of first page */
993 	net_prefetch(xdp->data_meta);
994 
995 	/* allocate a skb to store the frags */
996 	skb = __napi_alloc_skb(&rx_ring->q_vector->napi,
997 			       ICE_RX_HDR_SIZE + metasize,
998 			       GFP_ATOMIC | __GFP_NOWARN);
999 	if (unlikely(!skb))
1000 		return NULL;
1001 
1002 	skb_record_rx_queue(skb, rx_ring->q_index);
1003 	/* Determine available headroom for copy */
1004 	headlen = size;
1005 	if (headlen > ICE_RX_HDR_SIZE)
1006 		headlen = eth_get_headlen(skb->dev, xdp->data, ICE_RX_HDR_SIZE);
1007 
1008 	/* align pull length to size of long to optimize memcpy performance */
1009 	memcpy(__skb_put(skb, headlen + metasize), xdp->data_meta,
1010 	       ALIGN(headlen + metasize, sizeof(long)));
1011 
1012 	if (metasize) {
1013 		skb_metadata_set(skb, metasize);
1014 		__skb_pull(skb, metasize);
1015 	}
1016 
1017 	/* if we exhaust the linear part then add what is left as a frag */
1018 	size -= headlen;
1019 	if (size) {
1020 #if (PAGE_SIZE >= 8192)
1021 		unsigned int truesize = SKB_DATA_ALIGN(size);
1022 #else
1023 		unsigned int truesize = ice_rx_pg_size(rx_ring) / 2;
1024 #endif
1025 		skb_add_rx_frag(skb, 0, rx_buf->page,
1026 				rx_buf->page_offset + headlen, size, truesize);
1027 		/* buffer is used by skb, update page_offset */
1028 		ice_rx_buf_adjust_pg_offset(rx_buf, truesize);
1029 	} else {
1030 		/* buffer is unused, reset bias back to rx_buf; data was copied
1031 		 * onto skb's linear part so there's no need for adjusting
1032 		 * page offset and we can reuse this buffer as-is
1033 		 */
1034 		rx_buf->pagecnt_bias++;
1035 	}
1036 
1037 	return skb;
1038 }
1039 
1040 /**
1041  * ice_put_rx_buf - Clean up used buffer and either recycle or free
1042  * @rx_ring: Rx descriptor ring to transact packets on
1043  * @rx_buf: Rx buffer to pull data from
1044  * @rx_buf_pgcnt: Rx buffer page count pre xdp_do_redirect()
1045  *
1046  * This function will update next_to_clean and then clean up the contents
1047  * of the rx_buf. It will either recycle the buffer or unmap it and free
1048  * the associated resources.
1049  */
1050 static void
1051 ice_put_rx_buf(struct ice_rx_ring *rx_ring, struct ice_rx_buf *rx_buf,
1052 	       int rx_buf_pgcnt)
1053 {
1054 	u16 ntc = rx_ring->next_to_clean + 1;
1055 
1056 	/* fetch, update, and store next to clean */
1057 	ntc = (ntc < rx_ring->count) ? ntc : 0;
1058 	rx_ring->next_to_clean = ntc;
1059 
1060 	if (!rx_buf)
1061 		return;
1062 
1063 	if (ice_can_reuse_rx_page(rx_buf, rx_buf_pgcnt)) {
1064 		/* hand second half of page back to the ring */
1065 		ice_reuse_rx_page(rx_ring, rx_buf);
1066 	} else {
1067 		/* we are not reusing the buffer so unmap it */
1068 		dma_unmap_page_attrs(rx_ring->dev, rx_buf->dma,
1069 				     ice_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1070 				     ICE_RX_DMA_ATTR);
1071 		__page_frag_cache_drain(rx_buf->page, rx_buf->pagecnt_bias);
1072 	}
1073 
1074 	/* clear contents of buffer_info */
1075 	rx_buf->page = NULL;
1076 }
1077 
1078 /**
1079  * ice_is_non_eop - process handling of non-EOP buffers
1080  * @rx_ring: Rx ring being processed
1081  * @rx_desc: Rx descriptor for current buffer
1082  *
1083  * If the buffer is an EOP buffer, this function exits returning false,
1084  * otherwise return true indicating that this is in fact a non-EOP buffer.
1085  */
1086 static bool
1087 ice_is_non_eop(struct ice_rx_ring *rx_ring, union ice_32b_rx_flex_desc *rx_desc)
1088 {
1089 	/* if we are the last buffer then there is nothing else to do */
1090 #define ICE_RXD_EOF BIT(ICE_RX_FLEX_DESC_STATUS0_EOF_S)
1091 	if (likely(ice_test_staterr(rx_desc->wb.status_error0, ICE_RXD_EOF)))
1092 		return false;
1093 
1094 	rx_ring->rx_stats.non_eop_descs++;
1095 
1096 	return true;
1097 }
1098 
1099 /**
1100  * ice_clean_rx_irq - Clean completed descriptors from Rx ring - bounce buf
1101  * @rx_ring: Rx descriptor ring to transact packets on
1102  * @budget: Total limit on number of packets to process
1103  *
1104  * This function provides a "bounce buffer" approach to Rx interrupt
1105  * processing. The advantage to this is that on systems that have
1106  * expensive overhead for IOMMU access this provides a means of avoiding
1107  * it by maintaining the mapping of the page to the system.
1108  *
1109  * Returns amount of work completed
1110  */
1111 int ice_clean_rx_irq(struct ice_rx_ring *rx_ring, int budget)
1112 {
1113 	unsigned int total_rx_bytes = 0, total_rx_pkts = 0, frame_sz = 0;
1114 	u16 cleaned_count = ICE_DESC_UNUSED(rx_ring);
1115 	unsigned int offset = rx_ring->rx_offset;
1116 	struct ice_tx_ring *xdp_ring = NULL;
1117 	unsigned int xdp_res, xdp_xmit = 0;
1118 	struct sk_buff *skb = rx_ring->skb;
1119 	struct bpf_prog *xdp_prog = NULL;
1120 	struct xdp_buff xdp;
1121 	bool failure;
1122 
1123 	/* Frame size depend on rx_ring setup when PAGE_SIZE=4K */
1124 #if (PAGE_SIZE < 8192)
1125 	frame_sz = ice_rx_frame_truesize(rx_ring, 0);
1126 #endif
1127 	xdp_init_buff(&xdp, frame_sz, &rx_ring->xdp_rxq);
1128 
1129 	xdp_prog = READ_ONCE(rx_ring->xdp_prog);
1130 	if (xdp_prog)
1131 		xdp_ring = rx_ring->xdp_ring;
1132 
1133 	/* start the loop to process Rx packets bounded by 'budget' */
1134 	while (likely(total_rx_pkts < (unsigned int)budget)) {
1135 		union ice_32b_rx_flex_desc *rx_desc;
1136 		struct ice_rx_buf *rx_buf;
1137 		unsigned char *hard_start;
1138 		unsigned int size;
1139 		u16 stat_err_bits;
1140 		int rx_buf_pgcnt;
1141 		u16 vlan_tag = 0;
1142 		u16 rx_ptype;
1143 
1144 		/* get the Rx desc from Rx ring based on 'next_to_clean' */
1145 		rx_desc = ICE_RX_DESC(rx_ring, rx_ring->next_to_clean);
1146 
1147 		/* status_error_len will always be zero for unused descriptors
1148 		 * because it's cleared in cleanup, and overlaps with hdr_addr
1149 		 * which is always zero because packet split isn't used, if the
1150 		 * hardware wrote DD then it will be non-zero
1151 		 */
1152 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_DD_S);
1153 		if (!ice_test_staterr(rx_desc->wb.status_error0, stat_err_bits))
1154 			break;
1155 
1156 		/* This memory barrier is needed to keep us from reading
1157 		 * any other fields out of the rx_desc until we know the
1158 		 * DD bit is set.
1159 		 */
1160 		dma_rmb();
1161 
1162 		ice_trace(clean_rx_irq, rx_ring, rx_desc);
1163 		if (rx_desc->wb.rxdid == FDIR_DESC_RXDID || !rx_ring->netdev) {
1164 			struct ice_vsi *ctrl_vsi = rx_ring->vsi;
1165 
1166 			if (rx_desc->wb.rxdid == FDIR_DESC_RXDID &&
1167 			    ctrl_vsi->vf)
1168 				ice_vc_fdir_irq_handler(ctrl_vsi, rx_desc);
1169 			ice_put_rx_buf(rx_ring, NULL, 0);
1170 			cleaned_count++;
1171 			continue;
1172 		}
1173 
1174 		size = le16_to_cpu(rx_desc->wb.pkt_len) &
1175 			ICE_RX_FLX_DESC_PKT_LEN_M;
1176 
1177 		/* retrieve a buffer from the ring */
1178 		rx_buf = ice_get_rx_buf(rx_ring, size, &rx_buf_pgcnt);
1179 
1180 		if (!size) {
1181 			xdp.data = NULL;
1182 			xdp.data_end = NULL;
1183 			xdp.data_hard_start = NULL;
1184 			xdp.data_meta = NULL;
1185 			goto construct_skb;
1186 		}
1187 
1188 		hard_start = page_address(rx_buf->page) + rx_buf->page_offset -
1189 			     offset;
1190 		xdp_prepare_buff(&xdp, hard_start, offset, size, true);
1191 #if (PAGE_SIZE > 4096)
1192 		/* At larger PAGE_SIZE, frame_sz depend on len size */
1193 		xdp.frame_sz = ice_rx_frame_truesize(rx_ring, size);
1194 #endif
1195 
1196 		if (!xdp_prog)
1197 			goto construct_skb;
1198 
1199 		xdp_res = ice_run_xdp(rx_ring, &xdp, xdp_prog, xdp_ring);
1200 		if (!xdp_res)
1201 			goto construct_skb;
1202 		if (xdp_res & (ICE_XDP_TX | ICE_XDP_REDIR)) {
1203 			xdp_xmit |= xdp_res;
1204 			ice_rx_buf_adjust_pg_offset(rx_buf, xdp.frame_sz);
1205 		} else {
1206 			rx_buf->pagecnt_bias++;
1207 		}
1208 		total_rx_bytes += size;
1209 		total_rx_pkts++;
1210 
1211 		cleaned_count++;
1212 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1213 		continue;
1214 construct_skb:
1215 		if (skb) {
1216 			ice_add_rx_frag(rx_ring, rx_buf, skb, size);
1217 		} else if (likely(xdp.data)) {
1218 			if (ice_ring_uses_build_skb(rx_ring))
1219 				skb = ice_build_skb(rx_ring, rx_buf, &xdp);
1220 			else
1221 				skb = ice_construct_skb(rx_ring, rx_buf, &xdp);
1222 		}
1223 		/* exit if we failed to retrieve a buffer */
1224 		if (!skb) {
1225 			rx_ring->rx_stats.alloc_buf_failed++;
1226 			if (rx_buf)
1227 				rx_buf->pagecnt_bias++;
1228 			break;
1229 		}
1230 
1231 		ice_put_rx_buf(rx_ring, rx_buf, rx_buf_pgcnt);
1232 		cleaned_count++;
1233 
1234 		/* skip if it is NOP desc */
1235 		if (ice_is_non_eop(rx_ring, rx_desc))
1236 			continue;
1237 
1238 		stat_err_bits = BIT(ICE_RX_FLEX_DESC_STATUS0_RXE_S);
1239 		if (unlikely(ice_test_staterr(rx_desc->wb.status_error0,
1240 					      stat_err_bits))) {
1241 			dev_kfree_skb_any(skb);
1242 			continue;
1243 		}
1244 
1245 		vlan_tag = ice_get_vlan_tag_from_rx_desc(rx_desc);
1246 
1247 		/* pad the skb if needed, to make a valid ethernet frame */
1248 		if (eth_skb_pad(skb)) {
1249 			skb = NULL;
1250 			continue;
1251 		}
1252 
1253 		/* probably a little skewed due to removing CRC */
1254 		total_rx_bytes += skb->len;
1255 
1256 		/* populate checksum, VLAN, and protocol */
1257 		rx_ptype = le16_to_cpu(rx_desc->wb.ptype_flex_flags0) &
1258 			ICE_RX_FLEX_DESC_PTYPE_M;
1259 
1260 		ice_process_skb_fields(rx_ring, rx_desc, skb, rx_ptype);
1261 
1262 		ice_trace(clean_rx_irq_indicate, rx_ring, rx_desc, skb);
1263 		/* send completed skb up the stack */
1264 		ice_receive_skb(rx_ring, skb, vlan_tag);
1265 		skb = NULL;
1266 
1267 		/* update budget accounting */
1268 		total_rx_pkts++;
1269 	}
1270 
1271 	/* return up to cleaned_count buffers to hardware */
1272 	failure = ice_alloc_rx_bufs(rx_ring, cleaned_count);
1273 
1274 	if (xdp_prog)
1275 		ice_finalize_xdp_rx(xdp_ring, xdp_xmit);
1276 	rx_ring->skb = skb;
1277 
1278 	ice_update_rx_ring_stats(rx_ring, total_rx_pkts, total_rx_bytes);
1279 
1280 	/* guarantee a trip back through this routine if there was a failure */
1281 	return failure ? budget : (int)total_rx_pkts;
1282 }
1283 
1284 static void __ice_update_sample(struct ice_q_vector *q_vector,
1285 				struct ice_ring_container *rc,
1286 				struct dim_sample *sample,
1287 				bool is_tx)
1288 {
1289 	u64 packets = 0, bytes = 0;
1290 
1291 	if (is_tx) {
1292 		struct ice_tx_ring *tx_ring;
1293 
1294 		ice_for_each_tx_ring(tx_ring, *rc) {
1295 			packets += tx_ring->stats.pkts;
1296 			bytes += tx_ring->stats.bytes;
1297 		}
1298 	} else {
1299 		struct ice_rx_ring *rx_ring;
1300 
1301 		ice_for_each_rx_ring(rx_ring, *rc) {
1302 			packets += rx_ring->stats.pkts;
1303 			bytes += rx_ring->stats.bytes;
1304 		}
1305 	}
1306 
1307 	dim_update_sample(q_vector->total_events, packets, bytes, sample);
1308 	sample->comp_ctr = 0;
1309 
1310 	/* if dim settings get stale, like when not updated for 1
1311 	 * second or longer, force it to start again. This addresses the
1312 	 * frequent case of an idle queue being switched to by the
1313 	 * scheduler. The 1,000 here means 1,000 milliseconds.
1314 	 */
1315 	if (ktime_ms_delta(sample->time, rc->dim.start_sample.time) >= 1000)
1316 		rc->dim.state = DIM_START_MEASURE;
1317 }
1318 
1319 /**
1320  * ice_net_dim - Update net DIM algorithm
1321  * @q_vector: the vector associated with the interrupt
1322  *
1323  * Create a DIM sample and notify net_dim() so that it can possibly decide
1324  * a new ITR value based on incoming packets, bytes, and interrupts.
1325  *
1326  * This function is a no-op if the ring is not configured to dynamic ITR.
1327  */
1328 static void ice_net_dim(struct ice_q_vector *q_vector)
1329 {
1330 	struct ice_ring_container *tx = &q_vector->tx;
1331 	struct ice_ring_container *rx = &q_vector->rx;
1332 
1333 	if (ITR_IS_DYNAMIC(tx)) {
1334 		struct dim_sample dim_sample;
1335 
1336 		__ice_update_sample(q_vector, tx, &dim_sample, true);
1337 		net_dim(&tx->dim, dim_sample);
1338 	}
1339 
1340 	if (ITR_IS_DYNAMIC(rx)) {
1341 		struct dim_sample dim_sample;
1342 
1343 		__ice_update_sample(q_vector, rx, &dim_sample, false);
1344 		net_dim(&rx->dim, dim_sample);
1345 	}
1346 }
1347 
1348 /**
1349  * ice_buildreg_itr - build value for writing to the GLINT_DYN_CTL register
1350  * @itr_idx: interrupt throttling index
1351  * @itr: interrupt throttling value in usecs
1352  */
1353 static u32 ice_buildreg_itr(u16 itr_idx, u16 itr)
1354 {
1355 	/* The ITR value is reported in microseconds, and the register value is
1356 	 * recorded in 2 microsecond units. For this reason we only need to
1357 	 * shift by the GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S to apply this
1358 	 * granularity as a shift instead of division. The mask makes sure the
1359 	 * ITR value is never odd so we don't accidentally write into the field
1360 	 * prior to the ITR field.
1361 	 */
1362 	itr &= ICE_ITR_MASK;
1363 
1364 	return GLINT_DYN_CTL_INTENA_M | GLINT_DYN_CTL_CLEARPBA_M |
1365 		(itr_idx << GLINT_DYN_CTL_ITR_INDX_S) |
1366 		(itr << (GLINT_DYN_CTL_INTERVAL_S - ICE_ITR_GRAN_S));
1367 }
1368 
1369 /**
1370  * ice_enable_interrupt - re-enable MSI-X interrupt
1371  * @q_vector: the vector associated with the interrupt to enable
1372  *
1373  * If the VSI is down, the interrupt will not be re-enabled. Also,
1374  * when enabling the interrupt always reset the wb_on_itr to false
1375  * and trigger a software interrupt to clean out internal state.
1376  */
1377 static void ice_enable_interrupt(struct ice_q_vector *q_vector)
1378 {
1379 	struct ice_vsi *vsi = q_vector->vsi;
1380 	bool wb_en = q_vector->wb_on_itr;
1381 	u32 itr_val;
1382 
1383 	if (test_bit(ICE_DOWN, vsi->state))
1384 		return;
1385 
1386 	/* trigger an ITR delayed software interrupt when exiting busy poll, to
1387 	 * make sure to catch any pending cleanups that might have been missed
1388 	 * due to interrupt state transition. If busy poll or poll isn't
1389 	 * enabled, then don't update ITR, and just enable the interrupt.
1390 	 */
1391 	if (!wb_en) {
1392 		itr_val = ice_buildreg_itr(ICE_ITR_NONE, 0);
1393 	} else {
1394 		q_vector->wb_on_itr = false;
1395 
1396 		/* do two things here with a single write. Set up the third ITR
1397 		 * index to be used for software interrupt moderation, and then
1398 		 * trigger a software interrupt with a rate limit of 20K on
1399 		 * software interrupts, this will help avoid high interrupt
1400 		 * loads due to frequently polling and exiting polling.
1401 		 */
1402 		itr_val = ice_buildreg_itr(ICE_IDX_ITR2, ICE_ITR_20K);
1403 		itr_val |= GLINT_DYN_CTL_SWINT_TRIG_M |
1404 			   ICE_IDX_ITR2 << GLINT_DYN_CTL_SW_ITR_INDX_S |
1405 			   GLINT_DYN_CTL_SW_ITR_INDX_ENA_M;
1406 	}
1407 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx), itr_val);
1408 }
1409 
1410 /**
1411  * ice_set_wb_on_itr - set WB_ON_ITR for this q_vector
1412  * @q_vector: q_vector to set WB_ON_ITR on
1413  *
1414  * We need to tell hardware to write-back completed descriptors even when
1415  * interrupts are disabled. Descriptors will be written back on cache line
1416  * boundaries without WB_ON_ITR enabled, but if we don't enable WB_ON_ITR
1417  * descriptors may not be written back if they don't fill a cache line until
1418  * the next interrupt.
1419  *
1420  * This sets the write-back frequency to whatever was set previously for the
1421  * ITR indices. Also, set the INTENA_MSK bit to make sure hardware knows we
1422  * aren't meddling with the INTENA_M bit.
1423  */
1424 static void ice_set_wb_on_itr(struct ice_q_vector *q_vector)
1425 {
1426 	struct ice_vsi *vsi = q_vector->vsi;
1427 
1428 	/* already in wb_on_itr mode no need to change it */
1429 	if (q_vector->wb_on_itr)
1430 		return;
1431 
1432 	/* use previously set ITR values for all of the ITR indices by
1433 	 * specifying ICE_ITR_NONE, which will vary in adaptive (AIM) mode and
1434 	 * be static in non-adaptive mode (user configured)
1435 	 */
1436 	wr32(&vsi->back->hw, GLINT_DYN_CTL(q_vector->reg_idx),
1437 	     ((ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) &
1438 	      GLINT_DYN_CTL_ITR_INDX_M) | GLINT_DYN_CTL_INTENA_MSK_M |
1439 	     GLINT_DYN_CTL_WB_ON_ITR_M);
1440 
1441 	q_vector->wb_on_itr = true;
1442 }
1443 
1444 /**
1445  * ice_napi_poll - NAPI polling Rx/Tx cleanup routine
1446  * @napi: napi struct with our devices info in it
1447  * @budget: amount of work driver is allowed to do this pass, in packets
1448  *
1449  * This function will clean all queues associated with a q_vector.
1450  *
1451  * Returns the amount of work done
1452  */
1453 int ice_napi_poll(struct napi_struct *napi, int budget)
1454 {
1455 	struct ice_q_vector *q_vector =
1456 				container_of(napi, struct ice_q_vector, napi);
1457 	struct ice_tx_ring *tx_ring;
1458 	struct ice_rx_ring *rx_ring;
1459 	bool clean_complete = true;
1460 	int budget_per_ring;
1461 	int work_done = 0;
1462 
1463 	/* Since the actual Tx work is minimal, we can give the Tx a larger
1464 	 * budget and be more aggressive about cleaning up the Tx descriptors.
1465 	 */
1466 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
1467 		bool wd;
1468 
1469 		if (tx_ring->xsk_pool)
1470 			wd = ice_xmit_zc(tx_ring);
1471 		else if (ice_ring_is_xdp(tx_ring))
1472 			wd = true;
1473 		else
1474 			wd = ice_clean_tx_irq(tx_ring, budget);
1475 
1476 		if (!wd)
1477 			clean_complete = false;
1478 	}
1479 
1480 	/* Handle case where we are called by netpoll with a budget of 0 */
1481 	if (unlikely(budget <= 0))
1482 		return budget;
1483 
1484 	/* normally we have 1 Rx ring per q_vector */
1485 	if (unlikely(q_vector->num_ring_rx > 1))
1486 		/* We attempt to distribute budget to each Rx queue fairly, but
1487 		 * don't allow the budget to go below 1 because that would exit
1488 		 * polling early.
1489 		 */
1490 		budget_per_ring = max_t(int, budget / q_vector->num_ring_rx, 1);
1491 	else
1492 		/* Max of 1 Rx ring in this q_vector so give it the budget */
1493 		budget_per_ring = budget;
1494 
1495 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
1496 		int cleaned;
1497 
1498 		/* A dedicated path for zero-copy allows making a single
1499 		 * comparison in the irq context instead of many inside the
1500 		 * ice_clean_rx_irq function and makes the codebase cleaner.
1501 		 */
1502 		cleaned = rx_ring->xsk_pool ?
1503 			  ice_clean_rx_irq_zc(rx_ring, budget_per_ring) :
1504 			  ice_clean_rx_irq(rx_ring, budget_per_ring);
1505 		work_done += cleaned;
1506 		/* if we clean as many as budgeted, we must not be done */
1507 		if (cleaned >= budget_per_ring)
1508 			clean_complete = false;
1509 	}
1510 
1511 	/* If work not completed, return budget and polling will return */
1512 	if (!clean_complete) {
1513 		/* Set the writeback on ITR so partial completions of
1514 		 * cache-lines will still continue even if we're polling.
1515 		 */
1516 		ice_set_wb_on_itr(q_vector);
1517 		return budget;
1518 	}
1519 
1520 	/* Exit the polling mode, but don't re-enable interrupts if stack might
1521 	 * poll us due to busy-polling
1522 	 */
1523 	if (napi_complete_done(napi, work_done)) {
1524 		ice_net_dim(q_vector);
1525 		ice_enable_interrupt(q_vector);
1526 	} else {
1527 		ice_set_wb_on_itr(q_vector);
1528 	}
1529 
1530 	return min_t(int, work_done, budget - 1);
1531 }
1532 
1533 /**
1534  * __ice_maybe_stop_tx - 2nd level check for Tx stop conditions
1535  * @tx_ring: the ring to be checked
1536  * @size: the size buffer we want to assure is available
1537  *
1538  * Returns -EBUSY if a stop is needed, else 0
1539  */
1540 static int __ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1541 {
1542 	netif_tx_stop_queue(txring_txq(tx_ring));
1543 	/* Memory barrier before checking head and tail */
1544 	smp_mb();
1545 
1546 	/* Check again in a case another CPU has just made room available. */
1547 	if (likely(ICE_DESC_UNUSED(tx_ring) < size))
1548 		return -EBUSY;
1549 
1550 	/* A reprieve! - use start_queue because it doesn't call schedule */
1551 	netif_tx_start_queue(txring_txq(tx_ring));
1552 	++tx_ring->tx_stats.restart_q;
1553 	return 0;
1554 }
1555 
1556 /**
1557  * ice_maybe_stop_tx - 1st level check for Tx stop conditions
1558  * @tx_ring: the ring to be checked
1559  * @size:    the size buffer we want to assure is available
1560  *
1561  * Returns 0 if stop is not needed
1562  */
1563 static int ice_maybe_stop_tx(struct ice_tx_ring *tx_ring, unsigned int size)
1564 {
1565 	if (likely(ICE_DESC_UNUSED(tx_ring) >= size))
1566 		return 0;
1567 
1568 	return __ice_maybe_stop_tx(tx_ring, size);
1569 }
1570 
1571 /**
1572  * ice_tx_map - Build the Tx descriptor
1573  * @tx_ring: ring to send buffer on
1574  * @first: first buffer info buffer to use
1575  * @off: pointer to struct that holds offload parameters
1576  *
1577  * This function loops over the skb data pointed to by *first
1578  * and gets a physical address for each memory location and programs
1579  * it and the length into the transmit descriptor.
1580  */
1581 static void
1582 ice_tx_map(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first,
1583 	   struct ice_tx_offload_params *off)
1584 {
1585 	u64 td_offset, td_tag, td_cmd;
1586 	u16 i = tx_ring->next_to_use;
1587 	unsigned int data_len, size;
1588 	struct ice_tx_desc *tx_desc;
1589 	struct ice_tx_buf *tx_buf;
1590 	struct sk_buff *skb;
1591 	skb_frag_t *frag;
1592 	dma_addr_t dma;
1593 	bool kick;
1594 
1595 	td_tag = off->td_l2tag1;
1596 	td_cmd = off->td_cmd;
1597 	td_offset = off->td_offset;
1598 	skb = first->skb;
1599 
1600 	data_len = skb->data_len;
1601 	size = skb_headlen(skb);
1602 
1603 	tx_desc = ICE_TX_DESC(tx_ring, i);
1604 
1605 	if (first->tx_flags & ICE_TX_FLAGS_HW_VLAN) {
1606 		td_cmd |= (u64)ICE_TX_DESC_CMD_IL2TAG1;
1607 		td_tag = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
1608 			  ICE_TX_FLAGS_VLAN_S;
1609 	}
1610 
1611 	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1612 
1613 	tx_buf = first;
1614 
1615 	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1616 		unsigned int max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1617 
1618 		if (dma_mapping_error(tx_ring->dev, dma))
1619 			goto dma_error;
1620 
1621 		/* record length, and DMA address */
1622 		dma_unmap_len_set(tx_buf, len, size);
1623 		dma_unmap_addr_set(tx_buf, dma, dma);
1624 
1625 		/* align size to end of page */
1626 		max_data += -dma & (ICE_MAX_READ_REQ_SIZE - 1);
1627 		tx_desc->buf_addr = cpu_to_le64(dma);
1628 
1629 		/* account for data chunks larger than the hardware
1630 		 * can handle
1631 		 */
1632 		while (unlikely(size > ICE_MAX_DATA_PER_TXD)) {
1633 			tx_desc->cmd_type_offset_bsz =
1634 				ice_build_ctob(td_cmd, td_offset, max_data,
1635 					       td_tag);
1636 
1637 			tx_desc++;
1638 			i++;
1639 
1640 			if (i == tx_ring->count) {
1641 				tx_desc = ICE_TX_DESC(tx_ring, 0);
1642 				i = 0;
1643 			}
1644 
1645 			dma += max_data;
1646 			size -= max_data;
1647 
1648 			max_data = ICE_MAX_DATA_PER_TXD_ALIGNED;
1649 			tx_desc->buf_addr = cpu_to_le64(dma);
1650 		}
1651 
1652 		if (likely(!data_len))
1653 			break;
1654 
1655 		tx_desc->cmd_type_offset_bsz = ice_build_ctob(td_cmd, td_offset,
1656 							      size, td_tag);
1657 
1658 		tx_desc++;
1659 		i++;
1660 
1661 		if (i == tx_ring->count) {
1662 			tx_desc = ICE_TX_DESC(tx_ring, 0);
1663 			i = 0;
1664 		}
1665 
1666 		size = skb_frag_size(frag);
1667 		data_len -= size;
1668 
1669 		dma = skb_frag_dma_map(tx_ring->dev, frag, 0, size,
1670 				       DMA_TO_DEVICE);
1671 
1672 		tx_buf = &tx_ring->tx_buf[i];
1673 	}
1674 
1675 	/* record SW timestamp if HW timestamp is not available */
1676 	skb_tx_timestamp(first->skb);
1677 
1678 	i++;
1679 	if (i == tx_ring->count)
1680 		i = 0;
1681 
1682 	/* write last descriptor with RS and EOP bits */
1683 	td_cmd |= (u64)ICE_TXD_LAST_DESC_CMD;
1684 	tx_desc->cmd_type_offset_bsz =
1685 			ice_build_ctob(td_cmd, td_offset, size, td_tag);
1686 
1687 	/* Force memory writes to complete before letting h/w know there
1688 	 * are new descriptors to fetch.
1689 	 *
1690 	 * We also use this memory barrier to make certain all of the
1691 	 * status bits have been updated before next_to_watch is written.
1692 	 */
1693 	wmb();
1694 
1695 	/* set next_to_watch value indicating a packet is present */
1696 	first->next_to_watch = tx_desc;
1697 
1698 	tx_ring->next_to_use = i;
1699 
1700 	ice_maybe_stop_tx(tx_ring, DESC_NEEDED);
1701 
1702 	/* notify HW of packet */
1703 	kick = __netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount,
1704 				      netdev_xmit_more());
1705 	if (kick)
1706 		/* notify HW of packet */
1707 		writel(i, tx_ring->tail);
1708 
1709 	return;
1710 
1711 dma_error:
1712 	/* clear DMA mappings for failed tx_buf map */
1713 	for (;;) {
1714 		tx_buf = &tx_ring->tx_buf[i];
1715 		ice_unmap_and_free_tx_buf(tx_ring, tx_buf);
1716 		if (tx_buf == first)
1717 			break;
1718 		if (i == 0)
1719 			i = tx_ring->count;
1720 		i--;
1721 	}
1722 
1723 	tx_ring->next_to_use = i;
1724 }
1725 
1726 /**
1727  * ice_tx_csum - Enable Tx checksum offloads
1728  * @first: pointer to the first descriptor
1729  * @off: pointer to struct that holds offload parameters
1730  *
1731  * Returns 0 or error (negative) if checksum offload can't happen, 1 otherwise.
1732  */
1733 static
1734 int ice_tx_csum(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1735 {
1736 	u32 l4_len = 0, l3_len = 0, l2_len = 0;
1737 	struct sk_buff *skb = first->skb;
1738 	union {
1739 		struct iphdr *v4;
1740 		struct ipv6hdr *v6;
1741 		unsigned char *hdr;
1742 	} ip;
1743 	union {
1744 		struct tcphdr *tcp;
1745 		unsigned char *hdr;
1746 	} l4;
1747 	__be16 frag_off, protocol;
1748 	unsigned char *exthdr;
1749 	u32 offset, cmd = 0;
1750 	u8 l4_proto = 0;
1751 
1752 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1753 		return 0;
1754 
1755 	protocol = vlan_get_protocol(skb);
1756 
1757 	if (eth_p_mpls(protocol)) {
1758 		ip.hdr = skb_inner_network_header(skb);
1759 		l4.hdr = skb_checksum_start(skb);
1760 	} else {
1761 		ip.hdr = skb_network_header(skb);
1762 		l4.hdr = skb_transport_header(skb);
1763 	}
1764 
1765 	/* compute outer L2 header size */
1766 	l2_len = ip.hdr - skb->data;
1767 	offset = (l2_len / 2) << ICE_TX_DESC_LEN_MACLEN_S;
1768 
1769 	/* set the tx_flags to indicate the IP protocol type. this is
1770 	 * required so that checksum header computation below is accurate.
1771 	 */
1772 	if (ip.v4->version == 4)
1773 		first->tx_flags |= ICE_TX_FLAGS_IPV4;
1774 	else if (ip.v6->version == 6)
1775 		first->tx_flags |= ICE_TX_FLAGS_IPV6;
1776 
1777 	if (skb->encapsulation) {
1778 		bool gso_ena = false;
1779 		u32 tunnel = 0;
1780 
1781 		/* define outer network header type */
1782 		if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1783 			tunnel |= (first->tx_flags & ICE_TX_FLAGS_TSO) ?
1784 				  ICE_TX_CTX_EIPT_IPV4 :
1785 				  ICE_TX_CTX_EIPT_IPV4_NO_CSUM;
1786 			l4_proto = ip.v4->protocol;
1787 		} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1788 			int ret;
1789 
1790 			tunnel |= ICE_TX_CTX_EIPT_IPV6;
1791 			exthdr = ip.hdr + sizeof(*ip.v6);
1792 			l4_proto = ip.v6->nexthdr;
1793 			ret = ipv6_skip_exthdr(skb, exthdr - skb->data,
1794 					       &l4_proto, &frag_off);
1795 			if (ret < 0)
1796 				return -1;
1797 		}
1798 
1799 		/* define outer transport */
1800 		switch (l4_proto) {
1801 		case IPPROTO_UDP:
1802 			tunnel |= ICE_TXD_CTX_UDP_TUNNELING;
1803 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1804 			break;
1805 		case IPPROTO_GRE:
1806 			tunnel |= ICE_TXD_CTX_GRE_TUNNELING;
1807 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1808 			break;
1809 		case IPPROTO_IPIP:
1810 		case IPPROTO_IPV6:
1811 			first->tx_flags |= ICE_TX_FLAGS_TUNNEL;
1812 			l4.hdr = skb_inner_network_header(skb);
1813 			break;
1814 		default:
1815 			if (first->tx_flags & ICE_TX_FLAGS_TSO)
1816 				return -1;
1817 
1818 			skb_checksum_help(skb);
1819 			return 0;
1820 		}
1821 
1822 		/* compute outer L3 header size */
1823 		tunnel |= ((l4.hdr - ip.hdr) / 4) <<
1824 			  ICE_TXD_CTX_QW0_EIPLEN_S;
1825 
1826 		/* switch IP header pointer from outer to inner header */
1827 		ip.hdr = skb_inner_network_header(skb);
1828 
1829 		/* compute tunnel header size */
1830 		tunnel |= ((ip.hdr - l4.hdr) / 2) <<
1831 			   ICE_TXD_CTX_QW0_NATLEN_S;
1832 
1833 		gso_ena = skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL;
1834 		/* indicate if we need to offload outer UDP header */
1835 		if ((first->tx_flags & ICE_TX_FLAGS_TSO) && !gso_ena &&
1836 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM))
1837 			tunnel |= ICE_TXD_CTX_QW0_L4T_CS_M;
1838 
1839 		/* record tunnel offload values */
1840 		off->cd_tunnel_params |= tunnel;
1841 
1842 		/* set DTYP=1 to indicate that it's an Tx context descriptor
1843 		 * in IPsec tunnel mode with Tx offloads in Quad word 1
1844 		 */
1845 		off->cd_qw1 |= (u64)ICE_TX_DESC_DTYPE_CTX;
1846 
1847 		/* switch L4 header pointer from outer to inner */
1848 		l4.hdr = skb_inner_transport_header(skb);
1849 		l4_proto = 0;
1850 
1851 		/* reset type as we transition from outer to inner headers */
1852 		first->tx_flags &= ~(ICE_TX_FLAGS_IPV4 | ICE_TX_FLAGS_IPV6);
1853 		if (ip.v4->version == 4)
1854 			first->tx_flags |= ICE_TX_FLAGS_IPV4;
1855 		if (ip.v6->version == 6)
1856 			first->tx_flags |= ICE_TX_FLAGS_IPV6;
1857 	}
1858 
1859 	/* Enable IP checksum offloads */
1860 	if (first->tx_flags & ICE_TX_FLAGS_IPV4) {
1861 		l4_proto = ip.v4->protocol;
1862 		/* the stack computes the IP header already, the only time we
1863 		 * need the hardware to recompute it is in the case of TSO.
1864 		 */
1865 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1866 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4_CSUM;
1867 		else
1868 			cmd |= ICE_TX_DESC_CMD_IIPT_IPV4;
1869 
1870 	} else if (first->tx_flags & ICE_TX_FLAGS_IPV6) {
1871 		cmd |= ICE_TX_DESC_CMD_IIPT_IPV6;
1872 		exthdr = ip.hdr + sizeof(*ip.v6);
1873 		l4_proto = ip.v6->nexthdr;
1874 		if (l4.hdr != exthdr)
1875 			ipv6_skip_exthdr(skb, exthdr - skb->data, &l4_proto,
1876 					 &frag_off);
1877 	} else {
1878 		return -1;
1879 	}
1880 
1881 	/* compute inner L3 header size */
1882 	l3_len = l4.hdr - ip.hdr;
1883 	offset |= (l3_len / 4) << ICE_TX_DESC_LEN_IPLEN_S;
1884 
1885 	/* Enable L4 checksum offloads */
1886 	switch (l4_proto) {
1887 	case IPPROTO_TCP:
1888 		/* enable checksum offloads */
1889 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_TCP;
1890 		l4_len = l4.tcp->doff;
1891 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1892 		break;
1893 	case IPPROTO_UDP:
1894 		/* enable UDP checksum offload */
1895 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_UDP;
1896 		l4_len = (sizeof(struct udphdr) >> 2);
1897 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1898 		break;
1899 	case IPPROTO_SCTP:
1900 		/* enable SCTP checksum offload */
1901 		cmd |= ICE_TX_DESC_CMD_L4T_EOFT_SCTP;
1902 		l4_len = sizeof(struct sctphdr) >> 2;
1903 		offset |= l4_len << ICE_TX_DESC_LEN_L4_LEN_S;
1904 		break;
1905 
1906 	default:
1907 		if (first->tx_flags & ICE_TX_FLAGS_TSO)
1908 			return -1;
1909 		skb_checksum_help(skb);
1910 		return 0;
1911 	}
1912 
1913 	off->td_cmd |= cmd;
1914 	off->td_offset |= offset;
1915 	return 1;
1916 }
1917 
1918 /**
1919  * ice_tx_prepare_vlan_flags - prepare generic Tx VLAN tagging flags for HW
1920  * @tx_ring: ring to send buffer on
1921  * @first: pointer to struct ice_tx_buf
1922  *
1923  * Checks the skb and set up correspondingly several generic transmit flags
1924  * related to VLAN tagging for the HW, such as VLAN, DCB, etc.
1925  */
1926 static void
1927 ice_tx_prepare_vlan_flags(struct ice_tx_ring *tx_ring, struct ice_tx_buf *first)
1928 {
1929 	struct sk_buff *skb = first->skb;
1930 
1931 	/* nothing left to do, software offloaded VLAN */
1932 	if (!skb_vlan_tag_present(skb) && eth_type_vlan(skb->protocol))
1933 		return;
1934 
1935 	/* the VLAN ethertype/tpid is determined by VSI configuration and netdev
1936 	 * feature flags, which the driver only allows either 802.1Q or 802.1ad
1937 	 * VLAN offloads exclusively so we only care about the VLAN ID here
1938 	 */
1939 	if (skb_vlan_tag_present(skb)) {
1940 		first->tx_flags |= skb_vlan_tag_get(skb) << ICE_TX_FLAGS_VLAN_S;
1941 		if (tx_ring->flags & ICE_TX_FLAGS_RING_VLAN_L2TAG2)
1942 			first->tx_flags |= ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN;
1943 		else
1944 			first->tx_flags |= ICE_TX_FLAGS_HW_VLAN;
1945 	}
1946 
1947 	ice_tx_prepare_vlan_flags_dcb(tx_ring, first);
1948 }
1949 
1950 /**
1951  * ice_tso - computes mss and TSO length to prepare for TSO
1952  * @first: pointer to struct ice_tx_buf
1953  * @off: pointer to struct that holds offload parameters
1954  *
1955  * Returns 0 or error (negative) if TSO can't happen, 1 otherwise.
1956  */
1957 static
1958 int ice_tso(struct ice_tx_buf *first, struct ice_tx_offload_params *off)
1959 {
1960 	struct sk_buff *skb = first->skb;
1961 	union {
1962 		struct iphdr *v4;
1963 		struct ipv6hdr *v6;
1964 		unsigned char *hdr;
1965 	} ip;
1966 	union {
1967 		struct tcphdr *tcp;
1968 		struct udphdr *udp;
1969 		unsigned char *hdr;
1970 	} l4;
1971 	u64 cd_mss, cd_tso_len;
1972 	__be16 protocol;
1973 	u32 paylen;
1974 	u8 l4_start;
1975 	int err;
1976 
1977 	if (skb->ip_summed != CHECKSUM_PARTIAL)
1978 		return 0;
1979 
1980 	if (!skb_is_gso(skb))
1981 		return 0;
1982 
1983 	err = skb_cow_head(skb, 0);
1984 	if (err < 0)
1985 		return err;
1986 
1987 	/* cppcheck-suppress unreadVariable */
1988 	protocol = vlan_get_protocol(skb);
1989 
1990 	if (eth_p_mpls(protocol))
1991 		ip.hdr = skb_inner_network_header(skb);
1992 	else
1993 		ip.hdr = skb_network_header(skb);
1994 	l4.hdr = skb_checksum_start(skb);
1995 
1996 	/* initialize outer IP header fields */
1997 	if (ip.v4->version == 4) {
1998 		ip.v4->tot_len = 0;
1999 		ip.v4->check = 0;
2000 	} else {
2001 		ip.v6->payload_len = 0;
2002 	}
2003 
2004 	if (skb_shinfo(skb)->gso_type & (SKB_GSO_GRE |
2005 					 SKB_GSO_GRE_CSUM |
2006 					 SKB_GSO_IPXIP4 |
2007 					 SKB_GSO_IPXIP6 |
2008 					 SKB_GSO_UDP_TUNNEL |
2009 					 SKB_GSO_UDP_TUNNEL_CSUM)) {
2010 		if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL) &&
2011 		    (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_TUNNEL_CSUM)) {
2012 			l4.udp->len = 0;
2013 
2014 			/* determine offset of outer transport header */
2015 			l4_start = (u8)(l4.hdr - skb->data);
2016 
2017 			/* remove payload length from outer checksum */
2018 			paylen = skb->len - l4_start;
2019 			csum_replace_by_diff(&l4.udp->check,
2020 					     (__force __wsum)htonl(paylen));
2021 		}
2022 
2023 		/* reset pointers to inner headers */
2024 
2025 		/* cppcheck-suppress unreadVariable */
2026 		ip.hdr = skb_inner_network_header(skb);
2027 		l4.hdr = skb_inner_transport_header(skb);
2028 
2029 		/* initialize inner IP header fields */
2030 		if (ip.v4->version == 4) {
2031 			ip.v4->tot_len = 0;
2032 			ip.v4->check = 0;
2033 		} else {
2034 			ip.v6->payload_len = 0;
2035 		}
2036 	}
2037 
2038 	/* determine offset of transport header */
2039 	l4_start = (u8)(l4.hdr - skb->data);
2040 
2041 	/* remove payload length from checksum */
2042 	paylen = skb->len - l4_start;
2043 
2044 	if (skb_shinfo(skb)->gso_type & SKB_GSO_UDP_L4) {
2045 		csum_replace_by_diff(&l4.udp->check,
2046 				     (__force __wsum)htonl(paylen));
2047 		/* compute length of UDP segmentation header */
2048 		off->header_len = (u8)sizeof(l4.udp) + l4_start;
2049 	} else {
2050 		csum_replace_by_diff(&l4.tcp->check,
2051 				     (__force __wsum)htonl(paylen));
2052 		/* compute length of TCP segmentation header */
2053 		off->header_len = (u8)((l4.tcp->doff * 4) + l4_start);
2054 	}
2055 
2056 	/* update gso_segs and bytecount */
2057 	first->gso_segs = skb_shinfo(skb)->gso_segs;
2058 	first->bytecount += (first->gso_segs - 1) * off->header_len;
2059 
2060 	cd_tso_len = skb->len - off->header_len;
2061 	cd_mss = skb_shinfo(skb)->gso_size;
2062 
2063 	/* record cdesc_qw1 with TSO parameters */
2064 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2065 			     (ICE_TX_CTX_DESC_TSO << ICE_TXD_CTX_QW1_CMD_S) |
2066 			     (cd_tso_len << ICE_TXD_CTX_QW1_TSO_LEN_S) |
2067 			     (cd_mss << ICE_TXD_CTX_QW1_MSS_S));
2068 	first->tx_flags |= ICE_TX_FLAGS_TSO;
2069 	return 1;
2070 }
2071 
2072 /**
2073  * ice_txd_use_count  - estimate the number of descriptors needed for Tx
2074  * @size: transmit request size in bytes
2075  *
2076  * Due to hardware alignment restrictions (4K alignment), we need to
2077  * assume that we can have no more than 12K of data per descriptor, even
2078  * though each descriptor can take up to 16K - 1 bytes of aligned memory.
2079  * Thus, we need to divide by 12K. But division is slow! Instead,
2080  * we decompose the operation into shifts and one relatively cheap
2081  * multiply operation.
2082  *
2083  * To divide by 12K, we first divide by 4K, then divide by 3:
2084  *     To divide by 4K, shift right by 12 bits
2085  *     To divide by 3, multiply by 85, then divide by 256
2086  *     (Divide by 256 is done by shifting right by 8 bits)
2087  * Finally, we add one to round up. Because 256 isn't an exact multiple of
2088  * 3, we'll underestimate near each multiple of 12K. This is actually more
2089  * accurate as we have 4K - 1 of wiggle room that we can fit into the last
2090  * segment. For our purposes this is accurate out to 1M which is orders of
2091  * magnitude greater than our largest possible GSO size.
2092  *
2093  * This would then be implemented as:
2094  *     return (((size >> 12) * 85) >> 8) + ICE_DESCS_FOR_SKB_DATA_PTR;
2095  *
2096  * Since multiplication and division are commutative, we can reorder
2097  * operations into:
2098  *     return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2099  */
2100 static unsigned int ice_txd_use_count(unsigned int size)
2101 {
2102 	return ((size * 85) >> 20) + ICE_DESCS_FOR_SKB_DATA_PTR;
2103 }
2104 
2105 /**
2106  * ice_xmit_desc_count - calculate number of Tx descriptors needed
2107  * @skb: send buffer
2108  *
2109  * Returns number of data descriptors needed for this skb.
2110  */
2111 static unsigned int ice_xmit_desc_count(struct sk_buff *skb)
2112 {
2113 	const skb_frag_t *frag = &skb_shinfo(skb)->frags[0];
2114 	unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
2115 	unsigned int count = 0, size = skb_headlen(skb);
2116 
2117 	for (;;) {
2118 		count += ice_txd_use_count(size);
2119 
2120 		if (!nr_frags--)
2121 			break;
2122 
2123 		size = skb_frag_size(frag++);
2124 	}
2125 
2126 	return count;
2127 }
2128 
2129 /**
2130  * __ice_chk_linearize - Check if there are more than 8 buffers per packet
2131  * @skb: send buffer
2132  *
2133  * Note: This HW can't DMA more than 8 buffers to build a packet on the wire
2134  * and so we need to figure out the cases where we need to linearize the skb.
2135  *
2136  * For TSO we need to count the TSO header and segment payload separately.
2137  * As such we need to check cases where we have 7 fragments or more as we
2138  * can potentially require 9 DMA transactions, 1 for the TSO header, 1 for
2139  * the segment payload in the first descriptor, and another 7 for the
2140  * fragments.
2141  */
2142 static bool __ice_chk_linearize(struct sk_buff *skb)
2143 {
2144 	const skb_frag_t *frag, *stale;
2145 	int nr_frags, sum;
2146 
2147 	/* no need to check if number of frags is less than 7 */
2148 	nr_frags = skb_shinfo(skb)->nr_frags;
2149 	if (nr_frags < (ICE_MAX_BUF_TXD - 1))
2150 		return false;
2151 
2152 	/* We need to walk through the list and validate that each group
2153 	 * of 6 fragments totals at least gso_size.
2154 	 */
2155 	nr_frags -= ICE_MAX_BUF_TXD - 2;
2156 	frag = &skb_shinfo(skb)->frags[0];
2157 
2158 	/* Initialize size to the negative value of gso_size minus 1. We
2159 	 * use this as the worst case scenario in which the frag ahead
2160 	 * of us only provides one byte which is why we are limited to 6
2161 	 * descriptors for a single transmit as the header and previous
2162 	 * fragment are already consuming 2 descriptors.
2163 	 */
2164 	sum = 1 - skb_shinfo(skb)->gso_size;
2165 
2166 	/* Add size of frags 0 through 4 to create our initial sum */
2167 	sum += skb_frag_size(frag++);
2168 	sum += skb_frag_size(frag++);
2169 	sum += skb_frag_size(frag++);
2170 	sum += skb_frag_size(frag++);
2171 	sum += skb_frag_size(frag++);
2172 
2173 	/* Walk through fragments adding latest fragment, testing it, and
2174 	 * then removing stale fragments from the sum.
2175 	 */
2176 	for (stale = &skb_shinfo(skb)->frags[0];; stale++) {
2177 		int stale_size = skb_frag_size(stale);
2178 
2179 		sum += skb_frag_size(frag++);
2180 
2181 		/* The stale fragment may present us with a smaller
2182 		 * descriptor than the actual fragment size. To account
2183 		 * for that we need to remove all the data on the front and
2184 		 * figure out what the remainder would be in the last
2185 		 * descriptor associated with the fragment.
2186 		 */
2187 		if (stale_size > ICE_MAX_DATA_PER_TXD) {
2188 			int align_pad = -(skb_frag_off(stale)) &
2189 					(ICE_MAX_READ_REQ_SIZE - 1);
2190 
2191 			sum -= align_pad;
2192 			stale_size -= align_pad;
2193 
2194 			do {
2195 				sum -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2196 				stale_size -= ICE_MAX_DATA_PER_TXD_ALIGNED;
2197 			} while (stale_size > ICE_MAX_DATA_PER_TXD);
2198 		}
2199 
2200 		/* if sum is negative we failed to make sufficient progress */
2201 		if (sum < 0)
2202 			return true;
2203 
2204 		if (!nr_frags--)
2205 			break;
2206 
2207 		sum -= stale_size;
2208 	}
2209 
2210 	return false;
2211 }
2212 
2213 /**
2214  * ice_chk_linearize - Check if there are more than 8 fragments per packet
2215  * @skb:      send buffer
2216  * @count:    number of buffers used
2217  *
2218  * Note: Our HW can't scatter-gather more than 8 fragments to build
2219  * a packet on the wire and so we need to figure out the cases where we
2220  * need to linearize the skb.
2221  */
2222 static bool ice_chk_linearize(struct sk_buff *skb, unsigned int count)
2223 {
2224 	/* Both TSO and single send will work if count is less than 8 */
2225 	if (likely(count < ICE_MAX_BUF_TXD))
2226 		return false;
2227 
2228 	if (skb_is_gso(skb))
2229 		return __ice_chk_linearize(skb);
2230 
2231 	/* we can support up to 8 data buffers for a single send */
2232 	return count != ICE_MAX_BUF_TXD;
2233 }
2234 
2235 /**
2236  * ice_tstamp - set up context descriptor for hardware timestamp
2237  * @tx_ring: pointer to the Tx ring to send buffer on
2238  * @skb: pointer to the SKB we're sending
2239  * @first: Tx buffer
2240  * @off: Tx offload parameters
2241  */
2242 static void
2243 ice_tstamp(struct ice_tx_ring *tx_ring, struct sk_buff *skb,
2244 	   struct ice_tx_buf *first, struct ice_tx_offload_params *off)
2245 {
2246 	s8 idx;
2247 
2248 	/* only timestamp the outbound packet if the user has requested it */
2249 	if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)))
2250 		return;
2251 
2252 	if (!tx_ring->ptp_tx)
2253 		return;
2254 
2255 	/* Tx timestamps cannot be sampled when doing TSO */
2256 	if (first->tx_flags & ICE_TX_FLAGS_TSO)
2257 		return;
2258 
2259 	/* Grab an open timestamp slot */
2260 	idx = ice_ptp_request_ts(tx_ring->tx_tstamps, skb);
2261 	if (idx < 0)
2262 		return;
2263 
2264 	off->cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2265 			     (ICE_TX_CTX_DESC_TSYN << ICE_TXD_CTX_QW1_CMD_S) |
2266 			     ((u64)idx << ICE_TXD_CTX_QW1_TSO_LEN_S));
2267 	first->tx_flags |= ICE_TX_FLAGS_TSYN;
2268 }
2269 
2270 /**
2271  * ice_xmit_frame_ring - Sends buffer on Tx ring
2272  * @skb: send buffer
2273  * @tx_ring: ring to send buffer on
2274  *
2275  * Returns NETDEV_TX_OK if sent, else an error code
2276  */
2277 static netdev_tx_t
2278 ice_xmit_frame_ring(struct sk_buff *skb, struct ice_tx_ring *tx_ring)
2279 {
2280 	struct ice_tx_offload_params offload = { 0 };
2281 	struct ice_vsi *vsi = tx_ring->vsi;
2282 	struct ice_tx_buf *first;
2283 	struct ethhdr *eth;
2284 	unsigned int count;
2285 	int tso, csum;
2286 
2287 	ice_trace(xmit_frame_ring, tx_ring, skb);
2288 
2289 	count = ice_xmit_desc_count(skb);
2290 	if (ice_chk_linearize(skb, count)) {
2291 		if (__skb_linearize(skb))
2292 			goto out_drop;
2293 		count = ice_txd_use_count(skb->len);
2294 		tx_ring->tx_stats.tx_linearize++;
2295 	}
2296 
2297 	/* need: 1 descriptor per page * PAGE_SIZE/ICE_MAX_DATA_PER_TXD,
2298 	 *       + 1 desc for skb_head_len/ICE_MAX_DATA_PER_TXD,
2299 	 *       + 4 desc gap to avoid the cache line where head is,
2300 	 *       + 1 desc for context descriptor,
2301 	 * otherwise try next time
2302 	 */
2303 	if (ice_maybe_stop_tx(tx_ring, count + ICE_DESCS_PER_CACHE_LINE +
2304 			      ICE_DESCS_FOR_CTX_DESC)) {
2305 		tx_ring->tx_stats.tx_busy++;
2306 		return NETDEV_TX_BUSY;
2307 	}
2308 
2309 	/* prefetch for bql data which is infrequently used */
2310 	netdev_txq_bql_enqueue_prefetchw(txring_txq(tx_ring));
2311 
2312 	offload.tx_ring = tx_ring;
2313 
2314 	/* record the location of the first descriptor for this packet */
2315 	first = &tx_ring->tx_buf[tx_ring->next_to_use];
2316 	first->skb = skb;
2317 	first->bytecount = max_t(unsigned int, skb->len, ETH_ZLEN);
2318 	first->gso_segs = 1;
2319 	first->tx_flags = 0;
2320 
2321 	/* prepare the VLAN tagging flags for Tx */
2322 	ice_tx_prepare_vlan_flags(tx_ring, first);
2323 	if (first->tx_flags & ICE_TX_FLAGS_HW_OUTER_SINGLE_VLAN) {
2324 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2325 					(ICE_TX_CTX_DESC_IL2TAG2 <<
2326 					ICE_TXD_CTX_QW1_CMD_S));
2327 		offload.cd_l2tag2 = (first->tx_flags & ICE_TX_FLAGS_VLAN_M) >>
2328 			ICE_TX_FLAGS_VLAN_S;
2329 	}
2330 
2331 	/* set up TSO offload */
2332 	tso = ice_tso(first, &offload);
2333 	if (tso < 0)
2334 		goto out_drop;
2335 
2336 	/* always set up Tx checksum offload */
2337 	csum = ice_tx_csum(first, &offload);
2338 	if (csum < 0)
2339 		goto out_drop;
2340 
2341 	/* allow CONTROL frames egress from main VSI if FW LLDP disabled */
2342 	eth = (struct ethhdr *)skb_mac_header(skb);
2343 	if (unlikely((skb->priority == TC_PRIO_CONTROL ||
2344 		      eth->h_proto == htons(ETH_P_LLDP)) &&
2345 		     vsi->type == ICE_VSI_PF &&
2346 		     vsi->port_info->qos_cfg.is_sw_lldp))
2347 		offload.cd_qw1 |= (u64)(ICE_TX_DESC_DTYPE_CTX |
2348 					ICE_TX_CTX_DESC_SWTCH_UPLINK <<
2349 					ICE_TXD_CTX_QW1_CMD_S);
2350 
2351 	ice_tstamp(tx_ring, skb, first, &offload);
2352 	if (ice_is_switchdev_running(vsi->back))
2353 		ice_eswitch_set_target_vsi(skb, &offload);
2354 
2355 	if (offload.cd_qw1 & ICE_TX_DESC_DTYPE_CTX) {
2356 		struct ice_tx_ctx_desc *cdesc;
2357 		u16 i = tx_ring->next_to_use;
2358 
2359 		/* grab the next descriptor */
2360 		cdesc = ICE_TX_CTX_DESC(tx_ring, i);
2361 		i++;
2362 		tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
2363 
2364 		/* setup context descriptor */
2365 		cdesc->tunneling_params = cpu_to_le32(offload.cd_tunnel_params);
2366 		cdesc->l2tag2 = cpu_to_le16(offload.cd_l2tag2);
2367 		cdesc->rsvd = cpu_to_le16(0);
2368 		cdesc->qw1 = cpu_to_le64(offload.cd_qw1);
2369 	}
2370 
2371 	ice_tx_map(tx_ring, first, &offload);
2372 	return NETDEV_TX_OK;
2373 
2374 out_drop:
2375 	ice_trace(xmit_frame_ring_drop, tx_ring, skb);
2376 	dev_kfree_skb_any(skb);
2377 	return NETDEV_TX_OK;
2378 }
2379 
2380 /**
2381  * ice_start_xmit - Selects the correct VSI and Tx queue to send buffer
2382  * @skb: send buffer
2383  * @netdev: network interface device structure
2384  *
2385  * Returns NETDEV_TX_OK if sent, else an error code
2386  */
2387 netdev_tx_t ice_start_xmit(struct sk_buff *skb, struct net_device *netdev)
2388 {
2389 	struct ice_netdev_priv *np = netdev_priv(netdev);
2390 	struct ice_vsi *vsi = np->vsi;
2391 	struct ice_tx_ring *tx_ring;
2392 
2393 	tx_ring = vsi->tx_rings[skb->queue_mapping];
2394 
2395 	/* hardware can't handle really short frames, hardware padding works
2396 	 * beyond this point
2397 	 */
2398 	if (skb_put_padto(skb, ICE_MIN_TX_LEN))
2399 		return NETDEV_TX_OK;
2400 
2401 	return ice_xmit_frame_ring(skb, tx_ring);
2402 }
2403 
2404 /**
2405  * ice_get_dscp_up - return the UP/TC value for a SKB
2406  * @dcbcfg: DCB config that contains DSCP to UP/TC mapping
2407  * @skb: SKB to query for info to determine UP/TC
2408  *
2409  * This function is to only be called when the PF is in L3 DSCP PFC mode
2410  */
2411 static u8 ice_get_dscp_up(struct ice_dcbx_cfg *dcbcfg, struct sk_buff *skb)
2412 {
2413 	u8 dscp = 0;
2414 
2415 	if (skb->protocol == htons(ETH_P_IP))
2416 		dscp = ipv4_get_dsfield(ip_hdr(skb)) >> 2;
2417 	else if (skb->protocol == htons(ETH_P_IPV6))
2418 		dscp = ipv6_get_dsfield(ipv6_hdr(skb)) >> 2;
2419 
2420 	return dcbcfg->dscp_map[dscp];
2421 }
2422 
2423 u16
2424 ice_select_queue(struct net_device *netdev, struct sk_buff *skb,
2425 		 struct net_device *sb_dev)
2426 {
2427 	struct ice_pf *pf = ice_netdev_to_pf(netdev);
2428 	struct ice_dcbx_cfg *dcbcfg;
2429 
2430 	dcbcfg = &pf->hw.port_info->qos_cfg.local_dcbx_cfg;
2431 	if (dcbcfg->pfc_mode == ICE_QOS_MODE_DSCP)
2432 		skb->priority = ice_get_dscp_up(dcbcfg, skb);
2433 
2434 	return netdev_pick_tx(netdev, skb, sb_dev);
2435 }
2436 
2437 /**
2438  * ice_clean_ctrl_tx_irq - interrupt handler for flow director Tx queue
2439  * @tx_ring: tx_ring to clean
2440  */
2441 void ice_clean_ctrl_tx_irq(struct ice_tx_ring *tx_ring)
2442 {
2443 	struct ice_vsi *vsi = tx_ring->vsi;
2444 	s16 i = tx_ring->next_to_clean;
2445 	int budget = ICE_DFLT_IRQ_WORK;
2446 	struct ice_tx_desc *tx_desc;
2447 	struct ice_tx_buf *tx_buf;
2448 
2449 	tx_buf = &tx_ring->tx_buf[i];
2450 	tx_desc = ICE_TX_DESC(tx_ring, i);
2451 	i -= tx_ring->count;
2452 
2453 	do {
2454 		struct ice_tx_desc *eop_desc = tx_buf->next_to_watch;
2455 
2456 		/* if next_to_watch is not set then there is no pending work */
2457 		if (!eop_desc)
2458 			break;
2459 
2460 		/* prevent any other reads prior to eop_desc */
2461 		smp_rmb();
2462 
2463 		/* if the descriptor isn't done, no work to do */
2464 		if (!(eop_desc->cmd_type_offset_bsz &
2465 		      cpu_to_le64(ICE_TX_DESC_DTYPE_DESC_DONE)))
2466 			break;
2467 
2468 		/* clear next_to_watch to prevent false hangs */
2469 		tx_buf->next_to_watch = NULL;
2470 		tx_desc->buf_addr = 0;
2471 		tx_desc->cmd_type_offset_bsz = 0;
2472 
2473 		/* move past filter desc */
2474 		tx_buf++;
2475 		tx_desc++;
2476 		i++;
2477 		if (unlikely(!i)) {
2478 			i -= tx_ring->count;
2479 			tx_buf = tx_ring->tx_buf;
2480 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2481 		}
2482 
2483 		/* unmap the data header */
2484 		if (dma_unmap_len(tx_buf, len))
2485 			dma_unmap_single(tx_ring->dev,
2486 					 dma_unmap_addr(tx_buf, dma),
2487 					 dma_unmap_len(tx_buf, len),
2488 					 DMA_TO_DEVICE);
2489 		if (tx_buf->tx_flags & ICE_TX_FLAGS_DUMMY_PKT)
2490 			devm_kfree(tx_ring->dev, tx_buf->raw_buf);
2491 
2492 		/* clear next_to_watch to prevent false hangs */
2493 		tx_buf->raw_buf = NULL;
2494 		tx_buf->tx_flags = 0;
2495 		tx_buf->next_to_watch = NULL;
2496 		dma_unmap_len_set(tx_buf, len, 0);
2497 		tx_desc->buf_addr = 0;
2498 		tx_desc->cmd_type_offset_bsz = 0;
2499 
2500 		/* move past eop_desc for start of next FD desc */
2501 		tx_buf++;
2502 		tx_desc++;
2503 		i++;
2504 		if (unlikely(!i)) {
2505 			i -= tx_ring->count;
2506 			tx_buf = tx_ring->tx_buf;
2507 			tx_desc = ICE_TX_DESC(tx_ring, 0);
2508 		}
2509 
2510 		budget--;
2511 	} while (likely(budget));
2512 
2513 	i += tx_ring->count;
2514 	tx_ring->next_to_clean = i;
2515 
2516 	/* re-enable interrupt if needed */
2517 	ice_irq_dynamic_ena(&vsi->back->hw, vsi, vsi->q_vectors[0]);
2518 }
2519